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ABSTRACT 

Previous research has found distinct brain activity differences between older and younger 

adults that correlate with cognitive performance. Older adults tend to show an increase in brain activity 

and demonstrate over-recruitment of bilateral brain regions compared to younger adults, which allows 

them to perform at a comparable level to younger adults at low task loads (Compensation-Related 

Utilization of Neural Circuits Hypothesis or CRUNCH model). This additional brain activity may be 

a form of neural compensation. However, others have observed compensatory brain activity during 

more difficult tasks, highlighting discrepancies in the literature. The main objective of the present study 

is to examine age-related differences in bilateral prefrontal (PFC) and right parietal lobe activity using 

functional near-infrared spectroscopy (fNIRS) (21 channels, 25 Hz, Brite, Artinis) while participants 

completed visuospatial working memory N-back tasks of increasing cognitive load (1-back, 2-back, 

and 3-back), thus testing the CRUNCH model. Twenty-four healthy younger (18-25 years) and 25 

older (65-91 years) adults took part in the study. The results show older adults had higher error rates to 

target and were slower during the N-back tasks (p < .05). Age-related brain activity differences were 

observed between older and younger adults. Older adults demonstrated increased bilateral brain 

activation compared to younger adults, especially during the 2-back task. Behavioural differences were 

also observed between age groups, with older adults showing lower accuracy (Pr) at higher loads (i.e., 

2-back, and 3-back) but performed similar to younger adults at low loads (i.e., 1-back). The results of 

our study do not support the CRUNCH model nor the compensation view, but rather align with the 

Neural Inefficiency model, where older adults exhibit increased bilateral brain activity but show 

reduced task-related performance.  

Thesis Supervisors: Dr. Mark Rakobowchuk and Dr. Claudia Gonzalez 
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1.  INTRODUCTION 

1.1. Background 

The proportion of older adults within the population is increasing worldwide, and while factors 

such as improved education and living standards, as well as advances in medicine and public health 

measures have improved, cognitive decline is considered an inevitable consequence of ageing 

(Cabeza et al., 2018). Even in the healthy ageing population, a decrease in most aspects of 

cognition exist, particularly in processes that involve attention (Commodari and Guarnera, 2008), 

processing speed, executive function abilities, and memory (Harada et al., 2013). There is variation 

in the trajectory of cognitive function as people age: some individuals show very little decline or 

preservation, which can be considered healthy or optimal. Conversely, others exhibit a more rapid 

trajectory of cognitive decline (Jamadar, 2020). Age-related decline is often  associated with 

structural changes in the brain, like white matter degredation or brain atrophy (Peters, 2006), and 

functional changes (Grady, 2012). Therefore, investigating the underlying neural mechanisms of 

age-related decline will help our understanding of why some individuals experience a faster 

decline in their cognition compared to others (McDonough et al., 2022). Investigating age-related 

differences in brain activity has become much more feasible with the recent use of non-invasive 

neuroimaging methods, such as functional magnetic resonance imaging (fMRI) and functional 

near-infrared spectroscopy (fNIRS) (McDonough et al., 2022). Researchers using neuroimaging 

have reported distinct brain activity differences between older and younger adults that relate to 

differences in cognitive performance and could explain this decline (McDonough et al., 2022; 

Cabeza et al., 2018). However, there are discrepancies in the recent literature related to whether 

brain activity differences are positively (Nyberg et al., 2009; Mattay et al., 2006; Cabeza et al., 
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2002)  or negatively associated with cognitive performance (Park et al., 2010; Li et al., 2001). 

Therefore, further research using neuroimaging is needed to better understand how theses age-

related brain activity differences affect cognitive performance to better understand age-related 

decline. 

 

1.2. Theories of Brain Ageing 

Neuroimaging researchers have identified at least four distinct age-related patterns that 

characterize the structural and functional changes across various cognitive domains (McDonough 

et al., 2022). These patterns include: maintenance, neural inefficiency, de-differentiation, and 

neural compensation.  

The Brain Maintenance theory states that some older adults display preserved brain structure 

and function similar to younger adults (Reuter-Lorenz and Park, 2014; Nyberg et al., 2012). There 

are numerous studies whose findings align with the Brain Maintenance theory and show preserved 

cognition in older adults, which is demonstrated as similarities in brain activation patterns relative 

to younger adult groups (Geerligs et al., 2014; Chanraud et al., 2013; Davis et al., 2011; Vallesi et 

al., 2011). Alternatively, the De-differentiation model is based on the process of de-differentiation 

or desegregation, which refers to brain activity becoming less distinct or selective with age (Koen 

and Rugg, 2019). Researchers have found this de-differentiation pattern of brain activity is 

associated with lower levels of cognition and poorer task-related performance (Park et al., 2010; 

Li et al., 2001). Similarly, the Neural Inefficiency Theory proposes that an increase in brain activity 
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correlates to reduced task performance in older adults and is negatively associated with cognitive 

performance (Logan et al., 2002; Reuter-Lorenz et al., 2001; Morcom and Henson, 2018).  

On the other hand, the Neural Compensation theory, which has the most empirical support, 

suggests that age-related increases in neural activity, particularly in the PFC, are positively 

associated with cognitive performance and therefore benefit cognition (Spreng and Turner, 2019; 

Cabeza et al., 2018; Reuter-Lorenz and Park, 2014; Davis et al., 2007; Greenwood, 2007). 

Researchers have observed that older adults typically demonstrate recruitment of bilateral brain 

areas when performing cognitive tasks, where both hemispheres are active; in contrast, younger 

adults show lateralization for the same tasks, which is when one hemisphere is active (Cabeza, 

2002). The Hemispheric Asymmetry Reduction in Old adults (HAROLD) model proposes that this 

bilateral activation is used as a compensatory mechanism to counteract age-related cognitive 

decline, particularly in tasks requiring PFC activation (Cabeza, 2002). Compensation can then be 

defined as the enhancement of cognitive performance by the recruitment of additional brain 

networks (Cabeza et al., 2018). In terms of behaviour, these compensatory mechanisms allow older 

adults to perform at a similar level to younger adults during cognitive tasks. For example, Cabeza 

et al. (2002) found that low-performing older adults recruit similar networks to younger adults but 

do not perform as well, whereas high-performing older adults recruit additional bilateral areas. 

This supports the idea that bilateral activation allows older adults to perform comparatively to their 

younger counterparts. 

Compensation found in older adults has been characterized in several different ways. 

Researchers have reported compensation is characterized by bilateral PFC activation during 

cognitively demanding tasks (Reuter-Lorenz and Cappell, 2008; Cabeza, 2002) paired with lower 
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brain activity in the sensory cortex, which is referred to as the Posterior-to-Anterior Shift in Ageing 

(PASA) (Davis et al., 2007). Essentially, PASA suggests there is a shift in neural activity from the 

posterior to the anterior regions of the brain with age, which can be exhibited during a cognitive 

task. Researchers using neuroimaging have observed these distinct brain patterns, with older adults 

showing increased PFC (anterior) activity and less parietal (posterior) activity while demonstrating 

compensation during a cognitive task (Ansado et al., 2012; McCarthy et al., 2014; Zhang et al., 

2017). 

Major challenges remain in how to best characterize the structural and functional changes that 

occur as we age due to mixed results within the literature. The question remains whether increases 

in brain activity shown in older adults is, in fact, compensatory, or if these increases are potentially 

unrelated or even detrimental to task performance. An overlooked concept is that multiple patterns 

of brain ageing could co-exist in an individual (Logan et al., 2002), which suggests the potential 

need for a more integrative theory that connects these distinct models of brain ageing. 

 

1.3. Cognitive Performance and its Relationship to Task Load 

Since age-related differences in brain activity have often been dependent on the difficulty of a 

task, particularly in the PFC, manipulating the complexity of a task (i.e., task load) is essential in 

understanding age-related neurocognitive changes (Cabeza et al., 2018; Grady, 2012). The most 

commonly used empirical model to test the predictions of neural compensation is the 

Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH) model, which 

proposes that, as task load increases, more brain regions will be activated (Mattay, 2006; Reuter-
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Lorenz et al., 2000). As the Neural Compensation theory suggests, increases in task load lead to 

additional recruitment of neural resources in older adults in order to meet increasing cognitive 

demands while maintaining performance. However, the CRUNCH model suggests there might be 

a threshold of task complexity. CRUNCH predicts this compensatory over-recruitment cannot be 

maintained during highly demanding tasks once this threshold has been reached, which leads to 

reduced brain activity as well as task performance (Nyberg et al., 2009; Mattay et al., 2006). 

Furthermore, the CRUNCH model proposes that older adults reach this threshold sooner than 

younger adults. Therefore, during an easy or intermediate task, older adults will recruit more neural 

resources compared to younger adults to compensate and maintain performance. However, during 

a difficult task with a high task load, this threshold will be reached, and the over-recruitment 

mechanisms being employed will not be able to be sustained, leading to reduced brain activity and 

poorer performance in older adults (Reuter-Lorenz and Cappell, 2008). 

 To test the predictions of the CRUNCH model, it is necessary to manipulate three or more 

levels of cognitive load to determine whether there is a task load threshold present, and whether 

this threshold is being reached sooner in older adults (Jamadar 2020; Mattay et al., 2006). While a 

very limited number of studies have tested the predictions of the CRUNCH model, recent research 

has found supporting evidence (Bauer et al., 2015; Toepper et al., 2014; Mattay et al., 2006). For 

example, Schneider-Garces et al. (2010) used a verbal working memory task and found that older 

adults showed increased brain activity at low task loads and reduced brain activity at high task 

loads in the frontoparietal network, whereas younger adults demonstrated a linear trend of 

increasing brain activity with increasing task load. Furthermore, older adults performed worse on 

the working memory task relative to younger adults (Schneider-Garces et al., 2010). 
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 While there has been some recent support to validate the predictions of the CRUNCH 

model, other recent studies have found contradicting results (Blum et al., 2021; Van Ruitenbeek et 

al., 2023; Ranchod et al., 2023). For example, Jamadar (2020) used fMRI technology to examine 

brain activity in older and younger adults while manipulating task load to test the CRUNCH model. 

They found a linear increase in brain activity in both older and younger adults at both low and high 

task loads, which contradicts the predictions of CRUNCH (Jamadar, 2020). Additionally, research 

by Blum et al. (2021) reported that older adults were able to maintain compensatory over-

recruitment of neural resources during high task loads. These inconsistencies make it difficult to 

characterize age-related brain activity differences and the role of compensation in relation to task 

load. This highlights the need for future research which manipulates cognitive load to determine 

whether the increases in brain activity seen in older adults are limited to a certain level of task 

difficulty, or whether these over-recruitment strategies are maintained regardless of task load. 

 

1.4. Use of fNIRS to Study Age-Related Neurocognitive Changes 

fNIRS technology is a non-invasive neuroimaging method used for studying brain activity in 

individuals across different age groups. Compared to other imaging techniques like fMRI, fNIRS 

offers better temporal resolution and lower sensitivity to body movements (Pinti et al., 2020). 

Additionally, fNIRS is a portable technology, increasing its versatility and potential for 

experimental testing. It operates by emitting near-infrared (NIR) light at varying wavelengths 

(between 650-950nm) from a transmitter, which penetrates the layers of the head (skin, skull, 

cerebrospinal fluid) and reaches the cortical brain tissue. The light is then attenuated, absorbed, 

and scattered, and these changes are detected by corresponding receivers (Pinti et al., 2020). By 
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measuring the concentrations of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin 

(HbR), fNIRS allows researchers to examine brain activity in specific areas of interest (Pinti et al., 

2020). When neural activity increases, this leads to increased blood flow and a subsequent increase 

in HbO concentrations to support the increasing metabolic demands of that brain area 

(Meidenbauer et al., 2021). Ultimately, the availability of neuroimaging methods such as fNIRS 

has significantly advanced research in the area of cognitive neuroscience and has allowed 

researchers to better understand how the brain changes with age.  

 

1.5. Study Objectives 

The purpose of this study is to examine brain activity in younger (18-25 years) and older adults 

(65-91 years) using fNIRS on bilateral prefrontal (PFC) and right parietal cortices. The main 

objective of this project is to determine if an increase in bilateral brain activity is occurring in older 

adults relative to younger adults, and if this activation correlates with better task performance and 

is thus, compensatory. Measuring the frontal and parietal areas will allow us to determine if a 

posterior-to-anterior shift in aging (PASA) is occurring, and if these brain activation patterns are 

benefiting task performance (compensation). To test for compensation and in accordance with 

CRUNCH, we will be using three different N-back tasks, each with increasing complexity, while 

the participant is wearing the fNIRS cap. 
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2. MATERIALS AND METHODS 

2.1. Participants 

A total of 49 participants were recruited for this study, consisting of 24 younger adults (18-25 

years (yrs), M = 22.1 yrs, SD = 1.2 yrs; 10 females and 14 males) and 25 older adults (65-91 yrs, 

M = 74.9 yrs, SD = 7.0 yrs; 17 females and 8 males). This was the final sample after excluding 3 

participants who had poor fNIRS data quality (see Analysis section of Results, pg. 14). For 

recruitment, posters were placed at TRU and in local community spaces (e.g., Golds Gym, 5Bean, 

Tournament Capital Centre). The study was also advertised on online recruitment sites such as 

social media (e.g., Facebook), with permission of site administrators, and on the local Castanet 

news media. Additionally, 5 older adult participants were recruited from the Riverbend Mayfair 

Old Age Community Centre in Kamloops, BC. Participants were screened prior to testing to ensure 

they met the inclusion criteria. Inclusion criteria included age, as well as having normal or 

corrected vision, fluency in English (90-100%), having at least 6 years of formal education, having 

no known neurological or psychological disorders (e.g., stroke, brain injury, Parkinson’s disease, 

bipolar disorder, depression), being right-handed (self-reported), and not taking Aricept (attention-

enhancing medication) or psychoactive drugs. Furthermore, two cognitive assessments were 

performed on older adults (i.e., the Montreal Cognitive Assessment (MoCA), and the Repeatable 

Battery for the Assessment of Neuropsychological Status (RBANS)) to ensure participants were 

within the normal range of cognitive functioning. All participants gave written consent prior to 

testing. This study was approved by the Thompson Rivers University research ethics board. 
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2.2. Procedure 

The testing sessions were 45-60 minutes long for younger adults, and 90 minutes long for older 

adults. Thirty minutes of cognitive assessments (MoCA, RBANS) as well as a cognitive reserve 

index questionnaire (CRIq) were administered to older adult participants prior to the N-back task. 

All participants were fitted with the fNIRS Brite head cap (Artinis Medical Systems, The 

Netherlands) to measure brain activity whilst they performed working memory tasks with 3 levels 

of difficulty. To ensure consistent placement of the optode array, each participant’s Cz were 

measured and marked on the scalp. Subsequently, the pre-marked Cz point of the fNIRS cap was 

aligned with the participant’s Cz according to the 10-20 international system (Klem et al., 1999). 

The cap is equipped with 10 light-emitting optodes or sources (S) that transmit NIR light (650- 

950 nm) as well as 8 detectors (D) that detect changes in light absorption (25 Hz). The optodes 

were placed on the cap an ideal 3 cm apart, and the pairing of source-detector optodes 

corresponded to a recording channel (CH). Our array covered the bilateral prefrontal cortex (PFC) 

as well as the right parietal lobe with a total of 21 channels: 7 channels on the right PFC, 12 

channels on the left PFC, and 2 channels on the right parietal lobe. Brain activity is found to be 

lateralized on the right hemisphere for visuospatial processes, which is why the right-side parietal 

lobe was examined for the present study (Corballis, 2003). 

The fNIRS device continuously recorded changes in oxygenated (HbO) and deoxygenated 

(HbR) hemoglobin concentrations from each channel over the cortex. A greater level of HbO 

indicated a higher level of hemoglobin delivery to a particular brain area, which then specifies, 

indirectly, increased brain activity in that area. One short separation channel was placed on the 

fNIRS cap (SSCH, source-detector distance of 1.5cm), located on the left hemisphere (channel 15, 
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Figure 1), which was used as a regressor to eliminate physiological “noise” (e.g., heartbeat, blood 

flow) or activity not relevant to the task (Funane et al., 2015). Prefrontal and parietal regions were 

chosen based on previous research using fNIRS which examined similar areas during a 

visuospatial N-back task (Meidenbauer et al., 2021). The locations of the source and detector 

optodes were digitized using a Polhemus optode digitization system in reference to vertex, inion, 

naison, and preauricular landmarks. The estimated source-detector pairings were registered to a 

3D brain template (Colin 27, atlas) using the Brain AnalyzIR toolbox (Figure 1).  

All fNIRS data was collected using Oxysoft (Artinis, Medical Systems, The Netherlands, 

version 3.2.51.4) and a sampling frequency of 25 Hz was used. Prior to data collection, each 

individual optode was removed and participant’s hair was pushed to the sides to optimize channel 

data quality. Additionally, an age-dependent differential path-length factor (DPF) was applied, 

which uses participant age to estimate the ratio of mean optical pathlength and light travelling 

within the cortical tissue to the source-detector separation distance. The DPF for age 50 was used 

for all older adult participants, as the DPF for those who are older than 50 years of age has not yet 

been determined (Schroeter et al., 2003). 
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Figure 1  

3D Visualization of the 21-channel fNIRS optode array from frontal (left) and lateral (right) 

views. Ten sources (S, in red) and 8 detectors (D, in blue) over bilateral prefrontal cortex (PFC) 

and right parietal lobe areas were digitized using a Polhemus system and registered to a 3D brain 

template (Colin27, atlas). The source-detector pairings make up 21 channels (in green); 12 on the 

left hemisphere (LH) and 9 on the right hemisphere (RH). One SSCH (short-separate channel) was 

placed on the left hemisphere (CH 15). Optode placements were identified using the 10-20 

international system. 

 

Once a good signal was established, the participant was asked to complete three 

visuospatial working memory (N-back) tasks of increasing cognitive load (1-back, 2-back, and 3-

back, respectively). The task was designed using E-prime 3.0 (Psychology Software Tools Inc., 

PA, USA) and positioned in front of the seated participants on a computer laptop (Dell Latitude 

3410, 14” HD, 1920 x 1200 resolution). Each N-back began with a 20-second (s) rest period to 

collect a baseline measurement, where a white screen with the word “rest” on the center of the 

screen was displayed, and participants were asked to simply sit still while keeping their fingers on 

the keyboard. This was followed by 40s of the N-back task (either 1, 2, or 3-back). This sequence 
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was repeated 4 times in total for each N-back condition. For the N-back tasks, a blue box appeared 

at one of six possible locations (i.e., upper left, middle, and right, and lower left, middle, and right) 

(Figure 2). The box would appear on the screen for 0.5s before disappearing. After the box 

disappeared, participants were given 1.5s to respond by pressing a keyboard button on the 

computer. A new box would then appear after the 1.5s. The participants were required to indicate 

whether the current presented stimulus (i.e., the blue box) was in the same (S) location (by pressing 

the “S” key) or different (D) location (by pressing the “D” key) as either 1 box ago (1-back), 2 

boxes ago (2-back) or 3 boxes ago (3-back) for each cognitive load. Each N-back task had a total 

of 80 trials, with 20% of trials being targets (which required an “S” response), and 80% being non-

targets (which required a “D” response). This ratio of targets to non-targets was implemented as it 

reflects executive function engagement rather than being more perceptual or predictive in nature 

(Posner, 1980). Participants were given verbal step-by-step set of instructions from the researcher 

on how to perform the N-back task, as well as given practice trials with feedback in each trial and 

a total score prior to each N-back task. Additionally, the order in which participants completed the 

task load conditions was counterbalanced, with half of participants completing the 1-back, 

followed by the 2-back then the 3-back, and the other half completing the 1-back, followed by the 

3-back and then the 2-back. 
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Figure 2  

Example of a 2-back visuospatial working memory task. Participants had to determine whether 

the current box was in the same or different location as two trials back by pressing the “S” key for 

same or “D” key for different. The top panel shows a sequence where the box is in the same 

location as two trials back, and an “S” response is required, while the bottom panel shows a 

sequence where the box is in a different location than two trials back, and a “D” response is 

required.  
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2.3. Analysis 

Behavioural data from each of the three N-back tasks for each participant was extracted from 

E-prime and compiled into an Excel database. Trials with no observed responses and those with 

reaction times less than 80 milliseconds (which was indicative of a guess) were excluded from 

further analysis. On average, OA had 4.92% of trials removed (SD = 7.05%) while YA had 2.04% 

of trials removed (SD = 3.56%). Behavioural measures included error rate percentages (i.e., the 

total number of incorrect responses divided by the total number of possible responses) for targets, 

where the stimulus was in the same location and an “S” response was required, and for non-targets, 

where the stimulus was in a different location and a “D” response was required. Pr values were 

calculated as another measure of accuracy by subtracting the number of incorrect non-target 

responses or “false alarms” from the number of correct target responses or “hits”, reflecting true 

positives (Jaeggi et al., 2008) and combining all trial types (target and non-target) for better 

statistical power. Reaction times (in milliseconds) were also recorded for each participant across 

the three N-back tasks and for target and non-target categories only for correct trials. The statistical 

software JASP (version 0.17.2.1, 2023, MacOS) was used to conduct repeated-measures analysis 

of variance (ANOVAs) for error rates (%), Pr values, and reaction times within task load 

conditions and target types to identify behavioral differences between older and younger adults. 

Statistical significance was set to p < .05, and Bonferroni corrections were applied for post hoc 

tests. 

fNIRS data was exported from Oxysoft and converted to SNIRF files (MATLAB 2022b, 

version 9.13.0, MathWorks Inc., Massachusetts) using the Brain AnalyzIR toolbox (Santosa et al., 

2019). The data was down sampled (10 Hz) and pre-processed using the modified Beer-Lambert 
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Law, which converted changes in optical density to changes in HbO concentration (μM). Only 

HbO values from this conversion were considered for subsequent analysis. A Structured Noise 

Index (SNI) was used to identify “bad” channels; however, given our sampling differences vs. 

Zhuang et al. (2022) (i.e., ours 10 Hz vs 4 Hz), an SNI < 4 was chosen instead of an SNI < 2. At 

this stage, three participants were removed due to a high number of bad channels, indicating poor 

fNIRS signal quality. 

A subject-level general linear model (GLM) was then applied to the fNIRS data using the Brain 

AnalyzIR toolbox (Santosa et al., 2019) to identify significantly active channels during the N-back 

trial blocks for each task load condition. The short-separate channel (SSCH), as well as an 

autoregressive iteratively reweighted least-squares model (AR-IRLS) was used in the GLM to 

eliminate motion artifacts and physiological noise from our fNIRS signals. The AR-IRLS uses 

robust regression and pre-whitening techniques and has been shown to control for false positive 

rates caused by high amounts of noise (Barker et al., 2013; Huppert et al., 2016). The GLM is a 

well-established method for analyzing event-related or time series data, and essentially fits the raw 

data to a modeled response with set parameters; in this case, it assumes a canonical hemodynamic 

response function (HRF). The output of the GLM is a series of calculated beta (β) coefficients for 

each participant and task load, which indicate changes in HbO signal intensity and direction 

(Santosa et al., 2019). These beta values are a measure of how well our data fits the ideal HRF 

response. By using the GLM, we are controlling for type I errors or false positive rates while also 

reducing noise and activity that was not a response of an event. 

A group-level analysis was then conducted based on the subject-level results, which used a 

mixed effects regression model to obtain significantly active channels relative to baseline across 
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groups for each cognitive load (1, 2, and 3-back) with significance set to p < .05. T-test contrasts, 

corrected for multiple comparisons, were then conducted to identify significant differences in brain 

activity across all 21 channels between task conditions and groups, with significance set at p < .05. 

Contrast directions were pre-determined based on previous research and the CRUNCH model, that 

is, older adults would have increased brain activity relative to younger adults (YA > OA in the 1-

back, 2-back, and 3-back), and participants would have increased brain activity with increasing 

task load (3-back > 2-back, 2-back > 1-back, and 3-back > 1-back). This resulted in 9 contrasts, in 

addition to the group analyses. 

 

3. RESULTS 

3.1. Cognitive Assessment Results 

Participant MoCA scores were found to be within the normal range of 26-30 (M = 26.7, SD 

= 3.8). Additionally, participant’s RBANS total scale scores were also within normal range (M = 

108 , SD = 15.7), as the average RBANS total scale score for healthy older adults is 100, with a 

standard deviation of 15 (Phillips et al., 2015). On average, our older adult participants scored in 

the upper 63rd percentile (%) relative to their age group, which further confirms our sample of 

older adults is within a healthy range of cognitive functioning. Furthermore, a cognitive reserve 

index (CRIq) questionnaire was implemented, which scores individuals based on factors such as 

age, education, work activity, and social or leisure activities (M = 133.3, SD = 16.9). According to 

Nucci et al. (2012),  a score of  >130 is considered in the “high” cognitive reserve category, with 

the “medium” or average range between 85-114. This means that, on average, our OA participants 
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may be considered to have high cognitive reserve, which suggests that they have an increased 

ability to cope with the effects of cognitive decline (Nucci et al., 2012). Individual participant 

scores for these assessments can be seen in Table 3 of the Appendix, pg. 48. 

3.2. Behavioural Results 

 Both accuracy, measured by error rates (%) and Pr values (hits – false alarms), as well as 

reaction times (in milliseconds) for target (trials requiring “S” responses for same as N-back trials) 

and non-target stimuli (trials requiring “D” responses for different as N-back trials) were compared 

between older (OA) and younger (YA) adults, as well as between 1-back (1B), 2-back (2B), and 

3-back (3B) task load conditions. 

Two separate repeated measures ANOVAs were performed on participant error rates (%) 

which revealed an effect for task load on both non-target, F(2,94) = 56.785, p < .001, η2 = .215, 

and target error rates, F(2,94) = 20.561, p < .001, η2 = .151. For non-target stimuli, error rates were 

higher in the 3B vs. 1B (p < .001), as well as in the 3B vs. 2B (p = .005), and higher in the 2B vs. 

1B (p < .001). Target error rates exhibited a similar trend across tasks, with error rates being higher 

in the 3B vs. 1B (p < .001), as well as in the 3B vs. 2B (p < .001), and higher in the 2B vs. 1B (p 

= .019).  

Similarly, results revealed an effect for age group on non-target, F(1,47) = 7.198, p = .010, 

η2 = .080, and target error rates, F(1,47) = 12.745, p < .001, η2 = .104. For non-target stimuli, 

older adults (M = 14.103, SD = 9.055) had higher error rates than younger adults (M = 8.178, SD 

= 7.344).  For target stimuli, older adults (M = 33.148, SD = 6.470) also had higher error rates than 
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younger adults (M = 18.775, SD = 4.902). No group by task load interactions were observed for 

either non-target, p = .159, nor target error rates, p = .151. 

 

 

 

Figure 3 

Boxplots for target and non-target error rates (%). Differences in error rates (%) between older 

(OA) and younger (YA) adults and between task load conditions and can be observed for both 

target (left) and non-target stimuli (right). OA were less accurate than YA for both target, (*) p < 

.001, and non-target types, (*) p = .010. Additionally, an effect for task load was found for target 

and non-target types, both p < .001. Means with different letters are significantly different from 

each other, p < .05. 

  

 

Additionally, an analysis was performed on participant Pr values (hits – false alarms) as a 

measure of task accuracy (Figure 4). The results revealed an effect for task load, F(2,94) = 78.195, 

p < .001, η2 = .264. Task accuracy was higher in the 1B vs. 2B as well as in the 1B vs. 3B, and 
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higher in the 2B vs. 3B (all p < .001). Similarly, our results revealed an effect for age group on Pr, 

F(1,47) = 15.055, p < .001, η2 = .138. Younger adults (M = 7.630, SD = 5.421) had higher task 

accuracy than older adults (M = 1.282, SD = 6.860).  

Whilst no significant interaction was found for Pr, a trend, p = .078 was observed, which 

prompted further investigation through post hoc tests (also see Mattay et al., 2006). Note that 

higher Pr values correspond to better performance (more hits) and lower Pr values correspond to 

worse performance (more false alarms). The post hoc tests further revealed that, for older adults, 

Pr values were significantly higher in the 1B vs. 2B (p < .001), as well as in the 1B vs. 3B (p < 

.001) but were not significantly higher in the 2B vs. 3B (p = .096). For younger adults, Pr values 

were significantly higher in the 1B vs. 2B (p = .014) as well as the in 1B vs. 3B and in the 2B vs. 

3B (both p < .001). Furthermore, younger adults had higher task accuracy than older adults in the 

2B,  p < .001, and 3B, p = .033, but not the 1B, p = .302.  

An analysis was also performed on participant reaction times (in ms) for target and non-

target stimuli (Figure 5). The results of the analysis revealed an effect for task load on both non-

target, F(2,94) = 31.511, p < .001, η2 = .118, and target reaction times, F(2,94) = 36.525, p < .001, 

η2 = .116. For non-target stimuli, reaction times were slower in the 3B vs. 1B as well as in the 3B 

vs. 2B (both p < .001), and slower in the 2B vs. 1B (p = .004). Target reaction times exhibited a 

similar trend across tasks with reaction times being slower in the 3B vs. 1B well as in the 3B vs. 

2B (both p < .001), and slower in the 2B vs. 1B (p = .003).  
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Figure 4  

Boxplot for Pr values. Differences in Pr (hits – false alarms) can be observed between older (OA) 

and younger (YA) adults, as well as between task load conditions according to a trend, p = 0.078. 

YA had higher task accuracy than OA in the 2B, p < .001, and 3B,  p = .033. For OA, task accuracy 

was higher in the 1B vs. 2B as well as in the 1B vs. 3B, both p < .001. For YA, task accuracy was 

higher in the 1B vs. 2B, p = .014, as well as in the 1B vs. 3B and in the 2B vs. 3B, (*) both p < 

.001. Means with different letters are significantly different from each other, p < .05. 

 

 

Furthermore, our results revealed an effect for age group on target reaction times, F(1,47) 

= 11.172, p = .002, η2 = .139, but no effect for non-target reaction times (p = .070). For target 

stimuli, younger adults (M = 577.435, SD = 449.783) had faster reaction times compared to older 

adults (M = 748.464, SD = 384.120).  

Our RT results revealed a significant interaction between task load and age group for non-

targets, F(2,94) = 4.569, p = .013, η2 = .017. Post-hoc tests further revealed that, for older adults, 

non-target reaction times were significantly faster in 1B vs. 3B and in the 2B vs. 3B tasks (both p 
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< .001), but not different between the 1B and the 2B (p = 1.00). Similarly, for younger adults, non-

target reaction times were faster in the 1B vs. 2B and in the 1B vs. 3B tasks (both p < .001), but 

not in the 2B vs. 3B  (p = 1.00). No significant differences were found for non-target reaction times 

when comparing younger adults to older adults for the 1B (p = .172), 2B (p = 1.00), or 3B (p = 

.643). 

A significant interaction between task load and age group was also found for target reaction 

times, F(2,94) = 3.729, p = .028, η2 = .012. Post-hoc tests further revealed that, for older adults, 

target reaction times were significantly faster in the 1B vs. 3B and in the 2B vs. 3B tasks (both p 

< .001), but not the 1B vs. 2B (p = 1.00). For younger adults, target reaction times were faster in 

the 1B vs. 2B (p = .004) as well as in the 1B vs. 3B (p < .001), but not the 2B vs. 3B (p = 1.00). 

Furthermore, older adults had slower reaction times compared to younger adults in the 1B (p = 

.019,) and 3B tasks (p = .004), but not the 2B (p = 1.000). 

In summary, behavioural results showed that participants had higher error rates (%), lower 

Pr values, and slower reaction times in the higher task loads compared with the lower task loads. 

Specifically, older adult participants had higher task accuracy (Pr) in the 1B compared to the 2B 

and 3B tasks, albeit no accuracy (Pr) differences were observed between 2B and 3B. Younger 

adults showed accuracy differences between 1B vs. 2B, 1B vs. 3B, and 2B vs. 3B, with better 

accuracy in the 1B and worse accuracy in the 3B. Furthermore, younger adults had higher task 

accuracy (Pr) than older adults in the higher task loads (i.e., 2B and 3B) but both groups had 

similar accuracy (Pr) in the 1B. Additionally, younger adults had significantly faster reaction times 

in the 1B and 3B tasks (no differences in the 2B) compared to older adults for target stimuli and 
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no significant differences in reaction times between age groups were observed for non-target 

stimuli. 

 

 

 

Figure 5  

Boxplots for target and non-target reaction times (in milliseconds). Differences in reaction time 

(RT) between older (OA) and younger (YA) adults and between task load conditions can be 

observed for both target (left) and non-target stimuli (right). For targets, YA were faster than OA 

in the 1B, p = .019, and 3B, p = .004. For non-targets, OA were faster in the 1B vs. 3B and in the 

2B vs. 3B, both p < .001; YA were faster in the 1B vs. 2B and in the 1B vs. 3B, both p < .001. For 

targets, OA were faster in the 1B vs. 3B and in the 2B vs. 3B, both p < .001; YA were faster in the 

1B vs. 2B, p = .004, and in the 1B vs. 3B, p < .001. Means with different letters are significantly 

different from each other, p < .05. 

 

3.3. fNIRS Results 

 fNIRS analysis was conducted to investigate brain activity differences between older (OA) 

and younger (YA) adults in the PFC and parietal lobe areas during 1-back (1B), 2-back (2B), and 
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3-back (3B) tasks. The results from the group-level and contrast analysis are channels with 

significant increases or decreases in HbO concentrations (calculated as beta (β),  p < .05) and 

superimposed over the brain template as T-stat values in the below figures. Channels with 

significant HbO increases are demonstrated in red, whilst HbO decreases are in blue. All 

significant channels, betas, T-stat, and p values are shown in Table 2. 

 Results from the group-level analysis compared brain activity for both OA and YA in each 

task load condition relative to baseline, which are reported in Table 1 and Figure  6. These results 

showed that YA had significant HbO increases in CHs 3, 4, 5, 8, and 9 on the RH and CHs 12, 13, 

and 14 on the LH for the 1B task (Figure 6, upper left panel). YA also showed significant increases 

relative to baseline in CHs 1, 4, and 5 on the RH and one channel, CH 16, on the LH for the 2B 

task (Figure 6, upper middle panel). For the 3B task, YA showed increased activity in CHs 3, 4, 

and 8 on the RH and one channel, CH 14, on the LH (Figure 6, upper right panel). OA showed 

significant brain activity increases in CHs 2, 4, 7, 8, and 9 on the RH and CHs 16, 18, and 21 on 

the LH for the 1B task (Figure 6, lower left panel). For the 2B task, OA showed increases in CHs 

3, 4, 5, 7, 8, and 9 on the RH and CHs 16, 19 and 20 on the LH (Figure 6, lower middle panel). 

For the 3B task, OA showed increases in CHs 1, 3, 4, 5, 6, 7, 8, and 9 on the RH and CHs 14, 16, 

19, 20, and 21 on the LH (Figure 6, lower right panel). 
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Figure 6 

Active HbO channels relative to baseline (Table 2) for older (OA) and younger (YA) adults. Significant 

channels (p < .05) are based on T-stat values from the group-level analysis for YA (top panel) and OA 

(bottom panel) for each task load condition. The solid red lines correspond to significant activity or 

increases in HbO within a channel. 

 

A contrast analysis was performed to examine brain activity differences both within and 

between age groups, as well as between task load conditions (Table 2 and Figure 7). Based on the 

results, YA had significant HbO decreases in CH 3 on the RH and CH 12 on the LH when 

comparing 3B vs.1B tasks (Figure 7, top right panel). When comparing 3B vs. 2B tasks, YA 

showed decreased brain activity in CH 5 on the RH and CHs 11, 12, and 16 on the LH (Figure 7, 

top middle panel). When comparing 2B vs.1B tasks, YA showed decreased brain activity in CH 3 

on the RH and CHs 13 and 19 on the LH (Figure 7, top left panel). In contrast, OA had no 

significantly active channels when comparing 3B vs. 1B tasks (Figure 7, middle right panel).  
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Table 1 

Active HbO channels relative to baseline for each task load condition for both older (OA) and younger (YA) 

adults (significant channels (p < .05) for both left (LH) and right (RH) hemispheres are shown) (n = 49). 

 

Relative to 

baseline 

 

Source 

 

Detector 

 

CH 

 

Hemisphere 

 

beta 

 

T-stat 

 

p-value 

 

 

YA: 1B 

1 

4 
2 

5 

5 

8 

7 
8 

 

2 

2 
3 

3 

4 

5 

7 
7 

3 

4 
5 

8 

9 

12 

13 
14 

RH 

RH 
RH 

RH 

RH 

LH 

LH 
LH 

0.868 

0.944 
0.241 

0.306 

0.328 

0.215 

0.339 
0.206 

5.138 

4.401 
2.085 

2.627 

2.361 

2.628 

3.266 
2.089 

<.001 

<.001 
.039 

.010 

.020 

.010 

<.001 
.038 

 

YA: 2B 

2 

4 

2 
6 

 

1 

2 

3 
6 

1 

4 

5 
16 

RH 

RH 

RH 
LH 

0.209 

0.615 

0.265 
0.208 

2.220 

3.459 

2.301 
2.110 

.028 

<.001 

.023 

.037 

 

YA: 3B 

1 

4 

5 
8 

 

2 

2 

3 
7 

3 

4 

8 
14 

RH 

RH 

RH 
LH 

0.379 

0.619 

0.246 
0.243 

2.360 

2.974 

2.145 
2.551 

.020 

.003 

.034 

.012 

 

 

OA: 1B 

3 

4 

3 
5 

5 

6 

8 

9 
 

1 

2 

4 
3 

4 

6 

8 

8 

2 

4 

7 
8 

9 

16 

18 

21 

RH 

RH 

RH 
RH 

RH 

LH 

LH 

LH 

0.265 

0.212 

0.175 
0.360 

0.447 

.116 

.221 

.302 

3.384 

3.303 

2.769 
3.600 

4.022 

2.036 

2.647 

2.340 

<.001 

<.001 

.006 
<.001 

<.001 

.044 

.009 

.021 

 

 

OA: 2B 

1 

4 

2 
3 

5 

5 

6 

10 
9 

 

2 

2 

3 
4 

3 

4 

6 

8 
6 

3 

4 

5 
7 

8 

9 

16 

19 
20 

RH 

RH 

RH 
RH 

RH 

RH 

LH 

LH 
LH 

0.177 

0.213 

0.242 
0.181 

0.350 

0.410 

0.120 

0.308 
0.235 

2.605 

3.329 

2.860 
2.971 

3.401 

5.133 

2.108 

2.909 
3.268 

.010 

<.001 

.005 

.003 

<.001 

<.001 

.037 

.004 
<.001 

 

 

 

 

 

OA: 3B 

2 

1 

4 
2 

3 

3 

5 

5 
8 

6 

10 

9 

9 

1 

2 

2 
3 

3 

4 

3 

4 
6 

6 

8 

6 

8 

1 

3 

4 
5 

6 

7 

8 

9 
14 

16 

19 

20 

21 

RH 

RH 

RH 
RH 

RH 

RH 

RH 

RH 
LH 

LH 

LH 

LH 

LH 

0.172 

0.177 

0.214 
0.355 

0.193 

0.180 

0.33 

0.409 
0.152 

0.115 

0.221 

0.205 

0.324 

2.025 

2.607 

3.341 
3.882 

2.288 

2.871 

3.226 

5.129 
2.234 

2.019 

1.980 

2.853 

2.519 

.045 

.010 

<.001 
<.001 

.024 

.005 

<.001 

<.001 
.027 

.045 

.050 

.005 

.013 
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However, when comparing 3B vs. 2B tasks, OAs showed decreased brain activity in CH 

20 on the LH (Figure 7, middle center panel). When comparing 2B vs. 1B tasks, OAs showed 

decreased brain activity in CH 18 on the LH (Figure 7, middle left panel).  

Additionally, the contrasts revealed that during the 1B task, OA showed decreased HbO 

activity in CHs 3 and 4 on the RH and CH 12 on the LH (relative to YA) (Figure 7, bottom left 

panel). For the 2B task, OA showed increased HbO activity relative to YA in CHs 19 and 20 on 

the LH and CH 9 on the RH, but decreased brain activity in CH 4 on the RH (Figure 7, bottom 

middle panel). For the 3B, OA showed increased brain activity relative to YA in CHs 5, 7, and 9 

on the RH and CHs 17 and 20 on the LH (Figure 7, bottom right panel).   

In summary, YAs showed more brain activity in the 1B compared with the 2B and 3B, but also 

showed lower brain activity between the 2B vs. the 3B. In contrast, OA showed similar activity 

throughout the load conditions, with slight decreases in one channel in the RH. YA showed more 

activity than OA in the 1B, mostly in parietal lobe but overall, OAs had more brain activity in both 

RH and LH in the 2B and 3B. 
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Figure 7 

Active HbO channels for group-level contrasts (Table 3) between older (OA) and younger (YA) adults 

and between task load conditions. Significant channels (p < .05) are based on T-stat values for within-

group contrasts for YA (top panel) and OA (middle panel) between task load conditions, as well as between-

group contrasts for each task load condition (bottom panel). The solid red lines correspond to significant 

activity or increases in HbO, while the solid blue lines correspond to significant decreases in HbO activity.  
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Table 2 

Active HbO channels based on group-level contrast results between older (OA) and younger (YA) adults 

and between task load conditions (significant channels (p < .05) for both left (LH) and right (RH) 

hemispheres are shown) (n = 49). 

 

Relative to 

baseline 

 

Source 

 

Detector 

 

CH 

 

Hemisphere 

 

beta 

 

T-stat 

 

p-value 

YA: 3B > 1B 

 

1 

8 
 

2 

5 

3 

12 

RH 

LH 

-0.489 

-0.371 

-2.215 

-3.726 

.028 

<.001 

 

YA: 3B > 2B 

 

2 

6 

8 

6 

3 

5 

5 

6 

5 

11 

12 

16 

RH 

LH 

LH 

LH 

-0.291 

-0.262 

-0.301 

-0.320 

-1.993 

-2.465 

-3.072 

-2.474 

.048 

.015 

.003 

.015 
 

YA: 2B > 1B 

 

1 

7 

10 

2 

7 

8 

3 

13 

19 

RH 

LH 

LH 

-0.607 

-0.415 

-0.466 

-2.640 

-3.167 

-2.246 

<.001 

<.001 

.026 

 

OA: 3B > 2B 

 

 

9 

 

6 

 

20 

 

LH 

 

-0.029 

 

-2.675 

 

.008 

 

OA: 3B > 1B 

 

 

- 

 

- 

 

- 

 

- 

 

- 

 

- 

 

- 

 

OA: 2B > 1B 

 

 
8 

 
8 

 
18 

 
LH 

 
-0.196 

 
-2.080 

 
.039 

 

 

 
1B: OA > YA 

 

2 

3 

1 
4 

2 

5 

5 

7 
8 

8 

10 

9 

 

1 

1 

2 
2 

3 

3 

4 

7 
7 

8 

8 

8 

1 

2 

3 
4 

5 

8 

9 

13 
14 

18 

19 

21 

RH 

RH 

RH 
RH 

RH 

RH 

RH 

LH 
LH 

LH 

LH 

LH 

-0.335 

-0.355 

-1.038 
-1.155 

-0.375 

-0.665 

-0.775 

-0.432 
-0.302 

-0.304 

-0.435 

-0.525 

-2.425 

-2.88 

-5.389 
-5.163 

-2.482 

-4.336 

-4.357 

-3.083 
-2.317 

-2.39 

-2.206 

-2.873 

<.001 

0.005 

<.001 
<.001 

<.001 

<.001 

<.001 

0.002 
0.022 

0.018 

0.029 

0.005 

 

 

2B: OA > YA 

 

2 

3 

1 

4 

2 
5 

5 

6 

6 

 

1 

1 

2 

2 

3 
3 

4 

5 

6 

1 

2 

3 

4 

5 
8 

9 

11 

16 

RH 

RH 

RH 

RH 

RH 
RH 

RH 

LH 

LH 

0.337 

0.313 

0.439 

0.828 

0.506 
0.511 

0.374 

0.242 

0.328 

2.582 

2.531 

2.355 

4.382 

3.547 
3.282 

2.307 

2.067 

2.883 

0.011 

0.012 

0.02 

<.001 

<.001 
<.001 

0.023 

0.041 

0.005 

 

3B: OA > YA 

 

2 

3 

5 

8 

9 

3 

4 

4 

6 

6 

5 

7 

9 

17 

20 

RH 

RH 

RH 

LH 

LH 

0.381 

0.383 

0.426 

0.243 

0.324 

2.508 

3.074 

2.614 

2.051 

2.433 

.013 

.003 

.010 

.042 

.016 
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4. DISCUSSION 

4.1. Behavioural results 

We expected to observe slower reaction times, higher error rates (%) and lower task accuracy 

(Pr) for participants as a function of task load. Our results demonstrated that the N-back tasks were 

indeed increasing cognitive load in our participants who showed lower accuracy (Pr), higher error 

rates and longer reaction times in the 3B compared to lower task loads (1B and 2B) in both YA 

and OA. This indicates that, with increasing cognitive demands, our participants showed reduced 

performance and took longer to respond to stimuli.  

Our results also demonstrated behavioural differences between age groups across task load 

conditions. OA showed higher error rates (%) than YA for both target and non-target stimuli. Also, 

OA were slower than YA to respond to targets in the 1B and 3B but not in the 2B. In addition, no 

RT differences were observed for non-target stimuli. Additionally, accuracy measured as Pr 

showed no significant interaction between task load and age group, however a trend can be 

observed within our results, which prompted post hoc tests for further exploration. Post hoc tests 

revealed OA were less accurate than YA in the 2B and 3B but had similar accuracy compared to 

YA in the 1B. These results could be attributed to speed-accuracy trade-offs, where OA presumably 

prioritize accuracy over speed to avoid making mistakes (Salthouse, 1979; Rabbitt, 1979; Starns 

and Ratcliff, 2010). While this speed-accuracy trade-off may have been beneficial in the 1B, it is 

not observed or not beneficial at higher task loads (2B and 3B respectively). Importantly, 

similarities in performance were mostly observed at lower task loads (1B) and not at higher task 

loads in accordance with previous research using N-back tasks (Mattay et al., 2006; Nyberg et al., 

2009). Given the level of cognitive function (MoCA and RBANS) and high cognitive reserve 
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(Cabeza et al., 2018; Nucci et al., 2012) in our OA group, it was not a surprise to see some 

similarities in performance (accuracy and RT) between the age-groups. A question arises from 

these observations – would OAs then show more brain activity than YAs in the 1B and then 

attenuation at higher loads as per the predictions of CRUNCH (e.g., Mattay et al., 2006)?   

 

4.2. fNIRS results  

Our primary objective was to compare OA and YA across three task load conditions of 

increasing complexity. We predicted that OA would show compensation based on support from 

previous research. This compensation can be defined as an increase in bilateral brain activation 

with increasing cognitive load, allowing OA to perform at a comparable level to YA (Cabeza, 2002; 

Reuter-Lorenz and Cappell, 2008; Cabeza et al., 2018). If compensation was occurring, this would 

mean the additional recruitment of neural resources would be beneficial to OA and allow them to 

maintain performance and thus counteract the effects of age-related cognitive decline. 

Additionally, we implemented three task load conditions in order to test the predictions of the 

CRUNCH model (Reuter-Lorenz et al., 2000; Mattay et al., 2006; Nyberg et al., 2009). 

Specifically, the CRUNCH model predicts that OA will reach a threshold of task complexity 

sooner than YA and exceed their limit of cognitive capacity more rapidly, resulting in reduced brain 

activity as well as reduced task performance at high task loads. Thus, increased brain activity in 

OA relative to YA in the 1B, but decreased brain activity or attenuation in the higher task loads 

would support the CRUNCH model.  
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Relative to baseline, YA had 5 channels in RH and 3 in LH as active vs. 3 channels in RH and 

1 channel active in LH both in the 2B and 3B. Contrast analysis results thus revealed that YA had 

slightly more activity in the 1B compared to the 2B, as well as in the 1B compared to the 3B, and 

exhibited more activity in the 2B compared to the 3B, including parietal lobe. Overall, YA seem 

to have similar activity throughout, with most differences observed in 2B vs 3B, i.e., decreases 

with more load which could be in line with CRUNCH. However, the fact that they did not increase 

brain activity between 1B and 2B is against the model. Furthermore, OA had similar activity levels 

in the 3B compared to the 2B as well as the 2B compared to the 1B; no differences were found in 

the 3B compared to the 1B. Therefore, OAs seem to be maintaining brain activity across task loads, 

which is not in line with CRUNCH. 

 These results indicate that YA may have exceeded their limits after the 1B and were not able 

to recruit additional brain areas at higher task loads. Some research has suggested that YA may 

disengage or “give up” during a task if deemed too difficult, which could be a potential explanation 

for this observed brain activity and decreased performance (Causse et al., 2017; Mandrick et al., 

2013). Another explanation may be that both YA and OA are already activating more attention and 

working memory resources needed for the tasks early on in the 1B and although minimal decreases 

are seen in YA, for the most part, they use similar brain activity throughout the tasks. Additionally, 

factors such as fatigue or practice effects may be contributing factors. Practice effects typically 

lead to decreases in brain activity (Jolles et al., 2010). Alternatively, because of its simplicity, the 

1B may potentially activate distinct areas that are more associated with visual memory and 

attention rather than working memory, since the working memory requirements at this load are 

almost null. Kane et al. (2007) examined the validity of the N-back task in measuring purely 
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working memory and stated the 1-back challenges attentional control more while engaging 

memory less in individuals. Therefore, more brain activity observed in the 1B compared to the 2B 

and 3B tasks may be due to the activation of other areas not associated with working memory per 

se. This can be supported based on group-level fNIRS results (Figure 6, pg. 23) which shows YA 

are activating channels 12, 13, and 14 in the 1B, but not in the 2B and 3B. A region of interest 

(ROI) analysis, which identifies the location of channels based on Brodmann areas (BA), indicated 

that these channels are located mainly in the dorsolateral PFC (BA 9 and 46) and frontal eye fields 

(BA 8). Research shows these BAs are responsible for visual attention (Yantis, 2008; Martinez-

Trujillo, 2022), which could explain why these channels are activating in the 1B for YA. 

 

Based on these results, our study does not show support for the CRUNCH model for either the 

YAs or OAs. The lack of increased brain activity at 1B and reduced brain activity at the 3B level 

therefore indicates that OA did not reach a threshold of task complexity according to CRUNCH 

model predictions. Mattay et al. (2006) found OA performed at a similar level compared to YA in 

the 1B but performed worse than YA in the 2B and 3B, similar to our results. However, Mattay 

and colleagues found reduced brain activity in OA at high task loads (3B), and more activity in the 

1B in accordance with CRUNCH. In contrast, our results align with previous research that 

contradicts the CRUNCH model (Ranchod et al., 2023; Van Ruitenbeek et al., 2023; Jamadar, 

2020; Blum et al., 2021). Jamadar (2020) implemented 4 load levels and measured brain activity 

in YA using fMRI and found many active areas had an inverted U (e.g., in the right middle frontal 

gyrus), maintenance (e.g., in the inferior frontal gyrus and supplementary motor area) or decreases 

(e.g., left middle frontal gyrus) in activity across increasing task loads, not in line with CRUNCH. 
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Additionally, Jamadar (2020) argued that although the CRUNCH model is the most used model 

for testing compensation, there are only a few studies that have tested its predictions. While it 

seems neither of our age groups exceeded their cognitive limits, it is worth noting that the 3B task 

may not be difficult enough to accurately identify this threshold. Although three task loads were 

implemented to test CRUNCH (as suggested by Jamadar, 2020), a fourth load may have been 

needed to identify this threshold in OA. Furthermore, our study only examined working memory 

using a single modality (visuospatial), whereas other studies (i.e., Ranchod et al., 2023) 

incorporating more than one modality (e.g., visuospatial and auditory) may be employing a more 

difficult task or activating more working memory related areas, and therefore observe different 

results in brain activity.  

Additionally, OA showed more PFC activity and less parietal lobe activity relative to YA, which 

aligns with The Posterior-to-Anterior-Shift in Ageing model (Davis et al., 2007). This model 

suggests that there is a shift in neural activity from the posterior to anterior regions of the brain 

with age, specifically during cognitive tasks. However, PASA shows support for neural 

compensation, which is discussed below.  

 

fNIRS results revealed that OA had increased brain activation in both left and right 

hemispheres (bilateral) relative to baseline (as per group-level analysis) and relative to YA in 

higher task load conditions (2B and 3B) but not in the 1B. Similarities between YA and OA in 

addition to comparable performance fits the maintenance theory rather than compensation. 

However, once again, it could be argued that the requirements in the 1B are not high enough to 

show many differences between the age-groups and it is in the higher task loads that age-related 
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effects are mostly observed. Indeed, OA showed more bilateral activation in the higher load tasks, 

however, this bilateral brain activation did not seem to benefit OA task performance at these higher 

task loads, therefore the compensation view is not supported. Our results suggest that an increase 

in brain activity is not positively associated with task performance, which aligns more with the 

Neural Inefficiency model (Reuter-Lorenz et al., 2001; Logan et al., 2002; Morcom and Henson, 

2018). This theory suggests than increases in brain activity may be associated with lower cognition 

or reduced task performance or may not be related to performance at all (non-selective 

recruitment). For example, Morcom and Henson (2018) found that OA showed increased bilateral 

PFC activity but lower cognitive performance relative to YA, which supports the notion that this 

increased activation reflects reduced efficiency or specificity rather than compensation. 

While our study does not show support for neural compensation defined as increased activity 

paired with benefits to task performance (Cabeza et al., 2018), it should be noted that other studies 

have speculated that different forms of compensation exist, such as unsuccessful or “failed” 

compensation. Chanraud and Sullivan (2014) defined changes in brain function as two distinct 

types: they may be adaptive and enable successful compensation or improved performance, or 

these changes in brain function may be poorly preserved, resulting in unsuccessful or attempted 

compensation. This proposes an alternate perspective – if OA show an increase in brain activity 

but perform worse on the task than YA, could compensation still be occurring? That is, they could 

perform worse on the task without this increased bilateral activation. With this in mind, it is 

important to note that the only way to measure if compensation is truly occurring is through 

alteration (inhibition/enhancement) of brain activity. For example, Rossi et al. (2004) used 

repetitive (rTMS) to examine brain activity during a visuospatial recognition memory task and 
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found OA had bilateral brain activation relative to YA, which demonstrated a compensatory effect. 

This study by Rossi and colleagues (2004) is the only study that has examined brain activity by 

inhibiting specific brain areas, which prompts the need for more research using these same 

strategies to establish causal relationships between additional brain activity and performance. For 

now, the CRUNCH remains as the main model to test for compensation and our study did not 

provide evidence supporting the model or that bilateral activity was compensatory in OAs.  

 

4.2. Limitations and Future Considerations 

We acknowledge some limitations in the present study. Firstly, factors such as fatigue, anxiety, 

practice effects, or motivation may have caused YA to disengage from the more difficult tasks. 

Because of this, it is difficult to identify if the lack of additional recruitment at higher task loads is 

attributed to YA exceeding their cognitive limits, or if other factors are responsible for these 

observed results. Therefore, future research should consider implementing measures of motivation 

as well as cognitive fatigue into the study design. Additionally, fatigue could have potentially 

played a role in the reduced performance at higher loads found in OA compared to YA. While our 

study counterbalanced the order of task load conditions presented to participants, it should be noted 

that OA performed thirty minutes of cognitive assessments (MoCA, RBANS) prior to these tasks, 

which could have affected their performance when completing the N-back later on in the study. 

Future research should consider conducting two separate sessions to minimize the effects of 

cognitive fatigue. For example, Jamadar (2020) held two separate sessions for OA participants 

(Session 1 for demographic questionnaires (CRIq) and cognitive assessments (MoCA), and 
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Session 2 for N-back tasks). If measures are taken to reduce the potential effects of fatigue on 

participants, this could reveal different performance results. 

 Our results did not show support for the CRUNCH model, as OA showed increased brain 

activity from the 2B to the 3B task rather than showing inhibition or reduced activity. While the 

present study implemented three different levels of cognitive load to test the predictions of 

CRUNCH, a reduction in brain activity may not have been observed in either group at the 3B level 

simply because the task was not difficult enough to accurate identify the existence of a threshold. 

Therefore, future research should consider using a fourth task load (as done by Jamadar, 2020) or 

a more difficult task that involves more than one modality (e.g. visuospatial and auditory N-back 

dual task, as done by Ranchod et al., 2023). 

 Additionally, OA showed bilateral brain activation relative to YA in all task loads, but 

poorer performance in the 2B and 3B tasks vs. YA. Although it seems compensation might be 

occurring in the 1B task as OA and YA showed similar task performance, the 1B task may not have 

been an adequate measure of working memory, but rather be targeting brain areas associated with 

visual memory and attention (Kane et al., 2007). Therefore, the 1B may not be a reliable measure 

of working memory and should perhaps be used as a baseline measurement of brain activity rather 

than a low task load condition. 

 The present study examined brain activity through the lens of cognitive ageing, however 

other studies have examined brain activity while using cognitive reserve (CR) as a predictor rather 

than age. CR is measured indirectly by experiences across the lifespan, including educational and 

occupational attainment, leisure activities, and IQ, which is thought to better equip individuals for 

counteracting the effects of cognitive decline (Stern, 2002; Nucci et al., 2012). For example, Ji et 
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al. (2018) explored connections between neural compensation and CR and found those with higher 

CR scores performed better during the memory task and activated fewer neural networks compared 

to those with lower CR scores. Therefore, future research should explore measures of CR and how 

they might correlate to brain activity and performance. Similarly, examining OA of varying 

cognitive abilities rather than comparing healthy OA to YA may allow us to better address the 

question of how brain activity differences correlate to behaviour in the ageing population. For 

example, Vermeij et al. (2014) examined brain activity in high and low performing OA groups and 

found low performing OA had larger bilateral increases in PFC activity compared to high 

performing OA, who mainly used the right PFC. While there is evidence that functional changes 

occur in the brain with age, it is important to consider other factors that may be contributing to 

both differences in brain activation and working memory performance. 

Finally, there is an urgent need to use longitudinal approaches to examine age-related brain 

activity, as these studies are very limited in number compared to the abundance of cross-sectional 

neuroimaging research (Jäncke et al., 2022). Since fNIRS is able to examine individual differences 

in brain activity, measuring activity in the middle-aged or older population and comparing an 

individual’s activity over multiple years may allow for a better understanding of the brain ageing 

process. 

 

4.3. Conclusion 

The goals of the present study were to determine if age-related differences in brain activity 

exist between healthy younger and older adults, and to examine how these differences correlate to 
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performance on a visuospatial working memory (N-back) task. Three task load conditions of 

increasing complexity were implemented to test the predictions of the CRUNCH model, which is 

the most empirical model used to test for neural compensation. Our results suggest that our older 

adult sample is exhibiting increased brain activity and over-recruitment of bilateral brain areas, 

however this cannot support neural compensation as characterized by Cabeza et al. (2018) because 

performance is not being maintained in older adults relative to younger adults at higher task loads. 

Compensation may be occurring in the low task load condition (1-back), however the validity of 

the 1-back task to purely measure working memory should be considered (Kane et al., 2007). 

Additionally, older adults did not demonstrate attenuation at higher task loads, which contradicts 

the CRUNCH model predictions (similar to Ranchod et al., 2023; Van Ruitenbeek et al., 2023; 

Blum et al., 2021; Jamadar, 2020). Our study cannot fully address whether compensation is truly 

occurring or not, therefore future research should aim to use inhibition of brain activity through 

technologies such as transcranial magnetic stimulation (TMS) to better characterize the role of 

bilateral, widespread activity in OAs. Furthermore, variables such as cognitive fatigue and practice 

effects should be considered during experimental design. Cognitive reserve measures could also 

be used as a predictor of brain activity changes rather than age. Better understanding of the changes 

that occur in the healthy aging brain may also allow us to identify and understand why some 

individual experience decline that progresses into neurodegenerative diseases. 

 

 

 



  

   

39 

5. LITERATURE CITED 

Barker, J. W., Aarabi, A., & Huppert, T. J. (2013). Autoregressive model based algorithm for 

correcting motion and serially correlated errors in fNIRS. Biomedical optics express, 4(8), 

1366–1379. https://doi.org/10.1364/BOE.4.001366  

 

Bauer, E., Sammer, G., & Toepper, M. (2015). Trying to Put the Puzzle Together: Age and 

Performance Level Modulate the Neural Response to Increasing Task Load within Left 

Rostral Prefrontal Cortex. BioMed Research International, 2015, 1–11. 

https://doi.org/10.1155/2015/415458  

 

Blum, L., Rosenbaum, D., Röben, B., Dehnen, K., Maetzler, W., Suenkel, U., Fallgatter, A. J., 

Ehlis, A. C., & Metzger, F. G. (2021). Age-related deterioration of performance and 

increase of cortex activity comparing time- versus item-controlled fNIRS 

measurement. Scientific reports, 11(1), 6766. https://doi.org/10.1038/s41598-021-85762-

w  

 

Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD 

model. Psychology and aging, 17(1), 85–100. https://doi.org/10.1037//0882-7974.17.1.85 

 

Cabeza, R., Albert, M., Belleville, S., Craik, F., Duarte, A., Grady, C. L., Lindenberger, U., Nyberg, 

L., Park, D. C., Reuter-Lorenz, P. A., Rugg, M. D., Steffener, J., & Rajah, M. N. (2018). 

Maintenance, reserve and compensation: the cognitive neuroscience of healthy 

ageing. Nature reviews. Neuroscience, 19(11), 701–710. https://doi.org/10.1038/s41583-

018-0068-2  

 

Cabeza, R., Anderson, N.D., Locantore, J.K., & McIntosh, A.R. (2002). Aging Gracefully: 

Compensatory Brain Activity in High-Performing Older Adults. Neurimage, 17(3), 1394-

1402. https://doi.org/10.1006/nimg.2002.1280 

Causse, M., Chua, Z., Peysakhovich, V., Del Campo, N., & Matton, N. (2017). Mental workload 

and neural efficiency quantified in the prefrontal cortex using fNIRS. Scientific 

reports, 7(1), 5222. https://doi.org/10.1038/s41598-017-05378-x  

 

Chanraud, S., Pitel, A.-L. ., Muller-Oehring, E. M., Pfefferbaum, A., & Sullivan, E. V. (2012). 

Remapping the Brain to Compensate for Impairment in Recovering Alcoholics. Cerebral 

Cortex, 23(1), 97–104. https://doi.org/10.1093/cercor/bhr381  

https://doi.org/10.1364/BOE.4.001366
https://doi.org/10.1155/2015/415458
https://doi.org/10.1038/s41598-021-85762-w
https://doi.org/10.1038/s41598-021-85762-w
https://doi.org/10.1037/0882-7974.17.1.85
https://doi.org/10.1038/s41583-018-0068-2
https://doi.org/10.1038/s41583-018-0068-2
https://doi.org/10.1006/nimg.2002.1280
https://doi.org/10.1038/s41598-017-05378-x
https://doi.org/10.1093/cercor/bhr381


  

   

40 

 

Chanraud, S., & Sullivan, E. V. (2014). Compensatory recruitment of neural resources in chronic 

alcoholism. Handbook of clinical neurology, 125, 369–380. https://doi.org/10.1016/B978-

0-444-62619-6.00022-7  

 

Commodari, E., & Guarnera, M. (2008). Attention and aging. Aging clinical and experimental 

research, 20(6), 578–584. https://doi.org/10.1007/BF03324887  

 

Corballis PM. Visuospatial processing and the right-hemisphere interpreter. Brain Cogn. 

2003;53(2):171-176. doi:10.1016/s0278-2626(03)00103-9  

 

Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2007). Que PASA? The 

Posterior-Anterior Shift in Aging. Cerebral Cortex, 18(5), 1201–1209. 

https://doi.org/10.1093/cercor/bhm155  

 

Davis, S. W., Kragel, J. E., Madden, D. J., & Cabeza, R. (2011). The Architecture of Cross-

Hemispheric Communication in the Aging Brain: Linking Behavior to Functional and 

Structural Connectivity. Cerebral Cortex, 22(1), 232–242. 

https://doi.org/10.1093/cercor/bhr123  

Forstmann, B. U., Tittgemeyer, M., Wagenmakers, E. J., Derrfuss, J., Imperati, D., & Brown, S. 

(2011). The speed-accuracy tradeoff in the elderly brain: a structural model-based 

approach. The Journal of neuroscience : the official journal of the Society for 

Neuroscience, 31(47), 17242–17249. https://doi.org/10.1523/JNEUROSCI.0309-11.2011  

Funane, T., Sato, H., Yahata, N., Takizawa, R., Nishimura, Y., Kinoshita, A., Katura, T., Atsumori, 

H., Fukuda, M., Kasai, K., Koizumi, H., & Kiguchi, M. (2015). Concurrent fNIRS-fMRI 

measurement to validate a method for separating deep and shallow fNIRS signals by using 

multidistance optodes. Neurophotonics, 2(1), 015003. 

https://doi.org/10.1117/1.NPh.2.1.015003  

 

Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., & Lorist, M. M. (2014). A Brain-Wide 

Study of Age-Related Changes in Functional Connectivity. Cerebral Cortex, 25(7), 1987–

1999. https://doi.org/10.1093/cercor/bhu012  

 

Grady C. (2012). The cognitive neuroscience of ageing. Nature reviews. Neuroscience, 13(7), 

491–505. https://doi.org/10.1038/nrn3256  

https://doi.org/10.1016/B978-0-444-62619-6.00022-7
https://doi.org/10.1016/B978-0-444-62619-6.00022-7
https://doi.org/10.1007/BF03324887
https://doi.org/10.1093/cercor/bhm155
https://doi.org/10.1093/cercor/bhr123
https://doi.org/10.1523/JNEUROSCI.0309-11.2011
https://doi.org/10.1117/1.NPh.2.1.015003
https://doi.org/10.1093/cercor/bhu012
https://doi.org/10.1038/nrn3256


  

   

41 

 

Greenwood, P. M. (2007). Functional plasticity in cognitive aging: Review and hypothesis. 

Neuropsychology, 21(6), 657–673. https://doi.org/10.1037/0894-4105.21.6.657  

 

Harada, C. N., Natelson Love, M. C., & Triebel, K. L. (2013). Normal cognitive aging. Clinics in 

geriatric medicine, 29(4), 737–752. https://doi.org/10.1016/j.cger.2013.07.002  

 

Huppert T. J. (2016). Commentary on the statistical properties of noise and its implication on 

general linear models in functional near-infrared spectroscopy. Neurophotonics, 3(1), 

010401. https://doi.org/10.1117/1.NPh.3.1.010401  

Jaeggi, S. M., Schmid, C., Buschkuehl, M., & Perrig, W. J. (2009). Differential age effects in load-

dependent memory processing. Neuropsychology, development, and cognition. Section B, 

Aging, neuropsychology and cognition, 16(1), 80–102. 

https://doi.org/10.1080/13825580802233426  

 

Jamadar, S. D. (2020). The CRUNCH model does not account for load-dependent changes in 

visuospatial working memory in older adults. Neuropsychologia, 142, 107446. 

https://doi.org/10.1016/j.neuropsychologia.2020.107446 

 

Jäncke, L., Martin, M., Röcke, C., & Mérillat, S. (2022). Editorial: Longitudinal aging research: 

Cognition, behavior and neuroscience. Frontiers in human neuroscience, 16, 1002560. 

https://doi.org/10.3389/fnhum.2022.1002560  

 

Ji, L., Pearlson, G. D., Hawkins, K. A., Steffens, D. C., Guo, H., & Wang, L. (2018). A New 

Measure for Neural Compensation Is Positively Correlated With Working Memory and 

Gait Speed. Frontiers in aging neuroscience, 10, 71. 

https://doi.org/10.3389/fnagi.2018.00071  

 

Jolles, D. D., Grol, M. J., Van Buchem, M. A., Rombouts, S. A., & Crone, E. A. (2010). Practice 

effects in the brain: Changes in cerebral activation after working memory practice depend 

on task demands. NeuroImage, 52(2), 658–668. 

https://doi.org/10.1016/j.neuroimage.2010.04.028   

 

 

https://doi.org/10.1037/0894-4105.21.6.657
https://doi.org/10.1117/1.NPh.3.1.010401
https://doi.org/10.1080/13825580802233426
https://doi.org/10.1016/j.neuropsychologia.2020.107446
https://doi.org/10.3389/fnhum.2022.1002560
https://doi.org/10.3389/fnagi.2018.00071
https://doi.org/10.1016/j.neuroimage.2010.04.028


  

   

42 

Kane, M. J., Conway, A. R. A., Miura, T. K., & Colflesh, G. J. H. (2007). Working memory, 

attention control, and the N-back task: a question of construct validity. Journal of 

experimental psychology. Learning, memory, and cognition, 33(3), 615–622. 

https://doi.org/10.1037/0278-7393.33.3.615  

 

 

Klem, G. H., Lüders, H. O., Jasper, H. H., & Elger, C. (1999). The ten-twenty electrode system of 

the International Federation. The International Federation of Clinical 

Neurophysiology. Electroencephalography and clinical neurophysiology. Supplement, 52, 

3–6. https://pubmed.ncbi.nlm.nih.gov/10590970/  

 

Koen, J. D., & Rugg, M. D. (2019). Neural Dedifferentiation in the Aging Brain. Trends in 

Cognitive Sciences, 23(7), 547–559. https://doi.org/10.1016/j.tics.2019.04.012  

 

Li, S.-C., Lindenberger, U., & Sikström, S. (2001). Aging cognition: from neuromodulation to 

representation. Trends in Cognitive Sciences, 5(11), 479–486. 

https://doi.org/10.1016/s1364-6613(00)01769-1  

 

Logan, J. M., Sanders, A. L., Snyder, A. Z., Morris, J. C., & Buckner, R. L. (2002). Under-

Recruitment and Nonselective Recruitment. Neuron, 33(5), 827–840. 

https://doi.org/10.1016/s0896-6273(02)00612-8  

 

Mandrick, K., Derosiere, G., Dray, G., Coulon, D., Micallef, J. P., & Perrey, S. (2013). Prefrontal 

cortex activity during motor tasks with additional mental load requiring attentional 

demand: a near-infrared spectroscopy study. Neuroscience research, 76(3), 156–162. 

https://doi.org/10.1016/j.neures.2013.04.006  

 

Martinez-Trujillo J. (2022). Visual Attention in the Prefrontal Cortex. Annual review of vision 

science, 8, 407–425. https://doi.org/10.1146/annurev-vision-100720-031711  

 

Mattay, Venkata. S., Fera, F., Tessitore, A., Hariri, A. R., Berman, K. F., Das, S., Meyer-

Lindenberg, A., Goldberg, T. E., Callicott, J. H., & Weinberger, D. R. (2006). 

Neurophysiological correlates of age-related changes in working memory capacity. 

Neuroscience Letters, 392(1-2), 32–37. https://doi.org/10.1016/j.neulet.2005.09.025  

 

https://doi.org/10.1037/0278-7393.33.3.615
https://pubmed.ncbi.nlm.nih.gov/10590970/
https://doi.org/10.1016/j.tics.2019.04.012
https://doi.org/10.1016/s1364-6613(00)01769-1
https://doi.org/10.1016/s0896-6273(02)00612-8
https://doi.org/10.1016/j.neures.2013.04.006
https://doi.org/10.1146/annurev-vision-100720-031711
https://doi.org/10.1016/j.neulet.2005.09.025


  

   

43 

McDonough, I. M., Nolin, S. A., & Visscher, K. M. (2022). 25 years of neurocognitive aging 

theories: What have we learned? Frontiers in Aging Neuroscience, 14. 

https://doi.org/10.3389/fnagi.2022.1002096  

 

Meidenbauer, K. L., Choe, K. W., Cardenas-Iniguez, C., Huppert, T. J., & Berman, M. G. (2021). 

Load-dependent relationships between frontal fNIRS activity and performance: A data-

driven PLS approach. NeuroImage, 230, 117795. 

https://doi.org/10.1016/j.neuroimage.2021.117795    

 

Morcom, A. M., & Henson, R. N. A. (2018). Increased Prefrontal Activity with Aging Reflects 

Nonspecific Neural Responses Rather than Compensation. The Journal of Neuroscience, 

38(33), 7303–7313. https://doi.org/10.1523/jneurosci.1701-17.2018  

 

Nucci, M., Mapelli, D., & Mondini, S. (2012). Cognitive Reserve Index questionnaire (CRIq): a 

new instrument for measuring cognitive reserve. Aging clinical and experimental 

research, 24(3), 218–226. https://doi.org/10.3275/7800  

 

Nyberg, L., Dahlin, E., Stigsdotter Neely, A., & Bäckman, L. (2009). Neural correlates of variable 

working memory load across adult age and skill: dissociative patterns within the fronto-

parietal network. Scandinavian journal of psychology, 50(1), 41–46. 

https://doi.org/10.1111/j.1467-9450.2008.00678.x  

Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging 

and brain maintenance. Trends in Cognitive Sciences, 16(5), 292–305. 

https://doi.org/10.1016/j.tics.2012.04.005  

 

Park, D. C., Polk, T. A., Park, R., Minear, M., Savage, A., & Smith, M. R. (2004). Aging reduces 

neural specialization in ventral visual cortex. Proceedings of the National Academy of 

Sciences of the United States of America, 101(35), 13091–13095. 

https://doi.org/10.1073/pnas.0405148101  

 

Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: aging and neurocognitive 

scaffolding. Annual review of psychology, 60, 173–196. 

https://doi.org/10.1146/annurev.psych.59.103006.093656  

 

Peters R. (2006). Ageing and the brain. Postgraduate medical journal, 82(964), 84–88. 

https://doi.org/10.1136/pgmj.2005.036665  

https://doi.org/10.3389/fnagi.2022.1002096
https://doi.org/10.1016/j.neuroimage.2021.117795
https://doi.org/10.1523/jneurosci.1701-17.2018
https://doi.org/10.3275/7800
https://doi.org/10.1111/j.1467-9450.2008.00678.x
https://doi.org/10.1016/j.tics.2012.04.005
https://doi.org/10.1073/pnas.0405148101
https://doi.org/10.1146/annurev.psych.59.103006.093656
https://doi.org/10.1136/pgmj.2005.036665


  

   

44 

 

Phillips, R., Qi, G., Collinson, S. L., Ling, A., Feng, L., Cheung, Y. B., & Ng, T. P. (2015). The 

Minimum Clinically Important Difference in the Repeatable Battery for the Assessment of 

Neuropsychological Status. The Clinical neuropsychologist, 29(7), 905–923. 

https://doi.org/10.1080/13854046.2015.1107137   

 

Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., & Burgess, P. W. 

(2020). The present and future use of functional near-infrared spectroscopy (fNIRS) for 

cognitive neuroscience. Annals of the New York Academy of Sciences, 1464(1), 5–29. 

https://doi.org/10.1111/nyas.13948  

Posner MI. Orienting of attention. Q J Exp Psychol. 1980;32(1):3-25. 

doi:10.1080/00335558008248231  

 

Rabbitt, P. (1979). How old and young subjects monitor and control responses for accuracy and 

speed. British Journal of Psychology, 70(2), 305–311. https://doi.org/10.1111/j.2044-

8295.1979.tb01687.x  

 

Ranchod, S., Rakobowchuk, M., & Gonzalez, C. (2023). Distinct age-related brain activity patterns 

in the prefrontal cortex when increasing cognitive load: A functional near-infrared 

spectroscopy study. PLoS ONE, 18(12), e0293394. 

https://link.gale.com/apps/doc/A776231981/AONE?u=anon~38fb3640&sid=sitemap&xi

d=2286d965  

 

Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive Aging and the Compensation 

Hypothesis. Current Directions in Psychological Science, 17(3), 177–182. 

https://doi.org/10.1111/j.1467-8721.2008.00570.x  

 

Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C., & Koeppe, 

R. A. (2000). Age differences in the frontal lateralization of verbal and spatial working 

memory revealed by PET. Journal of cognitive neuroscience, 12(1), 174–187. 

https://doi.org/10.1162/089892900561814  

 

Reuter-Lorenz, P. A., Marshuetz, C., Jonides, J., Smith, E. E., Hartley, A., & Koeppe, R. (2001). 

Neurocognitive ageing of storage and executive processes. European Journal of Cognitive 

Psychology, 13(1-2), 257–278. https://doi.org/10.1080/09541440125972  

 

https://doi.org/10.1080/13854046.2015.1107137
https://doi.org/10.1111/nyas.13948
https://doi.org/10.1111/j.2044-8295.1979.tb01687.x
https://doi.org/10.1111/j.2044-8295.1979.tb01687.x
https://link.gale.com/apps/doc/A776231981/AONE?u=anon~38fb3640&sid=sitemap&xid=2286d965
https://link.gale.com/apps/doc/A776231981/AONE?u=anon~38fb3640&sid=sitemap&xid=2286d965
https://doi.org/10.1111/j.1467-8721.2008.00570.x
https://doi.org/10.1162/089892900561814
https://doi.org/10.1080/09541440125972


  

   

45 

Reuter-Lorenz, P. A., & Park, D. C. (2014). How Does it STAC Up? Revisiting the Scaffolding 

Theory of Aging and Cognition. Neuropsychology Review, 24(3), 355–370.  

https://doi.org/10.1007/s11065-014-9270-9  

 

Rossi, S., Miniussi, C., Pasqualetti, P., Babiloni, C., Rossini, P. M., & Cappa, S. F. (2004). Age-

related functional changes of prefrontal cortex in long-term memory: a repetitive 

transcranial magnetic stimulation study. The Journal of neuroscience : the official journal 

of the Society for Neuroscience, 24(36), 7939–7944. 

https://doi.org/10.1523/JNEUROSCI.0703-04.2004  

 

Salthouse T. A. (1979). Adult age and the speed-accuracy trade-off. Ergonomics, 22(7), 811–821. 

https://doi.org/10.1080/00140137908924659  

 

Santosa, H., Fishburn, F., Zhai, X., & Huppert, T. J. (2019). Investigation of the sensitivity-

specificity of canonical- and deconvolution-based linear models in evoked functional near-

infrared spectroscopy. Neurophotonics, 6(2), 025009. 

https://doi.org/10.1117/1.NPh.6.2.025009  

 

Schneider-Garces, N. J., Gordon, B. A., Brumback-Peltz, C. R., Shin, E., Lee, Y., Sutton, B. P., 

Maclin, E. L., Gratton, G., & Fabiani, M. (2010). Span, CRUNCH, and beyond: working 

memory capacity and the aging brain. Journal of cognitive neuroscience, 22(4), 655–669. 

https://doi.org/10.1162/jocn.2009.21230  

 

Schroeter, M. L., Zysset, S., Kruggel, F., & von Cramon, D. Y. (2003). Age dependency of the 

hemodynamic response as measured by functional near-infrared 

spectroscopy. NeuroImage, 19(3), 555–564. https://doi.org/10.1016/s1053-

8119(03)00155-1  

 

Spreng, R. N., & Turner, G. R. (2019). The Shifting Architecture of Cognition and Brain Function 

in Older Adulthood. Perspectives on Psychological Science, 14(4), 523–542. 

https://doi.org/10.1177/1745691619827511  

 

Spreng, R. N., Wojtowicz, M., & Grady, C. L. (2010). Reliable differences in brain activity 

between young and old adults: a quantitative meta-analysis across multiple cognitive 

domains. Neuroscience and biobehavioral reviews, 34(8), 1178–1194. 

https://doi.org/10.1016/j.neubiorev.2010.01.009  

https://doi.org/10.1007/s11065-014-9270-9
https://doi.org/10.1523/JNEUROSCI.0703-04.2004
https://doi.org/10.1080/00140137908924659
https://doi.org/10.1117/1.NPh.6.2.025009
https://doi.org/10.1162/jocn.2009.21230
https://doi.org/10.1016/s1053-8119(03)00155-1
https://doi.org/10.1016/s1053-8119(03)00155-1
https://doi.org/10.1177/1745691619827511
https://doi.org/10.1016/j.neubiorev.2010.01.009


  

   

46 

Starns, J. J., & Ratcliff, R. (2010). The effects of aging on the speed-accuracy compromise: 

Boundary optimality in the diffusion model. Psychology and aging, 25(2), 377–390. 

https://doi.org/10.1037/a0018022  

 

Stern Y. (2002). What is cognitive reserve? Theory and research application of the reserve 

concept. Journal of the International Neuropsychological Society : JINS, 8(3), 448–460. 

https://doi/org/10.1017/S1355617702813248  

 

Toepper, M., Gebhardt, H., Bauer, E., Haberkamp, A., Beblo, T., Gallhofer, B., Driessen, M., & 

Sammer, G. (2014). The impact of age on load-related dorsolateral prefrontal cortex 

activation. Frontiers in Aging Neuroscience, 6. https://doi.org/10.3389/fnagi.2014.00009 

 

Vallesi, A., McIntosh, A. R., & Stuss, D. T. (2011). Overrecruitment in the Aging Brain as a 

Function of Task Demands: Evidence for a Compensatory View. Journal of Cognitive 

Neuroscience, 23(4), 801–815. https://doi.org/10.1162/jocn.2010.21490  

 

Van Ruitenbeek, P., Santos Monteiro, T., Chalavi, S., King, B. R., Cuypers, K., Sunaert, S., Peeters, 

R., & Swinnen, S. P. (2023). Interactions between the aging brain and motor task 

complexity across the lifespan: balancing brain activity resource demand and 

supply. Cerebral cortex (New York, N.Y. : 1991), 33(10), 6420–6434. 

https://doi.org/10.1093/cercor/bhac514  

 

Vermeij, A., van Beek, A. H., Reijs, B. L., Claassen, J. A., & Kessels, R. P. (2014). An exploratory 

study of the effects of spatial working-memory load on prefrontal activation in low- and 

high-performing elderly. Frontiers in aging neuroscience, 6, 303. 

https://doi.org/10.3389/fnagi.2014.00303  

 

Yantis S. (2008). The Neural Basis of Selective Attention: Cortical Sources and Targets of 

Attentional Modulation. Current directions in psychological science, 17(2), 86–90. 

https://doi.org/10.1111/j.1467-8721.2008.00554.x  

 

Zhuang, C., Meidenbauer, K. L., Kardan, O., Stier, A. J., Choe, K. W., Cardenas-Iniguez, C., 

Huppert, T. J., & Berman, M. G. (2022). Scale invariance in fNIRS as a measurement of 

cognitive load. Cortex; a journal devoted to the study of the nervous system and 

behavior, 154, 62–76. https://doi.org/10.1016/j.cortex.2022.05.009  

 

https://doi.org/10.1037/a0018022
https://doi/org/10.1017/S1355617702813248
https://doi.org/10.3389/fnagi.2014.00009
https://doi.org/10.1162/jocn.2010.21490
https://doi.org/10.1093/cercor/bhac514
https://doi.org/10.3389/fnagi.2014.00303
https://doi.org/10.1111/j.1467-8721.2008.00554.x
https://doi.org/10.1016/j.cortex.2022.05.009


  

   

47 

6. APPENDIX 

Table A1 

 Old adult participant scores for the Montreal Cognitive Assessment (MoCA), the Repeatable Battery for 

the Assessment of Neuropsychological Status (RBANS), and the Cognitive Reserve Index questionnaire 

(CRIq) (n = 25). 

 

 

Participant ID 

 

MoCA score 

 

RBANS total scale 

score 

 

RBANS total 

percentile (%) 

 

CRIq score 

P321 27 106 66 143 

P322 29 104 61 125 

P323 28 118 88 119 

P324 27 118 88 149 

P325 28 90 25 138 

P326 26 144 99.8 120 

P327 29 106 66 142 

P328 26 106 66 116 

P329 28 103 58 145 

P330 28 136 99 135 

P331 29 113 81 156 

P332 29 96 39 121 

P333 27 97 42 159 

P334 28 121 92 120 

P335 29 106 66 150 

P336 30 141 99.7 101 

P337 29 109 73 145 

P338 27 104 61 163 

P339 24 113 81 132 

P340 28 113 81 140 

P351 22 89 23 130 

P352 18 79 8 110 

P353 25 98 45 122 

P354 22 96 39 105 

P355 24 94 34 147 

AVERAGE 26.7 108 63.3% 133.3 

 


