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Subdiffusive Gierer-Meinhardt Model

This study focuses on sub-diffusion with Gierer-Meinhardt reaction kinetics. The Gierer-

Meinhardt model is a mathematical model that describes the formation of spatial patterns in

biological systems. The sub-diffusive Gierer-Meinhardt model is given by

∂
γ
t a = ε2γaxx − a + ap

hq , τ∂
γ
t h = Dhxx − h + ε−γam

hs , −1 < x < 1, t > 0, (1)

ax(±1, t) = hx(±1, t) = 0, a(x, 0) = a0(x), h(x, 0) = h0(x), (2)

where a(x, t) and h(x, t) are, respectively, the concentrations of the activator and inhibitor at

position x and time t. Here, ε2γ and D denote the constant diffusivities, τ is the reaction time

constant, γ a real number such that 0 ≤ γ ≤ 1 and the exponents (p, q, m, s) satisfy

p > 1, q > 0, m > 0, s ≥ 0, p−1
q < m

s+1.

Solving the System: Matched Asymptotic Expansion

In order to fully capture the behavior of the activator and inhibitor, we scaled both the time

and position variables, respectively from

t to σ = εγ+1t, and x to yi = x − xi(σ)
εγ ,

where the xis represent the positions where the activator and the inhibitor significantly inter-

act. Matched asymptotic expansion involves the following steps:

Approximate the concentrations a and h with power series:

A(yi, σ) = a(xi + εγyi, ε−ασ) = A
(0)
i (yi, σ) + εγA

(1)
i (yi, σ) + ε2γA

(2)
i (yi, σ) + · · · (3a)

H(yi, σ) = h(xi + εγyi, ε−ασ) = H
(0)
i (yi, σ) + εγH

(1)
i (yi, σ) + ε2γH

(2)
i (yi, σ) + · · · (3b)

Substitute these approximations into the original system and truncate the resulting

equations at a specific order (second order in our case):
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Collect terms of the same order: the first and second order terms are collected separately

to form the first and second order problems.

First Order Problem

For α = γ + 1, and upon collecting terms of first order in equations (4a) and (4b), we respectively
obtain:

∂2
yi

A
(0)
i (yi) − A

(0)
i +

A
(0)p
i

H
(0)q
i

= 0, ∂2
yi

H
(0)
i = 0, −∞ < yi < ∞. (5)

Upon solving this system, one obtains

H
(0)
i (yi) = H̄i(σ) = g(σ), A

(0)
i (σ) = H̄B

i (σ)u(yi), (6)

with g being a function of the variable σ, B = q

p − 1
and

u(y) =
(

p + 1
2

sech2 (p − 1)y
2

) 1
p − 1 .

Second Order Problem

Once collecting terms of second order in equations (4a) and (4b) respectively, and upon post-

processing these equations, we obtain the following differential-algebraic system:

−
∣∣∣∣dxi

dσ

∣∣∣∣γ sign
(

dxi

dσ

)
= qbm

(p + 1)H̄i


n∑

j=1
j 6=i

H̄B m−s
i Gx(x; xj) + H̄B m−s 〈Gx〉i

 f (p; γ), (7a)

H̄i(σ) = h(0)(x, t) = bm

n∑
i=1

H̄B m−s
i G(x; xi), bm =

∫ ∞

−∞
umdy, (7b)

f (p; γ) =
(∫ ∞

−∞
up+1dy

)/(∫ ∞
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du
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Dγ

yudy

)
. (7c)

Here, G is the solution of

DGxx − G = −δ(x − xi), −1 < x < 1, Gx(±1; xi) = 0,

with D being a constant and

〈Gx〉i = 1
2

(
G−

x (x−
i ; xi) + G+

x (x+
i ; xi)

)
, (8a)
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Solutions

Upon solving the first equation of (7b) at x = xi, and for i = 1 (first spike), we have

H̄1 =
(

bmG(x1; x1)
) −1

B m−1−s
.

Substituting this result into the second equation in (6) and computing both A
(0)
1 and H

(0)
1 = H̄1

lead to the following solutions:

Figure 1. Activator concentration for p = 2. Figure 2. Inhibitor concentration for p = 2.

Computing Dγ
t u

In order to compute
dxi

dσ
and track the evolution of xi in (7a), we have to compute Dγ

t u. We first

start by eliminating the singularity at ξ1 = 0 by regularizing its expression. This leads to

Dγ
t u(t) = t

−γ
∞

Γ(1 − γ)

(
u(t) − u(t − t∞)

)
+ t

1−γ
∞

Γ(2 − γ)
u′(t − t∞) − 1

Γ(2 − γ)

∫ t−t∞

t

u′′(y)(t − y)1−γ dy.

The first two terms of Dγ
t u are known values, except for the third one, named I , which is the

integral of a complex function and is impossible to compute analytically. Moreover, I depends

on three parameters: p, γ, and t. The number of subdivisions required to compute I varies with

these parameters as well. We aim to predict the number of subdivisions n required to compute

I with a precision of 10−10.

Procedure: Finding the Number of Subdivisions Required to Compute I
With a Precision of 10−10

1. Establish a correspondence between the number of subdivisions n and the integral I

n(t,p,γ) → I(t,p,γ)(n).
I is computed using the composite Simpson method:∫ b

a

f (x)dx ≈ h

3

n/2−1∑
i=0

[
f (x2i) + 4f (x2i+1) + f (x2i+2)

]
, h = b − a

n
.

2. Our goal being to compute I with a controlled precision, it makes sense to establish a

correspondence between the number of subdivisions n and the residual R as well:

n(t,p,γ) → R(t,p,γ)(n).

This calculation is for (t, p, γ) values within the ranges:

{0.1, 1, 5} × {1.5, 2, 2.5, . . . , 4.5} × {0.1, 0.2, 0.3, . . . , 0.9}.
3. However, since the residual function we obtained is not a well-known function, we fit it

using a variant of the hyperbolic-arctangent function, denoted f = c1 × atanh(n) + c2, with
c1 and c2 being parameters used to minimize the distance between the residual and the

fitting curve. Consequently,

n(t,p,γ) → f(t,p,γ)(n) ∼ R(t,p,γ).

Figure 3. Specific case for t = 1, p = 4, and γ = 0.8. The x-axis represents the number of subdivisions and the

y-axis the logarithm of the corresponding residuals. The solid curve represents the numerical results while

the dashed one represents the fitting curve.

4. To find the number of subdivisions based on a specific residual (the inverse path), we

determine the inverse f−1 of f such that

f−1
(t,p,γ)(R) → n(t,p,γ),

where n(t,p,γ) and R(t,p,γ) represent the number of subdivisions and the corresponding

residual values for specific t, p, and γ values.

Verification of the Accuracy

The table below displays the approximated number of subdivisions obtained using the inverse of

the fitting curve for t = 0.1 and some discrete values of p and γ.

g/p 1.5 2.0 2.5 3 3.5 4 4.5

0.1 35065 51414 61242 73570 80108 86651 93201

0.3 214565 342453 430919 519457 563799 608143 686814

0.5 1674913 2341552 3365120 3698389 4365537 5033725 5366720

0.7 4662043 28071526 37953058 45866233 54342976 60260601 68207443

0.9 76155108 727802772 1015373018 1025834015 1025841827 1025918580 1025859852

Table 1. Approximated number of subdivisions for t = 0.1

As a test for the effectiveness of our method, we computed the absolute value of the difference

between Dγ
t u

∣∣∣
N=2n

and Dγ
t u

∣∣∣
N=n

for some values of t. This leads to the following table:

t 3.6 3.7 3.8 3.9 4.0

error -1.784137e-010 -1.721758e-010 -1.664409e-010 -1.605218e-010 -1.547047e-010

t 4.1 4.2 4.3 4.4 4.5

error -1.494032e-010 -1.443059e-010 -1.395319e-010 -1.351115e-010 -1.307046e-010

Table 2. Error file for p = 2 and γ = 0.7.
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