
THOMPSON RIVERS UNIVERSITY

Collectible Asset Valuation and Forecasting - Insights

from Magic: The Gathering

By

Roberto Primo Curti Sanches

A PROJECT SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science in Data Science

KAMLOOPS, BRITISH COLUMBIA

August, 2024

SUPERVISORS

Dr. Erfanul Hoque

Dr. Sean Hellingman

© Roberto Primo Curti Sanches, 2024



Abstract

Magic: The Gathering (MtG) represents a significant and dynamic market
for collectible trading cards, characterized by fluctuating prices driven by
tournament results, player demand, and card rarity. This thesis explores
time series forecasting techniques applied to the MtG card market, focus-
ing on forecasting card prices using statistical and machine learning models.
Specifically, the research compares the performance of traditional methods
such as ARIMA, RandomWalk, and NNETAR models to a proposed forecast
combination neural network model.

A comprehensive database was created, combining price, tournament,
and card attribute data, and feature engineering was employed to enhance
the predictive power of the models. The methodology incorporates advanced
statistical techniques and machine learning to build a more accurate and
robust forecasting system. The results indicate that the proposed neural
network model outperforms traditional methods in forecasting accuracy. This
project also presents the ts.shiny application, an interactive tool which offers
an accessible platform for visualizing and analyzing time series data.

The research concludes with insights into the factors driving MtG card
prices and suggestions for improving forecasting models and applications in
the future.

Keywords: ARIMA, Collectible Market, Forecast Combination, Ma-
chine Learning, Magic: The Gathering, Neural Networks, Time series fore-
casting.
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”I must not fear.
Fear is the mind-killer.

Fear is the little-death that brings total obliteration...”
— Litany Against Fear, Frank Herbert
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Chapter 1

Introduction

Throughout history, humans have constantly attempted to predict and ex-

plain the future, from seers and prophets of classical times to modern statis-

ticians and data scientists. The methods and approaches have evolved, but

the quest remains the same. Regardless of prophetic interpretations of nat-

ural events, the deterministic belief of gods and dice, or butterfly flapping

wings, our trust that the ‘lessons of days gone by teach us what will come to

pass’ continues.

The utilization of time series and forecasting statistical inference per-

vades an extensive array of phenomena, from natural occurrences such as

weather and earthquakes to health-related pathologies. It extends to rou-

tine corporate and financial operations for sales forecasting or asset price

predictions. Its ubiquitous applications across disciplines such as economics,

finance, engineering, and environmental sciences underscore the indispens-

able role of time series analysis in revealing underlying patterns, trends, and

interdependencies embedded within temporal data.

1



This chapter introduces ‘Magic: The Gathering’ (MtG) and identifies

the shortcomings in the current forecasting methods when applied to such

collectible markets. Based on this, the scope and the aims of the Thesis are

identified.

1.1 Background of Study

Magic: The Gathering, created in 1993 by Richard Garfield, Ph.D., is the

world’s first and most famous trading card game, credited as the origin of

modern trading card games. It is a fantasy-themed trading card game owned

by Wizards of the Coast (WotC), with an estimated 50 million players world-

wide over its history [Hasbro, 2023], MtG has grown to be one of the largest

and most popular card games globally. It features over 25,000 unique cards,

with new editions or sets released every few months, each containing a mix

of new cards and reprints of older ones.

The game involves players using a carefully constructed set of cards to

strategically outmaneuver their opponents while attempting to achieve one of

the conditions for victory. Players build decks ranging from 40 to 250 cards,

from over 25,000 unique cards, employing various strategies and playstyles,

ranging from aggressive approaches to control and adaptable midrange tac-

tics.

Hasbro, the parent company of WotC, generates approximately $1.1 bil-

lion of its $5 billion annual earnings from MtG card sales [Schmidt, 2023].

The game’s appeal lies in its complexity and adaptability, allowing players

to build unique decks from its extensive card pool. This customization and
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the strategic depth of optimizing resources to control or defeat opponents

attract players to local, national, and international tournaments. The value

of individual MtG cards depends on their utility and power within popular

decks, similar to the valuation of sports cards based on player performance.

Certain cards, either by high desirability or low demand, present a price in-

crease several times higher than established indices in the financial market

(Figure 1.1).

Figure 1.1: Comparison of ’Reserved List’ returns to other financial indices

The primary market for MtG involves WotC selling physical products to

distributors that, in turn, supply specialized stores, game shops, and book-

stores. Unlike most products, MtG cards are typically sold in randomized

packs, meaning players cannot directly purchase specific cards. Still, they

must rely on chance or the secondary market, which, when applied to the

MtG community, defines the trade of single cards by players or game stores

to acquire desired cards. This robust secondary market provides thousands

of jobs annually for store owners, investors, and traders who buy and sell

individual cards and sealed products.
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Figure 1.2: Play Booster Content Breakdown Graphic. From “In-
troducing Play Boosters: The Best of Two Worlds Combined,”
by Wizards of the Coast, 2024, https://wpn.wizards.com/en/news/

introducing-play-boosters-the-best-of-two-worlds-combined.

MtG cards are sold in booster packs containing a random assortment of

cards (Figure 1.2). While each set includes a few highly valuable cards, most

cards in a pack are of lower value, mirroring the dynamics seen in sports

card collecting. The expected value of the contents in most sealed products

is often less than the retail price, introducing an element of chance similar to

gambling. This randomness, combined with the game’s strategic elements,

contributes to the vibrant secondary market and the ongoing popularity of

MtG. Through this secondary market, players spend hundreds or thousands

of dollars to build a single deck to play the game (Figure 1.3). An expendi-

ture that often repeats as the sets rotate out of use, new strategies become

dominant, or the player delves into a different game format. Analyzing these

cards’ relationships and market trends presents a fascinating opportunity for

understanding and predicting card values in this unique collectible market.
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Figure 1.3: Market value price of competitive decks

MtG’s competitive scene includes organized international tournaments,

with a total prize pool of millions of dollars, and a significant secondary mar-

ket for trading cards, where some individual cards can sell for thousands of

dollars. This market is dynamic, driven by the limited print runs of cards,

new releases, and the evolving strategies of the game. The substantial sec-

ondary market for MtG cards draws comparisons to stock markets, presenting

opportunities for investment and speculation.

1.2 Motivation

Deckbuilding in MtG is a critical aspect of gameplay, leading to extensive

discussion, analysis, and testing by players. Numerous websites and on-

line forums are dedicated to cataloguing, showcasing, and rating tournament

decks. The complexity of deckbuilding arises from the intricate interactions

between cards [Ward et al., 2021]. MtG cards possess a range of attributes,

including both numerical values and descriptive text detailing various effects

and abilities. The strength of a card is not always immediately apparent;
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a seemingly underwhelming card can exhibit strong synergies with specific

other cards [Alvin et al., 2021]. Identifying these synergies is a significant

part of the game. Experienced players develop a keen ability to recognize

positive synergies, evaluate card potential, and anticipate opponents’ choices.

This dynamic creates a unique interplay between the game and its finan-

cial value. Unlike other collectibles, MtG cards possess intrinsic deterministic

values governed by clear and established rules. This allows players to differ-

entiate between valuable and less valuable assets within a closed system. The

game’s competitive nature drives this system, where the emergence of dom-

inant strategies leads to increased demand for certain cards, subsequently

raising their value and price. In contrast, the demand and price for others

decline. With over 30 years of comprehensive data, these interactions can be

analyzed in detail.

This research, therefore, proposes that forecasting the prices of Magic:

The Gathering cards is an intriguing problem worthy of exploration.

1.3 Problem Statement

Time series analysis is a powerful statistical tool for understanding data col-

lection patterns, predicting trends, and making informed decisions. However,

using historical data to forecast future outcomes is complex, raising questions

about stationarity, linearity, and the need for exogenous or endogenous vari-

ables. Real-world data, such as the market for MtG cards, often defies simple

theoretical classifications, appearing convoluted and multifaceted.

Traditional methods like autoregressive (ARMA and ARIMA) and expo-

6



nential smoothing models rely on strict assumptions [Box and Jenkins, 1968],

which may not always hold in the context of the MtG market [Di Napoli,

2017]. For example, the randomness of booster packs, which indirectly af-

fects the supply of rare cards, and the periodic introduction of new sets create

non-stationary data patterns that these traditional models may struggle to

handle. Dynamic or state-space models offer greater flexibility by incorporat-

ing external variables, such as market trends and player strategies, capturing

system dynamics more precisely.

Effective time series analysis requires adherence to two core principles:

stationarity, where statistical properties remain constant over time, and iden-

tifying trends over extended periods. However, the MtG market often ex-

hibits non-stationarity, with properties changing due to trends, seasonal vari-

ations, or random processes. Ignoring these shifts can result in inaccurate

forecasts.

External factors, such as market rules, regulatory changes, and socio-

economic influences, further complicate the analysis by altering time se-

ries trends. MtG’s competitive nature, with its tournaments and evolving

strategies, drives demand for specific cards, influencing their market value.

The emergence of dominant strategies increases demand for counter-strategy

cards while others decline in value.

Therefore, traditional time series analysis methods may fall short in the

MtG context. This research aims to enhance the reliability and effective-

ness of time series analysis by addressing these challenges and expanding its

applications to understand better and predict the values of MtG cards in

the secondary market. This involves capitalizing on comprehensive historical

data and advanced statistical models to capture the intricate dynamics of

7



this unique collectible market.

1.4 Objectives of Study

This research aims to deepen the understanding of external influences on

time series data and propose a model for forecasting MtG card prices. Fo-

cusing on the collectible market, particularly MtG, this study will critically

decompose predictor features, dissecting the card price time series into its

fundamental components and isolating the impacts of these external vari-

ables. The comprehensive analysis proposed here is expected to significantly

enhance forecasting capabilities, yielding more robust, accurate, and action-

able predictions.

1.4.1 Creation of a Consolidated Database for Study

Despite over 30 years of history, there is no single comprehensive source for

data on MtG prices and influencing variables. Tournament results, price

data, and card statistics are scattered across different sources. The first

objective of this research is to create a unified database encompassing all

relevant information regarding Magic: The Gathering.

1.4.2 Performance Evaluation of Current Techniques

The second objective focuses on evaluating the performance of existing time

series analysis techniques under the influence of strong external factors present

8



in the MtG market. This inquiry seeks to determine whether current tech-

niques perform differently under such conditions, assessing their accuracy

and reliability. By scrutinizing these methods, the research aims to identify

limitations in current practices and inform the development of more effective

techniques.

1.4.3 Comparison of Proposed vs. Generic Models

The third objective explores the effectiveness of a neural network-based fore-

cast combination model compared to established models, such as ARIMA,

RW and NNETAR. This study posits whether a data-driven model tailored to

a specific time series would outperform a generic model in the context of the

MtG market. While generic models offer a universally applicable approach,

their efficacy may diminish when dealing with time series data influenced

by persistent external factors. A comparative study will be conducted to

test this hypothesis, contributing to the development of optimized models

for time series analysis.

1.4.4 Development of Data Visualization Application

The final objective concerns the development of an interactive data visu-

alization tool. Both time series forecasting and MtG are highly specialized

areas that rarely overlap. Introducing an interactive tool allows MtG domain

experts to better understand statistical concepts and applications while al-

lowing time series experts to explore better data in a foreign domain.

9



1.5 Study Outline

The remaining seven chapters of this project are structured as follows: Chap-

ter 2 discusses the structured literature review, findings, and interpretations;

Chapter 3 presents the consolidated database and its creation process; Chap-

ter 4 details the process of selecting cards for use in the modelling; Chapter 5

outlines the implementation of the modelling and the respective methodol-

ogy; Chapter 6 covers the analysis discussed in the previous chapter and

presents the results; development and description of a ready-to-use data vi-

sualization application is discussed in Chapter 7; finally, Chapter 8 concludes

the thesis by summarizing the results and suggesting future work.

10



Chapter 2

Literature Review

This chapter presents a brief background on asset price changes and forecast-

ing. First, it demonstrates its application to the financial market and how

the methods changed over time to reach the current “state of the art” of the

field. Then, it explains the initial conceptualization of performing an analy-

sis of non-financial assets, such as art or collectibles, and how this field has

grown over the past couple of decades. Finally, it discusses previous works

on MtG and how the game has drawn research interest.

2.1 Applications of Time Series Forecasting

The application of time series forecasting spans multiple fields, each bene-

fiting from the method’s ability to predict future trends based on historical

data. First published in 1922, one of the earliest applications was meteorol-

ogy. Lewis Fry Richardson’s work [2007] laid the groundwork for numerical

11



weather prediction by pioneering mathematical models to forecast weather

patterns.

Time series forecasting has played a crucial role in monitoring and pre-

dicting disease outbreaks in healthcare and epidemiology. The methods in-

troduced by Box and Tiao [1975] have been instrumental in analyzing in-

terventions in time series data, for applying stochastic models to represent

the noise and intervention effects, enhancing the accuracy of estimating the

magnitude and nature of changes caused by interventions. More recently,

machine learning models have been applied to epidemiological forecasting

application of non-parametric methods for influenza prediction, as demon-

strated by Viboud et al. [2003], who utilized the method of analogues to

effectively predict influenza activity across national and regional levels, out-

performing traditional autoregressive models in terms of accuracy and fore-

casting horizon.

In retail and inventory management, time series forecasting is crucial for

optimizing stock levels and meeting customer demand. Building upon the

foundational methods introduced by Brown [1959] and Holt [2004], which

established sound mathematical theories for computing the average rate of

demand and the maximum reasonable demand during a lead time, Winters

[1960] extended these concepts by introducing a seasonal adjustment com-

ponent into exponential smoothing models, making them more effective for

forecasting sales patterns that exhibit both trend and seasonal variations.

Adopting machine learning techniques has revolutionized time series fore-

casting across multiple domains. The exploration of Support Vector Ma-

chines (SVM) by Vapnik [1995] paved the way for practical applications in

various fields by introducing a rigorous theoretical foundation for maximizing

12



the margin between data classes, which has been instrumental in improving

the generalization performance of models on unseen data.

2.1.1 Time Series Forecasting in Financial Markets

The application of time series forecasting to financial markets began with

Alfred Cowles [1933], who examined the predictive accuracy of financial an-

alysts and demonstrated that their forecasts often performed no better than

random chance. This early work laid the groundwork for understanding the

complexities of financial market prediction, further explored by Kendall’s

[1953] analysis of time series, revealing the stochastic nature of economic

data and challenging the assumption of predictable trends in stock prices.

A significant shift occurred in 1970 with Eugene Fama’s Efficient Mar-

ket Hypothesis (EMH) [1970]. Fama’s EMH posited that stock prices are

unpredictable, challenging the premise of time series forecasting in financial

markets. Despite this, the work of Box, Jenkins, and Reinsel [1968] provided

a robust framework for modelling financial time series with their ARIMA

models, which allowed for systematic analysis and forecasting of economic

data.

The evolution of time series forecasting in financial markets continued

with the introduction of econometric models. Robert Engle’s [1982] devel-

opment of the Autoregressive Conditional Heteroskedasticity (ARCH) model

enabled the modelling of time-varying volatility in financial data by allow-

ing for a conditional variance to change over time as a function of past er-

rors, thereby capturing the clustering of volatility often observed in financial

markets. Tim Bollerslev [1986] expanded this with the Generalized ARCH

13



(GARCH) model, which generalized the ARCH model to include past con-

ditional variances in the current variance equation, providing a more flexible

framework for modelling and forecasting volatility in financial markets.

In recent years, the adoption of machine learning has significantly ad-

vanced financial time series forecasting. The exploration of Support Vector

Machines (SVM) by Vapnik and colleagues in the 1990s paved the way for

practical applications in market prediction. Building on this, deep learn-

ing models, particularly Long Short-Term Memory (LSTM) networks, have

emerged as state-of-the-art techniques. The application of LSTM networks

in financial forecasting has been demonstrated by researchers such as Fischer

and Krauss [2018] in their paper “Deep learning with long short-term mem-

ory networks for financial market predictions,” highlighting the enhanced

accuracy and capability of these models in capturing complex patterns in

financial data due to their ability to effectively model temporal dependen-

cies and learn from sequences, leading to superior predictive performance

compared to traditional machine learning methods.

2.1.2 Forecasting in collectibles and Non-financial As-

sets

Research on forecasting in collectibles is relatively limited compared to fi-

nancial markets. The initial work often focused on art markets and antiques.

One of the earliest studies was by Baumol [1985] in “Unnatural Value: Or

Art Investment as a Floating Crap Game,” which analyzed the volatility and

returns in art markets and concluded that art investment carries high risk

with returns that may not justify the investment compared to other financial
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assets. This foundational work set the stage for further exploration into the

predictability of prices in the collectibles market.

The development of hedonic pricing models significantly advanced the

field. Chanel, Gérard-Varet, and Ginsburgh [1996] in “The Relevance of

Hedonic Price Indices” explored the use of these models to forecast prices in

art and antique markets, providing a systematic approach to understanding

price determinants and highlighting the importance of quality adjustments

in pricing data. Goetzmann [1993] in “Accounting for Taste: Art and the

Financial Markets over Three Centuries” provided an extensive historical

analysis of art prices and their predictability, finding a strong correlation

between art prices and broader financial market trends, which suggested that

art prices tend to follow economic cycles and are influenced by the wealth of

investors.

Recent advancements have seen the incorporation of machine learning

techniques. Ashenfelter and Graddy [2003] in “Auctions and the Price of

Art” discussed the application of econometric and machine learning models

to forecast auction prices, demonstrating that these models could improve

prediction accuracy by accounting for complex variables such as bidder be-

haviour and auction dynamics. The predictability of returns on niche col-

lectibles like stamps or coins has also been studied, with Burton and Jacobsen

[1999] examining these markets in “Measuring Returns on Investment in Col-

lectibles,” where they explored the investment potential of collectibles and

emphasized the importance of market-specific factors in forecasting returns.

Additionally, niche collectibles such as sports cards and comic books have

been subjects of academic inquiry. In “An Introduction to the Collectible

Sportscard Market,” O’Brien, Gramling and Rodriguez [1995] explored the
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investment potential while considering different portfolio strategies, illustrat-

ing these markets’ volatility and unique risks. Wyburn and Roach [2012] in

“A hedonic analysis of American collectible comic book prices” examined fac-

tors affecting comic book prices, providing insights into how variables such

as condition, rarity, and demand contribute to price fluctuations and their

implications for forecasting in these specialized markets.

Despite the diverse applications illustrated by these authors, financial

analysis for non-financial assets is still a relatively unexplored field. Lit-

erature on this still focuses on demonstrating its similarity to traditional

investment assets, presenting non-financial assets as a portfolio strategy for

risk management, or identifying valuable attributes within a niche. Still, due

to their low volatility, no study focused on forecasting future prices. How-

ever, this trait is not shared by MtG singles, which show extreme volatility

and trade volume in short periods compared to other collectibles.

2.2 Time Series Forecasting for MtG

Research on MtG is relatively sparse, even within niche collectibles. Despite

its significant presence in modern popular culture and the active engagement

of its community, discussions on MtG are seldom recognized as academic or

scientific evidence.
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2.2.1 Review of Previous Research

Despite limited work on time series analysis in MtG, some studies have

explored its potential as an investment asset. Langelett and Wang [2023]

compare the returns of MtG’s sealed products to other financial indexes,

discussing their inclusion in traditional portfolios for diversification, and find

that these products offer competitive returns with unique diversification ben-

efits within an investment portfolio.

Di Napoli delved deeper into investment strategies in his thesis, “Multi-

asset Trading with Reinforcement Learning: An Application to Magic the

Gathering Online” [Di Napoli, 2017]. He proposed a machine learning-based

trading strategy for Magic: The Gathering Online (MTGO), the digital coun-

terpart of the tabletop game, which has its virtual economy, demonstrating

the viability of reinforcement learning in optimizing multi-asset portfolios

within a complex, dynamic market.

Studies on MtG span various topics beyond time series forecasting. Sa-

jaki [2019] applied regression models to predict card prices based on card

attributes, providing insights into how specific features of cards, such as rar-

ity and set, influence their market value. The computational aspects of MtG

have garnered significant attention, with research ranging from developing

autonomous agents to play the game, as proposed by Ward [2021] and Alvin

[2021], who both worked on creating competitive AI frameworks that can

effectively strategize and make in-game decisions based on the complex rule

set of MtG.

Further, studies by Bjørke and Fludal [2017], and Tieber and Felfernig

[2021] explored modelling card selection and deck building, illustrating how
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computational methods can be employed to optimize deck configurations

for various game formats. Additionally, Cowling’s research [2009] examined

the application of Monte Carlo search techniques to card selection in MtG,

demonstrating that these techniques could significantly enhance the decision-

making process by simulating numerous game outcomes to choose optimal

plays under uncertainty, even with the game’s inherent complexity. Churchill

[2019] also demonstrated the game’s Turing completeness, highlighting the

computational depth and potential for AI research within the MtG domain.

These studies illustrate the diverse applications and evolving methodolo-

gies. Although some of these are related to financial analysis, such as the

work from Di Napoli, literature review showed a clear gap regarding card

price forecasting through time series analysis.
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Chapter 3

Database Creation

+

This chapter delves into the data sources and preprocessing steps essen-

tial for analyzing and forecasting MtG card prices. The fragmented nature

of the data necessitates a meticulous approach to data collection and prepa-

ration. By sourcing data from various platforms, such as MTGGoldfish,

MTGTop8, and MTGJSON, and applying preprocessing techniques, a com-

prehensive dataset was constructed to support the development of accurate

forecasting models. The following sections outline the specific data sources

and the preprocessing methods employed to ensure consistency, reliability,

and the effective integration of these diverse data streams.
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3.1 Data Sources

The analysis and forecasting of MtG card prices rely on diverse and frag-

mented data sources, reflecting the nascent stage of academic research in this

area. Unlike more established fields, consolidated academic-level datasets are

scarce for MtG card price forecasting. Consequently, this research data col-

lection process integrates information from multiple public and proprietary

sources, each offering unique insights and challenges.

Given the fragmented nature of the data, meticulous curating and prepro-

cessing of the datasets is essential to ensure consistency and reliability. The

data can be broadly categorized into three main types: price data, tourna-

ment data, and card-related data. Each type provides a distinct perspective

on the factors influencing card prices and contributes to the robustness of

our forecasting models.

By synthesizing these diverse data sources, constructing a comprehensive

dataset that captures the multifaceted nature of MtG card prices is possible,

facilitating more accurate and reliable forecasting.

3.1.1 Price Data

The price data for MtG cards used in this study are sourced from MTGGold-

fish [n.d.], one of the largest online databases for MtG decks. MTGGoldfish

hosts comprehensive card information and aggregates the latest decks, in-

dividual card details, and recent listings from significant e-commerce mar-

ketplaces, including eBay. MTGGoldfish compiles a price history for each

card based on daily prices from TCGPlayer, the largest MtG marketplace
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in North America and owned by eBay [TCGplayer, 2022]. This aggregated

price history is essential for conducting time series analysis.

Although MTGGoldfish does not provide an API or direct method for

requesting this data, it makes each time series available for download on in-

dividual card sub-pages for subscribers. A web crawler bot was developed

in Python to collect this extensive dataset to retrieve price data for over

40,000 cards individually. During this process, non-commercial sets (a clas-

sification applied to any set not designed and destined for tournament play)

were excluded from the data selection to avoid overwhelming the site with

unnecessary requests and focus computational resources on relevant data col-

lection.

Despite MtG being a game with over 30 years of history, reliable price

data with fine temporal granularity has only been consistently collected since

2011. Before this, historical price information was sporadically available in

monthly card game magazines such as InQuest and Duelist. However, not

all cards were listed regularly, making constructing a consistent historical

database impossible. Even post-2011, there has been some inconsistency

in price data for low-demand cards during the early months of data collec-

tion. Therefore, this study restricts the data collection window from Septem-

ber 2013 to September 2023 to ensure the reliability and consistency of the

dataset.

3.1.2 Tournament Data

Tournament data provides valuable insights into the competitive landscape of

Magic: The Gathering (MtG), reflecting the popularity and effectiveness of
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specific cards in high-stakes play. This study’s tournament data was sourced

from MTGTop8 [n.d.].

MTGTop8 is a comprehensive database that tracks top-performing decks

from various competitive events, including the professional tournament cir-

cuit (Grand Prix, Pro Tours, and Magic Online Championships). This plat-

form offers detailed information on deck compositions, individual card usage,

and tournament outcomes, which is crucial for understanding the competitive

meta and card performance over time.

The collected tournament data spans a significant period, covering events

from September 2013 to September 2023. This period was chosen to align

with the price data collection window, ensuring consistency across datasets.

As for the tournament selection, MtG has thousands of tournaments each

year, ranging from casual to the highest level of play. Only the professional

tournament circuit and the qualifiers that lead directly to them were consid-

ered for this research.

In addition to the tournament usage of cards, an important concept con-

sidered in this study is the legality of cards in each game format. Official

MtG tournaments are governed by WotC, which regularly updates the rules

to maintain a stable and healthy competitive environment. One of these up-

dates may involve banning a card, rendering it illegal in decks while the ban

is active. These updates, decided by the parent company and communicated

through their website [of the Coast, n.d.], were also scraped and included in

the database.

Integrating tournament data with price data can help better understand

the factors driving card prices. For instance, cards frequently appearing in
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Figure 3.1: Plot showing the card price and tournament use side by side.

top-performing decks tend to experience price increases due to higher demand

from competitive players during periods around the professional tournaments

and their qualifiers (Figure 3.1). Conversely, cards that fall out of favour in

the meta may see price declines. This correlation between tournament perfor-

mance and market value underscores the importance of including tournament

data in our analysis and forecasting models.

3.1.3 Card Related Data

Card-related data encompass various attributes and characteristics of MtG

cards, providing essential context that enhances the accuracy of our fore-

casting models. This study primarily utilizes data from MTGJSON [n.d.], a

comprehensive and easy-to-use resource aggregating card data from multiple

sources.

MTGJSON offers a well-structured API that facilitates efficient data

retrieval, making it the preferred choice for this study. The data includes
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detailed information on card attributes such as card name, set, rarity, colour,

mana cost, type, and abilities (terms that will be explained when discussing

feature selection). This rich dataset is crucial for understanding each card’s

intrinsic value and appeal and identifying potential factors influencing card

prices.

Although other sources, such as Wizards of the Coast’s official database

and Scryfall, provide valuable card information, MTGJSON was selected for

its ease of use and the comprehensiveness of its API. MTGJSON aggregates

data from these sources, ensuring high accuracy and consistency in the in-

formation provided.

Integrating card-related data with price and tournament data allows a

better understanding of the factors influencing MtG card prices. Attributes

such as rarity and card abilities can significantly impact a card’s desirability

and market value. For instance, rare cards with powerful abilities are often in

higher demand and with increased prices. Understanding these relationships

is critical for building accurate and robust forecasting models.

3.2 Preprocessing

A comprehensive preprocessing step ensures the collected data is suitable for

analysis and forecasting. This step is crucial for maintaining the dataset’s

integrity, consistency, and reliability.
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3.2.1 Data Cleaning

Most preprocessing focused on standardizing card information across the

three data sources, as each had its system. Additionally, addressing missing

values was a significant concern.

Missing Values

The initial step in the preprocessing stage involved carefully identifying and

addressing any missing values within the dataset. MTGJSON provides a

complete and well-structured dataset, minimizing the prevalence of missing

values. Data scraped from MTGTOP8 are generally well-structured and of

high integrity. Most data issues arise from non-professional tournaments or

missing decks from certain events. Although missing decks from tournaments

are not ideal, the overall impact on the dataset is minimal since this issue

does not affect the top eight or sixteen decks of each tournament, and non-

professional tournaments are excluded from the analysis.

As previously mentioned, price data gathered from MTGGoldfish may

occasionally have gaps for low-demand cards during the early months of data

collection. To address these gaps, the first few months of price data were ex-

cluded from the analysis, only including data from September 2013 onward,

where coverage is more reliable and consistent. Additionally, linear interpo-

lation was applied to estimate missing prices for individual cards over short

periods within the defined data collection window. Missing data for card

prices were only observed for a few cards with low demand and comprised

less than 1% of the dataset before interpolation.
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3.2.2 Feature Engineering

As part of this study, in addition to those scraped from the previous sources, a

series of features were engineered from the raw data to support the modelling

process.

Tournament-Based Features

Tournament data was leveraged to create features that reflect cards’ com-

petitive performance and popularity.

Card Appearances: This feature counts the number of decks that include

the card. It was engineered separately for the five main tournament formats

(Legacy, Modern, Pioneer, Standard, and Vintage) and the combined values

across all formats. The calculation is based on the card’s presence in the

decklist -the official list players must fill out with the cards they are playing

for that tournament- in each format.

X(i,j,t)
app =

N(j,t)∑
k=1

D
(j,t)
k . (3.1)

Where X
(I,j,t)
app is the card i appearances feature for format j and time t,

and N (j,t) is the total number of decks. The variable D
(j,t)
k is an indicator for

deck k in format j and time t, where D
(j,t)
k = 1 if the deck includes card i,

and D
(j,i)
k = 0 otherwise.

26



Card Count: This feature counts the total number of copies of the card

across all tournament decks. Like Card Appearances, it was engineered for

each main format individually and for their combined values. The calculation

considers the number of times a card appears in a decklist.

X
(i,j,t)
count =

N(j,t)∑
k=1

C
(i,j,t)
k . (3.2)

Where X
(i,j,t)
count is the card i count feature for format j and time t, N (j,t)

is the total number of decks. The variable C
(i,j,t)
k is the number of copies of

card i in deck k in format j and time t.

Card Legality: This feature is a boolean flag indicating whether the card

is legal in a specific format. It was engineered once for each format, based

on the official rules and updates provided by WotC.

X
(i,j,t)
leg =

1 if the card i is legal in format j at time t,

0 if the card i is banned in format j at time t.

(3.3)

Card Meta Features

Features based on card attributes were engineered to capture the intrinsic

qualities of each card:
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Card Age: This feature represents the number of days since the card’s

release. It captures the idea that older cards may become less available over

time.

X(i,t)
age = t− Release Date of Card i. (3.4)

Where X
(i,t)
age is the age of card i at time t in days, and both t and “Release

Date of Card i” are the dates expressed in a consistent format.

Card Rotation Age: This feature calculates the days until the card is

removed from the Standard format, which rotates its legal sets yearly. This

metric reflects the potential decline in demand from its removal of the Stan-

dard format pool as a card approaches its rotation date. Despite being only

one of five tournament legal formats analyzed, Standard represents just under

half of the tournament data.

X
(i,t)
rot age = Rotation Date of Cardi− t (3.5)

Where X
(i,t)
rot age is the rotation age of card i at time t in days, and the

“Rotation Date of Card i” is the scheduled date when the card will no longer

be legal in the Standard format.

Print Count: This feature counts the number of times the card has been

reprinted. Since reprinting increases the card’s availability, this feature cap-

tures the impact of supply on the card’s market dynamics.
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X
(i,t)
print count = Number of Reprints of Card i (3.6)

Where X
(i,t)
print count represents the total number of times card i has been

reprinted across different MtG sets at time t.

Card Attribute Features

MtG is a game of resource management at its core, and a card’s playability is

always considered in a cost-efficiency ratio. A card’s cost is represented by its

mana cost, indicated by a series of numbers and symbols often positioned at

the card’s upper right corner (Figure 3.2). As a card becomes more expensive

or restrictive to play compared to others, it becomes less desirable to players,

which may affect its demand.

Colour Count: This feature counts the number of colours associated with

a card. A player must generate resources, or mana, of the corresponding

colour to play a card. A player’s ability to play a card in MtG is inversely

proportional to the number of colours it is associated with.

X
(i)
col count = Number of colours associated with card i (3.7)

Where X
(i)
col count is the colour count feature for card i.

Mana Pips: This feature counts the number of colour-specific resources

required to play a card. A player must use generic or colour-specific re-
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Figure 3.2: MtG card with its cost and effect highlighted

sources when paying for a card’s cost, representing the colour-specific cost

requirement of a card.

X
(i)
mana pips = Number of colour-specific mana symbols in the cost of card i

(3.8)

Where X
(i)
mana pips is the number of mana pips for card i.

Total Mana Cost: This feature represents the overall cost of playing a

card. In MtG, maintaining cost efficiency is one of the player’s main con-

cerns when building their decks; overcosted cards, those that outperform the

average for their cost, tend to be ignored, while undercosted cards, those
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that underperform the average for their cost, are prioritized.

X(i)
cmc = Total mana cost of card i. (3.9)

Where X
(i)
cmc is the total mana cost for card i.

Oracle Count: A card’s efficiency is also based on its impact in the game,

which is related to its rules and static values, represented by the text in the

rules box and, for some card types, the values in the lower right corner of the

card. Magic is governed by a core set of game rules, modified or circumvented

by a card’s specific rules text. The more a card modifies the game’s basic

rules, the more powerful it becomes. Therefore, this simplified approach to

the rules was modelled as follows:

X
(i)
oracle count = Number of characters in the rules text of card i, (3.10)

where X
(i)
oracle count is the oracle count feature for card i, representing the

number of characters in its rules text. Although a word count is not directly

correlated with card strength, there is a correlation between the design need

to explain rules specifications and the length of the rules of a card text

[Rosewater, 2002].

Static Features: The features described under Section 3.2.2 do not change

over time. Once a card is printed, its mechanical attributes remain the same.
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Including such features in a time series model is inappropriate due to their

zero variance and static values. These features were further transformed

to address this issue. A card’s efficiency is not measured individually but

compared to possible replacements at a given time. It is not about how good

a card is but how much better it is compared to others. To capture this

comparison, the difference between a card’s static value and the average of

all cards printed at that particular time was utilized:

X(i,t)
a = X(i)

a −

(∑Nt

n=1Xa,n,t

Nt

)
(3.11)

Where X i
a is feature a of card i, Nt is the number of cards at time t, and

Xa,n,t is feature a of card i at time t.

Combining these engineered features aims to provide the forecasting mod-

els with a rich and nuanced dataset that captures the multifaceted nature of

MtG card prices. This approach allows a better understanding and prediction

of price movements based on comprehensive predictors.

3.2.3 Data Transformation

While MtG card prices share some traits with stocks and other traditional

financial assets, they exhibit less volatility and predictable patterns due to

lower demand and trade volume. The data frequency was adjusted from daily

to weekly to avoid long periods with minimal price changes.

This transformation helps smooth out low-magnitude price fluctuations

and concentrates the signal in the data, enhancing the effectiveness of the
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forecasting models. Furthermore, this weekly aggregation aligns with the fre-

quency of MtG tournaments (Figure 3.3), which typically occur weekly, and

allows for a significant number of observations between major tournaments

held every three to four months.

Figure 3.3: Tournament Frequency Schedule

Similarly, tournament data was consolidated weekly to align with the

adjusted price data. Price data was aggregated using the mean, while tour-

nament data was based on the week’s total value.
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Chapter 4

Data

After the database was created, it contained information on over twenty

thousand different cards. However, many cards in the MtG card pool are

irrelevant for price analysis or have almost zero variance in price. As such,

selecting a group of relevant cards upon which the modelling will be done is

necessary.

4.1 Card Selection Methods

As with any other market, the price of a card is ultimately determined by the

number of copies available in the market (supply) and the number of players

or collectors interested in acquiring said cards (demand).
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4.1.1 By Card Supply

WotC often adheres to a schedule when producing new sets, releasing four

main sets every year (Figure 4.1). The releases of additional non-commercial

sets have no definite pattern. These extra sets are called specialty sets and are

designed to cater to specific niches within the MtG community. All main sets,

however, are designed to consider tournament play across all game formats.

This strategy sets the overall tone for the supply of MtG cards.

Figure 4.1: Heatmap of commercial MtG set releases

Not all printings of a set are equal. As MtG gained popularity, the print

numbers grew significantly—from Alpha’s initial 2.5 million in 1993 to Fourth

Edition’s 600 million in 1995 [de Laval, 2020, DeLaney]. Today, a single set

generates over one hundred million dollars in profit for WotC [Evans, 2023,

DeLaney].

Set releases are not the only concern regarding card availability. As ex-

plained in the previous chapter, a card from an earlier set can be reprinted in

new sets, increasing its overall availability and possibly impacting its prices.
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However, a small selection of cards is exempt from possible reprints, such as

the Reserved List. Initially created in 1996 to appease the worries of collec-

tors that their cards could drop in value in case of future reprints [Langelett

and Wang, 2023], the current format of the Reserved List is that some cards

released before October 1999 would no longer be considered for reprinting.

As of 2024-08-05, this list is comprised of 565 cards.

When analyzing the price of a card based (Figure 4.2, collected data

shows a different distribution pattern based on their release data. Cards

printed before 2000, the cutoff date for the Reserved List, present both the

highest price and price range, while newer cards have a narrower price dis-

tribution.

Figure 4.2: Set price distribution by decade

Considering this, this research will define cards that are part of the Re-
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served List, to be described as Group 1. This will allow all Group 1 cards to

possess similar supply levels within the MtG secondary market.

4.1.2 By Card Demand

While the number of cards printed in MtG history exceeds 45,000 across

all sets and nearly 30,000 in main sets, only a fraction of these cards attract

player interest. In a single set, most of its cards are, as referred to by members

of the MtG community, classified as ‘chaff’ or ‘bulk.’

As a method of selection to exclude these ‘sub-prime cards,’ since they

provide little value to our analysis, we will limit our selection only to cards

used in tournaments during our previously defined time window. This is not

a perfect subset since there are indeed cards that have little tournament value

but are desired as collectibles or for non-sanctioned play. However, with no

access to an integrated sales database for a major retailer, this is the best

approximation we can make to filter our data.

Figure 4.3: Diagram explaining game formats and their card pools.
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Through this filter, we can reduce the list of cards to 4, 297, including

cards often used in tournaments, called ’staples’ by the players, to cards with

a single use registered in ten years. Similar to Group 1, which was defined

as the cards grouped by supply, these cards will be described as Group 2 for

the remainder of this research.

Figure 4.4: Group 2 representation of card clusters

It is important to note that these groups are not exhaustive, as some

cards are simultaneously from the Reserved List and used in tournament

decks. As such, Group 1 and Group 2 are not mutually exclusive.

Figure 4.5: Groups 1 and 2 Venn Diagram
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4.2 Data Selection

After the database was created, it contained information on over twenty

thousand different cards. To ensure computational efficiency and focus on

the most relevant cards for the study, a methodology was developed to filter

this extensive dataset down to a select few.

4.2.1 Selections for Group 1

Cards on the reserved list represent a unique value proposition within the

MtG economy. The company’s promise to never reprint such cards increases

their collectible appeal compared to other cards. It makes these assets suscep-

tible to their cost-efficiency value, the possible financial gains, and enjoyment

that collectors can derive from these assets [Mcinish and Srivastava, 1982,

Kleine et al., 2020].

Figure 4.6: Price distributions of Group 1 \ Group 2 × Group 1 ∩ Group 2.

The outcome of the above motivations is a wide difference in price among

the reserved list cards. The cards that have no collectible appeal or tourna-
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ment value are priced under a dollar, while cards that are both iconic to the

game’s history and desirable for tournament play can be traded for thousands

of dollars (Figure 4.6),

While it is impossible to measure collectible interest for specific cards

with the data previously collected, tournament data were used to filter the

selection for Group 1. As Group 1 and Group 2 are not mutually exclusive,

using the intersection of both groups to reduce the asset list allowed the

selection of a subset of cards from Group 1 that are more susceptible to

external factors in the database. This reduced the initial list of 571 cards to

80 cards.

Figure 4.7: Group 1 final selection diagram

Aligning with the intent of proposing a general model that can be applied

to any MtG card, the final list of Group 1 was created to include the most

used tournament card, the most iconic card in MtG history, and eight cards

picked randomly from the remaining ones. This was defined as Group 1.
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Table 4.1: Card Selection for Group 1
Card Code Xapp Xcount D% y1 yt σ
X2ED.233 257 257 0.8924 11,985.02 16,995.00 5,879.24
X2ED.48 182 182 0.6319 3,299.99 5,195.00 1,044.99
X2ED.84 180 180 0.6250 3,519.99 4,999.99 1,896.28
MIR.307 73 247 0.2535 611.86 465.98 61.86
X2ED.275 51 51 0.1771 1,172.50 1,259.99 359.12
UDS.135 15 60 0.0133 112.97 120.07 21.97
EXO.72 4 4 0.0035 34.55 40.47 14.75
UDS.1 3 4 0.0027 80.32 68.76 23.55
MIR.241 3 3 0.0027 4.60 8.86 8.67
LEG.113 2 2 0.0018 730.49 675.03 403.08

Notes: D% represents the percentage of decks that had the card
in their legal pool and used it, while σ is the standard deviation
of the series.

4.2.2 Selections for Group 2

A different approach was taken when defining the selection criteria for Group

2. Unlike Group 1 cards, which are legal in just two non-rotating formats,

Group 2 includes cards used across all formats—both eternal and rotating.

This makes Group 2 more sensitive to time, as cards with brief periods of

heavy play shouldn’t be compared to those with lower but sustained play

based solely on card count or deck appearances.

To address this issue, the focus was shifted to understanding why a card

is effective during tournament play. From a competitive play perspective,

the appeal of a card lies in its overall power compared to its cost. This

power can be categorized as individual power, the card’s inherent strength,

or synergistic power, which is how well it pairs with others in a game strategy

[Bjørke and Fludal, 2017, Alvin et al., 2021, Ward et al., 2021].
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Several approaches have already been explored to model synergistic rela-

tionships between MtG cards. Graph theory allows for a stochastic metric to

represent deck synergy [Chodoriwsky, 2006, Alvin et al., 2021] through edges

and nodes of the deck network. Another approach previously used involved

the frequency of card pairs selected by a player and using the probability of

each pair being selected to determine the relationship [Ward et al., 2021].

However, neither approach is a perfect fit for this research.

The synergy metric developed by Chodoriwsky allows for comparisons

between decks. Still, it cannot create a more extensive network of all cards

in a meta-game or identify the boundaries that define each game strategy. On

the other hand, Ward’s approach enabled the identification of relationships

within a single edition set, each comprised of approximately two hundred

cards, with hundreds or thousands of data points for each set. The data in

this research requires a solution applicable to a dimension of 7,359 different

decks that, collectively, use 4,297 cards in total.

Since the goal is not to model the relationship of all cards in the tour-

nament data but to select a few cards that could represent this group, a

focused approach was decided upon. By clustering the individual cards from

the tournament data, each cluster would represent an overarching game strat-

egy; since distance is the relevant metric used, the most central points of each

cluster would represent the core cards for each game strategy.

Clustering

The entire process is represented in Figure 4.8. The first stages were ded-

icated to preprocessing prior to the clustering algorithm. To cluster the
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tournament data and visualize this multidimensionality, a matrix Mm×n was

constructed, where m represents the list of cards, n the list of decks, and

(m,n) is the number of copies of that card in that deck.

Figure 4.8: Sequence of states for the clustering process.

A K-means cluster algorithm (Algorithm 1) was then used to create the

individual clusters within the data. This clustering process used the overall

distance to each centroid to identify the best number of clusters. A method

of vector quantization, it aims to partition n observations into k clusters

in which each observation belongs to the cluster with the nearest mean, or

centroid [Hastie et al., 2009].

Given a set of observations (x1, x2, . . . , xn), where each observation is a

d dimensional real vector, k-means clustering aims to partition the n obser-

vations into k(≤ n) set B = {S1, S2, . . . , Sk} so as to minimize the within-

cluster sum of squares (WCSS). Formally, the objective is to find:

argmin
S

k∑
i=1

∑
x∈Si

∥x− µi∥2 = argmin
S

k∑
i=1

|Si| VarSi, (4.1)
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where µi is the mean, also called centroid, of points in Si,

µi =
1

|Si|
∑
x∈Si

x, (4.2)

|Si| is the size of Si, and ∥.∥ is the usual L2 norm.

Algorithm 1 Clustering Algorithm

Require: D = {x1, x2, . . . , xn} ▷ Set of n data items
k clusters ▷ Number of clusters

1: function K MEANS(D)
2: Arbitrarily select k data points as initial centroids µ1, µ2, . . . , µk

3: repeat ▷ Iterate over l iterations
4: for each data point xn do ▷ Assign each x to nearest k
5: for each cluster k do
6: if k == argmink ∥xn − µl−1

k ∥2 then
7: rnk = 1 ▷ Assign xn to cluster Sk

8: else
9: rnk = 0

10: for each cluster k do
11: µl

k =
1∑
rnk

∑
x∈Sk

rnkx ▷ Update µk as the mean of Sk

12: until rlnk == rl−1
nk

13: return ({S1, S2, . . . , Sk}, {µ1, µ2, . . . , µk})

While it is possible to define k prior to performing Equation 4.1 optimiza-

tion, it is also possible to automate this process to obtain the optimal number

of clusters (Algorithm 2). By defining a select metric, the k-means optimiza-

tion is iterated over until the selected metric itself is minimized. This research

performed this method for two different metrics: average within-cluster dis-

tance (δ) and maximum inter-cluster distance (η).

δ(i) =
1

|Si|
∑
x∈Si

∥x− µi∥, (4.3)
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η = max
i,j

∥µi − µj∥. (4.4)

Figure 4.9: K-means result for Modern in 2017

Each metric resulted in a different number of clusters, as exemplified in

Figure 4.9. After analyzing the results individually for each subset of year

and game format, the average within-cluster distance presented the number

of clusters more accurately by domain knowledge. Hence, it was the metric

chosen. Five cards closest to each centroid were selected once the optimal

number of clusters was determined.

After this process, the final selection included a list of 98 cards. Similar

to the approach used in Group 1, the card with the most tournament uses

was automatically selected, and nine other cards were randomly chosen.
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Algorithm 2 Cluster Optimization

1: function OPTM K(M j,t)
2: ▷ Mm×n matrix for format j and year t ◁
3: k = 3
4: kopt = k
5: ∆0

min = ∞
6: repeat
7: K MEANS(D = M j,t, k) ▷ Run K-means for k clusters
8: δ(i) = 1

|Si|
∑
x∈Si

∥x− µi∥ ▷ Where δ(i) is average distance for Si

9: ∆l = 1
k

k∑
i=1

δ(i) ▷ Where ∆l is average distance for all clusters

10: if ∆l < ∆min then
11: ∆min = ∆l

12: kopt = k
13: k = k + 1
14: until ∆l ≥ ∆l−1

15: Ci = {x : x ∈ Si, ∥x− µi∥} for i = 1, . . . , kopt
16: Select {x(1), x(2), . . . , x(5)} ⊆ Ci

17: return {x(1), x(2), . . . , x(5)} ∀i = 1, . . . , kopt

Table 4.2: Card Selection for Group 2
Card Code Xapp Xcount D% y1 yt σ
LRW.145 1341 3696 0.3674 19.17 21.78 1.26
KDL.110 468 883 0.1244 6.82 2.94 1.04
IKO.67 439 1230 0.1156 8.34 8.24 1.35
KDL.234 300 412 0.0797 7.68 2.92 1.29
GPT.52 271 908 0.0744 9.37 9.13 0.21
IKO.88 187 359 0.0492 1.48 1.06 0.22
DTK.150 175 367 0.0485 2.47 2.87 0.38
THS.180 162 558 0.0444 5.07 3.96 0.48
VOW.63 108 144 0.0309 2.78 3.54 0.74
INV.226 48 156 0.0128 9.25 5.14 1.01

Notes: D% represents the percentage of decks that had the card
in their legal pool and used it, while σ is the standard deviation
of the series.
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4.3 Data Summary

This study focuses on analyzing two distinct groups of MtG cards selected

from a larger pool of over 25,000. These groups were chosen based on supply

constraints (Group 1) and demand characteristics (Group 2), allowing for a

focused examination of card price dynamics.

Group 1 (Supply-Based Selection): Group 1 consists of cards from the

Reserved List, a selection of cards that will never be reprinted, thereby lim-

iting their supply. This group’s initial size was 571 cards, which were then

filtered to 80 cards based on their tournament appearances. From this fil-

tered set, the final 10 cards were chosen, including the most-used tournament

card, the most iconic card in MtG history, and eight randomly selected cards

from the remaining pool. These cards represent assets that are influenced

primarily by collectible value and constrained supply.

Group 2 (Demand-Based Selection): Group 2 focuses on cards fre-

quently used in tournaments, capturing demand-driven price changes. Start-

ing with 4,297 cards, a clustering method was applied to group cards based

on their synergy and usage in various decks. After clustering, 98 cards re-

mained, from which a final selection of 10 cards was made. As in Group 1,

the card with the highest tournament usage was automatically selected, and

nine additional cards were chosen randomly from the remaining clustered

cards.

The final analysis will be based on a total of 20 cards, with 10 cards from

Group 1 and 10 from Group 2. Both groups represent critical aspects of the
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MtG secondary market, from the limited supply of collectible cards to the

fluctuating demand for tournament staples. Line plots for each card price

series are included in Appendix A.

Chosen Cards: For Group 1, the cards selected are highly representative

of the Reserved List’s collectible and iconic status. For example, the card

X2ED.233 appears in 257 decks, making it one of the most desirable due

to its competitive utility, while LEG.113, with only 2 appearances, reflects

a rarity-driven value with minimal tournament play.

For Group 2, cards like LRW.145 and KDL.110 reflect the highest

tournament usage, with appearances in hundreds of decks, while others like

VOW.63 or INV.226 reflect cards that play niche roles in certain game

strategies. Each card provides a glimpse into the demand dynamics across

different formats and game strategies.

This dual approach to card selection ensures a comprehensive examina-

tion of the MtG secondary market, combining both the scarcity of collectible

assets and the practical utility of frequently used cards.
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Chapter 5

Methodology

The methodology chapter outlines this research’s various approaches and

techniques to forecast time series data. This chapter is divided into three pri-

mary sections: Statistical Models for Forecasting; Machine Learning Models

for Forecasting; and Proposed Model. The Statistical Models for Forecasting

section explores traditional methods that rely on well-established statistical

models to identify and predict patterns within data. The Machine Learning

Models for Forecasting section introduces advanced techniques that use the

power of neural networks to capture complex, non-linear relationships in the

data. By combining these approaches, a Proposed Model for Forecast Com-

bination Based Neural Network aims to develop a robust and accurate fore-

casting model that integrates the strengths of both statistical and machine

learning methods. Each section will detail the underlying theories, specific

models, and optimization strategies used to enhance forecast accuracy.
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5.1 Statistical Models for Forecasting

This section covers common algorithms used for forecasting in statistics. The

code for implementing these models was written inR using the fable package.

This package provides a comprehensive suite of tools for time series analysis,

including functions for estimating and forecasting with ARIMA and RW

models.

5.1.1 Autoregressive Model

Regression analysis, a concept rooted in statistical modelling, is a set of pro-

cesses used to explore the relationships between a dependent variable and one

or more independent variables. George Box and Gwilym Jenkins [1968] in-

troduced the idea of an autoregressive model, where a time series—consisting

of equally spaced values—can be connected to its past values (known as an

autoregressive process) or to the differences between these values (referred

to as a moving average process). These approaches are integrated within the

ARIMA framework and designed to capture the ongoing trends in the time

series and the random fluctuations that may occur.

Autoregressive Integrated Moving Average (ARIMA)

Consider a time series y with equally spaced observations at times t, t −

1, . . . , t − n, denoted as yt, yt−1, . . . , yt−n. Let at, at−1, . . . , at−n represent a

“white noise” series, where these values are random, uncorrelated, and have

a constant variance σ2
a with a mean of zero. Box and Jenkins developed the

autoregressive model by relating the deviation from the mean, ẇt = wt − µ,

50



to previous deviations and the white noise term at. For instance:

A.R. 1: ẏt = ϕ1ẏt−1 + at,

A.R. 2: ẏt = ϕ1ẏt−1 + ϕ2ẏt−2 + at,

(5.1)

represent autoregressive models of order 1 and 2, respectively. The coeffi-

cients ϕ1 and ϕ2 represent the weights applied to the previous observations

in the time series. These coefficients determine how much influence past val-

ues have on the current value. A positive ϕn value suggests that an increase in

the previous value leads to an increase in the current value, while a negative

ϕn value indicates an inverse relationship. The magnitude of these coeffi-

cients indicates the strength of the relationship between past and present

values.

It is important to note that the time series should be stationary for an

autoregressive model to be valid. Its statistical properties, such as mean and

variance, remain constant over time. This stationarity assumption ensures

that the relationship between past and present values remains consistent.

Similarly, ẏt can be linked to the white noise series and its past values,

leading to moving average models:

M.A. 1: ẏt = at + θ1at−1,

M.A. 2: ẏt = at + θ1at−1 + θ2at−2,

(5.2)

represent moving average models of order 1 and 2, respectively. The coeffi-

cients θ1 and θ2 represent the weights applied to the past white noise terms in
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the moving average models. These coefficients determine how past random

shocks or errors influence the current value of the series. A positive θn value

means that a positive shock in the past will increase the current value, while

a negative θn value means that a positive shock in the past will decrease

the current value. The magnitude of these coefficients reflects the degree of

impact that past shocks have on the current observation.

In addition to the autoregressive (AR) and moving average (MA) com-

ponents, ARIMA models also include an integration (I) step to account for

trends in the data. This involves differencing the series to make it stationary,

meaning the statistical properties remain constant over time. For example,

taking the difference between consecutive values in the series yields:

I. 1: ẏt = yt − yt−1,

I. 2: ẏt = yt − 2× yt−1 + yt−2,

(5.3)

representing integration of order 1 and 2, respectively.

Combining these three components—autoregression, moving average, and

integration—creates a generalized model that effectively captures both short-

term dependencies and long-term trends in the data. The resulting ARIMA

model can be expressed as:

ẏt = µ+ ϕ1ẏt−1 + · · ·+ ϕpẏt−p − θ1at−1 − · · · − θqat−q + at, (5.4)

where ϕ1, . . . , ϕp are the coefficients of the autoregressive terms, at is the
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white noise error term, θ1, . . . , θq are the coefficients of the moving average

terms, and µ is the mean of the series.

This formula represents an ARIMA(p, d, q) model, where p is the order

of the autoregressive component, d is the order of differencing, and q is the

order of the moving average component. The integration step (differencing)

is applied before fitting the AR and MA components. This research used the

function ARIMA from the fable package to select these parameters.

Autoregressive Integrated Moving Average with Predictor Fea-

tures (ARIMAX)

The ARIMAX (Autoregressive Integrated Moving Average with Predictor

Features) model extends the ARIMA framework by incorporating external

variables that may influence the time series. While ARIMA models focus

solely on the internal structure of the series—specifically its autoregressive

(AR), moving average (MA), and integration (I) components—the ARIMAX

model adds layer by considering the impact of other explanatory variables

(often referred to as “predictor” features) [Box and Tiao, 1975].

In an ARIMAX model, the external variables are included to account for

factors outside the time series that could affect its behaviour. These predictor

features are typically denoted as Xt, Xt−1, . . . , Xt−n, where Xt represents the

value of an external variable at time t.

The general form of the ARIMAX model is similar to that of ARIMA

but with the addition of a term that includes the predictor features. For

example, an ARIMAX model of order (p, d, q) can be written as:
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ẏt = ϕ1ẏt−1+ · · ·+ϕpẏt−p+ θ1at−1+ · · ·+ θqat−q +β1Xt+ · · ·+βmXt−m+ at,

(5.5)

here, β1, . . . , βm are coefficients corresponding to the predictor featuresXt, . . . , Xt−m.

Incorporating external variables allows the ARIMAX model to capture

additional influences on the time series, providing a more comprehensive

understanding and more accurate forecasting when these external factors are

significant.

While ARIMA models are particularly effective when the time series is

driven primarily by its internal dynamics, ARIMAX models are helpful when

external factors are known to substantially impact the analyzed series. Like

with traditional ARIMA, the function ARIMA from the fable package was

used, but this time, including the predictor features as the parameters in the

formula.

5.1.2 Random Walk

Popularized by Fama [1970] in his review of efficient market theory, the

term Random Walk represents the concept that the current price of an asset

perfectly reflects its available information. Under this assumption, price

changes are independent and successive changes are identically distributed.

Combined, these two hypotheses constitute the Random Walk model, which

can be mathematically expressed as:
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yt = yt−1 + at, (5.6)

where yt is the value of the time series at time t, yt−1 is the value at time t−1,

and at is a white noise error term with mean zero and constant variance.

The Random Walk model assumes that the current value is the best

predictor for the future, with only the random error term accounting for

changes. This means that the series does not tend to return to a long-term

mean, making it non-stationary. Despite its simplicity, the Random Walk

model is widely used in financial modelling and other fields where the future

is highly uncertain and only past values are considered in predictions. The

function RW from the fable package was used for this.

Random Walk with Drift

A Random Walk with Drift extends the basic Random Walk model by intro-

ducing a constant term known as the “drift,” which accounts for a consistent

trend in the data, either upward or downward [Nelson and Plosser, 1982].

The model can be mathematically expressed as:

yt = ρ× yt−1 + µ+ at, (5.7)

where µ is the drift parameter, indicating the average change in the time

series at each step, yt−1 is the previous value, and at is the white noise

error term. The parameter ρ represents the coefficient of the previous value,

typically set to 1 in a pure Random Walk model, indicating that the series
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follows a path dependent on its past value plus any drift and random noise.

The inclusion of µ allows the model to capture trends in the data, mak-

ing it more adaptable to real-world scenarios where such trends are often

observed. This adjustment makes the Random Walk with Drift a more ver-

satile model, capable of describing series that exhibit random fluctuations

and an underlying directional movement. For this calculation, the drift was

used as part of the formula for the RW function from the fable package.

Relation to ARIMA: It is important to note that a Random Walk can

be seen as a particular case of the ARIMA model. Precisely, a Random Walk

corresponds to an ARIMA(0, 1, 0) model, where there are no autoregressive

terms (p = 0), the series is differenced once to achieve stationarity (d = 1),

and there are no moving average terms (q = 0). Similarly, a Random Walk

with Drift can represent an ARIMA(0, 1, 0) with a non-zero mean. This

connection highlights the Random Walk’s simplicity as a foundational model

within the broader ARIMA framework.

5.2 Machine Learning Models for Forecasting

The advent of machine learning has introduced new methods for time series

forecasting, allowing for the modelling of complex, non-linear relationships

in data. These approaches can complement traditional statistical models, of-

fering alternative and often more powerful tools for forecasting when dealing

with large datasets or when the data-generating process is not fully under-

stood.
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5.2.1 Neural Networks Models

Initially proposed by McCulloch and Pitts [1990], the concept of how neurons

might work together to perform complex tasks laid the foundation for the

computational model that would one day evolve into the field of artificial

neural networks (ANNs). Based on this biological neuron concept, ANNs

originated with the mathematical modelling that, after receiving an input

signal, the neuron is activated once these signals reach a threshold, sending

a signal further down the chain.

Figure 5.1: Representation of an Artificial Neural Network Diagram.

Rumelhart et al. expanded this framework by describing a backprop-

agation algorithm capable of adjusting the weights of connections between

neurons to minimize the difference between the actual and desired output

vector of a neural network Rumelhart et al. [1986]. The learning process
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proposed by Rumelhart et al. considers a set of input-output functions rep-

resented in the paper as:

xj =
∑
i

yjwj,i, (5.8)

yj =
1

1 + e−xj
, (5.9)

where xj is the weighted sum of the inputs for neuron j, yj is the output of

neuron j, wj,i is the weight between neuron j and its input i, and e is the

base of the natural logarithm.

Combining (5.8) and (5.9), it is possible to calculate the exact values and

weights at any point in the neural network:

x
(L)
j =

L∑
l=1

∑
i

y
(l−1)
i w

(l)
i,j . (5.10)

Here x
(L)
j is the cumulative weighted sum for neuron j at layer L, l

represents each layer leading up to L, y
(l−1)
i is the output from the previous

layer (l − 1), and w
(l)
i,j is the weight between neuron i in layer (l − 1) and

neuron j in layer l.

This learning process then allows for a set of weights that ensures that

each generated output vector is as close to the desired vector as possible.

The total error is computed by calculating every case’s actual and desired

output vector for a finite, fixed set of input-output cases. The total error (E)

then is defined as
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E =
1

2

∑
c

∑
j

(y(j,c) − b(j,c))
2, (5.11)

where E is the total error across all cases, c represents each case in the dataset,

j represents each output neuron, y(j,c) is the actual output of neuron j for

case c, and b(j,c) is the desired output of neuron j for case c. The error term

(y(j,c)−b(j,c))
2 measures the squared difference between the actual and desired

outputs and the factor of 1
2
is included to simplify the derivative calculation

during backpropagation.

Neural Network Autoregression (NNETAR)

The NNETAR model extends the standard ANN specifically designed for

time series forecasting. It stands for Neural Network Autoregression and in-

tegrates the autoregressive (AR) component, commonly used in time series

analysis, into the structure of an ANN. The NNETAR model utilizes lagged

observations of the target variable as inputs to the ANN, making it partic-

ularly effective at capturing complex nonlinear relationships within the time

series data.

In an NNETAR model, the input layer consists of the lagged values of the

target variable, yt−1, yt−2, . . . , yt−p, where p is the number of lags selected.

The hidden layers process these inputs using a set of weights and activa-

tion functions, similar to the general structure of ANNs described earlier.

The output layer provides the forecasted value, denoted as ŷt, for the target

variable at time t.

In this context, the NNETAR model is often referred to using the no-
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tation NNETAR(p, k), where p is the number of lagged inputs and k is the

number of neurons in the hidden layer. For example, an NNETAR(4,7)

(Figure 5.2) model uses the last four observations (yt−1, yt−2, . . . , yt−7) as in-

puts to predict yt, with seven neurons in the hidden layer. When k = 0,

an NNETAR(p, 0) model is equivalent to an ARIMA(p, 0, 0) model without

parameter restrictions to ensure stationarity.

Figure 5.2: Representation of a NNETAR(4,7) Diagram.

TheNNETAR function in fable estimates an NNETAR(p, P, k)m model,

where p refers to the number of non-seasonal lags, P represents the seasonal

lags, and k indicates the number of neurons in the hidden layer. For non-

seasonal data, p is automatically selected as the optimal number of lags based

on the AIC of a linear AR(p) model. For seasonal data, the default value for

P is 1, while p is determined using the optimal linear model applied to the

seasonally adjusted series. If k is unspecified, it is calculated as k = p+P+1
2

,
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rounded to the nearest integer [Hyndman and Athanasopoulos, 2021].

The learning process in NNETAR involves adjusting the weights through

backpropagation to minimize the forecast error over the training period. The

model is compelling for its ability to capture both linear and nonlinear pat-

terns in the data, making it a versatile tool for various forecasting applica-

tions.

Neural Network Autoregression with Predictor Inputs (NNETARX)

The NNETARX model extends the NNETAR framework by incorporating

predictor inputs (additional variables) into the neural network structure.

These predictor features denoted as xt,1, xt,2, . . . , xt,n represent external fac-

tors that might influence the target variable, adding further predictive power

to the model.

In NNETARX, the input layer includes both the lagged values of the

target variable, yt−1, yt−2, . . . , yt−p, and the current or lagged values of the

predictor features. The network processes these combined inputs through

its hidden layers, allowing it to model the relationship between the target

variable and both its past values and the external factors.

The output layer of the NNETARX model provides the forecasted value

ŷt at time t, while the learning process adjusts the weights for both the au-

toregressive and predictor inputs. Including predictor features allows the

NNETARX model to account for additional influences on the target vari-

able, often leading to more accurate forecasts when such relationships exist.

The NBETAR function from the fable package was used while including the
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predictor features in the formula parameter.

5.2.2 Forecast Combination

In many practical applications, combining multiple forecasts has improved ac-

curacy compared to relying on a single model. Forecast combination involves

aggregating the predictions of several models to create a more robust and re-

liable forecast, leveraging the strengths of different methodologies. Over the

past fifty years, the forecast combination has evolved from a popular ap-

proach to a well-established concept in the field of forecasting, supported

by a rich body of literature. The foundational work by Bates and Granger

([1969]) laid the groundwork for this approach, demonstrating its effective-

ness in enhancing forecast accuracy.

This approach leverages the strengths of different models, reducing the

impact of any single model’s weaknesses. One straightforward technique

is simple averaging, where the forecasts from various models are averaged

to generate a combined forecast. This method assumes that each model

contributes equally to the final prediction.

Alternatively, weighted averaging assigns a weight to each model’s fore-

cast, reflecting its relative importance or performance. In this approach, the

combined forecast is a weighted sum of the individual model forecasts, with

the weights typically summing to one. This method allows for more influence

from models that have historically performed better, potentially improving

the overall accuracy of the combined forecast.
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5.3 Proposed Model: Forecast Combination

Based Neural Network

This research’s proposed model is a forecast combination-based neural net-

work model. This approach combines the forecast of selected base models,

through weighted average, into a new series of time-based observations such

as ỹ = (y1, y2, . . . , yn1 , ŷn1+1, . . . , ŷn1+n2), where (y1, y2, . . . , yn1) is the n1 ac-

tual values of the time series, (ŷn1+1, . . . , ŷn1+n2) is the n2 point forecasts

values calculated from a single-model or forecast combination model. Then,

the new series ỹ is used to build the proposed neural network model. The

detailed process for this combination is described as follows.

5.3.1 Establishment of Base Models

As a first step in combining forecasts, it is essential to establish the base

models that will contribute to the final prediction. In this process, m dif-

ferent forecasting models, denoted as Mj (j = 1, 2, . . . ,m), are developed

using the available training data. These models can vary in their underlying

methodology, such as autoregressive integrated moving average (ARIMA),

neural networks, or other machine learning approaches. For this research,

the methods chosen are the ones previously discussed (ARIMA, ARIMAX,

Random Walk, Random Walk with Drift, NNETAR, and NNETARX).

For each model Mj, a series of point forecasts ŷ
(j)
t , (j = 1, 2, . . . ,m) is

generated for each time period t in the forecasting horizon. These forecasts

are based on the model’s specific algorithm and are intended to capture

the underlying patterns in the data. The accuracy of each base model is
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evaluated using historical data, allowing for the assessment of the strengths

and weaknesses of each model in isolation.

5.3.2 Determination of Weights

The following step is to use these forecasts to determine the weight for this

specific combination. Determining weights is a critical step in combining

forecasts, especially when using weighted averaging. The goal is to assign

weights wj to each model Mj to maximize the accuracy of the combined

forecast.

Weights can be determined through various methods, such as minimizing

the combined forecast’s mean squared error (MSE) on a validation dataset.

This research uses a Genetic Algorithm (GA) to determine the optimal

weights for combining forecasts before applying stacking, as proposed by

Yi-Chung Hu [2021]. Still, rather than optimizing for Coverage Width Cri-

terion (CWC) and performing interval forecasting, this study will focus on

optimizing the weights for Root Mean Square Error (RMSE) and perform-

ing point forecasting. This approach is designed to achieve a more precise

and effective forecast by integrating the benefits of both GA and stacking

methodologies.

GAs use natural selection principles to iteratively search for the optimal

solution, with the fitness function typically defined as forecasting accuracy.

The GA package in R was employed to discover the optimal weights that

minimized the RMSE of the combined forecast. For every model Mj of the

selected combination, its forecasted series ŷ(j) was used as an input parame-

ter to minimize the error (RMSE) to the actual value y. Various parameters,
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such as population size, mutation rates, and crossover methods, can influ-

ence the performance of the GA. In this implementation, the total number

of generations was set to 1000, with a population size of 150. The muta-

tion rate was set to 0.1, and the gareal blxCrossover method was selected

for crossover. These parameters were chosen based on experimentation to

balance the exploration and exploitation capabilities of the algorithm. Upon

completion, the GA algorithm identified the optimal weight for the selected

combination,

RMSE =

√√√√ 1

T

T∑
t=1

(
m∑
j=1

wj × ŷ
(j)
t − yt)2 (5.12)

where wj is the weight given to model Mj, ŷ
(j)
t is the base forecast value of

model Mj and yt is the actual value for time t. Equation (5.12) is then calcu-

lated a number of times equal to the selected population over the number of

specified generations, improving wj at each new generation until the optimal

value is found.

5.3.3 Combination of Point Forecasts

Once the base models have been established and the weights defined, the

next step is to combine their point forecasts to produce a single, more ac-

curate forecast. The combination of point forecasts involves aggregating the

predictions from each base model Mj, where j = 1, 2, . . . ,m.

ŷcomt =
m∑
j=1

wj ŷ
(j)
t∑m

j=1 wj

. (5.13)
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This method assigns a specific weight wj to each model Mj, reflecting

its reliability or historical accuracy. The weights wj are chosen such that

0 ≤ wj ≤ 1 for all j, and
∑m

j=1 wj = 1, ensuring that they are relative

rather than absolute. This allows for greater influence from models that

have demonstrated superior forecasting ability. The weighted average ap-

proach can be particularly effective when some models consistently outper-

form others under specific conditions.

Assume that, we have relative weight wj of Mj (j = 1, 2) models. Then,

for example, the point forecast based on a two-model combination can be

defined as:

ŷcomt =
w1

w1 + w2

ŷ
(1)
t +

w2

w1 + w2

ŷ
(2)
t . (5.14)

Where n1 + 1 < t < n1 + n2. Similarly, the point forecast based on a

three-model combination where Mj (j = 1, 2, 3) can be obtained as:

ŷcomt =
w1

w1 + w2 + w3

ŷ
(1)
t +

w2

w1 + w2 + w3

ŷ
(2)
t +

w3

w1 + w2 + w3

ŷ
(3)
t . (5.15)

Similarly, four or more than four models can be constructed follow-

ing equation (5.15). Then a new sequence can be constructed as ỹt =

(y1, . . . , yn1 , ŷ
com
n1+1, . . . , ŷ

com
n1+n2

) which is a combined sequence of n1 original

samples and n2 combined forecasts and can be used to construct the pro-

posed model.
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5.3.4 A data-driven Forecast combination based Neu-

ral Network Model

The proposed method (Figure 5.3) is a data-driven approach to selecting the

best model combination for a specific time series. Although the first step of

generating the base forecast values, is consistent across all-time series, the

subsequent steps are tailored to optimize the combination for each unique

series.

After generating the base forecasts, the selected combination of models,

as determined by the Genetic Algorithm (GA), creates a new time series of

combined forecasts, ỹt. This combined series serves as an input for the Neural

Network, which is specifically trained to improve the forecast by leveraging

the combined strengths of the selected models.

The ANN is structured to take both the combined forecast series ỹt and

the original time series data yt as inputs. This allows the ANN to capture

the underlying patterns in the data while also adjusting for any potential

biases or errors present in the combined forecasts. The ANN then outputs

a refined forecast value that is expected to outperform the individual base

models and their weighted combination.

The architecture (Figure 5.3) is designed to be flexible, with the ability

to adjust the number of layers and neurons depending on the complexity

of the time series data. During the training phase, the ANN iteratively

adjusts its internal weights to minimize the forecast error, typically measured

by metrics such as Root Mean Squared Error (RMSE) or Mean Absolute

Percentage Error (MAPE). RMSE measures the square root of the average
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squared differences between the predicted and actual values, while MAPE

represents the average of the absolute percentage differences between the

predicted and actual values. The final model is then evaluated on a validation

set to ensure its generalizability and robustness.

This data-driven approach allows for a dynamic and adaptable forecast-

ing model that can respond to the specific characteristics of each time series,

ultimately providing more accurate and reliable forecasts.
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Figure 5.3: Forecast combination based ANN proposed model diagram.
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Chapter 6

Experiments and Evaluation

The preceding chapters detailed the data collection process and provided the

theoretical foundation for this research. This chapter presents the analysis of

the selected dataset and the results of the proposed methods. It is structured

into two parts: the first part focuses on the experimental setting conducted

on the selected dataset, and the second part presents the results from the

modelling and experiments.

6.1 Analysis

This section delves into the initial preparation of the dataset, highlighting the

essential preprocessing steps undertaken to ensure its suitability for predictive

modelling.
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6.1.1 Experimental Settings

Before proceeding with the modelling phase, several preprocessing steps were

applied to the dataset to ensure data quality and model performance, follow-

ing best practices in the literature.

Missing values in key features related to legality, restrictions, and card

rotation age were treated by imputing zeroes. This approach is beneficial

when the absence of data can be interpreted as a meaningful zero, as it

preserves the information that these features might contribute to the model.

According to Little and Rubin [2019], imputing missing values with zero is an

appropriate strategy when the absence is informative and not simply missing

at random. The previous observations, despite their representation as NA in

the database, are not real missing values but were stored as such for dates

when either the card or the format weren’t officially released yet.

Features with no variability (constant values) were excluded, as they do

not provide any discriminatory power for the model. Including such features

can inflate the dimensionality without contributing to predictive accuracy,

a concept well-documented in the feature selection literature [Guyon and

Elisseeff, 2003].

To address multicollinearity, features exhibiting perfect multicollinearity

were identified and removed using a stringent correlation threshold of 0.999.

Multicollinearity can significantly distort the interpretation of coefficients in

regression models and lead to inflated standard errors, making it crucial to

eliminate perfectly correlated features [Kutner et al., 2004]. A high correla-

tion cutoff (close to 1) is supported by Patel et al. [2011], who recommend

this approach to maintain model stability and interpretability.
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Finally, all features discussed in Card Attribute Features (Section 3.2.2)

were scaled to standardize their values, ensuring each feature contributes

equally to the model. This step is crucial when using models sensitive to the

scale of input data, as it prevents features with larger ranges from dominating

the model’s learning process [Kuhn and Johnson, 2018].

These steps collectively ensured that the dataset was comprehensive and

optimized for accurate predictive modelling, aligning with best practices in

data preprocessing.

6.1.2 Evaluation Metrics

Evaluation metrics are essential for quantifying the quality of forecasting

models. In this research, comparisons and evaluations of different models

within the same time series are conducted using absolute metrics. Among the

scale-dependent measures, Root Mean Squared Error (RMSE) and Mean Ab-

solute Error (MAE) are popular choices. While some authors argue against

using RMSE for forecast accuracy evaluation in favour of MAE [Hyndman

and Koehler, 2006], RMSE’s ability to penalize large errors makes it particu-

larly suitable for short-term financial forecasting, where large errors can lead

to significant losses.

RMSE =

√√√√ 1

T

T∑
t=1

(ŷt − yt)2, (6.1)

where ŷt is the forecast value and yt is the actual value at time t.

When comparing and evaluating different time series, percentage-based
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metrics are more appropriate. Absolute metrics, while effective for a single

time series, may not be as suitable when evaluating multiple time series

with different magnitudes. To assess models across different time series with

varying scales, relative metrics are preferred [Hyndman and Koehler, 2006].

Although relative metrics can be infinite or undefined if yt = 0 for any t, and

they assume a meaningful “zero,” these concerns are not applicable in this

research. In the context of monetary values, a “zero” is meaningful, and no

forecast should yield a value of “zero,” as this would be an unusual result in

a financial model.

MAPE =
100

T

T∑
t=1

∣∣∣∣ ŷt − yt
yt

∣∣∣∣ , (6.2)

these measures evaluate how well the combined forecast aligns with the ob-

served data, guiding the selection and adjustment of the combination method.

6.1.3 Evaluation Methods

Several methods have been proposed to estimate predictive performance met-

rics reliably in time series forecasting. The primary approaches for per-

formance estimation are out-of-sample and cross-validation [Hyndman and

Athanasopoulos, 2021].

Out-of-Sample Method: The out-of-sample method evaluates a model

using data not included in the training process, reserving a separate dataset

exclusively for testing. This approach involves dividing the dataset into two

parts: one for training the model and the other for testing. The test set, often
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referred to as the “hold-out” set, is used to estimate the model’s predictive

loss. For time series data, it is essential to ensure that the test set follows the

training set in temporal order, preserving the sequence of the observations.

The last twelve observations in this research are reserved as the “hold-

out” set. Given the weekly frequency of the data, this corresponds to three

months of observations, which aligns with the average period between major

MtG set releases and tournaments—a decision grounded in domain knowl-

edge. It is important to note that this division is absolute, not relative. For

example, if card A has 520 observations while card B has only 127, both will

have the same twelve observations reserved as the “hold-out” set.

Cross-Validation Method: Cross-validation is widely used for indepen-

dent and identically distributed data. In k-fold cross-validation, the data is

randomly shuffled and split into k folds, where each fold contains n
k
observa-

tions, with n being the total number of observations and k representing the

total number of folds. Although this method efficiently uses the data, it has

limitations for time series analysis because it does not maintain the temporal

order of the data [Bergmeir and Beńıtez, 2012]. To address this, Hyndman

[2021] presents an alternative to traditional k-fold cross-validation for time

series, where each fold is a “window” of training data followed by a series of

sequential test data that “rolls” forward by a fixed number of observations.

Each new window can either include only the new data (“fixed origin”) or

exclude the same number of older observations as well (“rolling origin”).

In this research, the “rolling window” approach is adopted due to its

consistency in comparing models with the same number of observations in

their training data. Each window maintains a 3 : 1 ratio between the train
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Figure 6.1: Rolling window cross-validation.

and test sets. For example, for a time series with 520 observations, there will

be an out-of-sample “hold-out” set of the last 12 observations of the complete

series, and each window will have 381 observations for the train set. The

window will roll forward by one observation a total of 127 times during cross-

validation. The forecast range for each window will also be 12 observations,

matching the out-of-sample forecast range to increase consistency.

A key distinction between out-of-sample and CV is that the out-of-sample

set is never included in the CV windows [Bergmeir and Beńıtez, 2012, Tash-

man, 2000].
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6.2 Results

This section discusses and compares the experimental results. As outlined in

Experimental Settings (Section 6.1.1) and throughout Chapters 5 and 4, two

experiments were conducted. The first experiment divided the cards into two

groups: one with limited supply, representing older MtG settings with low

print runs, and the other with an optimal “cost-effect” ratio, making them

desirable for tournament play. This was aimed to determine if the best-

fitting models differ between cards constrained by supply and those limited

by demand—for example, whether models without predictor features better

explain Group 1. At the same time, Group 2 relies more on such variables.

The second experiment proposed an improved forecasting method based on

forecast combination, as detailed in Proposed Model: Forecast Combination

Based Neural Network (Section 5.3).

6.2.1 Group Comparison

Each base model’s performance for Group 1 is shown in 6.2. For any card,

its worst performer was always one of ARIMAX, NNETAR, or NNETARX.

ARIMA presented the best results in five of the ten cards, followed by RW

and NNETARX with two each and NNETAR with one. However, the sub-

set where RW performed best comprises the group’s lowest-valued cards.

Conversely, the subset of the group’s older cards and those with the lowest

availability was where RW and NNETAR had the best results. This indi-

cates a trade-off between either the trade volume of a card or its price and

the model selection.
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Figure 6.2: Heatmap of model accuracy ranking for cards of Group 1.

Results for Group 2 (Figure 6.3) followed a similar pattern. Models

incorporating predictor features had lower accuracy performance than models

based only on Y. As with Group 1, RW had the best overall performance

and was the model with the lowest accuracy for most cards, followed by RWD

and ARIMA. Once more, NNETARX and ARIMAX had the worst result. As

such, for the feature engineering and modelling done in this research, there

is no evidence of difference of appropriate models for Group 1 and Group 2.

Figure 6.3: Heatmap of model accuracy ranking for cards of Group 2.
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6.2.2 Forecast combination based Neural Network

To evaluate the forecasting performance of the proposed models that combine

point forecasts, the models outlined in Chapter 5 were employed. Tables 6.1

and 6.2 present the results, which were assessed using the Mean Absolute

Percentage Error (MAPE) and Root Mean-Squared Error (RMSE) for the

forecasting models applied to cards in Group 1.

To measure overall prediction performance, the average MAPE of the

base models was calculated across all ten cards from Group 1. This aver-

age was then compared with the average of the best-performing models for

the single-model, two-model, and three-model neural network-based combi-

nations (Figure 6.4).

Figure 6.4: Average of MAPEs across all models for Group 1.
Notes: Values are for each combination’s best base model and
best model.

The accuracy for single-model and two-model neural network-based com-

bating outperformed, on average, even the best-performing base model RW,

8.23%, 8.92% and 9.88%, respectively. The three-model neural network-
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based combination was unable to outperform the best base model but was

able to present better results than the second-best base model ARIMA, 10.2%

and 10.3%, respectively.

For half of the selected cards, the proposed neural network-based models

achieved lower MAPEs and RMSEs than the base models. The most sig-

nificant improvements were observed in models that had previously under-

performed before being incorporated into the single-model neural network.

CardX2ED.233 presented the best improvement, moving from a base model

average MAPE of 33.58% to an NN-based single model average of 22.5%.

Figure 6.5: X2ED.233 Forecast results for best models.

However, when comparing the same model across different cards, the

overall average performance of the single-model neural network was slightly

worse than that of the base models, with averages of 18.95% and 16.34%,

respectively. In contrast, the two-model and three-model neural network

combinations demonstrated better performance, with average accuracy of

8.92% and 10.16%, respectively, lower than all base models and single-model

neural network. These findings suggest that the proposed neural network-
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based model, particularly in the two and three-model combinations, effec-

tively leverages the strengths of different models. This supports the concept

of model combination, as discussed by [Wang et al., 2023], and highlights

the potential of meta-models like the neural network-based combination to

enhance forecasting accuracy [Hu, 2021].

Table 6.1: RMSEs for point forecasting results in Group 1
X2ED.48 X2ED.84 X2ED.233 X2ED.275 LEG.113 MIR.241 MIR.307 EXO.72 UDS.1 UDS.135

Base model
ARIMA 386.7 299.62 4760.16 276.77 64 1.26 36.59 0.86 5.78 10.9
ARIMAX 541.51 84.97 12635.4 638.02 322.83 2.07 54.9 5.02 24.73 12.95
NNETAR 883.35 790.98 5631.23 491.9 101.28 8.82 25.88 16.24 8.44 14.24
NNETARX 741.27 1192.23 2565.05 172.83 123.09 3.2 31.56 2.17 14.44 26.75

RW 351.08 29.71 4436 306.58 68.29 1.3 34.83 0.96 6.08 11.16
RWD 392.51 106.24 4775.37 329.78 90.25 1.64 43.95 1.8 7.81 13.83

NN1
ARIMA 614.01 2095.35 3956.82 207.13 52.67 2.95 37.2 2 8.74 17.29
ARIMAX 379.36 2224.44 6940.95 293.48 126.44 3.78 – 4.81 12.38 13.58
NNETAR 452.32 1183.39 1739.21 783.42 124.29 0.95 51.36 5.61 6 16.49
NNETARX 821.83 1580.53 4142.09 234.62 108.2 2.24 36.7 40.27 12.87 127.42

RW 549.3 1097.18 3175.05 231.53 45.88 2.93 32.14 2.19 8.84 17.34
RWD 535.72 691.76 3456.35 233.22 61.84 3.05 37.57 2.85 9.83 19.13

NN2 409.01 151.34 2974.39 208.79 60.9 1.65 31.17 1.97 6.01 12.73

NN3 467.47 565.99 3047.3 207.66 61.86 1.98 28.5 1.94 7.56 10.65

Table 6.2: MAPEs for point forecasting results in Group 1
X2ED.48 X2ED.84 X2ED.233 X2ED.275 LEG.113 MIR.241 MIR.307 EXO.72 UDS.1 UDS.135 Model Average

Base model
ARIMA 5.8 5.82 27.79 20.34 7.88 11.69 7.5 1.93 6.14 7.97 10.29
ARIMAX 8.71 1.52 72.8 45.26 40.72 19.16 11.21 11.33 29.84 9.41 25
NNETAR 15.62 15.67 32.9 35.76 12.53 84.11 5.36 38.57 10.57 11.02 26.21
NNETARX 12.67 22.96 14.27 12.01 15.1 26.16 6.27 4.67 16.45 18.42 14.9

RW 5.38 0.51 25.87 22.33 8.48 12.09 7.16 2.2 6.54 8.19 9.88
RWD 5.91 1.89 27.84 23.88 11.17 15.25 8.96 4.16 8.62 10.09 11.78

NN1
ARIMA 9.9 39.85 22.93 15.23 6.72 29.84 7.11 4.81 10.38 13.23 16
ARIMAX 5.87 39.75 40.63 20.77 17.31 36.19 11.9 15.22 10.06 21.97
NNETAR 7.35 21.81 9.2 56.84 15.14 7.22 10.83 13.68 6.56 12.62 16.13
NNETARX 13.89 29.86 23.97 17.67 14.74 20.07 7.45 100.01 15.19 99.97 34.28

RW 8.68 18.67 18.29 15.73 5.87 29.64 5.48 5.35 10.55 13.4 13.17
RWD 8.55 11.97 19.96 16.36 8.11 30.83 6.52 7.01 12.02 14.84 13.62

NN2 6.7 2.39 17.12 14.82 7.22 15.03 5.44 4.73 6.59 9.16 8.92

NN3 7.4 9.64 17.52 14.89 7.31 19.54 4.99 4.64 8.66 6.99 10.16

For Group 2, the proposed model’s average accuracy did not surpass the

best base model for any of the selected cards. However, it outperformed

the ARIMAX, NNETAR, and NNETARX models. The MAPEs for ARIMA

models (10.8%, 12.1%, and 14.2%) were better than those for NN1 (17.8%),

NN2 (14.8%), and NN3 (16.2%). In this group, NN2 and NN3 both outper-
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formed NN1, which had the best accuracy in Group 1.

Figure 6.6: Average of MAPEs across all models for Group 2.
Notes: Values are for each combination’s best base model and
best model.

When analyzing individual cards, the performance of NN-based single

models was slightly worse, with improvements seen in only a quarter of cases

compared to their respective base models. However, NN2 and NN3 continued

to perform well, surpassing the average base model results in 9 out of 10 cards

for NN2 and 8 out of 10 for NN3. The accuracy of the NN-based two-model

approach in Group 2 was better than in Group 1, with three cards achieving

the lowest MAPE with this model. Notably, Card LRW.145, which had the

best accuracy among the base models, showed the most significant improve-

ment in the proposed models, with its MAPE decreasing from an average of

9.31% to just 1.06% using NN2.

Overall, the average performance of NN2 and NN3 was substantially

better than the base models, with respective averages of 14.76%, 16.19%,

and 44.62%. In contrast, NN1 had a MAPE of 625.73%, significantly worse
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Figure 6.7: LRW.145 Forecast results for best models.

than the base models. Even after excluding the ARIMAX result for IKO.67,

which was a notable outlier, NN1 could not outperform the average of the

base models. These results suggest that the proposed neural network-based

models provide a meaningful improvement in forecasting accuracy over the

base models.

Figure 6.8: IKO.67 Forecast results for best models.
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Table 6.3: RMSEs for point forecasting results in Group 2
INV.226 GPT.52 LRW.145 THS.180 DTK.150 KLD.110 KLD.234 IKO.67 IKO.88 VOW.63

Base model
ARIMA 0.64 0.12 0.41 0.63 0.37 0.33 1.15 1.81 0.15 0.28
ARIMAX 1.17 3.34 0.53 0.51 0.65 1.42 1.09 365.53 1.1 2.48
NNETAR 0.96 0.49 3.64 0.91 1.12 5.47 0.67 3.88 0.94 0.95
NNETARX 4.33 18.91 8.5 1.36 1.33 5.82 1.19 2.8 0.35 0.64

RW 0.62 0.12 0.42 0.7 0.32 0.75 1.37 1.95 0.14 0.85
RWD 0.68 0.18 0.38 0.71 0.35 0.21 1.37 2.01 0.2 0.38

NN1
ARIMA 3.78 0.12 0.42 3.59 1.07 1.14 1.42 1.79 0.35 1.24
ARIMAX 6.95 0.18 0.36 3.43 2.09 1.25 1.47 1.78 0.41 0.73
NNETAR 4.43 0.13 0.4 1.65 2.48 1.03 1.53 1.79 0.41 1.47
NNETARX 4.29 1.56 0.47 39.06 3.97 1.67 3.39 3701.93 7.44 1.7

RW 1.09 0.49 1.71 0.84 2.97 1.39 1.75 1.73 0.44 1.66
RWD 1.23 8.48 9.83 1.58 3.21 2.38 2.34 2.52 0.37 0.49

NN2 1.34 0.13 0.35 0.66 0.38 0.76 1.39 1.72 0.36 0.46

NN3 1.24 0.12 0.36 0.86 0.31 0.89 1.41 1.71 0.37 0.63

Table 6.4: MAPEs for point forecasting results in Group 2
INV.226 GPT.52 LRW.145 THS.180 DTK.150 KLD.110 KLD.234 IKO.67 IKO.88 VOW.63 Model average

Base model
ARIMA 10.21 0.89 1.62 13.52 9.76 8.2 29.79 15.77 11.11 6.75 10.762
ARIMAX 17.5 26.31 1.59 11.26 17.18 33.03 28.48 1032.4 85.25 54.55 130.755
NNETAR 15.44 4.1 13.68 18.75 34.27 147.26 13.92 35.48 64.58 26.06 37.354
NNETARX 74.69 183.42 35.9 30.38 40.93 164.79 27.48 27.35 25.08 15.41 62.543

RW 9.77 0.89 1.69 15.37 8.39 19.53 35.9 16.95 10.77 22.71 14.197
RWD 10.72 1.38 1.36 15.43 9.26 5.15 35.93 17.51 14.92 9.26 12.092

NN-based single model
ARIMA 57.75 0.89 1.7 68.21 30.04 31.24 30.14 15.67 28.02 34.04 29.77
ARIMAX 107.27 1.42 1.16 64.49 55.87 34.59 32.01 15.9 33.01 18.89 36.461
NNETAR 67.66 1 1.62 36.31 55.02 28.53 38.1 16.34 33.31 37.69 31.558
NNETARX 73.45 16.41 1.96 710.41 84.2 47.17 68.41 34262.51 479.25 46.75 3579.052

RW 16.73 5 7.6 16.9 83.83 38.69 46.31 14.57 36.02 45.68 31.133
RWD 19.38 79.02 42.63 36.16 93.38 67.42 64.05 22.33 29.18 10.54 46.409

NN-based two-model 21.8 0.96 1.06 10.13 9.99 19.66 29.66 15.19 28.74 10.36 14.755

NN-based three-model 19.54 0.89 1.38 18.26 8.52 23.86 30.25 15.51 29.18 14.54 16.193
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Chapter 7

Ts.shiny: Visualization Using

Interactive Graphics

This chapter presents the various aspects of the implementation of ts.shiny,

anR-based Shiny framework developed to facilitate exploratory data analysis

(EDA) and basic forecasting. The following sections detail the motivation

behind the creation of ts.shiny and provide a comprehensive explanation of

its core functionalities.

Following this, the architecture of the system is discussed, explaining the

technical components that make ts.shiny a flexible and scalable platform.

The architecture discussion is divided into two main areas: the front-end

design, which emphasizes user interaction and data visualization, and the

back-end processes, which focus on data manipulation, model fitting, and

the generation of forecasts. Together, these components enable ts.shiny to

deliver a robust and user-friendly experience for analyzing and forecasting

time series data.
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7.1 Ts.shiny

ts.shiny is an R-based Shiny framework application developed to support

time series analysis and initial forecasting. It provides users with a ready-

to-use tool designed to handle user-submitted datasets, offering basic ex-

ploratory data analysis (EDA) and forecasting capabilities. The goal of

ts.shiny is to make the process of time series analysis accessible to a broader

audience, removing the dependency on extensive programming skills, while

still providing a flexible, data-driven platform for both domain experts and

data scientists.

The application was created with three key motivations in mind: data

democracy, data agnosticism, and a focus on overcoming the limitations of

similar tools.

7.1.1 Data Democracy

One of the core motivations behind the development of ts.shiny is to de-

mocratize time series analysis. The tool allows domain experts—those with-

out coding or programming expertise—to contribute their insights into the

data. This approach empowers users to visually explore and interact with

the dataset without needing to write or understand complex code.

By providing a graphical user interface (GUI) that facilitates interaction,

ts.shiny bridges the gap between data scientists and other team members.

It allows domain experts to explore the data visually, detect patterns, and

engage with different forecasting models. At the same time, it enables data

scientists to visually demonstrate the effects of varying model parameters and
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assumptions in real time. This collaborative approach enhances the overall

decision-making process and ensures that all team members, regardless of

their technical background, can contribute meaningfully to the analysis.

7.1.2 Data Agnosticism

Ts.shiny was designed to be data agnostic, capable of handling a wide vari-

ety of time series datasets from different domains. While it is highly flexible

and can accommodate many types of data, some preprocessing may be re-

quired to ensure that the datasets conform to certain standards (e.g., time-

indexed data). This flexibility sets ts.shiny apart from many commercial

tools, which often impose strict requirements on the structure and format of

the data.

The agnostic nature of the tool allows it to be used in the early stages

of a project, where the dataset may still be evolving, as well as in the final

stages, where it can serve as a showcase for complete project results. It

supports a wide range of exploratory tasks, including initial data analysis,

trend identification, and even model testing, making it a valuable tool for

both prototyping and presenting results.

7.1.3 Similar Tools

Compared to other data visualization and analysis tools, ts.shiny offers

a distinct advantage by being both flexible and feature-rich. Many popu-

lar visualization tools are limited in their analytical capabilities and require

highly structured datasets to function properly. ts.shiny overcomes these
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limitations by providing a flexible interface that can adapt to different data

structures and analysis needs.

On the other hand, traditional code-based tools leave the source code

open to modifications, which could introduce errors or lead to unintended

consequences. ts.shiny strikes a balance by allowing users to interact with

the tool in a visual, user-friendly manner, while keeping the underlying code

protected and stable. This ensures that non-technical users can safely explore

the data without risking the integrity of the analysis pipeline.

Overall, ts.shiny serves as a proof-of-concept for how the R Shiny frame-

work can be applied to handle complex and lengthy tasks, offering a powerful

solution for interactive time series analysis. It is designed to be both acces-

sible and robust, making it suitable for a variety of users and applications.

7.2 Architecture

The architecture of ts.shiny is designed to ensure modularity and flexibility,

allowing users to perform exploratory data analysis (EDA) and forecasting

on time series datasets through a simple and intuitive interface. The sys-

tem is organized into three main modules: Data Module, EDA Module,

and Forecasting Module. Each module plays a critical role in the overall

functionality of the application, and they work together to deliver a seamless

experience for users. The diagram below illustrates the overall architecture

of the system.
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Figure 7.1: ts.shiny System Architecture

7.2.1 Data Module

The Data Module is responsible for handling the user’s data throughout

the lifecycle of the application. It manages three key stages: loading, trans-

forming, and storing data.

• Loaded Data: The application accepts user-submitted datasets, which

are uploaded through the Data Module. These datasets must contain

time-indexed data suitable for time series analysis. Upon upload, the

system validates the structure of the data, ensuring it conforms to the

minimum requirements for processing.

• Transformed Data: After loading the data, users can apply selected

transformations at any point during the application lifecycle. Available

transformations include adding Moving Average series, transforming

the index frequency, or excluding certain features from the dataset.
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Each time a transformation is applied, the transformed data is stored

within the Transformed Data submodule. This ensures that the

dataset is prepared in a consistent and reliable format for subsequent

analysis and forecasting phases without destroying the original data.

• Stored Data: The Data Module also stores results from analyses

and forecasting models, ensuring that users can revisit their work with-

out needing to start over. This feature supports the tool’s flexibility,

allowing users to continue their analysis or refine at any stage. Data

transformations, model outputs, and forecasting results can be accessed

or updated as needed, ensuring a seamless workflow.

The Data Module feeds the prepared and transformed data into the

Current Data container, which serves as the central data structure for the

application. This container is accessed by subsequent modules for visual-

ization and analysis, ensuring smooth and continuous interaction between

different application components.

7.2.2 EDA Module

The EDA Module facilitates exploratory data analysis by providing vari-

ous interactive visualizations. These visualizations help users understand the

underlying patterns, trends, and distributions within their time series data.

The module includes several submodules, each responsible for a different type

of plot or visualization. Subdividing the modules allows for easy inclusion of

new visualizations, removal of existing ones, and troubleshooting any prob-

lems in the current application without having to go through hundreds of
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lines of code. Each visualization can also have selectors to allow the user to

better customize the output (Figure 7.2).

Figure 7.2: Exploratory Data Analysis interactive elements.

These visualizations are dynamically generated and displayed in a Vi-

sualization Container, which serves as the primary interface for users to

interact with their data. Users can toggle between different visualizations

and adjust parameters to tailor the analysis to their needs.

7.2.3 Forecasting Module

The Forecasting Module provides users with access to various forecasting

techniques, allowing them to generate predictive models based on their time
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series data. The module supports a range of popular forecasting methods

and the proposed model developed in this research.

Users can select from these models and apply them directly to the Cur-

rent Data. The forecasts are then displayed in the Visualization Con-

tainer, allowing for easy comparison between the actual values and the pre-

dicted values. Additionally, users can adjust model parameters, such as the

number of lags or the length of the forecasting horizon, to customize the

forecasts according to their specific use cases. As with the EDA module, the

forecasting module also allows user interaction for better model parameter

tuning (Figure 7.3).

Figure 7.3: Forecasting Analysis interactive elements.

After each forecasting operation, the data is saved using the Stored

Data submodule, ensuring ease of access for future sessions. The system

currently supports storing forecasts from multiple models at once, though it

limits each model to a single forecast per session. This design enhances flex-

ibility while maintaining the organization and accessibility of the forecasting

results.
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7.2.4 Integration and Visualization

At the heart of ts.shiny is the Visualization Container, which integrates

the outputs from both the EDA Module and the Forecasting Module.

This container module allows users to customize their current GUI by dis-

playing only the desired plots, while moving any unwanted visualizations

to a hidden sidebar. The Visualization Container is a generic container

capable of holding all available visualizations, and users can select and add

multiple instances of the same or different visualizations to their application

(Figure 7.4).

Figure 7.4: ts.shiny application, showcasing the modularity of the visual-
izations.

1 f_switch <- function(viz , df) {

2

3 switch(

4 viz ,

5 "_time -series_" = ts_viz(df),

6 "_pacf_" = pacf_viz(df),

7 "_acf_" = acf_viz(df),

8 "_time -series -ma_" = ts_smooth(df)

9 )

10

11 }

Listing 7.1: Selector for visualization container

Through these containers, users can interact with their data in real-time,

switching between visualizations, adjusting model parameters, and instantly
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viewing the results of their changes. The interactive nature of the tool em-

powers users to explore the effects of different forecasting methods and as-

sumptions without the need for complex coding, enhancing the flexibility and

usability of the application.

1 dash_analytics_viz <- function (class_specific , header ,

unique_id , viz , df) {

2 # Set default column class

3 column_class <- "col -md -6 col -lg -6 col -sm -12"

4

5 # Update column class if "time -series" is part of the viz

ID

6 if (grepl("time -series", viz)) {

7 column_class <- "col -md -12 col -lg -12 col -sm -12"

8 }

9

10 div(

11 class = class_specific ,

12 div(

13 class = column_class ,

14 div(

15 class = "panel panel -default",

16 div(

17 class = "panel -heading clearfix",

18 tags$h2(header , class = "pull -left panel -title"),

19 div(

20 class = "pull -right",

21 shiny :: actionButton(

22 inputId = unique_id ,

23 label = ’’,

24 class = "btn -danger delete",

25 icon = shiny::icon("minus")

26 )

27 )

28 ),

29 div(

30 class = "panel -body",

31 f_switch(viz , df)

32 )

33 )

34 )

35 )

36 }

Listing 7.2: Visualization container
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Chapter 8

Conclusion and Discussion

This chapter provides a comprehensive overview of the research conducted

in this study, highlighting the key findings, implications, limitations, and

potential directions for future work. The analysis focused on forecasting the

prices of Magic: The Gathering cards, utilizing a combination of traditional

statistical models and advanced machine learning techniques.

8.1 Summary of Findings

The primary objectives of this research were twofold: first, to create a consoli-

dated, consistent database that meets the standards of analytical frameworks

and is scalable enough to accommodate new cards and additional exogenous

features; second, to propose a data-driven forecast combination method to

improve forecast accuracy. Additionally, this research aimed to compare base

forecasting methods to determine if their performance varies across different
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groups of cards and to develop a Shiny-based application to assist in data

analysis.

8.1.1 Database Creation

The first objective of this research was to create a consolidated and consis-

tent database to facilitate the analysis and forecasting of Magic: The Gath-

ering card prices. Given the fragmented nature of available data, this task

involved meticulous data collection from various sources, including MTG-

Goldfish, MTGTop8, and MTGJSON. These sources provided diverse yet

complementary datasets, encompassing price histories, tournament results,

and card attributes.

The preprocessing stage included rigorous data cleaning and feature en-

gineering to ensure the dataset’s reliability and scalability. Missing price

values were addressed through interpolation, while various features, such as

card appearances, card count, and legality, were engineered to capture the

nuanced dynamics of the MtG market. By integrating these datasets, a ro-

bust and scalable database was constructed, capable of accommodating new

cards and additional exogenous features as the game evolves. This database

served as the foundation for the subsequent forecasting models, providing a

rich and comprehensive dataset that enhanced the accuracy and relevance of

the forecasts.
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8.1.2 Proposed Model

The second objective was to develop a data-driven forecast combination

model designed to improve the accuracy of price predictions for MtG cards.

Traditional forecasting methods, such as ARIMA, have limitations when ap-

plied to the complex, non-linear nature of MtG card prices. To address this,

a forecast combination based Neural Network model was proposed. This

model leverages the strengths of individual base models, including ARIMA,

Random Walk, and NNETAR, by combining their forecasts into a single,

more accurate prediction.

The model operates by first establishing base forecasts using the individ-

ual models. These forecasts are then combined using a weighted approach,

which determines the weights through optimization techniques that minimize

forecast errors using a genetic algorithm. The combined series, together with

the actual values, are then used as inputs in a new neural network architec-

ture. The resulting model is data-driven, allowing it to adapt to different

market conditions and external influences.

This approach is not only applicable to MtG forecasting but can also be

generalized to other domains. The proposed architecture is generic and not

dependent on MtG data, making it a versatile tool for improving forecast

accuracy in various fields.

The results indicated that the forecast combination model generally out-

performed the individual base models, particularly for cards in Group 1,

which are more susceptible to external factors such as market speculation

and collector interest. For Group 2, the model’s performance was also su-

perior, though the difference was less pronounced due to the less stable and
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predictable nature of these cards’ market values.

8.1.3 Model Comparison

The third objective involved comparing the performance of traditional fore-

casting methods across different groups of MtG cards. The research cate-

gorized cards into two main groups: those on the Reserved List (Group 1)

and those frequently used in tournaments (Group 2). The comparison aimed

to determine whether the performance of these models varies significantly

between these groups, given their distinct characteristics in terms of supply

and demand dynamics.

This comparative analysis failed to highlight any difference in model

preference between the two groups for the models selected and engineered

features.

8.1.4 ts.shiny

The final component of this research involved the development of an R

Shiny application named ts.shiny. Designed to facilitate out-of-the-box ex-

ploratory data analysis (EDA) and basic forecasting for time series data, this

application was created with the intention of providing an intuitive, user-

friendly tool that enables users to explore and analyze time series datasets

interactively.

ts.shiny integrates several key functionalities:

• Interactive Data Visualization: Users can upload their datasets
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and instantly visualize the time series through various plots, including

line plots, histograms, and box plots. This feature allows users to

quickly identify trends, seasonal patterns, and potential outliers in the

data.

• Summary Statistics and Descriptive Analysis: The application

provides summary statistics for the time series, such as mean, median,

variance, and autocorrelation. These statistics are crucial for under-

standing the underlying distribution and characteristics of the data

before moving on to more complex analyses.

• Basic Forecasting: The application includes built-in models for basic

time series forecasting, such as ARIMA, Neural Network-based models,

as well as the proposed model of this research. Users can easily apply

these models to their data and visualize the resulting forecasts. This

feature is particularly useful for quickly generating baseline forecasts

and comparing different modelling approaches.

• User Customization and Flexibility: While ts.shiny offers a range

of default settings for ease of use, it also allows for user customization.

Users can adjust parameters for their analyses, select different models,

and choose specific time ranges for forecasting. This flexibility ensures

that the tool can be adapted to various datasets and analytical needs.

The ts.shiny application represents a significant contribution to the

project by providing a practical, accessible platform for both novice and

experienced users to perform EDA and basic forecasting. By streamlining

these processes into an interactive tool, ts.shiny enhances the accessibility

of time series analysis, making it easier for users to derive insights and make
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informed decisions based on their data.

8.2 Future Research Directions

The results of this research open several avenues for future work, focusing

on expanding the applicability and robustness of the proposed models and

tools.

8.2.1 Improve Model Application

While the current system was used for Magic: The Gathering (MtG) card

price forecasting, its framework could be extended to other collectible games

or markets with similarly robust secondary markets. Future research could

explore how the model can be adapted and fine-tuned to different types of

collectible assets, taking into account unique market dynamics and demand

patterns inherent to each.

8.2.2 Different Modeling Engineering

Modelling a card’s cost-effectiveness information is a challenging task that

requires substantial research. The methods presented in this research can

be potentially extended to improve exogenous feature modelling. Leveraging

Natural Language Processing (NLP) or other advanced approaches could

enhance the accuracy of feature extraction and the overall predictive power

of the model. This would be particularly useful for capturing the complex
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interactions between a card’s textual attributes and market value.

8.2.3 Increased Base Model Selection

The proposed method was based on popular forecasting methods, such as

ARIMA, Random Walk, and NNETAR. Future research could explore the

inclusion of additional base models to further enhance forecasting accuracy,

particularly for cards with fewer observations or those in more volatile mar-

ket segments. By diversifying the base models, the forecast combination ap-

proach could be optimized to handle a broader range of scenarios and data

characteristics, potentially reducing performance loss in less stable datasets.

8.2.4 Continuous Model Improvement

As forecasting techniques evolve, ongoing opportunities exist to refine and

enhance the proposed model. In addition to incorporating new base models,

future research could focus on developing approaches for interval forecasting

and volatility modelling, which are crucial for dealing with uncertainty and

market fluctuations. Integrating these techniques would improve the model’s

robustness, particularly in scenarios where accurate prediction ranges and

risk assessments are critical.

8.2.5 ts.shiny Improvement

The ts.shiny application provides a foundation for out-of-the-box exploratory

data analysis (EDA) and basic forecasting. However, there is significant
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potential for expanding its capabilities. Future enhancements could include

integrating more advanced forecasting models, a more robust framework for

handling large datasets, and additional customization options for users to

tailor their analyses more precisely. These improvements would position

ts.shiny as a final product capable of filling a niche currently underserved

by existing tools and software, making it a valuable resource for novice and

expert users in time series analysis.
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