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ABSTRACT

Predicting customer churn is a critical task for businesses aiming to retain customers

and maintain profitability. This research adopts an individual participant data meta-

analysis (IPD-MA) approach to evaluate the effectiveness of various machine learning

models in predicting customer churn across multiple publicly available datasets. This

methodology facilitates a robust comparison and validation of predictive models by inte-

grating raw data from different studies. The study employs a two-stage approach: first,

individual datasets are analyzed to obtain machine learning performance metrics; second,

these aggregated metrics are combined using fixed-effect and random-effect meta-analysis

models. The results reveal significant variability in model performance across different

datasets, with ensemble methods like Catboost, Lightgbm, and Gradient Boosting con-

sistently outperforming other models, achieving the highest average AUCs of 0.9036,

0.9000, and 0.8936, respectively. The study also highlights the importance of considering

dataset-specific characteristics and model capabilities, as well as the necessity of account-

ing for heterogeneity in meta-analyses. This research makes several key contributions,

including methodological advancements in applying IPD-MA to machine learning, and a

comprehensive evaluation of model performance. The findings offer a valuable reference

for selecting and optimizing machine learning models in various industrial applications,

guiding future research and practical implementations.

Key Words: Customer Churn, Machine Learning, Meta-Analysis, Individual Participant

Data, Fixed-Effect Model, Random-Effect Model.
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Chapter 1

Introduction

1.1 Background and Motivation

In today’s fast-paced business landscape companies are increasingly turning to data

driven strategies to maintain their edge. Customer churn is when a customer stops

purchasing products and services from a company. Customers are hard to acquire and

might be very expensive for an organization. If a customer does not use your firm’s prod-

ucts and services in the long run, it will inevitably lead to the bad fate of an organization.

This is why customer retention is also as important as customer acquisition. Without

appropriate attention to customer churn management, it can result in heavy monetary

losses, reduced profitability, and loss of visibility in the market. Therefore, organizations

started relying on predictive analytics or machine learning approaches to predict or avoid

customer churn.

Machine learning (ML) technologies have revolutionized approaches, providing new

ways to forecast and analyze customer churn. ML models use algorithms to analyze

datasets and uncover patterns that may not be evident using traditional statistical meth-

ods. However, the effectiveness of these models can vary depending on the characteristics

and industry specifics.
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Given the availability of datasets and diverse ML techniques, there is a strong demand

to combine these resources to evaluate the performance of these models thoroughly. This

project utilizes an individual participant data meta-analysis a statistical technique that

reanalyzes raw data from multiple studies to assess how reliable and effective ML models

in predicting customer churn across different datasets and industries.

1.2 Problem Statement

Despite the critical insights provided by individual studies on ML models for churn

prediction, there is substantial variability in their outcomes. This variation may be

influenced by factors such as dataset characteristics, industry-specific dynamics, and

methodological approaches. This research aims to mitigate these inconsistencies through

an IPD-MA, offering a deeper and more accurate understanding of how different models

perform across varied contexts. By integrating data from multiple sources, this study

seeks to establish a clearer understanding of the generalizability and limitations of current

machine learning approaches to churn prediction.

1.3 Research Objectives

This study is structured around several key objectives designed to address the complex-

ities of machine learning in churn prediction:

1. Comprehensive Model Evaluation: To quantitatively assess the performance met-

rics of various machine learning models across 11 public datasets in predicting

customer churn.

2. Cross-industry Applicability: To investigate the efficacy of these models across

different industry sectors, identifying how contextual variables influence predictive

success.
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3. Feature Relevance Analysis: To explore which variables are consistently significant

predictors of churn across multiple models and datasets, highlighting critical factors

influencing customer retention.

1.4 Research Questions

1. Which machine learning models most accurately predict customer churn across

diverse datasets?

2. Are there universally significant predictors of churn, or do these vary significantly

across different models and datasets?

3. To what extent do machine learning models maintain their predictive accuracy

across various industry sectors?

4. How can machine learning models be optimized to improve churn prediction based

on the insights gained from the meta-analysis?

1.5 Significance of The Study

The significance of this study lies in its potential to:

• Bridge Knowledge Gaps: By providing an analysis of machine learning models

across multiple datasets, this study aims to fill existing gaps in the literature re-

garding the comparative effectiveness and limitations of these models.

• Enhance Business Strategies: The findings will aid businesses in refining their cus-

tomer retention strategies by adopting the most effective predictive models tailored

to their specific industry conditions.
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• Contribute to Academic Knowledge: This research contributes to the academic

field by demonstrating the application of IPD-MA in machine learning, potentially

setting a precedent for future research methodologies.

1.6 Structure of The Project

This research project is structured as follows:

• Chapter 2: Background - This chapter comprehensively reviews existing studies on

machine learning models for churn prediction, outlining theoretical underpinnings

and methodological advancements.

• Chapter 3: Data - Describes data sources used in the study.

• Chapter 4: Methodology - Describes the meta-analytical approach, model selection,

and statistical methods employed in the study.

• Chapter 5: Results - Analyze the results and discuss the implications of findings in

the context of existing research and industry practices.

• Chapter 6: Discussion and Conclusion - discuss and conclude with a summary of

key findings, discuss limitations, and suggest directions for future research.
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Chapter 2

Background

This chapter explains the importance of customer churn prediction. It also provides a

summary of the literature review about the application of machine learning in the area

of churn prediction. In addition, a brief description of the machine learning algorithms

and meta-analysis techniques is also included.

2.1 The Importance of Customer Churn Prediction

Predicting customer churn plays a crucial role in Customer Relationship Management

(CRM). The main goal of the CRM is to build and sustain lasting relationships with

customers. This approach is important in many sectors, particularly to subscription-

based service firms, such as those in telecommunications, insurance, banking, and online

services [1]. Given that such companies rely on consistent and regular membership fees,

it is imperative to curb customer switching behavior to maintain sustainable profits.

Consequently, the precise prediction of customers likely to churn has become a paramount

objective in the industry.
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2.2 Machine Learning in Churn Prediction

Churn prediction study has gained popularity in recent years, due to its substantial

impact on corporations and businesses. Machine learning has been widely studied and

applied in churn prediction across several industries such as telecommunications, human

resources, finance, and online services.

Several case studies have been published in the telecommunications industry. Lal-

wani, Mishra, Chadha, et al. [2] utilized a range of predictive models, including logistic

regression, Naive Bayes, support vector machine, random forest, decision trees, boosting,

and ensemble approaches, to forecast customer turnover in the telecom sector. K-fold

cross-validation was utilized for hyperparameter tuning and to mitigate overfitting. The

Adaboost and XGBoost classifiers demonstrated the best accuracies among the built

models, with 81.71% and 80.8%, respectively. Ahmad, Jafar, and Aljoumaa [3] created

a churn prediction model utilizing machine learning techniques on a big data platform

to help telecom operators forecast which customers are likely to churn. The dataset

was acquired from SyriaTel telecommunications firm. The paper shows that XGBoost

algorithm achieved the most optimal outcomes for predicting churn. In addition, Ullah,

Raza, Malik, et al. [4] introduced a churn prediction model that utilizes classification and

clustering approaches to identify consumers who are likely to churn and to understand

the underlying variables contributing to customer turnover in the telecommunications

industry. The model employed the Random Forest technique to classify churn and lever-

aged cosine similarity to categorize churn clients. The process involved the utilization of

feature selection techniques and an attribute-selected classifier algorithm to detect and

determine the key elements contributing to churn. The assessment of the suggested ap-

proach showcased greater churn categorization and client profiling, facilitating customer

retention tactics, promotion suggestions, and improved marketing campaigns. A case

study by Qureshi, Rehman, Qamar, et al. [5] on churn prediction in the mobile commu-

nication market. It describes the use of regression analysis, decision trees, artificial neural

networks, and logistic regression to predict potential churners. The study used a dataset

6



from the Customer DNA website, where usage data for 106,000 customers was provided

over three months, along with total usage by the customers. Dealing with the problem

of class imbalance in the dataset, the authors check how the different machine learning

algorithms performed regarding real usage by the customer, while demonstrating that

the decision trees were the best classifiers for identifying potential churners.

In the human resource (HR) management sector, Sisodia, Vishwakarma, and Pujahari

[6] built a model for predicting employee churn rate based on HR analytics dataset,

using five different machine learning algorithms, namely, linear support vector machine,

decision tree classifier, random forest, k-nearest neighbor, and näıve bayes classifier. The

authors evaluated the correlation between attributes, generated a histogram to contrast

left employees with various factors, and proposed strategies to optimize employee attrition

in organizations.

Rahman and Kumar [7]’s paper focuses on predicting customer churn in a commercial

bank using efficient data mining methods. It discusses data transformation and classi-

fication techniques such as k-nearest neighbor, support vector machine, decision tree,

and random forest. The paper results show that oversampling improves the accuracy of

decision trees and random forest classifiers, while support vector machine is not suitable

for large amounts of data. The study also analyzes customer behavior to explore the

likelihood of churn and compares the performance of different models, finding that the

Random Forest model after oversampling achieves higher accuracy.

Several published papers also try to provide a generalizability of ML in churn predic-

tion. Garćıa, Nebot, and Vellido [8] suggested a more comprehensive literature review.

The authors explain several phases involved in churn prediction analysis, including data

collecting, feature selection, model implementation, and assessment techniques and met-

rics. Their survey closes with suggestions derived from the existing body of information.

Geiler, Affeldt, and Nadif [1] focused on churn prediction in businesses and explored the

performance of various supervised and semi-supervised learning methods and sampling

approaches on publicly available datasets. The study suggests an ensemble approach

7



should be used for churn prediction.

Given the diversity of methods and the varying results across different studies, there

is a compelling need for a meta-analytical approach to churn prediction. Individual Par-

ticipant Data Meta-Analysis stands out as an advantageous method for this purpose. By

integrating data from multiple studies, IPD-MA allows for more comprehensive analysis

and interpretation of churn prediction techniques across different datasets and indus-

tries. Furthermore, IPD-MA supports the application of uniform statistical methods

across different studies, providing a more reliable and consistent framework for evalu-

ating the efficacy of machine learning techniques in churn prediction. This approach is

particularly valuable in the context of churn prediction, where variations in industry-

specific factors and model implementations can significantly influence the effectiveness of

predictive strategies.

2.3 Machine Learning Algorithms

2.3.1 Logistic Classification

Logistic regression is the simplest machine learning algorithm for binary as well as mul-

ticlass classification. It estimates the probability that an instance belongs to one of the

classes as a function of input features using the logistic function (Eq. 2.1).

P (y = 1|x) = eβ0+β1x1+β2x2+...+βkxk

1 + eβ0+β1x1+β2x2+...+βkxk
(2.1)

where:

• P (y = 1|x) is the probability that the outcome y is 1 given the input features x.

• x = (x1, x2, . . . , xk) is the vector of input features data.

8



• β0, β1, β2, . . . , βk are the model parameters.

• e is the base of the natural logarithm.

During training, the model parameters are optimized using techniques such as max-

imum likelihood estimation and gradient descent [9][10]. It is very efficient to compute

and highly interpretable.

2.3.2 The K-Nearest Neighbors (KNN)

KNN is a machine learning method used for both regression and classification tasks. KNN

utilizes distance measurements to predict the most probable value of the target feature.

The Euclidean distance is often used in KNN and it is calculated using Equation 2.2 [9].

The predicted class in categorization is the most popular class among the k neighbors.

The optimal k nearest neighbors are identified for the given case based on the cross-

validation. This method is non-parametric. It is a categorization method based solely

on examples, utilizing existing data without generalization. It is called a lazy learning

algorithm since its stages and operations are executed during the query. The algorithm

does not require any preparation. It is effective with low-dimensional data but less so

with high-dimensional data. To use KNN for high-dimensional data, we may use principle

component analysis before implementing KNN.

d(x,y) =

√√√√ n∑
i=1

(xi − yi)2 (2.2)

where:

• d(x,y) is the Euclidean distance between points x and y.

•
∑n

i=1 denotes the summation over all dimensions from 1 to n.

• xi and yi are the coordinates of points x and y in the i-th dimension, respectively.

9



• (xi − yi)
2 is the squared difference between the i-th coordinates of the two points.

2.3.3 Support Vector Machines (SVM)

SVM is a supervised machine learning technique that has been widely used for classi-

fication purposes. It searches the hyperplane that accurately divides the majority of

the training data into two classes, while it may incorrectly categorize a small number of

observations. This is the optimal solution to the following optimization problem [9].

maximize
β0,β1,...,βp,ϵ1,...,ϵN ,M

M (2.3)

subject to

p∑
j=1

β2
j = 1 (2.4)

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) ≥ M(1− ξi) (2.5)

ξi ≥ 0,
n∑

i=1

ξi ≤ C (2.6)

where:

• M is the width of the margin.

• β0, β1, . . . , βp are the coefficients of the hyperplane

• ϵ1, . . . , ϵN individual observations that allow fall on the incorrect side of the margin

or the hyperplane.

• x1, . . . , xn set of n training observations

• y1, . . . , yn associated class labels

• C is a nonnegative tuning parameter.
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SVM can perform both linear and nonlinear classification. It can find a nonlinear

separator, also known as a functional, by transforming the data into a higher-dimensional

space. The algorithm then uses linear classification by selecting the support vectors

to define the decision boundary or hyperplane. The SVM algorithm can utilize kernel

functions, such as linear, polynomial, and radial basis function (RBF) to handle both

linearly and nonlinearly separable data [10].

2.3.4 Naive Bayes

Naive Bayes is a type of probabilistic classifier model, which is based on the Bayes

theorem. The Naive part comes from the assumption that observation characteristics are

conditionally independent given the class label. It is stated mathematically as Equation

2.7 [9]. Multiple class predictions are made feasible by probabilistic classifiers. Based on

conditional probability, the decision is made.

Pr(Y = k | X = x) =
πk × fk1(x1)× fk2(x2)× · · · × fkp(xp)∑K
l=1 πl × fl1(x1)× fl2(x2)× · · · × flp(xp)

(2.7)

for k = 1,...,K

where:

• Pr(Y = k | X = x) is posterior probability that an observation X belongs to k

class.

• πk is prior probability that a randomly chosen observation comes from the k class.

• fkj is the density function of the jth predictor among observations in the kth class.
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2.3.5 Decision Trees

Decision trees are powerful and versatile techniques used for classification and regression.

It is commonly referred to as the Classification and Regression Trees (CART) method.

The method is capable of handling data with large dimensionality and can process both

numerical and categorical data. It operates by recursively partitioning the dataset into

subsets based on the most informative features [9]. Each internal node of the tree repre-

sents a decision point where a feature is evaluated, and each leaf node corresponds to a

class label or a regression value. Decision trees are constructed using various criteria such

as Gini impurity or information gain, to optimize the splitting process [10]. They are

interpretable models that facilitate human understanding of decision-making processes

in complex datasets.

Gi = 1−
n∑

k=1

p2i,k (2.8)

where:

• Gi is gini score of node i-th

• pi,k is the training instance ratio of class k in the i-th node.

2.3.6 Ensemble Classifiers

Ensemble method can help to minimize the variance and bias of separate models or clas-

sifiers by merging their predictions, resulting in more accurate and reliable models [11].

There are three commonly used ensemble learning methods, namely bagging, boosting,

and stacking, which can be utilized to enhance the machine learning process. In this

section, we will delve into the details of each method, including its working nature, char-

acteristics regarding data generation, training of baseline classifiers, and suitable fusion
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methods. We will also cover the advantages, disadvantages, and implementation chal-

lenges associated with each method.

Bagging

The bagging method, also referred to as bootstrap aggregating, is a data-driven

algorithm that involves creating multiple subsets of data from the original dataset [12].

Bagging aims to generate diverse predictive models by adjusting the distribution of train-

ing datasets, where even small changes in the training data set can lead to significant

changes in the model predictions. Bagging reduces variance, eliminates overfitting, and

performs well on high-dimensional data. However, it also has some drawbacks such

as being computationally expensive, having high bias, and reducing the interpretabil-

ity of models [13]. The Random Forests algorithm is a notable example of the bagging

technique [14]. Implementing the bagging method presents several challenges, such as

determining the optimal number of base learners and subsets, the maximum number of

bootstrap samples per subset, and the fusion method for integrating the outputs of the

base classifiers using various voting methods. In summary, the bagging method employs

parallel ensemble techniques with no data dependency, and the fusion methods depend

on different voting methods to generate predictions. This approach generates B different

bootstrapped training data sets. The algorithm is then trained on the bth bootstrapped

training set to predict a point x. The following equation is the bagging function:

f(x) =
1

B

B∑
b=1

fb(x) (2.9)

where fb(x) is a weak learner

Boosting

The boosting approach is a sequential procedure in which each succeeding model at-

tempts to correct the prior model’s errors [15]. Boosting employs multiple weak learners

in a highly adaptive way, where each model in the sequence is fitted while giving more
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importance to observations that the previous models in the sequence handled poorly.

Boosting can be used for both regression and classification problems and includes al-

gorithms such as Adaptive Boosting (AdaBoost), Stochastic Gradient Boosting (SGB),

and Extreme Gradient Boosting (XGB) [16]–[18]. Several studies have utilized various

types of boosting, including AdaBoost for noise detection and speech feature extraction,

and XGB for fake news classification [19]–[21]. Boosting provides interpretability and

helps reduce variance and bias in machine learning ensembles. However, the drawback

of boosting is that each classifier must correct errors in the predecessors, and scaling

sequential training can be challenging. Additionally, boosting is computationally costly,

vulnerable to overfitting, and slower to train than bagging. To summarize, boosting is

an ensemble learning technique that uses a sequential approach, where multiple learn-

ers learn sequentially with data dependency, and fusion methods rely on various voting

methods. The boosting function is shown as follows:

f(x) =
∑
i

λigi(x) (2.10)

Where several classifiers gi(x) create a strong classifier f(x). The inclusion of the

shrinkage parameter λ in the model slows down the process, which enables a wider range

of differently shaped trees to be utilized to address the residuals.

Stacking

The stacking method is a powerful model ensembling technique that combines mul-

tiple predictive models to generate a new model, also known as a meta-model [22]. The

stacking model architecture consists of two or more base models (level 0 models) and

a meta-model that integrates the predictions of the base models (level 1 models). The

base models are fit on the training data and their predictions are compiled, while the

meta-model learns how to best combine these predictions. One of the key benefits of

stacking is its ability to provide a deeper understanding of the data, leading to increased

precision and effectiveness in predictions. However, a major challenge with stacking is
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overfitting, which can occur when there are many predictors that all predict the same

target. Additionally, multi-level stacking can be both data and time-intensive, as each

layer adds multiple models. As the amount of available data grows exponentially, compu-

tation time complexity becomes an issue, and highly complex models may take months

to run [23]. Another challenge with stacking is interpreting the final model, as well

as identifying the appropriate number and baseline models that can be relied upon to

generate better predictions from the dataset when designing a stacking ensemble from

scratch. The problem of multi-label classification also poses issues such as overfitting and

the curse of dimensionality due to the high dimensionality of the data [24]. To sum up,

stacking is a parallel ensemble method that creates baseline learners simultaneously with-

out any data dependency. The meta-learning method determines the fusion techniques.

Although stacking can be very successful, it poses several challenges such as overfitting,

complexity, and interpretability, which must be taken into account when using it. The

stacking model is as follows:

fs(x) =
n∑

i=1

aifi(x) (2.11)

Stacking makes predictions from several models (f1, f2, . . . , fn) to build a new model,

where the new model is used to make predictions on the test dataset. Stacking aims to

improve a model’s predictive ability. To put it simply, stacking involves combining the

predictions of multiple models by assigning weights to each prediction and adding them

together by a linear combination of weights ai.
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2.4 Model Evaluation

2.4.1 Stratified K-Fold Cross-Validation

Since the dataset is highly skewed, stratified K-fold cross-validation is used to evaluate

ML models. In the K-fold cross-validation, the original dataset has first been divided

into K-folds. Each fold has an equal number of training cases and an equal number of

test cases. For model training, the train model is built based on K-1 folds as a training

set and tested with the K-th test fold.

This process has been repeated K times. Each fold takes a turn to be the test set.

Finally, the K-time modeled performance has been summarized. The major disadvantage

with the K-fold cross-validation design is that when there is a severe class imbalance

between classes in the original data set, the size of one class in the training fold is

much less than the number of cases in the other class of the original data set [25]. The

consequence of that is that the performance outcome in the validation evaluation is too

optimistic and in favor of the model.

Therefore, stratified K-fold cross-validation is recommended in this case, and each

fold should be stratified in the same way as the original data set. This can ensure that

the number of each class in every fold is the same as the class distribution of the original

data set. Figure 2.1 Stratified 5-fold cross-validation (Adapted from [25])

2.4.2 Model Performance Metrics

The performance of the models developed in this study is assessed using the confusion

matrix and its derived metrics, namely accuracy, precision, recall, specificity, and F1

score. Figure 2.2 demonstrates the confusion matrix represented with actual and pre-

dicted outcome categories plotted against its axis (Adapted from [26]).
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Figure 2.1: Stratified 5-Fold Cross Validation.

Figure 2.2: Confusion matrix.

Accuracy

Equation 2.12 calculates accuracy as the proportion of correctly predicted classes

over the total number of instances in the dataset [9]. Accuracy is used to measure the

overall performance of a model but can be misleading in imbalanced datasets

Accuracy =
TP + TN

TP + FP + TN + FN
(2.12)

Precision
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Precision shows the proportion of positive predictions that are truly positive [9]. It

is basically a ratio of correctly positively labeled to all positively labeled and can be

calculated as follows:

Precision =
TP

TP + FP
(2.13)

Recall

Recall has other names Sensitivity or True Positive Rate. It is a measure of the

percentage of actual positive classes that are predicted as positive [9]. It can be calculated

as follows:

Recall =
TP

TP + FN
(2.14)

F1 Score

The F1 Score is a measure that is calculated from precision and recall (Equation

2.15). It is often a preferred metric over accuracy when data is unbalanced.

F1 Score =
2 ∗ Precision ∗Recall

Precision+Recall
(2.15)

ROC-AUC

The ROC AUC curve is an assessment metric for classification at various discrimina-

tion thresholds. The Receiver Operator Characteristic (ROC) is the probability curve,

and AUC is the area under the ROC curve that estimates the degree of separability. It in-

dicates how well the model can distinguish the two classes. The higher the AUC, the bet-

ter the model [9]. AUC is calculated by plotting the True Positive Rate (TPR)/Sensitivity

on the y-axis versus the False Positive Rate (FPR)/(1-Specificity) on the x-axis (Fig. 2.3).
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Figure 2.3: The ROC-AUC.

2.5 Meta-Analysis

Meta-analysis is a statistical method designed to synthesize and quantitatively analyze

the results of multiple scientific studies that investigate the same research question. The

term meta-analysis was first coined by statistician Gene V. Glass in the 1970s, who de-

scribed it as the statistical analysis of a large collection of analysis results from individual

studies for the purpose of integrating the findings [27]. Glass’s work laid the foundation

for the development of meta-analysis methodologies which were enhanced in the late

1970s and 1980s by researchers such as Thomas D. Cook, Donald T. Campbell, and

Frank L. Schmidt. These researchers introduced advanced techniques for systematically

combining findings, evaluating heterogeneity among study outcomes, and addressing po-

tential biases [28].

One key aspect of meta-analysis is the pooling of effect sizes, which involves aggre-

gating the effect sizes from different studies to obtain an overall effect size. This process

is typically conducted using either a fixed-effect model or a random-effect model. The

fixed-effect model assumes that there is one true effect size which is shared by all included

studies, regardless of between-study variance. It uses the following formula to calculate
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the pooled effect size:

θ =

∑n
i=1(wi × yi)∑n

i=1 wi

(2.16)

where yi is the effect size from study i and wi is the weight of study i, typically the

inverse of the variance of yi.

The random-effect model, on the other hand, assumes that the effect sizes vary

between studies due to genuine diversity in study characteristics, and incorporates this

heterogeneity into the estimation of the overall effect size. The estimate of the pooled

effect size in a random-effect model is given by:

θ =

∑n
i=1(w

∗
i × yi)∑n

i=1w
∗
i

(2.17)

where w∗
i =

1
var(yi)+τ2

, and τ 2 (tau-squared) is the estimator of between-study variance.

By the 1980s and 1990s, meta-analysis was widely accepted in various fields such

as medicine, education, social sciences, and ecology. Prominent organizations like The

Cochrane Collaboration and the Campbell Collaboration have promoted systematic re-

views and meta-analyses to inform evidence-based practices in healthcare and social

policy.

Despite its broad applications, traditional meta-analysis using published aggregate

data can face limitations, particularly when addressing heterogeneity in treatment effects

and effect modifiers. To overcome these, individual participant data meta-analysis is used,

employing either a one-stage or two-stage approach. The one-stage approach involves

pooling raw data from all studies into a single model, treating it as if it originated

from a single large study. This allows for complex statistical modeling of the data,

including interactions between treatment effects and patient characteristics. In contrast,

the two-stage approach first analyzes the data separately within each study to produce

study-specific estimates and then combines these estimates in a second stage using meta-

analytic techniques. Each method has its advantages and considerations, with the choice

depending on the specific objectives and available data of the research.

Numerous studies across diverse medical and public health domains have utilized

20



IPD meta-analysis to refine treatment protocols and improve outcome predictions. In

medical and clinical trials, hypertension trials often employ IPD to assess the effects

of treatments on blood pressure, enabling more precise estimates of treatment effects

and the exploration of patient-level moderators [29]. Similarly, in cancer treatments,

IPD meta-analyses have provided in-depth insights into the effectiveness and patient

outcomes of colorectal cancer treatments [30]. In the realm of psychiatric and psycho-

logical research, studies such as those on antidepressant efficacy have used IPD to gain

a nuanced understanding of treatment responses across different patient subgroups, par-

ticularly in moderate depression [30]. Epidemiological studies, including research on the

relationship between maternal age and the risk of type I diabetes, leverage IPD to an-

alyze detailed risk factors [30]. In chronic disease research, the Chronic Kidney Disease

Prognosis Consortium employs IPD meta-analyses to provide extensive data on disease

progression and patient outcomes in chronic kidney disease [31]. Additionally, in public

health and preventive medicine, IPD meta-analyses are instrumental in evaluating the

effectiveness of interventions aimed at preventing cardiovascular diseases, helping tailor

recommendations to individual patient characteristics [32]. These applications highlight

the critical role of IPD meta-analyses in producing precise and patient-specific results

across various health-related fields.
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Chapter 3

Data

This study uses 11 available public churn datasets. Table 3.1 shows the datasets’ name,

source, and number of data records as well as the number of features in each dataset.

Table 3.1: Summary of Churn Datasets

Dataset Names Sources Entries Features

Telecom Customer Churn MavenAnalytics 7043 38

Internet Service Churn Kaggle 72274 11

Bank Customer Churn Records Kaggle 10000 18

Credit Card Churn Kaggle 10127 21

E-commerce Churn Kaggle 5630 20

Employee Churn Kaggle 1070 35

Telco Europa Kaggle 190776 20

Telcom Cell2Cell Kaggle 71047 70

Membership Subscription Kaggle 10362 15

Wireless Telecom South Asia Kaggle 2000 14

Nigeria Telecoms Churn Kaggle 1401 16

The first dataset that I examined is related to telecom customer churn. It can be
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found on the Maven Analytics website. It consists of two CSV formatted tables. The

Customer Churn table contains details of 7,043 customers from a telecommunications

company in California during the quarter of 2022. Each entry in this dataset corresponds

to a customer and includes information about their demographics, location, tenure ser-

vices subscribed to, and customer status among other relevant details. Additionally, the

Zip Code Population table offers population estimates for the California zip codes men-

tioned in the Customer Churn table.

Another dataset used for analysis is the internet service churn dataset available on

Kaggle. This dataset compiles customer data from an internet service provider with

a total of 72,274 records containing 11 attributes. These characteristics range, from

indicators like whether customers have subscribed to services such as TV and movie

packages to complex variables like how long they have been subscribed (subscription

age) the average amount they are billed (bill avg) and metrics related to service quality

(service failure count download avg and upload avg). There are instances of missing data

in attributes such as remaining contract details and internet speed measures (download

avg and upload avg) which means that some cleaning or filling in of data is needed before

further analysis can be done. The target feature is the churn attribute, which indicates

whether customers are continuing with or ending their services.

The other dataset named bank customer churn records which accessible on Kaggle.

This dataset contains 10,000 records and 18 features, outlining the characteristics of bank

clients. It covers information, financial details, and patterns of service usage including

name, location, gender, credit score, account balance, and number of banking products

used. The dataset includes factors related to customer satisfaction and engagement levels

such, as the Satisfaction Score, Complaints, and Exited statuses. It also covers details

like Card Type and Points Earned which may indicate how effective customer loyalty

programs are. There are no missing data in the dataset making the preprocessing phase

simple.

This study also utilizes the credit card churn dataset available on Kaggle. This
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dataset has 10,127 entries with 23 attributes, offering insights into credit card customers’

profiles. The dataset contains both categorical variables, like Marital Status and Income

Category, and continuous variables such as Customer Age and Credit Limit. It also

includes demographic information like age, gender, and education level along with be-

haviors such as credit limit usage and total transaction amount. Additionally, it tracks

changes in customer status through features like Attrition Flag.

The dataset e-commerce churn is also used for this research and can be found on

Kaggle. It comprises 5,630 entries and 20 columns that represent customer attributes in

an e-commerce environment. This dataset contains a mix of numerical and categorical

data such as customer ID, gender, login device, payment methods, and cashback amount.

Some columns have missing values suggesting the need for data cleaning before analysis.

The dataset includes features like product purchase counts, customer demographics, and

transaction specifics that could aid in understanding customer behavior and predicting

churn in an e-commerce setting. The presence of a range of values, in product category

and transaction columns implies that the dataset captures a diverse array of customer

interactions and preferences.

Employee attrition data is also included in this study. This dataset is available on

Kaggle, which comprises 1,470 entries with 35 features. These features are categorical

and numerical, offering an overview of the employees. It contains the employee demo-

graphic features like age and gender, job specifics such as department, role, and monthly

earnings, and satisfaction indicators like work environment, job fulfillment, and work-life

balance. The target variable is Attrition, signaling whether employees are still part of

the organization or have moved on.

Another dataset included in this study is Telco Europa. This dataset is accessible

on Kaggle, having 190,776 entries with 20 attributes. These features include both cat-

egorical and continuous variables. These features include basic service usage metrics

and extend to geographical and technical dimensions. Notable categorical variables like

cni customer which represents customer identifiers, and churn, a binary indicator show-
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ing whether a customer has discontinued the service or not. Continuous variables include

days life representing the tenure of the customer in days, device technology indicating

the type of device technology used, and various metrics related to call minutes such as

tot min call out and avg min in 3 for the average incoming call minutes over the last

three months. Other important variables are min plan and price plan, indicating the

minutes and cost of the customer’s plan, respectively. Additionally, it features technical

attributes for both data and voice services, such as tec ant data, state data, city data,

tec ant voice, state voice, and city voice.

The Telcom Cell2Cell dataset is another dataset that was used in this study. This

dataset is downloaded from the Kaggle website. It provided by Duke University, consists

of 71,047 records and 70 attributes focused on customer churn within a telecommuni-

cations framework. The dataset captures a wide array of information, including basic

churn indicators, detailed usage metrics such as minutes of use, charges for overages and

roaming, and customer service interactions including call quality metrics like dropped

and blocked calls. Additionally, it provides insights into customer demographics and

equipment usage, featuring variables that describe age, device usage duration, and pos-

session of web-capable devices.

The Membership Subscription dataset was also used in this project. This dataset

contains 10,362 entries, detailing various aspects of membership within an organization,

encapsulated in 15 attributes. These include the membership number, annual fees, and

detailed member demographics such as marital status, gender, annual income, and occu-

pation. Key attributes further encompass the type of membership package, the number

of additional members, and the respective payment mode. Each entry also tracks the

membership life-cycle through start and end dates and the membership status, providing

a rich basis for analyzing membership retention.

The South Asian Wireless Telecom Churn dataset comprises 2,000 records with

14 attributes that detail various aspects of customer usage and interaction with a telecom

service provider. It includes metrics such as network age, total revenue, and revenue
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specifics from SMS and data usage, alongside total data volumes. Notable features

include categorical variables like user type and favorite services for different months,

and continuous variables such as the number of calls made, revenue from on-net and off-

net calls, and the count of customer complaints. Furthermore, the dataset tracks changes

in customer status through the Class attribute, which indicates whether customers have

continued or discontinued their services.

The Nigeria Telecoms Churn dataset encompasses 1,401 entries with 16 attributes,

detailing the telecom usage and interactions of customers in Nigeria. It includes com-

prehensive metrics such as network age, customer tenure, total expenditure over two

months, SMS and data spending, and data consumption. The dataset further assesses

customer engagement through metrics like the total number of unique calls, spending on

calls within and outside the network, and the number of complaint calls to the service

center. Additionally, it captures the network technology type preferred by customers

across two months and their favored competitor networks during the same period. A

pivotal aspect of this dataset is the Churn Status, which indicates whether customers

have remained with or left the service provider, providing critical insights for churn anal-

ysis and customer retention strategies.
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Chapter 4

Methodology

This research adopts an individual participant data meta-analysis approach to evaluate

the effectiveness of various machine learning models in predicting customer churn across

multiple datasets. This methodology allows for a more nuanced analysis by integrating

raw data from different studies, thus facilitating a comprehensive comparison and vali-

dation of predictive models under varying conditions. Since the public datasets have a

large variation in the number of features and feature names, the two-stage approach in

IDP-MA is applied in this project. In the first stage, each study (dataset) analyzes the

IPD separately to obtain aggregate data. This includes ML performance effect estimates

and standard errors. In the second stage, the aggregate data obtained from the first stage

are then combined in a standard meta-analysis model. In this project, both common-

effect and random-effects model will be applied. The figure 4.1 shows the workflow of this

project research methodology. In which, the first stage analysis processes is represented

in blue box while second stage is in the green box.
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Figure 4.1: Two-stage IPD-MA Workflow

4.1 Individual Dataset - Exploratory Data Analysis

and Data Processing

4.1.1 Exploratory Data Analysis (EDA)

This EDA process was similarly applied to all 11 datasets, with visualizations and sta-

tistical analyses tailored to the specific characteristics of each dataset. The EDA process

included creating summary data tables for each dataset to identify unique values, missing

values, NaN values, duplicated entries, and data types. It also involved visualizing the

distribution of the target variable to identify class imbalances and analyzing the distri-

bution of categorical features to understand customer preferences and service uptake.

Additionally, the distribution of numerical features was examined to assess data range,

central tendency, and dispersion. Finally, the correlation matrix was evaluated to iden-

tify multicollinearity and guide feature selection. These steps ensure a robust exploratory

analysis, providing valuable insights that inform the predictive modeling and strategic

decision-making processes.

We begin by creating a summary data table for each dataset. The summary data table

is a valuable tool in the exploratory data analysis phase, providing a concise overview
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Table 4.1: Summary of Internet Churn Dataset

Feature Unique Missing NaN Duplicated Dtypes

reamining contract 247 21572 21572 0 float64

download avg 2856 381 381 0 float64

upload avg 802 381 381 0 float64

id 72274 0 0 0 int64

is tv subscriber 2 0 0 0 int64

is movie package subscriber 2 0 0 0 int64

subscription age 1110 0 0 0 float64

bill avg 179 0 0 0 int64

service failure count 19 0 0 0 int64

download over limit 8 0 0 0 int64

churn 2 0 0 0 int64

of the dataset’s characteristics. These tables highlight the number of unique values,

missing values, NaN values, duplicated entries, and data types for each feature. This

information is crucial for identifying categorical versus continuous features, guiding the

handling of missing data, and ensuring appropriate data types for analysis and modeling.

For instance, the table 4.1 reveals that the reamining contract feature has a significant

number of missing values, necessitating imputation or exclusion, while binary features like

is tv subscriber are confirmed as categorical. Additionally, understanding the extent of

missing data and identifying features with high cardinality or duplicates helps prioritize

data cleaning efforts and informs feature engineering decisions.

The distribution of the target variable is a crucial aspect of EDA as it provides valu-

able insights into the balance or imbalance within the dataset. This information is essen-

tial for understanding the dataset’s characteristics and informing subsequent modeling

decisions. Figure 4.2 effectively illustrates the varying distributions of target variables

across 11 different datasets, providing clear examples of where imbalances exist. For

instance, the Telecom Customer Status plot in figure 4.2 shows a significant difference
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Figure 4.2: Target Distribution.

between the number of customers who stayed versus those who churned, indicating a

class imbalance. Identifying such imbalances is critical because they can bias the pre-

dictive model, leading to poor performance in predicting the minority class. Similarly,

the Credit Card Attrition plot reveals an imbalance with more existing customers than

attrited customers, highlighting the need for strategies to handle such disparities in data.

Understanding these imbalances helps in selecting appropriate evaluation metrics like

precision, recall, F1-score, and ROC-AUC, which are more informative for imbalanced

datasets.
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Figure 4.3: Categorical Features Distribution in Credit Card Dataset.

Next, the distribution of categorical features is crucial in exploratory data analysis

as it provides valuable insights into the composition and characteristics of the dataset.

Understanding these distributions aids in feature engineering and selection, allowing me

to decide which features to include in their models and how to preprocess them effectively.

Figure 4.3 displays the distribution of several categorical features from the credit card

dataset. Each subplot provides a count plot for a specific categorical feature, revealing

key patterns and distributions within the data. For instance, the Distribution of Gender

subplot shows a nearly balanced distribution between female and male customers, with

a slight predominance of females. While, the Distribution of Education Level indicates

that most customers are graduates, followed by high school graduates and those with

unknown educational backgrounds, while the least represented are doctorate holders.

The distribution of numerical features is an essential part of EDA. This analysis

provides a comprehensive understanding of the dataset’s range, central tendency, and
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Figure 4.4: Numerical Features Distribution in Bank Dataset.

dispersion. For example, histograms and Kernel Density Estimation plots can reveal

whether the data is normally distributed, skewed, or contains outliers, which is crucial

for deciding on the appropriate statistical methods and data transformations to apply.

This step ensures that the numerical data is accurately represented and ready for further

analysis and modeling. Figure 4.4 displays the distribution of several numerical features

from the bank customer dataset. The Distribution of CreditScore subplot shows an

approximately normal distribution, centered around a mean value with a slight skew

towards higher scores, indicating most customers have credit scores between 500 and

800, peaking around 700. The Distribution of Age is right-skewed, with the majority of

customers aged between 30 and 50.

The heatmap, which visualizes the correlation matrix, is another powerful tool in

EDA. It helps in identifying multicollinearity among numerical features by displaying the

correlation coefficients between pairs of variables. High correlations indicate redundancy,

which can affect the performance of predictive models. For instance, if two features are

highly correlated, one might be dropped or transformed to avoid multicollinearity issues

in the model. The heatmap provides a clear and immediate visual representation of these

relationships, making it easier to spot and address potential problems. By understanding
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Figure 4.5: Correlations Among Numerical Features in Telcom Churn Dataset.

the correlations, data scientists can make informed decisions about feature selection and

engineering, ensuring that the models are both efficient and effective. Figure 4.5 shows

the correlation coefficients among numerical variables in the telecommunications data

set. It can be seen that there is a strong correlation between total revenue and total

charges, with a correlation of 0.97.

4.1.2 Data Preparation

Data preparation is the next step after data collection and before machine learning model

building in this workflow. It includes data splitting, missing value treatment, scaling

numerical variables, encoding categorical features, imbalanced data handling, etc. All

these are vital steps for data preparation before training a machine learning algorithm.
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Data Splitting

Splitting the dataset into train and test sets is done first in the data preparation to avoid

any potential data leakage during this step. Data leakage occurs when training models

can access information outside of the training dataset [33]. This can lead to overesti-

mating models’ performance during the training process. Once the model is deployed in

production, its performance can decrease significantly. The predictions turn out to be

far less reliable than the performance of the model during training would suggest. Steps

can be taken to eliminate what is called data leakage so that the performance during

training is a better reflection of what the model can do with data it has not seen already.

Since the telecom customer churn dataset is unbalanced data, stratified splitting was

applied to ensure that the class distribution of training and test sets is similar [34].

The initial dataset was split into 75 percent and 25 percent for the train and test sets,

respectively. The random state is set to make sure the experiment result is reproducible.

Handling Missing Values

First, some non-informative columns, namely, customer id, city, zip code, latitude, and

longitude were dropped, assuming that these variables simply do not offer predictive

power. In addition, direct churn-related columns, churn category, and churn reason were

also removed because they are directly related to churn and only available after customer

churn. If these two columns were included in the model, it would introduce a very

optimistic model for churn prediction.

The process continues with the imputation of missing values for categorical variables.

As pointed out in the previous exploratory data analysis, for service-related features like

multiple lines, internet type, and online security, among others, we will fill the missing

entries with No because these customers do not have a service. By replacing missing

categorical data with meaningful labels, we avoid introducing bias arising from dropping

rows that contain missing data, which may lead to the loss of important information.
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For a continuous variable such as average monthly long distance charges or average

monthly GB download, the imputation method used is zero filling. The rationale is that

these customers do not subscribe to phone or internet service.

Scaling Numerical Variables

The numerical columns were scaled using min-max scaling. In this study, the MinMaxS-

caler function from the sklearn.preprocessing module is used to implement the scaling

task. It calculates the difference between each value and the minimum feature value and

then divides it by the difference between the maximum and minimum feature values.

This scaling process transformed all the numerical features into a range between 0 and 1,

which would help many machine learning algorithms that are very sensitive to the scale

of the input features [35].

Encoding Categorical Variables

In the encoding phase, binary categorical variables such as gender, married, phone service,

and paperless billing are manually mapped to numeric binary values, with a straightfor-

ward mapping of female and yes to 1, and male and no to 0. This binary encoding

transforms the categorical data into a format suitable for machine learning algorithms,

which require numerical input.

The remaining categorical variables undergo one-hot encoding, a process that con-

verts categorical variable values into a form that could be provided to machine learning

algorithms to do a better job at prediction. The OneHotEncoder creates a binary column

for each category and returns a sparse matrix or dense array [25]. By employing one-hot

encoding, the model can interpret the data without falsely attributing order or priority

where it does not exist [36].
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4.2 Individual Dataset - Models Evaluation

4.2.1 Predictive Modeling

In this study, a large number of machine learning models were implemented to find which

model was best suited to the research tasks. Many of these models are ensembles that

consist of other machine learning algorithms.

First, logistic regression is selected for the model benchmark. Then the support

vector machine was also included. This model works well in high dimensions without

scaling. For comparability purposes, KNN, gaussian naive bayes, decision trees, and

random forest classifiers were selected. Among these algorithms, KNN is a simple model

that also works effectively in classification. The Gaussian Naive Bayes classifier is a

naturally probabilistic approach known for its overall good performance in probabilistic

classification. The decision tree is an easy-to-interpret model, and the random forest is

robust and deals with overfitting.

As an additional benchmark, several boosting algorithms were also implemented,

including gradient boosting, AdaBoost, and bagging classifiers. These ensemble models

are built from many weak learner models into strong ones. A multi-layer perceptron

(MLP) classifier, which is an artificial neural network, was also employed. This model is

capable of inferring highly non-linear relationships. Moreover, this study includes some

highly sophisticated ensemble methods, such as XGBoost and LightGBM, that have

proven to be very fast and highly competitive in many machine learning competitions.

Each of the models was initialized with a random seed to ensure that the reproduction

of the results was reproducible. The model’s performance is evaluated using multiple

different metrics: accuracy, precision, recall, and F1 score, to give the best evaluation

available. The final model will be decided upon by weighing all the performance measures

as well as other considerations such as interpretability and computational efficiency.
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4.2.2 Classifiers Performance Evaluation

All the models were evaluated by stratified k-fold cross-validation with 5 splits. This

approach ensures that the number of samples for each class is about the same in each

split. Such splitting can better evaluate the model performance than a single train-test

split, especially for imbalanced data. The metrics of model evaluation are accuracy,

precision, recall, F1 score, and ROC-AUC.

For each step of the cross-validation, the initial training data was split into training

and validation sets. Then the model was trained on the training set and evaluated on

the validation set, and the obtained score for each metric was recorded. This process

was repeated for all training-validation splits, and the obtained set of scores was then

averaged across folds to get a more stable estimate of the model’s performance.

After cross-validation, the models were retrained on the entire initial training set and

evaluated on the unseen test set to assess generalization performance. The models were

then evaluated on the test set using the same metrics used in the previous evaluation.

4.2.3 Hyperparameter Tuning

GridSearchCV and RandomisedSearchCV were used for hyperparameter tuning. This

process was aimed at optimizing the hyperparameters to improve the model’s perfor-

mance. GridSearchCV was used to do an exhaustive search over the parameter grid for

each classifier. For each classifier, it evaluates all possible combinations of parameters

and picks the best. While, RandomizedSearchCV used a fixed number of parameters

randomly sampled. It is less intensive to compute than GridSearchCV, but sometimes it

can find a good approximation of the best parameters.

Once the tuning was done, the best parameters for each classifier were determined

and re-trained on the entire training dataset. Finally, the retrained models were assessed

on the unseen test dataset, where the ability to generalize can be estimated.
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4.3 Aggregate Effect Size and Standard Error

Once the performances of various machine learning algorithms on individual datasets

were obtained, aggregate metrics were derived for meta-analysis. This approach provides

a comprehensive understanding of the algorithms’ performances across multiple datasets

and allows for a robust comparison.

Aggregate Effect Size

The aggregate effect size is a critical metric in meta-analysis, offering a consolidated

measure of the performance of each ML algorithm across all datasets. This was achieved

by calculating the average performance metric of each ML algorithm across all datasets.

The mean AUC will be used as an aggregated effect size for the next step meta-analysis.

This aggregate measure helps in understanding the overall efficacy of each algorithm and

identifying which performs best on average. Additionally, the average performance of all

ML algorithms on each individual dataset was computed, providing insights into which

dataset presented the greatest challenges or the easiest conditions for the algorithms.

Standard Error

Standard error (SE) plays a crucial role in understanding the variability and reliability of

the aggregate effect size. It measures the precision of the average performance estimates.

For each ML algorithm’s aggregate performance, the SE was calculated to quantify the

dispersion of performance metrics across the datasets. This involves computing the stan-

dard deviation of the performance metrics for each algorithm and dividing it by the

square root of the number of datasets. Similarly, the SE for the average performance of

all ML algorithms on each individual dataset was calculated. This helps in assessing the

consistency of the algorithms’ performances on a particular dataset and the robustness

of the aggregate metrics.
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Calculating Aggregate Performance for Each ML Algorithm Across All Datasets

1. For each ML algorithm, the performance metrics from all datasets were collected.

2. The mean performance metric for each algorithm was computed.

3. The standard deviation of these performance metrics was calculated.

4. The SE for each algorithm’s average performance was derived using the formula:

SE =
Standard Deviation√

N
(4.1)

where N is the number of datasets.

Calculating Aggregate Performance for All ML Algorithms on Each Dataset

1. For each dataset, the performance metrics of all ML algorithms were collected.

2. The mean performance metric for each dataset was computed.

3. The standard deviation of these performance metrics was calculated.

4. The SE for each dataset’s average performance was derived using the same formula:

SE =
Standard Deviation√

N
(4.2)

where N is the number of evaluated ML models.

4.4 Estimating Pooled Effect Size and Confidence

Interval

4.4.1 Fixed-Effect Model

The fixed-effect model assumes that the effect size is consistent across all studies or

datasets, and any observed variation is just due to sampling error. The following section
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describes the steps and equations to estimate the pooled effect size and its confidence

interval (CI) from the aggregated mean AUC and standard error.

1. Compute the Weights:

• Calculate the variance of each effect size:

vi = SE2
i (4.3)

• Assign a weight (wi) to each effect size, which is the inverse of its variance:

wi =
1

vi
(4.4)

• The weight reflects the precision of each effect size, giving more importance

to effect sizes with smaller standard errors.

2. Calculate the Pooled Effect Size:

• The pooled effect size ( ˆAUC) is a weighted average of the individual effect

sizes:

ˆAUC =

∑k
i=1wi

ˆAUCi∑k
i=1 wi

(4.5)

where k is the number of datasets or studies.

3. Estimate the Variance of the Pooled Effect Size:

• The variance of the pooled effect size (V ˆAUC) is calculated as:

V ˆAUC =
1∑k

i=1 wi

(4.6)

4. Compute the Standard Error of the Pooled Effect Size:

• The standard error (SE) of the pooled effect size is the square root of its

variance:

SE ˆAUC =
√

V ˆAUC (4.7)

5. Construct the Confidence Interval:
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• The 95% confidence interval for the pooled effect size is calculated using the

standard error and the critical value from the standard normal distribution

(usually 1.96 for a 95% CI):

CI95% = ˆAUC ± 1.96× SE ˆAUC (4.8)

4.4.2 Random-Effect Model

The random-effects model assumes that the effect sizes vary across studies or datasets

due to real differences in effects, as well as sampling error. This model incorporates both

within-study and between-study variability to provide a more generalizable estimate of

the pooled effect size and its confidence interval (CI). The following section describes the

process and equations to estimate the pooled effect size and its CI from aggregated mean

AUC and standard error.

1. Compute the Weights:

• Calculate the variance of each effect size:

vi = SE2
i (4.9)

• Estimate the between-study variance (τ 2) using the DerSimonian and Laird

method ([37], [28]):

τ 2 = max

(
0,

Q− (k − 1)

C

)
(4.10)

where

Q =
k∑

i=1

w∗
i ( ˆAUCi − ˆAUCw)

2 (4.11)

w∗
i =

1

vi
(4.12)

ˆAUCw =

∑k
i=1w

∗
i

ˆAUCi∑k
i=1 w

∗
i

(4.13)

C =
k∑

i=1

w∗
i −

∑k
i=1(w

∗
i )

2∑k
i=1w

∗
i

(4.14)
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• Compute the random-effects weights (wi):

wi =
1

vi + τ 2
(4.15)

2. Calculate the Pooled Effect Size:

• The pooled effect size ( ˆAUC) is a weighted average of the individual effect

sizes:

ˆAUC =

∑k
i=1wi

ˆAUCi∑k
i=1 wi

(4.16)

where k is the number of datasets or studies.

3. Estimate the Variance of the Pooled Effect Size:

• The variance of the pooled effect size (V ˆAUC) is calculated as:

V ˆAUC =
1∑k

i=1 wi

(4.17)

4. Compute the Standard Error of the Pooled Effect Size:

• The standard error (SE) of the pooled effect size is the square root of its

variance:

SE ˆAUC =
√
V ˆAUC (4.18)

5. Construct the Confidence Interval:

• The 95% confidence interval for the pooled effect size is calculated using the

standard error and the critical value from the standard normal distribution

(usually 1.96 for a 95% CI):

CI95% = ˆAUC ± 1.96× SE ˆAUC (4.19)

4.5 Residual Heterogeneity Estimates

Residual heterogeneity refers to the variability in effect sizes that remains unexplained

after accounting for within-study variance in meta-analysis. This section outlines the
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methodology for estimating residual heterogeneity in both fixed-effect and random-effect

models.

4.5.1 Test for Heterogeneity

The test for heterogeneity examines whether the variability observed among study esti-

mates is greater than what would be expected by chance alone. In this context, the null

hypothesis (H0) is that all studies share a common effect size, suggesting no significant

heterogeneity. The alternative hypothesis (HA), on the other hand, proposes that there

is significant heterogeneity, indicating that the variability among study estimates is not

solely due to sampling error but also due to true differences in effect sizes.

The Q statistic is used to test for heterogeneity, and a significant Q statistic, partic-

ularly with a low p-value, supports the rejection of the null hypothesis, confirming the

presence of heterogeneity among the studies. The Q-statistic follows a chi-square distri-

bution with k − 1 degrees of freedom, where k is the number of studies. A significant

Q-statistic (p-value < 0.05) indicates the presence of heterogeneity.

4.5.2 Fixed-Effect Model

In a fixed-effect model, it is assumed that there is a single true effect size that is common

across all studies, and any observed variation in effect sizes is due solely to within-study

sampling error. However, if there is unexplained heterogeneity, it can be assessed using

the following steps:

1. Calculate the Q-statistic: The Q-statistic tests for heterogeneity by comparing

the observed variability in effect sizes to what would be expected by chance alone.

It is calculated as:

Q =
k∑

i=1

wi( ˆAUCi − ˆAUCw)
2 (4.20)
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where wi is the weight assigned to each effect size (the inverse of the variance),

ˆAUCi is the observed effect size for study i, and ˆAUCw is the weighted average

effect size.

2. Calculate the I2 Statistic: The I2 statistic quantifies the proportion of total

variation in effect sizes that is due to heterogeneity rather than chance. It is

calculated as:

I2 =
Q− (k − 1)

Q
× 100% (4.21)

An I2 value greater than 50% typically indicates substantial heterogeneity.

3. Calculate the H2 Statistic: The H2 statistic represents the ratio of total vari-

ability to sampling variability. It is calculated as:

H2 =
Q

k − 1
(4.22)

H2 is a measure of heterogeneity, with values greater than 1 indicating the presence

of variability beyond what would be expected by sampling error alone.

4.5.3 Random-Effect Model

In a random-effect model, it is assumed that there is not a single true effect size, but

rather a distribution of true effect sizes across studies. The model accounts for both

within-study variance and between-study variance, often referred to as tau-squared (τ 2).

The steps to estimate residual heterogeneity in a random-effect model are as follows:

1. Estimate Between-Study Variance (τ 2): The DerSimonian and Laird method

is commonly used to estimate the between-study variance. It is calculated as:

τ 2 = max

(
0,

Q− (k − 1)

C

)
(4.23)

where

Q =
k∑

i=1

w∗
i ( ˆAUCi − ˆAUCw)

2 (4.24)
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w∗
i =

1

vi
(4.25)

ˆAUCw =

∑k
i=1 w

∗
i

ˆAUCi∑k
i=1w

∗
i

(4.26)

C =
k∑

i=1

w∗
i −

∑k
i=1(w

∗
i )

2∑k
i=1 w

∗
i

(4.27)

2. Compute the random-effects weights (wi):

wi =
1

vi + τ 2
(4.28)

3. Compute the Random-Effects Weights: Adjust the weights to account for

between-study variability:

wi =
1

vi + τ 2
(4.29)

where vi is the within-study variance.

4. Calculate the I2 and H2 Statistics: Similar to the fixed-effect model, I2 is used

to quantify the proportion of total variation due to heterogeneity, and H2 represents

the ratio of total variability to sampling variability.

I2 =
Q− (k − 1)

Q
× 100% (4.30)

H2 =
Q

k − 1
(4.31)

4.6 Funnel Plots

Funnel plots are a graphical tool widely used in meta-analyses to assess publication

bias and heterogeneity among studies. Funnel plots are constructed by plotting the

performance measure on the horizontal axis against a measure of study precision or size

on the vertical axis. In machine learning evaluations, the mean performance metric of a

model is plotted against the inverse of the standard error of the performance measure.

This arrangement allows for the visual detection of asymmetry in data that might suggest
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potential biases. In this research, funnel plots are employed to visually assess the bias

and variance in the performance of machine learning models. Two types of plots were

prepared. Funnel plots for each machine learning model across multiple datasets and

funnel plots for each dataset across different machine learning models. These plots are

critical for identifying whether certain models or datasets consistently perform differently

from the general trend and whether there are any signs of publication bias in reporting

model performances.
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Chapter 5

Results

5.1 Aggregated Data

This section presents the aggregated results of the mean AUC, standard deviation (SD),

and standard error (SE) for each machine learning (ML) model and each dataset. The

results provide a general understanding of the performance metrics across various ML

models and datasets, highlighting both the models’ overall effectiveness and variability.

This data will be used as input data for the second stage of meta-analysis.

5.1.1 Performance Metrics by Machine Learning Model

Table 5.1 provides the mean AUC, standard deviation, and standard error for each

ML model. These metrics reflect the aggregated performance of each model across all

datasets.

Catboost achieves the highest mean AUC (0.9036) among the ML models, indicating

its strong overall performance across the datasets. Lightgbm (0.9000), Gradient Boosting

(0.8936), and Random Forest (0.8891) also demonstrate high mean AUCs, suggesting
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Table 5.1: Mean AUC, Standard Deviation, and Standard Error for Each Model

Model Mean AUC Standard Deviation (SD) Standard Error (SE)

AdaBoost 0.8836 0.0808 0.0244

Bagging 0.8682 0.0964 0.0291

Catboost 0.9036 0.0836 0.0252

Decision Tree 0.7609 0.1291 0.0389

GaussianNB 0.7882 0.0708 0.0214

Gradient Boosting 0.8936 0.0794 0.0239

KNeighbors 0.7845 0.1085 0.0327

Lightgbm 0.9000 0.0860 0.0259

Logistic Regression 0.8345 0.0859 0.0259

MLP 0.8745 0.0929 0.0280

Random Forest 0.8891 0.0884 0.0266

XGboost 0.8918 0.0923 0.0278

their effectiveness in handling diverse datasets. The Decision Tree model shows the lowest

mean AUC (0.7609) and the highest standard deviation (0.1291), indicating significant

variability in its performance. The high standard error (0.0389) for the Decision Tree

further confirms this variability.

5.1.2 Performance Metrics by Dataset

Table 5.2 summarizes the mean AUC, standard deviation, and standard error for each

dataset. These metrics reflect the aggregated performance of all ML models on each

dataset.

The Internet dataset has the highest mean AUC (0.9508) with a relatively low stan-

dard deviation (0.0456) and standard error (0.0132), indicating consistent performance

across ML models. Similarly, the Credit Card dataset also exhibits a high mean AUC
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Table 5.2: Mean AUC, Standard Deviation, and Standard Error for Each Dataset

Dataset Mean AUC Standard Deviation (SD) Standard Error (SE)

Telcom 0.9042 0.0476 0.0137

Internet 0.9508 0.0456 0.0132

Bank 0.8242 0.0570 0.0164

Credit Card 0.9517 0.0491 0.0142

E-Commerce 0.9467 0.0557 0.0161

Employee 0.8125 0.0885 0.0256

Telco Europa 0.8942 0.0763 0.0220

Cell2Cell 0.8167 0.0587 0.0169

Membership 0.6700 0.0413 0.0119

SA Wireless Telcom 0.8000 0.0644 0.0186

Niger Telcom 0.8458 0.0799 0.0231

(0.9517), demonstrating the models’ strong performance on this dataset. On the other

hand, the Membership dataset has the lowest mean AUC (0.6700), suggesting that the

models performed less effectively on this dataset. The Employee dataset shows the high-

est standard deviation (0.0885) and standard error (0.0256), indicating higher variability

in model performance.

5.2 Fixed- and Random-Effect Model Results

This section presents the results of the meta-analysis conducted using both fixed-effect

and random-effect models for each machine learning model and each dataset. The forest

plots generated from these analyses are discussed to provide a comprehensive understand-

ing of the performance metrics and their variability across ML models and datasets.
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5.2.1 Meta-Analysis by Machine Learning Model

Figure 5.1: Fixed-Effect Model Forest Plot by ML.

The fixed-effect model forest plot (Figure 5.1) indicates that Catboost and Lightgbm

have the highest mean AUCs (both around 0.90), with relatively narrow confidence inter-

vals, suggesting consistent high performance across datasets. The Decision Tree model

has the lowest mean AUC (0.76) with a wide confidence interval, indicating significant

variability in performance. The overall fixed-effect model estimate for ML models is 0.86

[0.85, 0.88], representing the combined performance across all models. These results in-

dicate a high average performance (AUC) with narrow confidence intervals, suggesting

precise estimates. However, the significant heterogeneity suggests that the fixed-effect

model may not fully account for the variability across studies.

The random-effect model forest plot (Figure 5.2) shows similar results, with Catboost

and Lightgbm still performing the best. The overall random-effect model estimate is

0.86 [0.83, 0.89], slightly lower than the fixed-effect model, reflecting the incorporation
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Figure 5.2: Random-Effect Model Forest Plot by ML.

of between-model variability. The Decision Tree model continues to show the lowest

performance with considerable variability.

5.2.2 Meta-Analysis by Dataset

The fixed-effect and random-effect models were applied to the aggregated performance

data for each dataset. The forest plots for these models are shown in Figures 5.3 and 5.4

The fixed-effect model forest plot (Figure 5.3) shows that the Credit Card, Internet,

and E-Commerce datasets have the highest mean AUCs, all around 0.95. These datasets

demonstrate narrow confidence intervals, indicating consistent performance across dif-

ferent ML models. The Membership dataset has the lowest mean AUC (0.67), with a

narrower confidence interval, indicating less variability in performance but consistently

lower AUC values. The overall fixed-effect model estimate is 0.85 [0.84, 0.86], represent-

ing the combined performance across all datasets.
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Figure 5.3: Fixed-Effect Model Forest Plot by Dataset.

These results indicate a high average performance (AUC) with narrow confidence

intervals, suggesting precise estimates. The very high heterogeneity suggests that the

fixed-effect model may not fully account for the variability across datasets.

The random-effect model forest plot (Figure 5.4) provides a similar view but accounts

for between-study variability. The overall random-effect model estimate is slightly higher

at 0.86 [0.81, 0.91], reflecting the incorporation of heterogeneity among datasets. The

Credit Card and Internet datasets maintain high mean AUCs with slightly wider confi-

dence intervals, indicating some variability in model performance across these datasets.

In general, the meta-analysis results highlight the variability in performance across

different ML models and datasets. Among the ML models, Catboost, Lightgbm, and

Gradient Boosting are the top performers, whereas the Decision Tree model shows less

consistent results. The Credit Card, Internet, and E-Commerce datasets generally exhibit

high AUCs, while the Membership dataset poses more challenges. These insights provide

a clear understanding of how different datasets and models perform, guiding future model
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Figure 5.4: Random-Effect Model Forest Plot by Dataset.

selection and optimization efforts.

5.3 Residual Heterogeneity Estimates

5.3.1 Residual Heterogeneity Estimates by Machine Learning

Model

For the fixed-effect model analysis, which assumes a common effect size across all studies,

the Q statistic was calculated to be 35.2159 with 11 degrees of freedom, resulting in a

p-value of 0.0002. This significant result indicates substantial heterogeneity among the

studies, leading to the rejection of the null hypothesis. The I2 statistic, which quan-

tifies the proportion of total variability due to heterogeneity, was found to be 68.76%,

indicating a considerable level of heterogeneity. The H2 statistic, which measures total
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variability relative to sampling variability, was calculated as 3.20, further suggesting no-

table heterogeneity.

In the random-effect model analysis, which accounts for both within-study and

between-study variability, similar patterns of heterogeneity were observed. The I2 statis-

tic remained high at 68.57%, and the H2 value was 3.18. Additionally, the tau-squared

(Tau2) value, representing the total amount of heterogeneity, was estimated at 0.0016

with a standard error of 0.0010, and the square root of Tau2 (Tau) was 0.0395. The Q

statistic was consistent with the fixed-effect model, reinforcing the conclusion of signifi-

cant heterogeneity.

In the analysis by dataset using the fixed-effect model, a high degree of heterogeneity

was evident. The Q statistic was exceptionally high at 408.4644 with 10 degrees of

freedom, yielding a p-value of less than 0.0001, indicating significant heterogeneity among

the datasets. The I2 statistic was calculated to be 97.55%, highlighting an extremely high

level of heterogeneity. The H2 statistic was 40.85, suggesting that the observed variability

greatly exceeds what would be expected due to sampling variability alone.

The random-effect model analysis produced similar findings. The I2 statistic was

slightly lower at 96.44%, still indicating substantial heterogeneity. The H2 value was

28.13, again suggesting significant variability beyond sampling error. The Tau2 value

was estimated at 0.0072 with a standard error of 0.0033, and the square root of this

value (Tau) was 0.0846. The Q statistic remained consistent with the fixed-effect model,

further confirming the presence of significant heterogeneity across the datasets.

In summary, the residual heterogeneity estimates, as measured by I2, H2, and the

Q statistic, indicate that both the ML model and dataset analyses exhibit substantial

heterogeneity. This suggests that the observed variability among the studies is due to

true differences in effect sizes rather than mere sampling error.
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5.4 Funnel Plots Analysis

5.4.1 Funnel Plot Analysis by Machine Learning Model

Figure 5.5: Fixed-Effect Model Funnel Plot by Machine Learning Model.

The fixed-effect model’s funnel plot (Figure 5.5) displays a tight clustering of machine

learning models around the peak mean AUC value of approximately 0.9. Although

this concentration suggests a high degree of consistency in model performance, a slight

asymmetry in the distribution of points around the vertical pooled effect line indicates

a potential minor bias in the pooled effect estimation that is slightly leaning toward

high performance models. In addition to the traditional interpretation of publication

bias using the funnel plot, in the context of this study, the funnel plot can be used

to select models with the optimum bias and variance trade-off. Notably, models like

Catboost and LightGBM, which are situated at the peak, achieve top AUC scores with

minimal standard errors, showcasing their effectiveness in balancing bias and variance.

In contrast, models such as Decision Tree and KNeighbors, appearing towards the lower

55



end of the spectrum, exhibit variability that may reflect their sensitivity to training data

variations or inherent methodological limitations.

Figure 5.6: Random-Effect Model Funnel Plot by Machine Learning Model.

The random effect model’s funnel plot (Figure 5.6) also shows a symmetrical distribu-

tion of machine learning models around a high mean AUC value. The slight asymmetry

around the vertical pooled effect line in this plot also suggests a potential minor bias in

the pooled effect estimation. This observation supports the use of the funnel plot not

only for detecting potential biases in pooled effect estimation but also for choosing models

that maintain an optimal balance between bias and variance. High-performing models

such as Catboost and LightGBM continue to demonstrate top-tier performance with low

variability, while models like Decision Tree and KNeighbors display greater dispersion,

highlighting their potential instability and sensitivity to different data scenarios.
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Figure 5.7: Fixed-Effect Model Funnel Plot by Dataset.

5.4.2 Funnel Plot Analysis by Dataset

The fixed effect model’s funnel plot by dataset (Figure 5.7) illustrates a symmetric dis-

tribution around the pooled mean AUC line, indicating a balanced and unbiased repre-

sentation of datasets. The consistency and high performance of datasets such as Telco

Europa and Telecom, which are noted for high mean AUC values with minimal standard

errors, demonstrate their robustness and reliability. Conversely, datasets like Member-

ship, which show lower mean AUC values and higher variability, may suggest specific

challenges affecting the models’ performance.

The random effect model’s funnel plot (Figure 5.8) maintains the symmetry observed

in the fixed effect model, confirming the absence of bias in the dataset evaluations. This

plot emphasizes the strong and consistent performance across datasets such as Internet,

Credit Card, and Membership, demonstrating their suitability for testing models in vari-

ous analytical conditions, with high mean AUC values and minimal variability indicating
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Figure 5.8: Random-Effect Model Funnel Plot by Dataset.

stable model performance.

5.5 Feature Importance

The feature importance analysis was conducted using the top three performing machine

learning models: Catboost, LightGBM, and Gradient Boosting, across multiple datasets.

This analysis aimed to identify the key drivers of customer churn. Figures 5.9 to 5.19

illustrate the top 10 most important features as determined by each model for various

datasets.

In the Catboost model, significant patterns were observed across the datasets. For

instance, in the Bank dataset, features like Age, Balance, and CreditScore were identified

as the most critical, emphasizing the role of financial stability and customer demograph-

ics in predicting churn. Similarly, the Credit Card dataset highlighted the importance

of transaction behavior, with Total Trans Ct and Total Trans Amt emerging as top fea-
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Figure 5.9: Top 10 Feature Importance in Catboost, LightGBM, and Gradient Boosting

for Bank Dataset.

tures. In the E-Commerce dataset, features such as Tenure and NumberOfAddress were

crucial, suggesting that customer loyalty and geographic stability significantly influence

churn. The Employee dataset’s key features were Age and OverTime No, pointing to the

impact of employee demographics and work patterns on churn. For the Internet dataset,

the most important features were Remaining contract and bill avg, underscoring the

significance of contract terms and billing amounts in customer retention. In the Mem-

bership dataset, the analysis revealed that features like MEMBERSHIP TERM YEARS,

ANNUAL FEES, and MEMBER ANNUAL INCOME were the top predictors, suggest-

ing that financial stability and membership tenure are key factors influencing churn. The

Nigeria Telecom dataset emphasized the importance of usage and spending patterns, with

Total Spend in Months 1 and 2 of 2017 and network age emerging as significant features.

The SA Wireless dataset showed that Aggregate Total Rev, Aggregate SMS Rev, and

network age were critical in predicting churn, pointing to the role of revenue and usage

behavior. Other datasets, such as Telco Europa and Telecom, consistently showed that

Tenure and ContractMonthtoMonth were significant, indicating the importance of con-

tract types and customer retention over time.

In the LightGBMmodel, financial and usage-related features were consistently impor-
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Figure 5.10: Top 10 Feature Importance in Catboost, LightGBM, and Gradient Boosting

for Credit Card Dataset.

tant across different datasets. For example, in the Bank dataset, Balance and Estimated-

Salary emerged as top predictors, highlighting financial factors’ influence on churn. The

Credit Card dataset identified Total Trans Amt and Total Amt Chng Q4 Q1 as leading

indicators, pointing toward the significance of transaction changes and amounts in churn

prediction. The E-Commerce dataset emphasized the role of incentives and logistics, with

CashbackAmount and WarehouseToHome identified as top features. In the Employee

dataset, financial compensation, represented by features such as DailyRate and Month-

lyIncome, was crucial in predicting employee churn. For the Internet dataset, billing and

subscription duration were significant, with Bill avg and subscription age identified as

the most important features. In the Cell2Cell dataset, changem and mou emerged as top

predictors, highlighting the significance of customer behavior and usage patterns. The

Membership dataset identified ANNUAL FEES and MEMBER ANNUAL INCOME as

leading indicators, suggesting that financial aspects are crucial in predicting member-

ship churn. In the Nigeria Telecom dataset, features such as Total Onnet spend and

Total Data Consumption were identified as significant, pointing towards the importance

of usage patterns in churn prediction. The SA Wireless dataset highlighted the role of

aggregate revenue and data usage, with Aggregate SMS Rev and network age emerging
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Figure 5.11: Top 10 Feature Importance in Catboost, LightGBM, and Gradient Boosting

for E-Commerce Dataset.

as top features. In both Telco Europa and Telecom datasets, Monthly Charge and Age

were the top features, suggesting that billing and customer demographics are pivotal in

churn prediction.

The Gradient Boosting model also revealed critical insights into the drivers of churn

across various datasets. In the Bank dataset, the focus was on product usage, with Nu-

mOfProducts 2 and NumOfProducts 1 emerging as the most important features. The

Credit Card dataset highlighted the significance of revolving balances and transaction

counts, with Total Revolving Bal and Total Trans Ct identified as top features. In the

E-Commerce dataset, customer loyalty and complaints were significant predictors, with

Tenure and Complain 0 as key features. The Employee dataset emphasized job roles and

work-life balance, with JobRole Manufacturing Director and WorkLifeBalance 1 identi-

fied as critical features. The Internet dataset highlighted the importance of contract

terms and usage patterns, with remaining contract and download avg emerging as top

features. In the Cell2Cell dataset, the focus was on retention efforts, with retcalls 0

and retcalls 1 emerging as the most important features, indicating the importance of

retention calls in predicting churn. The Membership dataset emphasized the impor-

tance of package types and occupation codes, with MEMBERSHIP PACKAGE TYPE-A
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Figure 5.12: Top 10 Feature Importance in Catboost, LightGBM, and Gradient Boosting

for Employee Dataset.

and MEMBER OCCUPATION CD 2.0 identified as key features. In the Nigeria Tele-

com dataset, the analysis highlighted the significance of competitor networks, with Most

Loved Competitor network in Month 2 Weematel and Month 2 Zintel emerging as top

predictors. The SA Wireless dataset showed the importance of aggregate revenue and

favorite network features, with sep fav a ufone and sep fav a telenor identified as criti-

cal. Similar patterns were observed in the Telco Europa and Telecom datasets, where

Contract Month-to-Month and Number of Dependents were crucial in predicting churn.

62



Figure 5.13: Top 10 Feature Importance in Catboost, LightGBM, and Gradient Boosting

for Internet Dataset.

Figure 5.14: Top 10 Feature Importance in Catboost, LightGBM, and Gradient Boosting

models for the Cell2Cell dataset.

63



Figure 5.15: Top 10 Feature Importance in Catboost, LightGBM, and Gradient Boosting

models for the Membership dataset.

Figure 5.16: Top 10 Feature Importance in Catboost, LightGBM, and Gradient Boosting

models for the Nigeria Telecom dataset.
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Figure 5.17: Top 10 Feature Importance in Catboost, LightGBM, and Gradient Boosting

models for the SA Wireless dataset.

Figure 5.18: Top 10 Feature Importance in Catboost, LightGBM, and Gradient Boosting

for Telco Europa Dataset.

65



Figure 5.19: Top 10 Feature Importance in Catboost, LightGBM, and Gradient Boosting

for Telecom Dataset.
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Chapter 6

Discussion and Conclusion

6.1 Discussion

The results of this study provide a comprehensive understanding of the performance of

various machine learning models in predicting customer churn across multiple datasets.

By adopting an individual participant data meta-analysis approach, this research has

been able to integrate raw data, facilitating a nuanced comparison and validation of

predictive models under varying conditions.

6.1.1 Variability in Model Performance

The aggregated results reveal significant variability in the performance of machine learn-

ing models across different datasets and models. The fixed-effect model’s high heterogene-

ity (I2 of 68.76% by ML model and 97.55% by dataset) indicates substantial variability

not accounted for by this model. This high heterogeneity suggests that the differences

in effect sizes are not solely due to sampling error but also due to genuine differences in

dataset characteristics or model capabilities.
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The standard deviations and standard errors across different models and datasets

also highlight this variability. For instance, the Employee dataset exhibited the highest

standard deviation (0.0885) and standard error (0.0256), indicating significant variability

in model performance. This suggests that some datasets are inherently more challenging

for churn prediction, likely due to their unique characteristics or data quality issues.

6.1.2 Top Performing Models and Datasets

Among the machine learning models, Catboost, Lightgbm, and Gradient Boosting con-

sistently demonstrated high performance, with mean AUCs close to or above 0.90. These

models showed relatively narrow confidence intervals, indicating consistent performance

across various datasets. Their high performance can be attributed to their sophisticated

ensemble techniques, which combine multiple weak learners to create a strong predictive

model. These methods are particularly effective in handling complex relationships within

the data and mitigating overfitting.

Conversely, the Decision Tree model exhibited the lowest mean AUC and the highest

variability, suggesting its limited effectiveness in handling diverse datasets compared

to more sophisticated ensemble methods. The inherent simplicity of the Decision Tree

algorithm, while offering interpretability, also leads to higher susceptibility to overfitting

and poor generalization on unseen data.

In terms of datasets, the Internet and Credit Card datasets achieved the highest mean

AUCs, around 0.95, with low standard deviations and standard errors. This consistency

indicates that the models performed well on these datasets, likely due to their inherent

characteristics that align well with the models’ capabilities. Factors such as well-defined

features, balanced target variables, and higher data quality might contribute to the su-

perior performance observed on these datasets.

On the other hand, the Membership dataset posed the most significant challenge,

with the lowest mean AUC and higher variability, indicating that the models struggled

68



to effectively predict churn in this dataset. This could be due to several reasons, such as

the presence of more noise, fewer relevant features, or a higher degree of class imbalance

that complicates the learning process.

6.1.3 Fixed-Effect vs. Random-Effect Models

The comparison between fixed-effect and random-effect models provides further insights.

The fixed-effect model, which assumes a common effect size across studies, showed high

precision but failed to account for the observed heterogeneity adequately. This model is

useful when the studies are assumed to be functionally identical and the only variability is

due to within-study sampling error. However, in real-world applications, this assumption

is often unrealistic due to genuine differences in datasets and study conditions.

In contrast, the random-effect model, which incorporates between-study variability,

offered slightly lower mean AUC estimates with wider confidence intervals but provided

a more realistic assessment by acknowledging the variability across datasets and models.

This model is more appropriate when the datasets are not identical and there is a need

to generalize the findings beyond the included studies.

The random-effect model’s higher pooled effect size estimate for the dataset analysis

(0.86 [0.81, 0.91]) compared to the fixed-effect model (0.85 [0.84, 0.86]) underscores the

importance of considering heterogeneity in meta-analyses. This approach offers a more

generalizable understanding of model performance, essential for practical applications in

varied real-world scenarios.

6.1.4 Discussion on Funnel Plots Analysis

The analysis of funnel plots presented in this study underscores several key insights into

the behavior of machine learning models and the impact of dataset characteristics on

model performance. The findings reveal both the utility of funnel plots in detecting
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biases and their role in identifying models with optimal performance characteristics.

The observed slight asymmetry in the funnel plots for both fixed-effect and random-

effect models by machine learning model suggests a minor bias toward models demon-

strating high performance. This asymmetry, albeit small, could indicate a propensity

for these models to perform better under specific conditions or with particular types of

data, which might not generalize across broader applications. The consistent positioning

of models like Catboost and LightGBM at the peak of these plots highlights their abil-

ity to achieve high accuracy while maintaining a balance between bias and variance, an

essential feature for models intended for practical deployment.

Conversely, the variability shown by models such as Decision Tree and KNeighbors

could be symptomatic of their lower tolerance to changes in data characteristics or their

susceptibility to overfitting. This aspect of model performance is crucial for developers

to consider when choosing models for real-world applications, where data can vary sig-

nificantly from the conditions under which models are trained.

The symmetric distribution of points in the funnel plots by dataset, particularly in

the fixed-effect model, confirms a balanced and unbiased evaluation of datasets. The

high performance noted for datasets like Telco Europa and Telecom suggests that these

datasets are well-suited to developing and testing machine learning models, likely due to

their quality and representative nature. In contrast, the lower performance and higher

variability associated with the Membership dataset highlight the challenges that can

arise from datasets with specific characteristics or limitations. This observation stresses

the importance of careful dataset selection and preparation in achieving reliable model

performance.

The application of funnel plots extends beyond traditional publication bias detection

to a methodological tool for evaluating and selecting machine learning models based on

their performance stability and generalizability. By identifying models that not only

perform well but also show consistent results across different tests, practitioners can

better select algorithms for deployment in varied settings. This approach also offers a
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systematic way to test model robustness before practical application, potentially reducing

the risk of deploying models that perform well in a controlled study but fail in real-world

scenarios.

6.1.5 Feature Importance

The feature importance analysis across various datasets using Catboost, LightGBM, and

Gradient Boosting revealed consistent patterns and highlighted specific variables that are

critical in predicting customer churn.

Demographic Factors: Features such as Age, Tenure, and Membership Term Years

appeared consistently across multiple datasets, underscoring the importance of demo-

graphic factors in predicting churn. This suggests that understanding the age distribution

and customer loyalty can provide valuable insights into customer retention strategies.

Financial Indicators: Financial-related features, including Balance, Estimated-

Salary, and Annual Fees, were significant across various datasets. These findings high-

light the role of financial stability in customer decision-making, where customers with

higher financial stability may be less likely to churn. This indicates the importance of

considering customers’ financial health when designing retention strategies.

Usage Patterns: Usage-related features, such as Total Trans Ct, Total Revolving Bal,

and Total Spend in Months 1 and 2 of 2017, were critical indicators of churn. These re-

sults suggest that customers who engage more frequently with the service or product are

less likely to churn. Monitoring these patterns can help identify at-risk customers and

design interventions to improve customer engagement and retention.

Contractual and Behavioral Factors: Features related to contracts and customer

behavior changes, such as Contract Month-to-Month and changes in service usage (e.g.,

changer and changem), were vital in predicting churn. These factors highlight the im-

portance of flexible contract terms and monitoring customer behavior to reduce churn
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rates. Companies should consider offering flexible contract options and closely monitor-

ing customer behavior to preemptively address potential churn.

Incentives and Support: Features like CashbackAmount and Retention Calls (ret-

calls) pointed to the significance of customer incentives and support in retention strate-

gies. This suggests that companies should implement more personalized incentives and

enhance customer support to improve retention. By focusing on these factors, businesses

can better align their offerings with customer needs and preferences, thereby reducing

churn.

Overall, this analysis provides valuable insights into the factors driving customer

churn across different industries and datasets. It also demonstrates the robustness of

the top-performing models (Catboost, LightGBM, and Gradient Boosting) in identifying

these critical features. These findings can be used to refine customer retention strategies,

focusing on the key drivers of churn identified in this study.

6.1.6 Implications for Practice

The insights gained from this meta-analysis have several practical implications. Firstly,

the consistent high performance of ensemble methods like Catboost, Lightgbm, and Gra-

dient Boosting suggests that these models should be prioritized in customer churn pre-

diction tasks. Their ability to handle complex data structures and mitigate overfitting

makes them well-suited for diverse datasets encountered in real-world applications.

Secondly, the significant variability in model performance across different datasets

highlights the need for dataset-specific strategies. For instance, datasets like Member-

ship, which pose more challenges, may benefit from additional preprocessing steps such

as feature engineering, advanced imputation techniques for missing values, and more so-

phisticated methods for handling class imbalance.

Furthermore, the results underscore the importance of using random-effect models
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in meta-analyses involving heterogeneous datasets. By accounting for between-study

variability, these models provide a more accurate and generalizable estimate of effect

sizes, which is crucial for informing practical decisions and ensuring the robustness of

predictive models in diverse settings.

6.1.7 Contributions of This Research

This research makes several significant contributions to the field of machine learning and

customer churn prediction:

• Methodological Advancement: By employing an IPD-MA approach, this study

integrates raw data from multiple datasets, allowing for a more nuanced and robust

comparison of machine learning models. This methodological advancement can be

applied to other domains where meta-analysis of machine learning performance is

required.

• Handling Heterogeneity: The research demonstrates the importance of account-

ing for heterogeneity in meta-analyses by comparing fixed-effect and random-effect

models. This contribution is crucial for developing more reliable and generalizable

predictive models in varied real-world scenarios.

• Practical Insights: The findings offer practical insights for practitioners in select-

ing and optimizing machine learning models for customer churn prediction. The

detailed analysis of model performance across different datasets provides a valuable

reference for tackling similar prediction tasks in industry.

• Future Research Directions: The study identifies key areas for future research,

such as exploring additional datasets, refining models, and incorporating more ad-

vanced machine learning techniques. These directions can guide further advance-

ments in the field and improve predictive accuracy and generalizability.
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6.1.8 Limitations and Future Research

While this study provides valuable insights, it also has several limitations. The reliance on

publicly available datasets means that the findings may not fully generalize to proprietary

datasets with different characteristics. Additionally, the study focused on a limited set

of machine learning models and did not explore the full spectrum of possible algorithms

and their hyperparameters.

Future research should aim to include a broader range of datasets, especially those

from different industries and contexts, to validate the findings further. Additionally,

exploring more advanced and hybrid machine learning models, as well as automated ma-

chine learning techniques, could yield even better performance and more robust insights.

6.2 Conclusion

This study has demonstrated the effectiveness of the IPD-MA approach in evaluating the

performance of machine learning models for predicting customer churn across multiple

datasets. The findings highlight the importance of considering dataset characteristics

and model capabilities in such analyses. Key takeaways from this research include:

• High-Performing Models: Catboost, Lightgbm, and Gradient Boosting emerged

as the top-performing models, consistently achieving high AUCs across various

datasets. These models should be prioritized for churn prediction tasks in future

applications.

• Dataset Challenges: The variability in model performance across datasets un-

derscores the need for tailored approaches. The Internet and Credit Card datasets

demonstrated high model performance, whereas the Membership dataset posed sig-

nificant challenges, highlighting the necessity for dataset-specific strategies.
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• Meta-Analysis Models: The comparison between fixed-effect and random-effect

models emphasized the importance of accounting for heterogeneity in meta-analyses.

The random-effect model provided a more comprehensive understanding of model

performance by incorporating between-study variability.

Overall, this research contributes to the field by providing a robust methodological

framework and actionable insights for improving churn prediction models. Future work

should focus on exploring additional datasets and refining models to further enhance

predictive accuracy and generalizability. By leveraging the findings of this study, practi-

tioners can make informed decisions in selecting and optimizing machine learning models

for effective customer churn prediction.
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Appendix A

Source Codes

The data and code for this project is stored in this GitHub Repository.
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