Student  Sustainability  Award  Application     Kile  McKenna   Evaluation  of  the  Sustainability  of   Undergraduate  Chemistry  Labs  at   Thompson  Rivers  University   A  proposal  for  the  review  of  laboratory  procedures  as  applied  in  the   instruction  of  undergraduate  chemistry                                         Proposal  submitted  in  partial  fulfillment  of  the  $5000  Student  Sustainability  Award   application  guidelines     February  28,  2015     Kile  McKenna  –  Bachelor  of  Science  Candidate     Faculty  Supervisor  –  Dr.  Sharon  Brewer         Student  Sustainability  Award  Application     Kile  McKenna   Abstract       This  project  proposes  to  develop  a  specific  set  of  criteria  based  on  the   principles  of  green  chemistry  that  will  be  used  in  the  evaluation  of  all   undergraduate  chemistry  labs  at  Thompson  Rivers  University.    Providing  metrics  of   this  type  will  serve  as  a  management  tool  for  faculty  to  enable  the  enhancement  of   sustainable  practices  in  the  laboratory.    By  making  the  ratings  available  to  students   with  their  laboratory  procedures,  concepts  of  sustainability  will  be  integrated  with   existing  curricula.         Student  Sustainability  Award  Application     Kile  McKenna   Project  Description   Introduction     Chemistry  is  a  fundamental  branch  of  science  that  all  students  in  the  Faculty   of  Science  at  Thompson  Rivers  University  must  study  to  some  degree.    In  addition  to   the  theoretical  component  to  this  education,  an  applied  component  is  taught  in  the   form  of  compulsory  laboratory  instruction  periods.    The  importance  of  sustainable   practices  has  been  acknowledged  by  the  chemistry  faculty  at  TRU,  who  have  made  it   a  goal  to  integrate  the  principles  of  green  chemistry  across  the  curriculum.   Paul  Anastas,  a  pioneer  in  the  field  of  green  chemistry,  has  defined  the   concept  as:  “the  utilization  of  a  set  of  principles  that  reduces  or  eliminates  the  use  or   generation  of  hazardous  substances  in  the  design,  manufacture,  and  application  of   chemical  products”.  (Anastas,  Green  Chemistry:  Theory  and  Practice  1998)     In  the  past  decade  there  have  been  significant  advances  in  the  thinking   surrounding  chemistry  through  the  development  of  the  related  fields  of  green   synthetic  chemistry  and  green  analytical  chemistry.  (Anastas  and  Kirchhoff  2002)   (Galuszka,  Migaszewski  and  Namisnik  2013)    The  significance  of  these  fields  is  that   they  are  not  distinct  sub-­‐disciplines  of  chemistry,  but  rather  comprehensive   philosophies  which  seek  to  inform  the  chemist  in  completing  what  has  traditionally   been  required  of  her,  while  eliminating  unnecessary  harm  that  may  come  about  in   achieving  the  desired  results.    A  number  of  objective  rating  systems  have  been  put   forth  in  academic  literature  to  aid  in  the  assessment  of  the  overall  sustainability  of   an  experimental  procedure.  (Galuszka,  et  al.  2012)  (Raynie  and  Driver  2009)   To  date  there  has  never  been  an  evaluation  of  undergraduate  chemistry  labs   at  TRU  with  an  eye  towards  sustainability.    Given  the  discussion  in  recent  literature   it  seems  appropriate  to  perform  an  assessment  of  the  entire  experimental  curricula   than  to  modify  a  single  experiment.    By  reviewing  all  labs  there  are  significant   potential  gains,  and  TRU  may  emerge  as  a  leader  in  the  instruction  of  green   chemistry.       Goals  and  Objectives       There  are  two  related  goals  that  must  be  achieved  for  the  successful   completion  of  this  project.    Firstly,  standardized  criteria  to  evaluate  the   sustainability  of  a  chemical  method  within  the  university  context  must  be  created.     The  criteria  would  include  a  rating  system  or  systems  published  in  the  scientific   literature,  factors  specific  to  the  institution  such  as  the  number  of  students   completing  a  given  experiment  (which  varies  greatly  by  the  year  of  study),  and   other  considerations  relating  to  green  chemistry  that  may  fall  outside  of  the   literature  method  or  methods  selected.    The  second  and  ultimate  goal  of  the  project   would  be  the  application  of  the  standardized  criteria  to  all  undergraduate  chemistry   experiments  at  Thompson  Rivers  University  that  are  completed  on  an  ongoing  basis.     Student  Sustainability  Award  Application     Kile  McKenna   Significance       This  project  will  have  real  and  immediate  benefits  in  each  of  the  “four  pillars   of  sustainability”  as  defined  by  TRU’s  Office  of  Sustainability.  Providing  a   measurement  of  sustainability  that  is  consistent  for  each  experiment  will  create  a   management  tool  that  will  easily  facilitate  decision-­‐making  regarding  sustainability   at  the  department  level.    Through  the  evaluation  process  the  least  sustainable   experiments  will  become  apparent  and  potential  alternatives  to  enhance  the   sustainability  of  these  experiments  will  be  provided.    If  even  one  experiment  were   changed  based  on  these  recommendations  there  would  be  real  benefits  for  the   environment.       Perhaps  the  greatest  benefits  would  come  in  the  social  and  cultural  areas  of   sustainability.    If  the  determined  ratings  were  made  available  to  students  with  the   laboratory  procedures  it  would  provide  an  excellent  introduction  to  principles  of   green  chemistry  from  the  first  time  a  student  enters  the  lab.    Presenting  the  ratings   and  explaining  their  significance,  would  introduce  concepts  of  sustainability,  even  if   no  changes  were  made  to  the  actual  procedures.    By  introducing  these  concepts   early  and  bringing  them  into  consideration  any  time  a  student  steps  into  the  lab  it  is   possible  that  students  will  be  empowered  to  make  better  choices  towards   sustainability  of  their  chemistry  practice  at  TRU  as  well  as  in  their  future   endeavours.    As  such,  the  dissemination  of  the  evaluations  that  will  result  from  this   project  represent  an  excellent  tool  to  advance  the  education  of  sustainable   principles  at  TRU  in  an  approach  that  is  fully  integrated  into  the  normal  pedagogical   process  pertaining  to  chemistry.    This  is  fully  congruent  with  the  idea  that  green   chemistry  is  not,  and  must  not  be  regarded  as,  an  independent  sub-­‐discipline  of   chemistry  but  rather  as  an  integrated  approach.     Economic  sustainability  benefits  may  also  arise  as  a  result  of  this  work.    In   the  process  of  reviewing  procedures  and  recommending  changes,  costs  of  chemical   reagents  may  be  used  as  a  factor  for  consideration.    Areas  of  wastefulness  will  be   identified  and  the  improvement  of  those  areas  will  have  a  positive  impact  on  cost   through  the  reduction  of  chemical  materials  used.   Theory       A  specific  set  of  criteria  for  sustainability  must  be  developed  rather  than   using  an  “off  the  shelf”  assessment  for  a  number  of  reasons.    As  mentioned  above  the   actual  number  of  students  completing  a  first  year  lab  will  be  far  greater  than  the   number  completing  a  fourth  year  lab,  and  thus  the  impacts  will  differ  significantly.     In  addition  the  literature  methods  for  evaluating  a  synthetic  process  differ  greatly   from  methods  to  evaluate  an  analytical  process.    Even  focusing  briefly  on  the   analytical  case  alone,  there  are  many  different  methods  of  evaluation  that  collect   and  display  information  differently.    In  the  Rainey  and  Driver  method  a  pictogram  is   created  showing  a  red,  yellow  or  green  rating  in  the  five  areas:  health,  safety,  waste,   environmental  impact  and  energy  consumption.  (Raynie  and  Driver  2009)    In  the   Student  Sustainability  Award  Application     Kile  McKenna   Eco-­‐scale  method  the  calculations  are  more  in  depth,  and  a  number  is  provided  on  a   scale  of  100  to  judge  the  sustainability  of  the  method.  (Galuszka,  et  al.  2012)    Both   methods  have  their  advantages  and  it  is  possible  that  both  methods  could  have  a   place  in  the  developed  assessment  criteria,  but  there  are  other  areas  of   sustainability  that  should  be  considered  as  well.    Additionally,  neither  of  these   systems  would  be  suitable  for  the  evaluation  of  a  synthetic  process,  as  they  both   focus  on  analytical  experimental  methodology.    This  further  illustrates  the  need  for   a  green  chemistry  metric  that  is  specialized  to  the  undergraduate  laboratory  setting.     There  are  many  examples  in  the  recent  literature  of  green  undergraduate   chemistry  experiments  being  developed  (Lang,  Harned  and  Wissinger  2011)   (Buckley,  et  al.  2013).    To  date,  there  has  not  been  a  demonstration  of  an  evaluation   of  all  chemistry  labs  at  an  undergraduate  institution,  as  is  being  proposed  for  this   project.   Budget  and  Timeline       Outside  of  the  time  spent  researching  the  methodology  and  implementing  it   there  are  no  other  significant  inputs  required.    The  $5000  award  would  sufficiently   compensate  for  the  research  to  be  performed.       Timeline   Milestone     Target  date   Commencement  of  project   Immediately  upon  award     Finalization  of  evaluation  criteria   May  31,  2015   Application  of  criteria  to  labs  complete   July  31,  2015   Analysis  of  data  and  preparation  of   August  31,  2015   reports   Presentation  of  findings   September  2015   Dissemination     The  manner  in  which  the  results  of  this  research  will  be  disseminated  will  be   key  to  producing  the  intended  outcomes  with  respect  to  the  advancement  of   sustainable  practices  in  chemistry.    A  report  detailing  the  development  of  the  green   chemistry  evaluation  criteria,  and  application  of  the  criteria  will  be  made  available   to  the  Faculty  of  Chemistry,  the  Office  of  Sustainability  and  the  student  body  via  the   TRUSU  Chemistry  Biochemistry  Club.    This  report  will  also  be  submitted  to   academic  journals  for  publication.   Two  supplemental  documents  will  also  be  developed  and  submitted  to  the   Faculty  of  Chemistry.    One  of  these  documents  will  recommend  potential   alternatives  to  the  lowest  rated  labs  in  terms  of  green  chemistry,  which  would  serve   to  improve  the  rating  under  the  observed  criteria.    The  other  supplemental   Student  Sustainability  Award  Application     Kile  McKenna   document  will  provide  a  concise  rating  for  each  experiment  evaluated,  in  a  format   that  would  be  suitable  to  include  in  future  versions  of  lab  manuals.     A  presentation  of  the  findings  will  also  be  made.    The  presentation  will  be   open  to  faculty,  students,  representatives  from  the  Office  of  Sustainability,  and  other   stakeholders  at  the  university.   Closing  Remarks       A  novel  process  to  evaluate  the  sustainability  of  chemistry  labs  in  an   undergraduate  university  setting  has  been  proposed.    This  process  will  provide   opportunities  for  improvements  with  respect  to  environmental  outcomes,  reduction   of  costs  by  conserving  materials,  and  most  significantly,  the  advancement  of  the   education  of  sustainable  principles  in  a  manner  that  could  be  integrated  seamlessly   with  existing  curricula.     In  my  opinion,  I  am  uniquely  qualified  to  complete  this  project  for  the   following  reasons.    Majoring  in  Environmental  Chemistry  has  given  me  a  solid   foundation  in  physical  science  as  it  relates  to  sustainable  practices,  and  the  technical   skills  required  in  evaluating  a  chemical  method.    Work  this  semester  in  the  course   Selected  Topics  in  Applied  Chemistry  has  focused  on  the  application  of  standardized   criteria  to  chemical  methodologies,  and  has  given  me  experience  with  some  of  the   different  rating  systems  available.      Pursuing  a  Minor  in  Environmental  Economics   and  Sustainable  Development  has  expanded  on  my  knowledge  around  sustainable   practices  in  an  interdisciplinary  fashion.    This  work  has  included  topics  of  economic   theory  as  applied  to  the  environment,  social  issues  in  sustainable  development,  and   environmental  ethics.    In  addition  I  have  four  years  of  work  experience  in   construction  management,  during  which  time  I  completed  Built  Green  builder   training  and  achieved  LEED  Accredited  Professional  status.    Learning  about  these   systems  gave  me  much  insight  into  standardized  methods  for  evaluating   sustainability.    Through  the  application  of  these  systems  to  real  construction   projects  I  have  gained  a  significant  appreciation  for  the  challenges  that  may  be   present  when  integrating  principles  of  sustainability  into  a  goal-­‐oriented  process.     In  contemplation  of  the  benefits  outlined  above  and  strong  possibility  of   success  in  achieving  the  goals  set  forth,  this  proposal  is  respectfully  submitted  for   your  consideration.         Student  Sustainability  Award  Application     Works  Cited   Kile  McKenna     Anastas,  Paul  T.  Green  Chemistry:  Theory  and  Practice.  New  York:  Oxford  University   Press,  1998.   Anastas,  Paul  T.,  and  Mary  M.  Kirchhoff.  "Origins,  Current  Status  and  Future   Challenges  of  Green  Chemistry."  Accounts  of  Chemical  Research  35  (2002):  686-­‐694.   Buckley,  Heather  L.,  Annelise  R.  Beck,  Martin  J.  Mulvihill,  and  Michelle  C.  Douskey.   "Fitting  It  All  In:  Adapting  a  Green  Chemistry  Extraction  Experiment  for  Inclusion  in   an  Undergraduate  Analytical  Laboratory  ."  Journal  of  Chemical  Education  90  (2013):   771-­‐774.   Cann,  Michael  C.,  and  Trudy,  A.  Dickneider.  "Infusing  the  Chemistry  Curriculum  with   Green  Chemistry  Using  Real-­‐World  Examples,  Web  Modules,  and  Atom  Economy  in   Organic  Chemistry  Courses."  Journal  of  Chemical  Education  81,  no.  7  (2004):  977-­‐ 980.   Galuszka,  A.,  P.  Konieczka,  Z.  Migaszewski,  and  J  Namiesnik.  "Analytical  Eco-­‐Scale  for   assessing  the  greenness  of  analytical  procedures."  Trends  in  Analytical  Chemistry  37   (2012):  61-­‐72.   Galuszka,  Agnieszka,  Zdzislaw  Migaszewski,  and  Jacek  Namisnik.  "The  12  principles   of  green  analytical  chemistry  and  the  SIGNIFICANCE  mnemonic  of  green  analytical   practices  ."  Trends  in  Analytical  Chemistry  50  (2013):  78-­‐84.   Lang,  Patrick  T.,  Andrew  M.  Harned,  and  Jane.  E.  Wissinger.  "Oxidation  of  Borneol  to   Camphor  Using  Oxone  and  Catalytic  Sodium  Chloride:  A  Green  Experiment  for  the   Undergraduate  Organic  Chemistry  Laboratory  ."  Journal  Of  Chemical  Education  88   (2011):  652-­‐656.   Raynie,  D.,  and  J.L.  Driver.  "Green  assesment  of  chemical  methods."  13th  Green  Chem.   Eng.  Conf.  Washington,  DC,  2009.