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ABSTRACT

The concept of derivatives with non-integral orders has been studied for cen-

turies and has found numerous applications in physics and engineering. Recently,

there has been growing interest in exploring fractional versions of popular differential

equations. This study aims at finding stationary solutions to the fractional generali-

sation of the Nonlinear Schrödinger equation. Analytical stationary solutions to the

nonlinear Schrödinger equation (NLSE) exist and are well known in literature [1] to

have their amplitudes related to the Jacobi elliptic trigonometric functions. How-

ever, the spectrum of linearisation around the Jacobi elliptic solution is known to

be purely imaginary, making it impossible to obtain the solution with direct numer-

ical attempts. We present a novel approach attempting to stabilise the numerical

scheme and obtaining the Jacobi elliptic solutions by replacing the NLSE with a

pair of coupled (auxiliary) PDEs inspired by the Gierer-Meinhardt (GM) model,

which is known to have stable spike-type solutions that have negative real parts in

their stability spectrum[2]. The stable nature of the solution persists even when the

Laplacian is replaced with a derivative of a non-integral order[3], which makes it a

suitable inspiration for our purposes. Results of the numerical trial of the auxiliary

PDE approach are presented. We use a pseudo-spectral scheme based on Fourier

transforms to simplify the problem from a system of partial differential equations to

ordinary differential equations and to allow for generalisation to non-integral order

derivatives. Despite extensive experimentation with various parameters, our method

fails to converge to the Jacobi elliptic solutions. Lastly, we also present a compre-

hensive review of the literature on fractional calculus, the Nonlinear Schrödinger

equation and the stability analysis of stationary solutions to the NLSE.
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Chapter 1

Introduction and motivation

There exists an idea of extending the definitions of (“usual”) derivatives of integer

order n to any arbitrary real (or even complex) order α. This extension can at

first be demanded with the same motivation that extensions to the natural number

system were demanded – purely to appease the curiosity. For instance, if we were

only aware of the integer number system, one may ask “Is there a number that can

be added to itself n times, to give 1?”, allowing us to discover the multiplicative

inverses and then eventually, the rationals. From there, one may ask “Is there a

number that can be multiplied to itself twice, to give the answer 2?”, allowing us to

expand our knowledge even beyond the rationals.

The extensions arising from mathematical curiosities have allowed us to answer

and explain a number of phenomena. The length of the hypotenuse of a right triangle

with unit base and perpendicular could only be represented with a symbol after

people accepted that numbers could exist beyond rationals. Roots to quadratic

equations like x2 + 1 = 0 could only be given when numbers beyond the reals

were accepted to exist. The argument, of course, does not apply only to number

systems. The Gamma function Γ(x) was discovered as an extension of the integer

operator known as the factorial and has also seen many applications throughout

mathematics. A number of applications of fractional derivatives also exist, as we

shall see in a later section. A common prescription to obtaining applications of

fractional derivatives involves extending the equations governing well-established

systems to their fractional counterparts. This has been a successful method in

helping us explain naturally occurring phenomena like anomalous diffusion [3, 4] and

Lévy flights. With this motivation, we shall explore the extension of the nonlinear

Schrödinger equation involving fractional derivatives.

The Nonlinear Schrödinger equation(NLSE) is a canonical equation of nonlinear

dynamics, which describes the time evolution of a wave travelling in a dispersive
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1.1. Dispersion relations Chapter 1. Introduction and motivation

medium. The dynamics of such systems is characterised by dispersion relations.

These relations will prove useful while motivating important questions this project

aims to answer.

1.1 Dispersion relations

At the heart Quantum Mechanics, just like any other branch of Physics, is a dif-

ferential equation. The equation, termed as the Schrödinger’s equation, is a model

for one of many ways of describing quantum mechanical systems. Particularly, it

describes the time-evolution of the quantum state of a particle. It was first pos-

tulated by Erwin Schrödinger, after whom the equation has been named, in 1925.

In its usual form, the Schrödinger’s equation (1.1.1) is a linear differential equation

with its structure similar to that of the diffusion equation: consisting of a single

derivative in the time variable and double derivative in spatial variables,

ιℏ
∂ψ(x, t)

∂t
= − ℏ2

2m

∂2ψ(x, t)

∂x2
+ V (x, t)ψ(x, t) , (1.1.1)

where ψ (x, t) is the wavefunction of the particle and V (x, t) is the potential that

represents the environment that the particle is in. The Schrödinger’s equation is

intended to be a representative of quantum mechanics that is analogous to Newto-

nian mechanics. Which is to say that it must follow the classical energy-momentum

relation

E =
p2

2m
+ V , (1.1.2)

where E is the total energy of the system and p is the momentum. It is clear that

the system is totally nonrelativistic. Relations such as (1.1.2) are often termed as

dispersion relations. The term dispersion relation originates from optics, where in

that context, it is the relation between the wave number k and the frequency ω.

The dispersion relation for usual optical systems, i.e., the systems that follow the

free wave equation

1

c2
∂2u(x, t)

∂t2
=
∂2u(x, t)

∂x2
, (1.1.3)

11



1.2. The Nonlinear Schrödinger equation Chapter 1. Introduction and motivation

can be obtained by taking the Fourier transform on both sides in all space and time

variables (refer chapter A) to get

1

c2
F

{
∂2u(x, t)

∂t2

}
x→k,t→ω

= F

{
∂2u(x, t)

∂x2

}
x→k,t→ω

,

=⇒ 1

c2
ω2û = k2û.

Where û ≡ F{u}. We have used the property (A.2) of Fourier transforms to get

from the first expression above, to the second. This gives us the relation ω = ck

that we know from optics.

Similarly, if we take Fourier transforms on both sides of the Schrödinger’s equa-

tion (1.1.1) with V = 0, we get

ιℏF

{
∂ψ(x, t)

∂t

}
x→k,t→ω

= − ℏ2

2m
F

{
∂2ψ(x, t)

∂x2

}
x→k,t→ω

=⇒ ℏωψ̂ =
ℏ2k2

2m
ψ̂ .

Where again, we have ψ̂ ≡ F{ψ}. If we now remember the De-Broglie relations

E = ℏω and p = ℏk, we see that we have arrived at the dispersion relation (1.1.2).

In general, one may obtain the dispersion relations of a system if the basic

equations governing the system are known. However, It is quite often the case that

the dispersion relations are easier to experimentally obtain or to be realised through

physical arguments, than the basic equations themselves. And once we have a

dispersion relation governing our system, we may derive the basic equations that the

system would follow, instead of going the other way around. The whole prescription

of looking at experimental data, finding the dispersion relations and then coming

up with a basic equation of the system provides us with a phenomenological method

of doing physics. As stated earlier, we will motivate the Nonlinear Schrödinger

equation(NLSE) and even the fractional Nonlinear Schrödinger equation(fNLSE),

using dispersion relations.

1.2 The Nonlinear Schrödinger equation

The Nonlinear Schrödinger equation has been an equation of great physical and

mathematical interest for the past 60 years. The essence of NLSE can be found

in the works of Ginzburg and Landau(1950) in their study of macroscopic super-

conductivity. However, it was not until mid-1960s that the wider applicability of

12



1.2. The Nonlinear Schrödinger equation Chapter 1. Introduction and motivation

the NLSE started coming into the focus. The NLSE has found applicability in a

very diverse set of fields[5], including nonlinear optics [6], plasma physics [7], fluid

dynamics, magnetic spin waves, etc. Generally speaking, it has been found

that most weakly nonlinear, dispersive, energy-conserving systems lead

to the NLSE, in an appropriate limit. Let us take a closer look at how the

NLSE appears in nonlinear optical systems.

Optical fibre technology has brought about a paradigm shift in data transmission

technology. It allows for transmission with a much larger bandwidth and over signif-

icantly longer distances as compared to the electric cables. However, as is with any

new technology, it came with its own set of limitations. Dispersion and nonlinearity

are amongst some serious limitations of optical fibres [8].

Dispersion originates from the frequency dependence of the refractive index. The

different spectral components of the signal propagate at different speeds, and as a

result, arrive at different times at their destination. This results in pulse broadening

and distortion.

Fibre nonlinearity is due to the so-called Kerr effect, where the refractive index

develops a dependence on the intensity of the beam passing through it. In the

presence of dispersion and Kerr nonlinearity, the refractive index of the material is

given by

n(ω,E) = n0(ω) + n2|E|2, (1.2.1)

where ω and E represent the frequency and the electric field of the electromagnetic

wave, respectively; n0(ω) is the linear, frequency-dependent part of the refractive

index; and the constant n2 is referred to as the Kerr coefficient. It is typically of

the order 10−22m2/W. Despite its small value, the nonlinearity can cause effects

to accumulate over large distances and result in significant pulse broadening during

propagation. Note that if we have a modulated wave, as is often the case with signal

propagation, E will represent the amplitude of the carrier wave.

The following is a sketch of the derivation. A detailed and comprehensive treat-

ment can be found in [6] along with relevant references cited therein. We use the

motivation from the previous section to write down the dispersion relation for a

wave propagating through a medium with refractive index given by (1.2.1):

k(ω,E) =
ω

c

(
n0(ω) + n2|E|2

)
, (1.2.2)

where c denotes the speed of light in vacuum. The Taylor series expansion of k(ω,E)

13



1.2. The Nonlinear Schrödinger equation Chapter 1. Introduction and motivation

around ω = ω0 up to second order in ω yields

k − k0 = k′(ω0)(ω − ω0) +
k′′(ω0)

2
(ω − ω0)

2 +
ω0n2

c
|E|2, (1.2.3)

where the prime (′) denotes derivative in ω and k0 = k(ω0). And now, exactly in

the opposite way as in the previous section, we replace k− k0 and ω−ω0 with their

corresponding inverse Fourier operator equivalents ι∂/∂z and ι∂/∂t, respectively.

We also then let the whole expression operate on E, to obtain

ι

(
∂E

∂z
+ k′(ω0)

∂E

∂t

)
− k′′(ω0)

2

∂2E

∂t2
+ ν|E|2E = 0, (1.2.4)

where ν ∈ R is an appropriate constant, defined by collecting all the constants in

front of the cubic term. We may identify k′(ω0) = 1/vg, where vg is the group

velocity of a given travelling wave.

To obtain the dimensionless version of (1.2.4), we first introduce retarded time

coordinate tret = t − z/vg. Assume that t∗, z∗ and P∗ are the characteristic time,

distance and power of the system, respectively. If we choose z∗ = 1/νP∗ and t2∗ =

z∗|−k′′(ω0)| and move to the dimensionless coordinates t′ = t/t∗ , z
′ = z/z∗ and q =

E/
√
P∗, we arrive at the NLSE

ι
∂q

∂z
+

sgn(−k′′0(ω0))

2

∂2q

∂t2
+ |q|2q = 0. (1.2.5)

There are now two cases of physical interest depending on the sign of −k′′(ω0).

When −k′′(ω0) > 0, we obtain what is termed as the defocusing NLSE, and the

resulting dispersion in this case is “normal”. While −k′′(ω0) < 0 results in the

focusing NLSE and “anomalous” dispersion. Unless specifically mentioned, we will

restrict our analysis to the defocusing NLSE, even after we change the form of the

Laplacian in the following sections. Hence, the equation of our interest is

ιqt = −1

2
qxx + q|q|2 . (1.2.6)

There has been an extensive amount of research on the solutions of the NLSE and

their properties[1]. The NLSE is known to be a completely integrable system. In

the context of this project, we would be interested in separable solutions of the type

Ψ(x, t) = e−ιωtϕ(x) ,

where ω is a real constant. We are specifically interested in a class of periodic

14



1.3. Fractional calculus Chapter 1. Introduction and motivation

solutions in x, where the amplitude ϕ(x) is expressed in terms of the Jacobi elliptic

sine function sn(x, k) (refer Appendix B):

Ψ(x, t) = k sn(x, k)e−
ι
2
(1+k2)t, (1.2.7)

where k ∈ [0, 1) is called the elliptic modulus. sn(x, k) is a periodic function with

the period T (k) = 4K(k), and K(k) is the elliptic integral of first kind. We will

take a deeper look at the NLSE and the Jacobi elliptic solutions in the next chapter,

where we also discuss the stability spectrum of these solutions.

Finally, we would like to point out the resemblance between the Nonlinear

Schrödinger equation (NLSE) and the complex cubic Ginzburg-Landau (CCGL) [5]

equation, which appears in the context of pattern formation processes in nonlinear

media:

ψt = gψ + (a+ ιb)∇2ψ − (d+ ιc)|ψ|2ψ, (1.2.8)

where ψ is complex. g > 0 is known as the gain coefficient. a > 0 and b ∈ R
are coefficients controlling the diffusion and dispersion processes. c ∈ R and d > 0

account for the nonlinear dissipations. In the |a| ≪ |b| and |d| ≪ |c| limit, we

can see that the CGCL equation becomes the NLSE. So, the NLSE also makes its

appearance in the theory of pattern formation.

In summary, the above discussion has highlighted the immense physical and

mathematical significance of the Nonlinear Schrödinger equation (1.2.6). In a later

section, we will introduce a generalisation of the NLSE based on the concept of

fractional derivatives, which extends the conventional integer-order derivatives to

derivatives of arbitrary real order α. This idea falls under the realm of fractional

calculus, which is the subject matter of the next section.

1.3 Fractional calculus

The notion of fractional derivatives has existed for centuries, originally appearing in

the works of Leibniz in 1695. However, it was only after more than a century later,

in 1823, that a practical application of fractional calculus was found. Niels Abel

published his treatment of the famous tautochrone problem in 1823, at an age of

21, where he used fractional derivatives to find the solution [9]. That stood as the

sole example of an application of fractional derivatives, for almost an entire century,

that is up until the early 1920s, when Oliver Heaviside, an autodidact, found the

application of fractional derivatives in his works on the theory of transmission lines

15



1.3. Fractional calculus Chapter 1. Introduction and motivation

[10].

Even though there was a steady progress in the subject on the side of mathemat-

ical exploration, it was not until the works of Mandelbrot on fractal geometry in the

early 1980s [11, 12] that the topic started to gain the interest of physicists too. Frac-

tional derivatives started appearing in the contexts of fractional Brownian motion

[13] and anomalous diffusion processes [14]. Since then, fractional versions of various,

physically important differential equations have come to light and raised fundamen-

tal questions about the physical nature of the systems governed by those equations.

For instance, N. Laskin (2002) [15] presented a fractional version of the Schrödinger

equation and also proved, in the same article, that the fractional Schrödinger op-

erator was Hermitian. Goldfain (2006) [16] demonstrated that fractional dynamics

in Minkowski spacetime mimics that of free fields in curved Riemannian spacetime.

An approach to quantise fractional free fields was also given in the same article. A

quantisation description for fractional free Klein-Gordon type fields has also been

addressed in literature [17]. Fractional calculus thus presents us with a scope to

gain novel physical insights and develop innovative methodologies and approaches.

There is a multitude of definitions of fractional derivatives in the literature [9, 10],

which are all used depending on the context they are required in. Most definitions

require that we identify derivatives and anti-derivatives as inverse operators of each

other. That is, if we define the anti-derivative (or integration) operator as

aIx(f) :=

∫ x

a

f(x0)dx0,

then we must identify this as the inverse of derivative operator aDx,

aD
−1
x ≡ aIx .

In the above notation the superscript on the right denotes the order of the operator,

the subscript to the left denotes the lower limit of the integral in the definition of the

operator and the subscript on the right denotes the independent variable that the

operator is defined with. Now, if we look at higher order anti-derivative operators,

aI
n
x for n ∈ N, we see that it assumes the form of a repeated integral

aI
n
x (f) =

∫ x

a

dxn−1

∫ xn−1

a

dxn−2 · · ·
∫ x2

a

dx1

∫ x1

a

f(x0) dx0 ,

where we assume that the function f is of a sufficiently regular behaviour for all

required integer integrals and derivatives to exist. The above repeated integral can

be written in terms of a single integral using the Cauchy’s formula for repeated

16



1.3. Fractional calculus Chapter 1. Introduction and motivation

integrals.

Theorem 1.1 (Cauchy’s formula for repeated integrals). For a continuous, real

function f , the nth repeated integral

aI
n
x (f) =

∫ x

a

dxn−1

∫ xn−1

a

dxn−2 · · ·
∫ x2

a

dx1

∫ x1

a

f(x0) dx0,

equals the single integral

aI
n
x (f) =

1

(n− 1)!

∫ x

a

(x− t)n−1f(t) dt.

Proof. The proof follows from mathematical induction.

For n = 1, the formula reads

aI
1
x(f) =

1

(0)!

∫ x

a

(x− t)0f(t) dt =

∫ x

a

f(t)dt =

∫ x

a

f(x0) dx0,

which satisfies the base case without much effort, if we incorporate the extension of

the factorial to have 0! = 1. Next, assume that the hypothesis holds for k ∈ N. We

also note that

d

dx

[
1

k!

∫ x

a

(x− t)kf(t) dt

]
=

1

(k − 1)!

∫ x

a

(x− t)k−1f(t) dt. (1.3.1)

using the Leibniz Integral rule1. Now,

aI
k+1
x (f) =

∫ x

a

dxk

∫ xk

a

dxk−1

∫ xk−1

a

dxk−2 · · ·
∫ x2

a

dx1

∫ x1

a

f(x0)dx0

=

∫ x

a

dxk
1

(k − 1)!

∫ xk

a

(xk − t)k−1f(t) dt (from induction hypothesis)

=

∫ x

a

dxk
d

dxk

[
1

k!

∫ xk

a

(xk − t)kf(t)dt

]
(from equation (1.3.1))

=
1

k!

∫ x

a

(x− t)kf(t) dt,

(1.3.2)

which completes the proof.

1The Leibniz Integral rule for differentiating an input function with an integral sign:

d

dx

(∫ b(x)

a(x)

g(x, t) dt

)
= g(x, b(x))b′(x)− g(x, a(x))a′(x) +

∫ b(x)

a(x)

∂

∂x
g(x, t) dt.

17



1.3. Fractional calculus Chapter 1. Introduction and motivation

We can then write an expression for a higher order anti-derivative as

aD
−n
x (f) = aI

n
x (f) =

1

(n− 1)!

∫ x

a

(x− t)n−1f(t) dt, (1.3.3)

where n ∈ N. The above expression provides us with an approach of defining integrals

of more general orders. If we allow the formula to hold for any α ∈ R and replace the

factorial with its analytic continuation, Γ(α), we can define theRiemann-Liouville

fractional Integral:

Definition 1.2 (The Riemann-Liouville fractional integral). For α ∈ R, the Riemann-

Liouville fractional integral can be defined as

aD
−α
x (f) = aI

α
x (f) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t) dt,

where the constant a is the lower bound of the integration domain and needs to be

specified a priori.

Now, we again emphasise the fact that the integration operators and the deriva-

tive operators conceptually are the inverses of each other2, allowing us to write

Dα = DmD−(m−α), m ∈ N

=
dm

dxm
Im−α

(1.3.4)

where we dropped the subscripts for convenience. We shall make the choicem = ⌈α⌉,
which denotes the smallest integer≥ α. The above may be interpreted as a definition

of a fractional derivative of order α, wherein we are required to first compute a

Riemann-Liouville fractional integral of the order (m− α), and then take the usual

derivative of order m. It must be noted that when α is an integer, ⌈α⌉ will be the

same as α and we will just be left with computing the usual derivative (i.e. we

want to identify the integral operator of order 0, aI
0
x, with the identity operator so

that Dm ≡ dm/dxm, for all m ∈ N). Thus, we arrive at the Riemann-Liouville

definition of a fractional derivative:

Definition 1.3 (Riemann-Liouville fractional derivative). For α ∈ R and m = ⌈α⌉,
the Riemann-Liouville fractional derivative can be defined as

aD
α
x(f) =

dm

dxm
aI

m−α
x (f) =

dm

dxm
1

Γ(m− α)

∫ x

a

(x− t)m−α−1 f(t) dt,

2Note that this is not exactly the case! A beautiful discussion on this is given in [10]. However,
it is beyond the scope of this thesis.
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where again the constant a that defines the domain, will have to be specified a priori.

One may also have given a definition of fractional derivatives by inverting the

order in which the derivative and integral operators appear in equation (1.3.4). This

gives us the Caputo fractional derivative.

Definition 1.4 (Caputo fractional derivative). For α ∈ R+ and m = ⌈α⌉, the

Caputo fractional derivative can be defined as

C
aD

α
x(f) = aI

m−α
x

dm

dxm
(f) =

1

Γ(m− α)

∫ x

a

(x− t)m−α−1f (m)(t) dt,

where once again, the constant a will have to be specified a priori. We introduce the

left superscript in C
aD

α
x to distinguish the Caputo derivative (1.4) from the Riemann-

Liouville derivative (1.3). One of the eminent advantages of the Caputo derivative

is that the derivative of a constant function is 0, which is not the case for the RL

derivative and which may pose problems in contexts where this feature important,

such as equilibria of dynamical systems.

It can be noted that the above definitions of fractional derivatives suggest that

the fractional operators are nonlocal. Which means that the fractional derivative

of a function f at a point x in its domain, is dependent upon the shape of the

function elsewhere in the domain too (this is also the reason why we have been

carrying the left subscript in our notation). This is quite visibly the case for the

Riemann-Liouville and Caputo fractional derivatives as they are both dependent on

the computation of an integral involving the function itself, over the whole domain.

So, if the function (or its derivative in the case of Caputo) were to be modified

continuously elsewhere, it would affect the value of derivative of non-integral order

α, at the point x. However, for integer values of α, the derivative completely loses

its property of nonlocality and such a change will not make a difference in the value

of derivative at the point x. There are many such interesting properties of fractional

derivatives beyond the scope of this discussion.

Both Riemann-Liouville and Caputo derivatives provide us with plausible defini-

tions of the fractional derivatives. However, they are not the most practical when it

comes to numerical implementations. One will not only have to worry about using

a good quadrature rule to carry out the integration process, but also a good scheme

to compute the derivative. We will also have to worry about the cases for which α

is an integer, separately.

It may be noted that the above definitions were developed based on generalisa-

tions of the properties of the usual, integer order derivatives. Specifically, both arise
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from the composition property of derivatives exploited in (1.3.4). One may look for

other such properties of usual derivatives to generalise and thence define fractional

derivatives. To this end, we recall the Fourier transform property of derivatives

Property 1.1 (Fourier transform property of derivatives). For a derivative operator

dm/dxm of integer order m in the variable x, the following relation holds true for a

Fourier-transformable function

F
{

dm

dxm
f(x)

}
x−→ξ

= (ιξ)mF
{
f(x)

}
x−→ξ

, (1.3.5)

where F denotes the Fourier transform.

It is desirable to define a similar property for non-integral orders. This is where

the Riesz fractional derivative comes to the rescue [18].

Definition 1.5 (Riesz fractional derivative). For α ∈ R+, we define the Riesz

fractional derivative as the Riemann-Liouville derivative with a = −∞,

−∞Dα
x(f) =

dm

dxm
−∞I

m−α
x (f) =

dm

dxm
1

Γ(m− α)

∫ x

−∞
(x− t)m−α−1 f(t) dt. (1.3.6)

It can be proven that the Riesz fractional derivative as defined above, possesses

the following Fourier transform property:

F
{

−∞Dα
x(f)

}
:= (ιξ)αF

{
f(x)

}
,

However, using this as the Fourier transform for derivatives of any order α ̸= 2, α > 0

will bring in another issue as the derivative operator itself does not possess the

reflection symmetry x 7→ −x. This symmetry is essential to keep the expression

of the derivative real, under a Fourier transform. The Riemann-Liouville and the

Caputo derivative also do not posses this symmetry either, whilst all highest order

derivatives of popular equations (like ∇2, ∇4 , etc.) always do seem to possess it.

To obtain a definition of a fractional derivative that has this symmetry, we will first

make a variable shift in 1.3.6

∞Dα
x(f) =

dm

dxm
xI

m−α
∞ (f) =

dm

dxm
1

Γ(m− α)

∫ ∞

x

(t− x)m−α−1 f(t) dt, (1.3.7)

the Fourier transform of which, would look like

F
{

∞Dα
x(f)

}
= (−ιξ)αF

{
f(x)

}
.
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This allows us to define fractional Laplacian, which possesses reflection symmetry

(note that we omit α = 2m+ 1,m ∈ Z as that would correspond to the case which

should typically not possess the reflection symmetry that we are trying to achieve.):

Definition 1.6 (The fractional Laplacian). For α ∈ R+, α ̸= 2m + 1, m ∈ Z, we
define the fractional Laplacian (−(−∇2)α/2) as

−(−∇2)α/2(f) :=

(
−−∞Dα

x + ∞Dα
x

2 cos(απ/2)

)
(f) (1.3.8)

Now, if we keep in mind the fact that

|ξ|α =
(ιξ)α + (−ιξ)α

2 cos(απ/2)
,

the fractional Laplacian will posses the following Fourier transform property

F
{
− (−∇2)α/2(f)

}
= −(ιξ)α + (−ιξ)α

2 cos(απ/2)
F
{
f(x)

}
= −|ξ|αF

{
f(x)

}
.

Hence, we now have a reflection symmetric fractional derivative. This also gives

us a fairly straightforward way to implement fractional derivatives numerically. In

contrast to Riemann-Liouville, Caputo and Riesz derivatives, we would only need to

perform a Fourier transform, and then invert it after multiplying by some factors, to

implement the fractional Laplacian numerically. This process can be achieved with

a far greater efficiency, owing to the existence of Fast Fourier Transforms (FFTs).

The ability to implement fractional derivatives numerically, allows us to investi-

gate a wide range of previously unexplored problems. The specific problem that we

shall be interested in, is the fractional generalisation of the Nonlinear Schrödinger

equation, as discussed at the end of the previous section. We will take a closer look

at the motivations to investigate this problem, in the next section.

1.4 The fractional Nonlinear Schrödinger equa-

tion (fNLSE)

In the previous section, we saw that fractional derivatives have historically been

used to provide a generalisation for equations governing various branches of physics

and engineering, allowing us to explain a wide variety of novel physical phenomena

[5]. The fractional generalisation has been particularly successful in explaining large

classes of diffusion-related phenomena. For instance, in the case of free diffusion
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1.4. The fNLSE Chapter 1. Introduction and motivation

processes, whenever one finds a deviation from Fick’s law of diffusion3, fractional

calculus might be employed [4]. The aesthetic similarity between the diffusion equa-

tion and the Schrödinger equation has been a motivation for enquiries on fractional

quantum mechanics and fractional linear Schrödinger equations of various types

[15, 19, 20]. We have seen in section 1.2 that similarities exist between the Complex

Cubic Ginzburg-Landau (CCGL) equation and the Nonlinear Schrödinger equation,

and because there are fractional generalisations of the CCGL [4, 21], there is moti-

vation to look at the fractional generalisation of the Nonlinear Schrödinger equation

as well.

The Nonlinear Schrödinger equation was introduced in section 1.2, wherein a

sketch of a derivation of the NLSE was also given. We can follow a similar process to

derive the fractional Nonlinear Schrödinger equation as well, by essentially replacing

the dispersion relation (1.2.3) by the following (as done in [21]):

k = ωk′ + |ω|α k
′′

2
+ ν|E|2, (1.4.1)

where α ∈ R. The next step in the derivation was to replace the powers of ω with

their inverse Fourier operator equivalents. We can recall that the equivalent of |ω|α

would be the fractional Laplacian (definition 1.6), multiplied by a factor of −1. If

we then keep following the rest of the derivation exactly as in the above section, we

will arrive at the fractional Nonlinear Schrödinger equation:

ι
∂Ψ(x, t)

∂t
= −1

2
Dα
xΨ(x, t) + Ψ (x, t)

∣∣Ψ(x, t)
∣∣2, (1.4.2)

where Ψ(x, t) is a complex valued function and α ∈ R+, α ̸= 2m + 1, m ∈ Z is the

order of the fractional Laplacian (Dα
x = −(−∇2)α/2). The α = 2 case corresponds

to the usual nonlinear Schrödinger equation (1.2.6). Thus, we are now at a place

where we can establish the objectives of this project.

Objective 1. An objective of this project is to make an attempt at numerically

obtaining stationary solutions of the nonlinear Schrödinger’s equation of a fractional

order (fNLSE) (1.4.2).

To make an approach towards achieving objective 1, we may first attempt to

3The usual Fickian diffusion processes will have the Mean Square Displacement (MSD) linearly
proportional to t:

⟨r2(t)⟩ ∝ t.

However, various types of ‘anomalous’ diffusion processes have emerged over the years that have
⟨r2(t)⟩ ∝ tγ , where γ can be ≶ 1. Fractional calculus has been highly successful in explaining such
processes[4].
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obtain the Jacobi elliptic solutions (1.2.7) of the usual NLSE (α = 2), that were

introduced in section (1.2). Once we have a working scheme to obtain the Jacobi

elliptic solutions, we may proceed to generalise the algorithm to work for fractional

order derivatives. However, to achieve our intended generalisation, we will try to

obtain the Jacobi elliptics by using the Fourier transform property (1.3.5) of deriva-

tives in the numerical implementation, as it is the closest to the definition of Riesz

fractional derivatives. Doing so will also aid us in another way; as after we transform

the Laplacian, we would only be left to solve an ordinary Initial Value Problem in

t, as compared to a partial differential equation in two variables that we started off

with. Thus, we have

Objective 2. To attain objective 1, we will first aim to obtain the Jacobi ellip-

tic solutions (1.2.7) numerically using a scheme that utilises the Fourier transform

property 1.3.5 of derivatives.

In this chapter, we presented an introduction to the NLSE, its stationary so-

lutions, and the various places that it arises in literature. An elaborate discussion

on fractional derivatives was also given, wherein we saw various definitions of the

fractional derivatives, before eventually settling for the one that is most useful to us:

the Riesz fractional derivative. We remarked the recent upsurge in the interest in

fractional derivatives, due to various discoveries of its usefulness being made across

many branches of Physics and Engineering. Finally, we established the objectives

1 and 2, of the project. In the subsequent chapters, we will make progress towards

achieving those objectives by first studying the Jacobi elliptic stationary solutions of

NLSE, in greater depth and then developing schemes to obtain them numerically.
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Chapter 2

Theoretical background

In chapter 1, the (defocusing) NLSE was introduced as an equation governing the

amplitude of a wave in dispersive media. It was established that the equation has a

class of stationary solutions related to the Jacobi elliptic functions. In this chapter,

will look at the Jacobi elliptic solutions in a greater detail: how they arise and

whether they can be obtained numerically or not. While answering the later, we will

see what happens to perturbations around stationary solutions of the NLSE. This

chapter will also present the first numerical trial done towards a primary objective

of the project (2), which is to obtain the Jacobi elliptic numerically.

2.1 Stationary solutions to the NLSE

The (defocusing) NLSE is given by

ιΨt = −1

2
Ψxx +Ψ|Ψ|2 , (2.1.1)

where Ψ(x, t) is intensity of the carrier wave propagating in a dispersive medium.

We aim to look for separable solutions of the type

Ψ(x, t) = e−ιωtϕ(x), (2.1.2)

where ω ∈ R is a constant. Plugging this into (2.1.1), we obtain an equation for

ϕ(x)

ωϕ(x) = −1

2
ϕxx + ϕ(x)|ϕ(x)|2 . (2.1.3)
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2.1. Stationary solutions to the NLSE Chapter 2. Theoretical background

Decomposing the solution further, we write ϕ(x) as an amplitude and a phase

ϕ(x) = R(x)eιθ(x),

where both R(x) and θ(x) are now real-valued functions. Plugging this into (2.1.3)

and separating the real and imaginary parts, we get the differential equations for

R(x) and θ(x)

Rxθx +
1

2
Rθxx = 0, (2.1.4a)

Rxx = 2R3 − 2ωR +Rθ2x. (2.1.4b)

Equation (2.1.4a) can be solved right away by noting that it implies

θxx
θx

=
−2Rx

R

=⇒ ln(θx) = −2ln(R) + c1,

=⇒ θ =

∫ x

0

c

R2(y)
dy, (2.1.5)

where c1 and c are some integration constants. Plugging this in (2.1.4b)

Rxx = 2R3 − 2ωR +
c2

R3
. (2.1.6)

Equation (2.1.6) can be solved using standard techniques of elliptic integration [1],

and it can be shown that R(x) is given by

R2(x) = k2sn2(x, k) + b, (2.1.7)

where sn(x, k) is the Jacobi elliptic sine function, k ∈ [0, 1) is the elliptic modulus

and b is another real constant. A discussion on Jacobi elliptic functions can be

found in Appendix B. The Jacobi sine function sn(x, k) is a periodic function with

the period T (k) = 4K(k), where K(k) is the elliptic integral of the first kind

K(k) =

∫ π/2

0

dy√
1− k2 sin2 y

.

For (2.1.7), we also have

ω =
1

2
(1 + k2) +

3

2
b, c2 = b(b+ 1)(b+ k2). (2.1.8)
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Noting that R(x), θ(x) and all of the associated constants must be real, we get b ≥ 0

(to keep c in R). If we choose to look at the solution with b = c = 0, ω = 1
2
(1 + k2),

we will get a class of solutions with θ(x) = 0, i.e., the trivial phase solutions:

Ψ(x, t) = k sn(x, k)e−
ι
2
(1+k2)t, (2.1.9)

up to symmetry transformations permitted by the original equation (2.1.1). Fig-

Figure 2.1: The Jacobi elliptic sine solution to the NLSE for k = 0.8.

ure 2.1 provides an example of a trivial phase solution (2.1.9) for k = 0.8. Only the

amplitude |ψ(x)| has been plotted in the figure as a function of x, alongside a scaled

sine function. We can see that the Jacobi sine function bears a striking resemblance

to the regular sine function, except for a flatter top.

To this end, we recall that an objective of the project is to solve the NLSE (2.1.1)

numerically and obtain the Jacobi elliptic solution (2.1.9) as a stationary solution of

the system (i.e. we see where the solution is tending towards, in the large t limit).

Furthermore, we place emphasis on employing a scheme that involves performing a

Fourier transform on the Laplacian. This is done with the intention of facilitating

the generalisation to fractional derivatives that we eventually plan to pursue. Doing

this also helps us in transforming a partial differential equation in two variables

(say x and t, just like in our case), into an ordinary differential equation in just one

variable (in our case, t), thus greatly reducing the complexity of the problem. We

can then use standard numerical integration techniques for ODEs to progress in t

and then eventually invert the Fourier transform to reach to the solution. However,

it turns out that there is a fundamental issue in trying to directly use numerical

integration methods on (2.1.1), owing to the stability of its solutions.

Numerical implementations inherently introduce perturbations to the system be-

ing analysed, that are outside of our control. These perturbations can be attributed
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to several factors [22], including the discrete nature of the implementation, limita-

tions in the floating point representation system, errors caused by truncation and

rounding off, and inaccuracies that arise when reading or writing data to the disk.

Hence, the qualitative nature of stationary solutions becomes important when we

wish to obtain them numerically. The stability of a solution is determined, as we will

see in the next section, by its linearisation spectrum. It is essential that the solution

we are trying to obtain be stable, meaning that small perturbations near them decay

to zero. In order to determine whether a solution is stable or not, certain conditions

must be met, which we will explore further. We will also discuss the aforementioned

issue associated with obtaining stationary solutions of the NLSE.

2.2 Stability analysis

The notion of stability of stationary solutions falls under the realm of qualitative

stability analysis of differential equations. The idea involves linearising the system

around a stationary solution, and then analysing how the perturbations evolve over

time, while being restricted to only the first order terms. To see how this process

works out for our problem, we first transform (2.1.1) to incorporate solutions of the

type

Ψ(x, t) = e−ιωtψ(x, t).

Using this, we get that ψ(x, t) follows

ιψt = −ωψ − 1

2
ψxx + ψ|ψ|2. (2.2.1)

Stationary solutions will, by definition, have ψt ≡ 0. Remember that in the previous

section, we had shown that such solutions exist for the NLSE. Now, we introduce

perturbations to these solutions, in the following manner

ψ(x, t) = eιθ(x)(R(x) + ϵu(x, t) + ιϵv(x, t)) +O(ϵ2), (2.2.2)

where u(x, t) and v(x, t) are real-valued functions, and |ϵ| ≪ 1. R(x) and θ(x) are the

same as in (2.1.2). Note that because there are no restrictions on u or v as functions

of space and time, the above form represents the most general perturbation. Any

changes in the phase can be factored inside. Substituting (2.2.2) in (2.2.1) and
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dropping any terms of order ϵ2 or higher, we get

eιθ(ιϵut − ϵvt) = −ωeιθ(R + ϵu+ ιϵv)− 1

2
[(Reιθ)xx + ϵ(ueιθ)xx + ιϵ(veιθ)xx]

+ eιθ(R3 + 3ϵR2u+ ιϵR2v). (2.2.3)

From here, we collect all the order zero terms in ϵ and realise that they give us back

(2.1.3), vanishing thereby. Next, we separately collect the real and imaginary parts

of O(ϵ) terms to get

∂

∂t

(
u

v

)
= L

(
u

v

)
= J

(
L+ S

−S L−

)(
u

v

)
, (2.2.4a)

where L+, L− and S are linear operators given by

L+( · ) = −1

2
∂2x( · ) +

(
3R2(x)− ω +

c2

2R4(x)

)
( · ), (2.2.4b)

L−( · ) = −1

2
∂2x( · ) +

(
R2(x)− ω +

c2

2R4(x)

)
( · ), (2.2.4c)

S( · ) = c

R(x)
∂x

(
( · )
R(x)

)
, (2.2.4d)

and

J =

(
0 1

−1 0

)
. (2.2.4e)

In equation (2.2.4a), we can separate the variables and consider solutions of the

form (
u(x, t)

v(x, t)

)
= eλt

(
U(x)

V (x)

)
, (2.2.5)

essentially reducing the system to an eigenvalue problem

L

(
U

V

)
= λ

(
U

V

)
. (2.2.6)

By looking at equations (2.2.5) and (2.2.6), we can conclude that the spectrum of

L (denoted σ (L)) is what determines the stability of the solutions. Negative real

parts in an eigenvalue would imply stability in that eigenspace, and vice versa. And

in case the real part happens to be zero, i.e. the eigenvalue is purely imaginary, the
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perturbations would neither grow nor die out to zero.

The stability spectrum of Jacobi elliptic solution has been extensively studied in

the 2011 article by Bottman et al [1] and references cited therein. All the numerical

and analytical enquiries suggest that the Jacobi elliptic solution has a purely imag-

inary spectrum. Consequently, although small perturbations around the solution

remain small forever, they never approach zero. An illustration of this fact is given

in fig. 2.2. Even for large times, the solution does not appear to converge to the

Jacobi elliptic (orange), denoted by ψJE, as small perturbations seem to persist.

The obtained numerical solution (blue), denoted as ψnum, deviates away from ψJE

and then returns closer to it periodically, as can be seen from the first four panels

of the figure. The graph of relative error in the last panel confirms this behaviour

as the error oscillates with an approximately constant amplitude over time. This

output establishes that we cannot obtain the Jacobi elliptic solution by tackling the

problem head on, just as we expected from theory.

To obtain the solution here, we performed a Fourier transform on the Laplacian

in (2.1.1) as we had emphasised earlier;

ι
dψ̂

dt
= −1

2
q2ψ̂ + F

{
ψ
∣∣ψ∣∣2}, (2.2.7)

where ψ̂ := F{ψ} and q is the transform variable. We then use a combination of two

different numerical integration algorithms to progress in time. The nonlinear terms

were integrated by the explicit two-step Adams-Bashforth scheme, while the linear

terms were progressed using the implicit Crank-Nicolson method. A description of

these methods can be found in the next section (2.3). Finally, we invert the Fourier

transform to obtain the solution.

The computation was carried out in Wolfram Mathematica (v12.0.0.0) on a Mac

OS X x86 (64-bit) platform. Number of points in the spatial domain, npts, was set

to 101. While the time variable ran from tmin = 0 to tmax = 10, in steps of dt =

0.0001. The plots were obtained using Mathematica’s default Plot[] and ListPlot[]

commands.

2.3 Numerical Schemes

In the previous section, we saw how Fourier transforming the Laplacian turns the

partial differential equation (2.1.1) into a first order ordinary differential equation

(2.2.7). It is still, however, not analytically solvable, just like most differential equa-

tions known to humanity. Nonetheless, for most practical applications, numerical
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(a) t = 0.0 units (b) t = 1.6 units

(c) t = 8.4 units (d) t = 9.9 units

(e) Relative error vs t

Figure 2.2: Time progression of the numerical solution ψnum obtained from a di-
rect implementation of the NLSE, plotted alongside the Jacobi elliptic solution
ψJE = 0.8 sn(x, 0.8), which is also taken as the initial conditions for the computation
of ψnum. The spatial domain ranges from x = 0 to x = 2K(0.8), where K(0.8) is
the complete elliptic integral of the first kind with elliptic modulus k = 0.8. Pan-
els (a)-(d) shows the time progression of ψnum. Panel (e) shows the relative error
(ψnum − ψJE) /ψJE at the mid point of the domain, x = K(0.8).

approximations to the solutions are sufficient. Hence, over the years, algorithms to

obtain those numerical solutions have been developed. All of the algorithms focus on
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approximating the shape of the solution at discrete steps, given an initial condition

and an integrand.

The algorithms for finding numerical solutions to first order ordinary differen-

tial equations can be broadly categorised into two types: linear multistep methods

and predictor-corrector methods methods. The predictor-corrector methods, like

the famous Runge-Kutta methods, calculate intermediate steps between the current

and next step in order to approximate the next step. However, these methods do

not make use of any information from any of the previous steps. Linear multistep

methods, on the other hand, use one or more previously computed steps to approx-

imate the next step. Although both algorithms can give accurate solutions up to an

arbitrary order, linear multistep methods require us to evaluate the integrand only

once per step, whereas the predictor-corrector methods access the integrand for as

many times as the number of intermediate steps. The choice of method to be used,

depends on the specific requirements of the problem at hand.

For our specific problem, the integrand is the right-hand side of (2.2.7). The

expression involves computation of a Fourier transform. Computing the Fourier

transform at multiple intermediate steps, including the repeated evaluation of the

integrand, would entail prohibitive computational cost. Hence, we will rely exclu-

sively on linear multistep methods. There are two methods that must be pointed

out, which would be utilised, in combination, for all numerical implementations in

this project:

• Second order Adams-Bashforth (AB2) method,

• Trapezoidal rule or the Crank-Nicolson (CN) method.

Let us first give a precise definition of multistep methods [22]:

Definition 2.1 (m-step multistep methods). Given the initial value problem (IVP)

y′ = f(t, y), a ≤ t ≤ b, y(a) = α, (2.3.1)

an m-step multistep method approximates the solution yi+1 at ti+1, as

yi+1 = am−1 yi + am−2 yi−1 + · · ·+ a0 yi−m+1 (2.3.2)

+ h [bm f(ti+1, yi+1) + bm−1 f(ti, yi) + · · ·+ b0 f(ti−m+1, yi−m+1)],

for i = m − 1, m, . . . , N − 1. Here, a0, a1, . . . , am−1, b0, b1, . . . , bm are constants

and h is the grid spacing (b− a)/N .
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If bm = 0, the method is termed explicit as the next step is explicitly given by

only the terms that come before it. And similarly, if bm ̸= 0, the method is termed

implicit as the equation for yi+1 is implicit in it. Generally, implicit methods have

better accuracy than their explicit counterparts, since they are stable.

The aforementioned AB2 and CN methods are different types of multistep meth-

ods. Their corresponding definitions are as follows. The second order Adams-

Bashforth (AB2) is an explicit, two-step method given by

Definition 2.2 (Two-step Adams-Bashforth method).

yn+1 = yn +
h

2
[3 f(ti, yi)− f(ti−1, yi−1)],

where i = 1, 2, . . . , N − 1. The local truncation error for this algorithm is O(h2).

The trapezoidal rule is an implicit, two-step method given by

Definition 2.3 (Trapezoidal rule).

yn+1 = yn +
h

2
[f(ti+1, yi+1) + f(ti, yi)],

where i = 1, 2, . . . , N − 1. The local truncation error for this algorithm is O(h3).

This rule is equivalent to the implicit Crank-Nicolson (CN) scheme, when applied

to our initial value problem (2.3.1). Hence, we may use the names exchangeably.

To conclude, it has been established that stationary solutions to the NLSE exist

in the form of Jacobi elliptic solutions (2.1.9) and that their stability spectrum is

purely imaginary. As a consequence of the later, we saw that it is impossible to

obtain them directly by using numerical integration techniques. So to acquire the

Jacobi elliptic solution from the NLSE numerically, we seek an alternative system

that differs from NLSE in concept, but remains sufficiently similar to enable a con-

version to NLSE. In the following chapter, we will explore a potential candidate for

the same.
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Approach and Methodology

In this chapter we shall present a candidate for stabilising the Jacobi elliptic solution.

As we saw in the last chapter, we cannot hope to solve the NLSE directly and get

the Jacobi elliptics. Hence, we instead replace the NLSE with a system of partial

differential equations inspired by the well known Gierer-Meinhardt system. We shall

also present the details of the numerical implementation for solving the system on

a computer.

3.1 The Gierer-Meinhardt model and spike-type

solutions

In 1972 Geirer and Meinhardt [23] introduced a model for reaction-diffusion system

involving activators and inhibitors. The system has found applicability in biological

pattern formation [24], cell differentiation [25], and pattern formation on the shells

of sea animals [26]. The model is a system of coupled partial differential equations.

In their dimensionless form the 1D equations at the limit of slow activator and fast

inhibitor are [3, 27]

∂t a = ϵ2 ∂2x a− a+
ap

hq
, −1 < x < 1, t > 0, (3.1.1a)

τ0 ∂t h = D∂2x h− µh+
1

ϵ

am

hs
, −1 < x < 1, t > 0, (3.1.1b)

∂x a(x = ±1, t), ∂x h(x = ±1, t), a(x, 0) = a0(x), h(x, 0) = h0(x). (3.1.1c)

Here a(x, t), h(x, t) denote the activator and the inhibitor concentrations, respec-

tively. Also ϵ, D, µ > 0 and τ ≥ 0 are the activator diffusivity, inhibitor diffusivity,

inhibitor decay rate and the reaction time constant, respectively. The exponents
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(p, q,m, s) satisfy [3, 23, 27]

p > 1, q > 0, m > 0, s ≥ 0,
qm

p− 1
− (s+ 1) > 0. (3.1.2)

The system has been known to have a stable (spike-type) stationary solution for

0 < ϵ ≪ 1 and 0 < D < D1(ϵ) ∼ ϵ2e2/ϵ [2, 3, 27], for over two decades now,

and is well studied in the literature. Moreover, the eigenvalues of the the system

obtained by the linearisation of (3.1.1) around a stationary solution are proven to

have negative real parts [2]. If we recall from the previous chapter, that is a property

we desired the NLSE system to have, in order to obtain them numerically.

There also exists a generalisation of the above system to fractional derivatives,

as studied in [3]:

∂t a = ϵγ − (−∇2)γ/2 a− a+
ap

hq
, −1 < x < 1, t > 0, (3.1.3a)

τ0 ∂t h = D∂2x h− µh+
1

ϵ

am

hs
, −1 < x < 1, t > 0, (3.1.3b)

∂x a(x = ±1, t), ∂x h(x = ±1, t), a(x, 0) = a0(x), h(x, 0) = h0(x), (3.1.3c)

a(x, t) = a(x+ 2k, t), h(x, t) = h(x+ 2k, t), x ∈ R, t > 0, k ∈ Z. (3.1.3d)

In [3], the range 1 ≤ γ ≤ 2 of the order of fractional derivatives was explored.

It was found that the spike type stationary solution still existed, although with

slightly different properties. For 1 ≤ γ < 2, spike type stationary solution produced

algebraically decaying tails, compared to an exponential decay in the γ = 2 case.

The 1 ≤ γ < 2 solutions were also comparatively less stable, but were found to be

stable nonetheless.

It must be noted that in (3.1.3d), we take values of x from all of R to make

sure that the fractional derivative can be evaulated. Fractional derivatives, as can

be recalled from section (1.3), are nonlocal operators and require functions to be

defined over the interval of their definition, which is R for the above case. The

functions a(x, t) and h(x, t) are made periodic to agree with the domain of interest.

The Neumann boundary conditions (3.1.3c) makes sure that the function is smooth

throughout.

For eqns. (3.1.3), one can find an equation that the spike-type solution follows

by constructing an asymptotic expansion of the solution near the centre of the spike

(the spike inner region). The analysis of the region eventually leads to the ground

state equation −(−∇2)γ/2u − u + up = 0, which assumes a form similar to that of

the NLSE. Now, if one tries to solve this equation directly using the same method
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as in section 2.3, it is seen that the solution diverges very quickly. To stabilise the

solution, a new system of augmented PDEs is introduced [3], which provides us with

the conceptual basis for the process which we can use to stabilise our system.

The Gierer-Meinhardt system, hence, would be an excellent candidate to take

an inspiration from, in order to construct a system that stabilises the Jacobi elliptic

solutions. This can only prove useful though, if we are able to connect it to the

NLSE. In the following section, a system of auxiliary coupled partial differential

equations will be introduced, that will be of the similar form as system (3.1.1).

This will be done in the hope to obtain a stable stationary solution from them and

connect it to the Jacobi elliptic solution of the NLSE.

3.2 The auxiliary PDE method

Recall that the Nonlinear Schrödinger equation is given by

ιΨt = −1

2
Ψxx +Ψ|Ψ|2 . (3.2.1)

As in the section (2.2), we transform the NLSE to incorporate solutions of the type

Ψ(x, t) = e−ιωtψ(x, t).

Hence, ψ(x, t) satisfies

ιψt = −ωψ − 1

2
ψxx + ψ|ψ|2,

and is known to have stationary solutions related to the Jacobi elliptic functions

(2.1.9), which we are trying to obtain numerically. We expect ω = (1 + k2)/2, as in

the Jacobi elliptic solution, cf. equation (2.1.8). To achieve this, we introduce the

following system of auxiliary PDEs in two functions, ψ and ϕ:

ι
∂ψ

∂t
+ ωψψ +

1

2

∂2

∂x2
ψ −

ψ
∣∣ψ∣∣2∣∣ϕ∣∣2 = 0, (3.2.2a)

ιτ0
∂ϕ

∂t
+ ωϕϕ+

D

2

∂2

∂x2
ϕ− ψ

∣∣ψ∣∣2 = 0. (3.2.2b)

Next, following an identical construction for the Gierer-Meinhardt system [27], we

assume an asymptotic expansion of ψ and ϕ in 1/D, and take D ≫ 1 to limit the

analysis to linear terms. The expansions are as follows:

ψ ∼ ψ0 +
ψ1

D
+O(

1

D2
), ϕ ∼ ϕ0 +

ϕ1

D
+O(

1

D2
). (3.2.3)
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The following table contains theO(1) andO(D) terms for both eqs. (3.2.2a) and (3.2.2b):

O(D) O(1)

Equation (3.2.2a) - ι∂tψ0 + ωψψ0 +
1
2
∂2xψ0 − ψ0|ψ0|2/|ϕ0|2 = 0

Equation (3.2.2b) ∂2xϕ0 = 0 ιτ0∂tϕ0 + ωϕϕ0 +
1
2
∂2xϕ1 − ψ0|ψ0|2 = 0

Now, The O(D) term of eq. (3.2.2b) along with the no flux boundary condition

implies that ϕ0 is only ϕ0(t), i.e., it is a constant function in x. O(1) term of equation

(3.2.2b) at t→ ∞ implies

1

2

∂2

∂x2
ϕ1 = ψ0|ψ0|2 − ωϕϕ0,

on which we now impose the solvability condition, which yields

ϕ0 =
1

2K(k)ωϕ

∫ 2K(k)

0

ψ0|ψ0|2dx, (3.2.4)

where
(
0, 2K(k)

)
is the interval of integration, as per the definition of the inner

product
(
⟨u, v⟩ = 1

(b−a)

∫ a
b
u · v dx

)
. K(k) is the complete elliptic integral of the

first kind, with elliptic modulus k. It is also the half-period of the Jacobi sine

sn(x, k).

Now, O(1) term of equation (3.2.2a) implies

ωψψ0 = −1

2

∂2

∂x2
ψ0 +

ψ0|ψ0|2

|ϕ0|2
.

Since ϕ0 is just a constant at steady state, we can simplify the expression by sub-

stituting ψ0 = cη and make the equation independent of ϕ0 by choosing
∣∣c∣∣ = ϕ0.

This yields that η then must follow

ωψη = −1

2

∂2

∂x2
η + η

∣∣η∣∣2, (3.2.5)

which is exactly the NLSE. Hence, we now have a method to connect the NLSE with

the auxiliary system (3.2.2). Once we obtain a solution to the auxiliary system, we

just need to normalise it with c = |ϕ0| to get a solution to the NLSE, which we

expect to be the Jacobi elliptic.

A numerical trial was attempted for the above problem, details of which will

be discussed in the next section. It must be noted that the parameter values were

chosen so that they closely resembled the ones from (3.1.1). We allowed ourselves to

explore a wide range of values of τ0. Results of the numerical trial will be presented
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in the next chapter. Before that, we discuss our numerical implementation of the

problem.

3.3 Implementation of Numerics

The numerical schemes that were used to solve system (3.2.2), were once again a

combination of two-step Adams-Bashforth and Crank-Nicholson algorithms. This

is the same setup we followed in the direct numerical trial of the NLSE (figure 2.2)

given in the previous chapter. We recall the equations governing the above schemes

are as follows.

The two-step Adams-Bashforth scheme for an ODE of the shape y′ = f(y, t) is given

by

yn+1 = yn +
h

2

(
3y′n − y′n−1

)
, (3.3.1)

and the Crank-Nicholson method, given by

yn+1 = yn +
h

2

(
y′n+1 + y′n

)
. (3.3.2)

The subscript n denotes the evaluation of the term at nth time step. We shall stick

with this notation hereafter.

We start our approach, once again, by performing a Fourier transform on the

Laplacian and turn our system into an ordinary differential equation in t. The

Fourier transformed versions of equations (3.2.2a) and (3.2.2b) are:

ι
∂ψ̂

∂t
= −ωψψ̂ − 1

2
q2ψ̂ + F

{
ψ
∣∣ψ∣∣2
|ϕ|2

}
, (3.3.3a)

ιτ0
∂ϕ̂

∂t
= −ωϕϕ̂− D

2
q2ϕ̂+ F

{
ψ
∣∣ψ∣∣2}, (3.3.3b)

where hats denote Fourier transformed quantities and q is the transform variable.

We choose to progress the nonlinear terms using the two-step Adams-Bashforth al-

gorithm (3.3.1) and the remaining using Crank-Nicholson algorithm (3.3.2). Hence,

using (3.3.3) as the integrand for (3.3.1) and (3.3.2), we get the following as the

time-step progressions:
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ιψ̂n+1 = ιψ̂n +
h

2

[
− ωψψ̂n+1 − ωψψ̂n −

1

2
q2ψ̂n+1 −

1

2
q2ψ̂n

+ 3F

{
ψ
∣∣ψ∣∣2
|ϕ|2

}
n

−F

{
ψ
∣∣ψ∣∣2
|ϕ|2

}
n−1

]
,

ιτ0ϕ̂n+1 = ιτ0ϕ̂n +
h

2

[
− ωϕϕ̂n+1 − ωϕϕ̂n −

D

2
q2ϕ̂n+1 −

D

2
q2ϕ̂n

+ 3F
{
ψ
∣∣ψ∣∣2}

n
−F

{
ψ
∣∣ψ∣∣2}

n−1

]
.

Collecting like terms and simplifying, we get

ψ̂n+1 =
1(

ι+ h
4
q2 + h

2
ωψ
)[(ι− h

4
q2 − h

2
ωψ

)
ψ̂n+

h

2

(
3F

{
ψ
∣∣ψ∣∣2
|ϕ|2

}
n

−F

{
ψ
∣∣ψ∣∣2
|ϕ|2

}
n−1

)]
,

ϕ̂n+1 =
1(

ιτ0 +
h
4
q2 + hD

2
ωϕ
)[(ι− hD

4
q2 − h

2
ωϕ

)
ϕ̂n+

h

2

(
3F

{
ψ
∣∣ψ∣∣2}

n

−F

{
ψ
∣∣ψ∣∣2}

n−1

)]
.

At the end, we shall invert the Fourier transform and normalise the solution accord-

ing to the prescription given in section 3.2 and thereby recover a solution to the

NLSE. As can be noted from the algorithms, we require values from the nth and the

(n− 1)th step for the computation of the (n+1)th step. This is because we chose to

use the two-step Adams-Bashforth method. However, this feature will imply that

if the initial conditions are at n = 1, then we do not have enough previous steps

to compute the step at n = 2. This problem is circumvented by progressing the

nonlinear terms with the Euler algorithm at n = 2. This completes all the details

that will be needed to implement a numerical trial to solve 3.2.2. We shall present

the results of this numerical trial in the next chapter.
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Chapter 4

Results

In the previous chapter we set up the details of the numerical trial for finding

solutions to the auxiliary PDE system 3.2.2. We first converted the system of PDEs

in x and t into ODEs in t, by performing a Fourier transform on the variable x.

Then, we made use of a combination of AB2 and CN algorithms , resulting in an

algorithm to progress in t. In this chapter, we shall present the solutions obtained

from this setup for various parameter values.

In anticipation of the Jacobi elliptic solutions, we set up the initial conditions of

the algorithm as the following

ψn=1 = ν k sn(x, k), (4.1)

ϕn=1 =
1

2K(k)ωϕ

∫ 2K(k)

0

ψ|ψ|2 dx . (4.2)

Here, ν ≈ 1 but ̸= 1 as we do not wish to start exactly at the solution itself, but

slightly away from it, in order to be able to observe a clear convergence towards the

desired solution. We also choose k = 0.8,D = 1000, ν = 0.5
0.8

and ωϕ = ωψ = 1
2
(1+k2),

as in (2.1.8). The number of grid points in the spatial domain, npts, was set to 210

while the time variable ran from tmin = 0 to tmax = 10, in steps of dt = 0.01. All

of the computation was carried out in Wolfram Mathematica (v12.0.0.0) on a Mac

OS X x86 (64-bit) platform. The plots were obtained using Mathematica’s default

Plot[] and ListPlot[] commands.

Figure 4.1 shows the output of the algorithm for different values of τ0. Even

complex values of τ0 were tried out. However, all of the obtained solutions are

convergent to the trivial instead of the Jacobi elliptic, marked by the orange curves

which implies that the given prescription has failed to stabilise the Jacobi elliptic

solution and a different candidate is needed for the same. Nonetheless, certain values

of τ0 produced interesting evolution scenarios. One such case is listed in fig. 4.2
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(a) τ0 = 0.1 (b) τ0 = 0.02

(c) τ0 = −ι (d) τ0 = −0.01ι

(e) τ0 = −1− 0.01ι (f) τ0 = 0.01− 0.03ι

Figure 4.1: Obtained outputs for a numerical implementation of the auxiliary PDE
method. Panels (a) - (f) show the evolution for different values of τ0. In each
panel, ψnum(x, t) is shown in blue at different values of t, each indicated above their
corresponding curves. The Jacobi elliptic solution ψJE(x) = 0.8 sn(x, 0.8) is also
displayed alongside in orange, for comparison. The spatial domain is 0 ≤ x ≤
2K(0.8).

(τ0 = 0.035). As can be clearly seen, the graph of ψnum(x, t) seems to converge to 0

by t = 9.3, before attaining large values again only to be seen going down to 0 by

t = 99.9.
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(a) t = 0 (b) t = 0.82

(c) t = 0.93 (d) t = 1.04

(e) t = 2.44 (f) t = 9.99

Figure 4.2: Panels (a)-(f) display the obtained solution (blue) ψnum(x, t) for τ0 =
0.035 at different values of t. The Jacobi elliptic solution ψJE(x) = 0.8 sn(x, 0.8) is
also displayed alongside in orange, for comparison. The spatial domain is 0 ≤ x ≤
2K(0.8).

Hence, it is apparent from the results given in figs. 4.1 and 4.2 that achieving

stabilisation via this scheme is unlikely. The NLSE must be sufficiently different

from the GM model to elude this attempt.
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Conclusion and Future prospects

Although objectives 1 and 2 of the computational aspect of the project were not

achieved in the allocated duration of this project, a wide range of topics in the field

of dynamics were explored in review of the literature required for the project.

We came across multiple famous partial differential equation models like the

nonlinear Schrödinger equation, the complex Ginzburg-Landau equation and the

Gierer-Meinhardt system, all bearing tremendous usefulness in modelling of natural

phenomena. An extensive discussion on the nonlinear Schrödinger equation was

presented. The Jacobi elliptic solutions were introduced as stationary solutions of

the NLSE and their (purely imaginary) linear stability spectrum was discussed.

We also presented an enquiry into the intriguing notion of fractional order deriva-

tives, wherein we saw four out of a multitude of its plausible definitions that appear

in literature. We also noted its immense success in various practical applications

and the recent upsurge in the interest in exploring fractional versions of popular

differential equations. This is where our interest in exploring the solutions to the

nonlinear Schrödinger equation of a fractional order was conceived. To do that, we

first wished to obtain the Jacobi elliptic solutions of the NLSE, numerically. How-

ever, the spectral nature of the Jacobi solutions prevented us from doing so directly.

Hence, a novel scheme, inspired by the Gierer-Meinhardt system (3.1.1), was de-

veloped in hopes of stabilising the Jacobi elliptic solution. The scheme involved

development of an auxiliary system of PDEs (3.2.2), which resembled the GM sys-

tem. The auxiliary PDE system was then solved numerically for various values of

different parameters.

A comprehensive investigation of an adequate range of parameters ν and τ0 was

made and all of them resulted in a convergence to the trivial solution. So, we

are forced to conclude that the mentioned approach might require a much deeper

numerical or, even better, an analytical insight to glean any details about the exis-
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tence and/or the location of the basins of attraction of the stationary solutions of

the auxiliary PDE system (3.2.2). Such a basin, of course, may not even exist as

(3.2.2) merely bears resemblance to the well established Gierer-Meinhardt system

(3.1.1) on visual grounds. A better auxiliary system may be found if one is able to

circumvent the issue created by the imaginary factor ι on the LHS of the NLSE,

while attempting to connect the NLSE and the Gierer-Meinhardt system (3.1.1) in

a fashion similar to the approach in section (3.2). One can also search for better

candidates for processes that can stabilise the Jacobi elliptic solution. Once a work-

ing algorithm for obtaining the Jacobi elliptic from the NLSE is found, one can

generalise the process to obtain solutions to the fractional Nonlinear Schrödinger

equation (fNLSE).
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Appendix A

Fourier Transforms

Fourier transform (FT) is one of many available types of integral transforms in

mathematics. It converts a function of time (space) into a form that describes the

frequencies (wave numbers) present in the original function (i.e. the spectrum). FTs

have found applicability in various branches of mathematics, physics and engineer-

ing. In the context of this thesis, FTs have primarily been used as a tool to convert

difficult-to-solve partial differential equations into ordinary differential equations,

which are far easier to deal with. We shall take a look at the definition and some

properties of FTs along with a brief introduction to Discrete Fourier Transforms.

A.1 Definitions

There are multiple conventions that are followed to define FTs, depending on the

context. We shall stick to the convention that has the formulas of FT and the

inverse Fourier Transform symmetric (as it makes the definitions easy to remember

and follow).

Definition A.1 (Fourier Transform). The Fourier Transform f̂(ξ) of a function

f(x); x, ξ ∈ R, is given by

f̂(ξ) =
1√
2π

∫ +∞

−∞
f(x)e−ιξxdx (A.1.1)

provided that f is Lebesgue-measurable on the real line [28], i.e.,
∫∞
−∞ |f(x)|dx <∞.

The inverse Fourier Transform can also be defined in a similar fashion

Definition A.2 (Inverse Fourier Transform). The inverse Fourier Transform
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f(x) of a function f̂(ξ); x, ξ ∈ R, is given by

f(x) =
1√
2π

∫ +∞

−∞
f̂(ξ)eιξxdξ (A.1.2)

The pair of functions f and f̂ is often termed as a Fourier transform pair. There

are a few commonly used short-hand notations to denote FTs

f̂(ξ) = F
{
f(x)

}
x→ξ

or simply f̂(ξ) = F
{
f(x)

}
,

and similarly for Inverse FT

f(x) = F−1
{
f̂(ξ)

}
ξ→x

or f(x) = F−1
{
f̂(ξ)

}
.

Note that Fourier Transforms may be defined in any number of space (and\or time)

dimensions. In the case where both space and time variables are present,

it is customary to define the Fourier transform in a manner that treats

the time variables distinctively from all spatial variables. For instance, here

is how one may define a FT in 3 + 1 dimensions

Definition A.3 (Fourier Transform in 3+1 dimensions). The Fourier Transform

f̂(k, ω) of a function f(x, t); x,k ∈ R3 ; t, ω ∈ R, is given by

f̂(k, ω) =
1

(2π)2

∫∫
R4

f(x, t)e−ι(k·x−ωt)d3xdt (A.1.3)

and similarly

Definition A.4 (Inverse Fourier Transform in 3 + 1 dimensions). The Inverse

Fourier Transform f(x, t) of a function f̂(k, ω); x,k ∈ R3 ; t, ω ∈ R, is given by

f(x, t) =
1

(2π)2

∫∫
R4

f̂(k, ω)eι(k·x−ωt)d3kdω. (A.1.4)

It may be noted that the time variable in the above definitions, is being treated

in exactly the opposite fashion as the spatial variables.

A.2 Properties of Fourier Transforms

There are a few properties of FTs that are of particular interest for the context of

this thesis, they are (in no particular order of importance)
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Property A.1 (Linearity). If a and b are any two given complex scalars, then

F
{
ag(x) + bh(x)

}
= aF

{
g(x)

}
+ bF

{
h(x)

}
.

Property A.2 (Differentiation). Suppose f(x) is continuously differentiable and

both f and its derivative f ′ are integrable, then

F
{ d

dx
f(x)

}
= (ιξ)F

{
f(x)

}
,

and in general

F
{ dn

dnx
f(x)

}
= (ιξ)nF

{
f(x)

}
.

where n ∈ N. In fact, the Fourier transform properties of the Riesz fractional

derivatives enables us to generalise this property even to derivatives of non-integral

orders:

F
{
RDα

xf(x)
}
= −|ξ|αF

{
f(x)

}
,

where RDα
x denotes the Riesz fractional derivative of order α ∈ R, in the variable x.

Property A.3 (Convolution theorem). If f(x) and g(x) are integrable functions,

then

F
{
f(x)

}
· F
{
g(x)

}
= F

{
(f ∗ g)(x)

}
,

where ∗ denotes convolution (f ∗ g)(x) =
∫∞
−∞ f(y)g(x− y)dy.

A.3 Discrete Fourier Transforms

For FTs to have any practical viability, there must exist a way of performing the

transform (and its inverse), numerically. And since numerics can only be performed

on discrete sets, we need a discrete transform that converts a list of numbers into

another, such that the desired spectral information about the former list is captured

in the latter. This can be achieved by defining

Definition A.5 (Discrete Fourier Transform). The Discrete Fourier Transform

(DFT) vs of a list ur of length n is defined to be

vs =
1√
n

n∑
r=1

ure
2πι(r−1)(s−1)/n. (A.3.1)

and
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Definition A.6 (Discrete Inverse Fourier Transform). The inverse Discrete Fourier

Transform (inverse DFT) ur of a list vs of length n is defined to be

ur =
1√
n

n∑
r=1

vse
−2πι(r−1)(s−1)/n. (A.3.2)

It must be noted that just like FTs and inverse FTs, many definitions of DFT

and inverse DFT exist (again often involving different conventions). The definition

A.5 here, is the same as in the documentation of Wolfram Mathematica [29]. This

definition has been chosen here because Wolfram Mathematica was used for all

computation aspects of this project.
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Appendix B

The Jacobi elliptic trigonometric

functions

The Jacobi elliptic functions [30] are a set of special functions which appear as

solutions to differential equations of the type

d2y

dx2
= A+By + Cy3,

where all of A,B, andC are real constants. The three basic Jacobi elliptic trig

functions are sn(x, k), cn(x, k) and dn(x, k), where k is known as the elliptic modulus.

These may also be defined using the elliptic integral of the first kind,

x = F (ϕ, k) =

∫ ϕ

0

dt√
1− k2 sin2 t

.

Using this, we define

ϕ = F−1(x, k) =: am(x, k),

where am(x, k) is the Jacobi amplitude. Now, sn(x, k), cn(x, k) and dn(x, k) may be

defined using am(x, k) in the following fashion

sn(x, k) := sinϕ = sin(am(x, k)),

and similarly

cn(x, k) := cosϕ = cos(am(x, k)).
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Then we have

dn(x, k) :=
√

1− k2sn2(x, k)

=
√
1− k2 sin2(am(x, k)) .

From the above definitions, it must be clear that if one defines the complete elliptic

integral of the first kind as

K(k) =

∫ π/2

0

dt√
1− k2 sin2 t

,

then we have am(K, k) = π/2. Hence, the Jacobi elliptic functions sn(x, k), cn(x, k) and

dn(x, k) will all be periodic in K(k) w.r.t. their first argument as

sn(x+ 2mK, k) = (−1)msn(x, k),

cn(x+ 2mK, k) = (−1)mcn(x, k)

and

dn(x+ 2mK, k) = dn(x, k),

where m is a positive integer.
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