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ABSTRACT

Inflation, defined as the rise in prices over time, plays a critical role in deter-

mining a nation’s economic stability. Careful monitoring and control are required

since this phenomenon has an impact on the cost of living in any country. Despite

its importance, not much attention has been paid to Canadian inflation research.

This study aims to address this gap by forecasting Canada’s inflation using a novel

data-driven forecast combination approach. Inflation is influenced by several eco-

nomic factors, which are reflected in consumer spending patterns. By incorpo-

rating various external economic factors such as exchange rates, oil prices, the

commodity price index, money supply, interest rates, and unemployment rates;

this approach seeks to accurately capture the variations in inflation. This study

introduces a simple yet effective data-driven forecast combination approach that

integrates implemented time series and machine learning models. The proposed

approach bypasses traditional forecasting steps and allows forecast weights to be

optimized by minimizing the h-step ahead forecast error sum of squares (FESS).

The performance of the proposed approach is evaluated through numerical exper-

iments using simulated data and Canadian inflation data from the Federal Reserve

Economic Data and the Bank of Canada. The results demonstrate that the pro-

posed approach outperforms traditional time series and machine learning models,

offering superior accuracy and reliability in forecasting inflation. Importantly,

the proposed model is robust, showing consistent performance in pre- and post-

COVID periods.

Key Words: Canada Inflation; Dynamic Regression; Forecast combinations,

Machine Learning; Time series
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Chapter 1

Introduction

1.1 The Inflation: An Economic Concern

Inflation is the economic phenomenon marked by a decrease in the purchasing

power of money, characterized by a general increase in prices for goods and ser-

vices over time. It can be seen that prices of commodities tend to increase over

time and this is illustrated considering a cup of coffee price in figure 1.1. This

figure shows in 1970, the price of coffee was 25 cents; in 1980, it was 45 cents;

and in 2020, the same cup cost $1. 59. This rise in price is called inflation. It can

also be seen in essentials like groceries, housing rent, and energy prices. Inflation

reduces the purchasing power of money which means as prices increase the value

of money declines that is each unit can purchase a few goods and services. As

inflation leads to a decline in the purchasing capacity of the public, it brings down

the standard of living and slows the growth of the economy (Fernando, 2024). In

this research, our primary purpose is to propose a novel approach to forecast In-

flation Rate in Canada by employing advanced modeling techniques.
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Figure 1.1: Coffee Price over time. Source: Gioffre, Medium (2022)

1.1.1 What is CPI?

The Consumer Price Index (CPI) is one of the most important indicators that

many countries use to measure the changes in prices of goods and services i.e.

inflation. In Canada, the CPI represents the purchasing experiences of Canadians

across various products and services and is hence an important indicator of infla-

tion in the country. Overall, the CPI basket is categorized into eight major com-

ponents: food; shelter; household operations, furnishing, and equipment; apparel

and footwear; transportation; medical and personal care; education, communica-

tion, and entertainment; and alcoholic beverages and tobacco products and recre-

ational cannabis, as illustrated in the following figure1.2. Every item in a basket is

given a weight percentage which represents how much of Canadians’ expenditure

corresponds to the specific item. For instance, Canadians pay relatively higher

amounts for food and shelter than personal grooming. Thus, a higher weight is

given to food and shelter than other categories, which in return provide a maxi-

mum contribution towards inflation (BoC, 2021a). The inflation rate is measured

as the 12-month percentage change in the CPI. This involves determining the

2



percent change in the CPI of a given month compared to those of the same month

in the previous year (Statistics Canada, 2024).

Figure 1.2: CPI Basket. Source: Maddy Price, Investopedia (2024).

1.1.2 Causes of Inflation

This section aims at describing the causes of inflation. Figure 1.3 illustrates Cost-

Push, Built-In, and Demand-Pull inflation, which are the three primary cate-

gories of inflationary factors.

• When people have more money to spend, demand for goods increases which

results in higher prices of the product, this phenomenon is known as Demand-

3



Pull Inflation. The main reason for this inflation is a discrepancy between

supply and demand caused by increased demand and less supply drives

higher prices.

• Cost-Push Inflation is experienced due to an increase in manufacturing

expenses that are passed on to the final price of the product prices.

• When firms raise the pricing of goods and services in response to worker de-

mands for greater salaries to cover the high cost of living, this phenomenon

is known as Built-In Inflation (Fernando, 2024).

In summary, inflationary pressures arise when demand surpasses supply, produc-

tion costs grow or wages increase (Globe and Mail, 2023). As a result, prices of

the product rise.

Figure 1.3: Causes of Inflation. Source: Melissa Ling, Investopedia (2019).
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1.1.3 Impact on Canadian

Recently many countries experienced high inflation after the COVID-19 pandemic

mainly due to supply and demand mismatch and rising energy prices. In June

2022, Canada had its highest inflation rate since the early 1980s, reaching 8.1%

(Chen and Tombe, 2023). This was caused by unusual shocks from the pandemic

and geopolitical events, which created unforeseen challenges the central bank

didn’t anticipate (Kryvtsov et al., 2023). Canadians felt the impact of inflation

most in higher food prices, housing costs, and transportation expenses. Product

prices and wages increased due to unexpected situations which resulted in global

issues like supply chain disruptions and rising energy prices. Many found it tough

because their wages didn’t keep up with the price hikes of Canada (BoC, 2023a).

In response, the central bank employed monetary policy (explained in the next

section) by raising interest rates, a mechanism they employ to keep inflation un-

der control. The monetary report shows a positive hope of getting back to the

target of a 2% inflation rate of Canada by 2025 (BoC, 2023b). This means it is

very important to forecast the inflation rate for the well-being and stability of any

country’s economy.

1.1.4 Monetary Policy

The objective of Canada’s Monetary Policy is to contribute to the economic and

financial well-being of Canadians by fostering a sustainable economy while keep-

ing inflation low, stable, and close to 2%, thereby supporting economic growth

and a strong labor market. The policy, established in 1991, targets a 2% inflation

rate within a 1% to 3% control range and was renewed in 2021 until 2026. This

method has maintained inflation near 2% and contributed to a robust labor market.

5



Both the Bank of Canada and the Government of Canada recognize the necessity

of balancing inflation and long-term employment. Flexibility within the 1% to

3% control range allows the Bank to manage labor market and interest rates while

keeping inflation stable (BoC, 2021b). Overall, the objective is to keep inflation

around 2% to ensure economic stability and job security for the Canadian public

while adapting to different economic outcomes and conditions.

1.2 Research Gap and Contribution

Inflation has become a hot topic and capturing the attention of researchers. Con-

trolling inflation is crucial for maintaining financial stability, therefore policymak-

ers and economists rely on accurate forecasts to track inflation and make well-

informed decisions to ensure price stability (Pasaogullari and Meyer, 2010). Fore-

casting macroeconomic indicators such as inflation is challenging due to the com-

plex and dynamic nature of the economy. Researchers have employed many algo-

rithms and methods to create forecasting models for time series data. Initially, sta-

tistical models were common. With the availability of massive datasets, increased

computer power, and easier access to advanced software, machine-learning tech-

niques have become more popular for forecasting. These algorithms have been

used for forecasting time-series data, like GDP growth or inflation (Rodrı́guez-

Vargas, 2020).

For forecasting inflation, researchers have used various external variables like

interest rates, unemployment rates, exchange rates, etc. Some have utilized time-

series models AutoRegressive Integrated Moving Average (ARIMA), Exponential

Smoothing State Space Model (ETS), etc., while some have employed advanced

models like Random Forest, Extreme Gradient Boosting (XGBoost), Long Short-

6



Term Memory (LSTM), etc. Few studies have investigated combining methods

for inflation forecasting. Those studies used different methods to combine fore-

casts but mainly used a simple average combination method. A detailed literature

review of the inflation study is provided in Chapter 2.

Despite the importance of inflation study, inflation forecasting in Canada has

received minimal attention, particularly in terms of including external economic

variables and employing advanced machine learning tools. Traditional models

like ARIMA often rely on lagged values. However, it is necessary to capture the

external economic influences that impact inflation dynamics. To address this gap,

our research uses external variables like interest rates, exchange rates, etc. into

the inflation forecast models, enhancing the accuracy of the forecast. We also

implemented a machine-learning technique to capture the complex nature of the

data.

Moreover, to the best of our knowledge, dynamic regression models have not

been utilized previously to forecast Canadian inflation. This model allows for

the inclusion of information from past observations as well as relevant external

variables (Hyndman and Athanasopoulos, 2018). We are using this approach in

our study, to get a more accurate and reliable inflation forecast.

Additionally, research suggests that combining forecasts from different mod-

els can significantly improve accuracy (Andrawis et al., 2011). This approach

leverages the unique strengths of individual models. While forecast combinations

are more common in stock forecasting and typically use a simple average method,

we have proposed a novel data-driven combination approach. This method inte-

grates individual forecasts by assigning various weights to them, aiming to pro-

vide an optimized inflation forecast for Canada.

7



The Proposed data-driven weighted forecast combination (DDWFC) approach

is very effective because it incorporates external economic variables, the power of

time series and machine learning techniques, and the robustness of combination

forecasting. This approach is effective as it is dependent on the data; which pro-

vides different weights to individual models providing maximum weightage to

the most accurate forecast. The optimized weights are derived automatically in

the algorithm by minimizing h-step ahead Forecast Error Sum Squares (FESS).

However, we have to try different combinations of forecasts manually and select

the best combination on the basis of the least Root Mean Squared Error (RMSE).

Finally, suggested an extra automated algorithm that uses each forecast as in-

put, attempts every possible combination of the forecast, and determines which

combination is optimal by minimizing FESS for every horizon. Ultimately, we

merge those models that were produced using automated methods over all hori-

zons. Next, to obtain the forecast, apply this combination to our suggested DDWFC

model. We are expecting that this comprehensive approach will provide more pre-

cise forecasts which will be helpful in policy making and economic planning of

the country.

1.3 Research Objective

The following are the objectives of this study:

• The primary objective of this study is to propose a novel DDWFC approach

to enhance the accuracy of Canadian Inflation forecasts across various hori-

zons (h = 1, 3, 6, 12 months). We are also planning to propose an automated

method that will find the best combination of forecasts to provide more ac-

8



curate forecasts.

• This proposed approach seeks to incorporate external economic variables

such as exchange rates, interest rates, commodity price indices, etc. along

with historical inflation data.

• By integrating these variables and employing advanced machine-learning

techniques, we intend to provide more precise and reliable inflation fore-

casts. These enhanced forecasts will offer valuable insights to policymakers

and economists, to make better-informed decisions to effectively maintain

Canada’s inflation.

1.4 Outline of the Project

Apart from this brief introduction, the structure of the project is organized as fol-

lows. Chapter 2 is on the specifics of the literature reviewed for the study. The

methodology is described in Chapter 3. Chapter 4 is dedicated to discussing the

results of the undertaken analysis. Chapter 5 focuses on the results of simulated

data. Finally, we conclude and propose some ideas about future research in Chap-

ter 6.
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Chapter 2

Literature Review

Forecasting inflation has been an interesting research topic nowadays and it is

always a challenging topic. Due to the importance of inflation forecasting in es-

tablishing economic stability, there is a constant search for novel ways to improve

forecast accuracy. This literature review focuses on research based on time series,

machine learning, deep learning, and combination models.

2.1 Time-series Models

2.1.1 Autoregressive Integrated Moving Average (ARIMA) Mod-

els

Various methods have been developed to forecast and estimate inflation rates.

ARIMA models have been used for many days as a research tool in forecast-

ing various macroeconomic indicators. Meyler et al. (1998) focused on utiliz-

10



ing ARIMA models for forecasting Irish inflation. Their goal was to optimize

forecast performance by concentrating more on reducing out-of-sample forecast

errors than on maximizing in-sample goodness of fit. Nyoni (2018) conducted

a study that employed the ARIMA and Generalized Autoregressive Conditional

Heteroskedasticity (GARCH) models to obtain a rigorous analysis of inflation in

Kenya. This study has provided valuable insights into inflation trends and has

contributed to the development of effective forecasting models. Deka and Re-

satoglu (2019) utilized the ARIMA model to forecast Turkey’s foreign exchange

rate and inflation. It identifies ARIMA(3,1,3) as the best model for forecasting the

exchange rate and ARIMA(1,1,4) for predicting inflation.

2.1.2 Dynamic Regression (DR) Models

Very few researchers use this method in time-series forecasting. The Dynamic Re-

gression (DR) method is different from the traditional time-series linear regression

model. In the time series regression model, errors are assumed to be uncorrelated

(i.e, it is white noise) whereas in the DR model, the errors are allowed to con-

tain autocorrelation. In that case, the errors follow an ARIMA model to capture

the correlation between lagged values. Hence DR model helps to forecast depen-

dent variables by including external variables as well as lagged values. Shaqiri

et al. (2023) successfully implemented a dynamic regression forecast model for

customer-specific electricity consumption, utilizing the Seasonal and Trend de-

composition method (STL) for accurate estimation of trend and seasonal compo-

nents. No one has explored this method to forecast inflation.
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2.2 Machine Learning and Deep Learning Models

Traditional time-series models like ARIMA have been widely used for inflation

forecasting. However, these models often struggle to capture the complex, non-

linear relationships between economic variables and inflation. Recent advances in

machine learning (ML) methods have shown promise in improving the accuracy

of inflation forecasts. We can not directly implement machine learning models on

the time series data. To effectively apply machine learning models to time series

data, feature engineering is essential. This process involves converting raw data

into meaningful features that capture temporal patterns and relationships (Tilgner,

2019). Features such as temporal indicators, lagged variables, rolling statistics,

and external factors enable models like RF and neural networks to better under-

stand and predict trends in time series data (Gordon, 2023). This preprocessing

step enhances the model’s ability to make accurate forecasts by extracting relevant

information from the data. Studies have explored various ML techniques, includ-

ing neural networks, and ensemble methods to forecast inflation more effectively.

2.2.1 Neural Network Autoregression (NNAR) Models

The NNAR model is specifically designed for time-series data. Its a neural net-

work model that includes lagged values as input variables to consider the correla-

tion between time-series data (Hyndman and Athanasopoulos, 2018). Therefore,

the NNAR model is used to capture the non-linearity of the time series data and it

has been used in different sectors like financial, health, etc. Karadzic and Pejovic

(2021) assessed the forecasting accuracy of ARIMA, Holt-Winters, and NNAR

models for predicting the Harmonized Index of Consumer Prices in the Euro-

12



pean Union (EU) and the Western Balkans. These models are compared using

various metrics such as Root Mean Squared Error (RMSE), Mean Absolute Er-

ror (MAE), Mean Percentage Error (MPE) and Mean Absolute Percentage Error

(MAPE) for out-of-sample forecasts. Results reveal that NNAR models offer the

most precise forecasts for the Western Balkans, whereas ARIMA models are su-

perior for predicting twelve-month inflation in EU countries. The Holt-Winters

method is the second most accurate for both regions. The effectiveness of NNAR

models has also been demonstrated in other contexts, such as forecasting COVID-

19 cases and deaths, where Demir and Kirisci (2022) showed that the NNAR

model provides superior performance compared to Seasonal ARIMA (SARIMA)

in forecasting COVID-19 monthly cases in Turkey. The strength of NNAR models

has been highlighted in forecasting GDP growth rates. According to Almarashi

et al. (2024), in the context of Saudi Arabia, NNAR models demonstrated supe-

rior performance in predicting the annual GDP growth rate, having lower MAE,

RMSE, and MAPE values compared to other models. These studies underscore

the model’s reliability and potential application for economic planning and policy

formulation.

2.2.2 Random Forest (RF) Models

Medeiros et al. (2021) demonstrated that ML models incorporating a large number

of covariates outperformed traditional time-series models in predicting U.S. infla-

tion. According to the author, the RF model has gained importance in inflation

forecasting due to its exceptional performance. Similar advancements have been

observed in GDP forecasting. Yoon (2021) encouraged the use of ML models in

macroeconomic forecasting. They explored RF and gradient boosting to forecast

GDP growth in Japan.
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2.2.3 Extreme Gradient Boosting (XGBoost) Models

Similarly, various authors Pratap and Sengupta (2019), Li et al. (2023), Araujo

and Gaglianone (2023), and Cobbinah and Alnaggar (2024) explored XGBoost

to forecast inflation along with other machine learning and time-series models.

Araujo and Gaglianone (2023) studied different approaches to forecast inflation

and according to the authors, top forecasts are provided by various approaches like

combination methods, tree-based methods such as RF and XGBoost, breakeven

inflation, and surveys of people’s expectations.

2.3 Combination Models

Forecast Combination is an old theme in literature. Several studies such as Stock

and Watson (2004), Andrawis et al. (2011) say that combined forecasts provide

superior forecasts than individual forecasts. Nowadays, researchers are using

this approach in inflation forecasting to improve accuracy. Pratap and Sengupta

(2019), Rodrı́guez-Vargas (2020), Jamil (2022),Araujo and Gaglianone (2023)

Andrawis et al. (2011) have implemented combination models in inflation fore-

casting. discussed various methods for combining individual forecasts, including

techniques such as the simple average method, variance-based methods, the in-

verse of the mean square error, rank-based weighting, least squares estimation,

etc. All combination methods operate differently depending on the type of data.

There is no single combination method that guarantees the most accurate fore-

cast in all situations. Through analysis, we can determine the best combination

method.
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It has been researched that including covariates for forecasting inflation im-

proves accuracy due to the inclusion of more information for explaining the de-

pendent variables. Many research papers like Dion (1999), Paranhos (2021),

Medeiros et al. (2021) etc. have included different economic indicators for pro-

jecting inflation in their respective countries. For the US, the Federal Reserve

Bank of St. Louis. provides a monthly frequency, macroeconomic database

called FRED-MD which is widely used for economic research McCracken and

Ng (2016). Therefore, many researchers use this dataset to forecast US inflation.

This dataset contains various economic variables that help to forecast inflation

more accurately. Paranhos (2021), Medeiros et al. (2021), Malladi (2023) and

Theoharidis et al. (2023) used the FRED-MD dataset to project US inflation.

Dion (1999) tested several variables for their ability to predict the core infla-

tion of Canada. First, they used Granger causality tests for initial screening, fol-

lowed by bivariate indicator models for forecasting one and two quarters ahead.

Then they used ridge regression to combine selected bivariate forecasts into mul-

tivariate forecasts optimally. These multivariate models are compared with the

benchmark model, Philips curve, autoregressive and naive model. Their study

identifies that components of the CPI, the Bank of Canada commodity price index

in U.S. dollars, the industrial product price index for electrical products, average

resale housing prices in major cities, and the ratio of unfilled orders to shipments

in manufacturing are important variables to forecast inflation.

Moshiri and Cameron (2000) explored and compared different combined Ar-

tificial Neural Network (ANN) models with the ARIMA model, a vector autore-

gressive model, and a Bayesian vector autoregression model to forecast Canada

inflation. They compared inflation forecasts for one, three, and twelve months

ahead of hybrid with traditional time-series models and concluded that in some
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cases, hybrid ANN models can match or outperform traditional models.

Pratap and Sengupta (2019) investigated whether machine learning models

provide better (Consumer Price Index) CPI forecasts. Authors forecasted CPI

inflation in India using traditional time series, machine learning, and deep learn-

ing models. They employed modeling techniques like SARIMA, NNAR, Support

Vector Machine (SVM), K-Nearest Neighbors (KNN), RF, XGBoost, LSTM, etc.

And compared the model’s accuracy with the benchmark model RW. The author

also explored different combinations of models. Their finding says that generally,

machine learning models outperform the standard statistical models. Addition-

ally, combination models were found to be more effective than individual models.

According to them, the simple average method outperforms the inverse RMSE

weighted average models.

Rodrı́guez-Vargas (2020) tried various advanced machine learning and deep

learning models like KNN, RF, XGBoost, LSTM, an average of univariate meth-

ods, etc to forecast inflation of Costa Rica on the basis of nineteen macroeconomic

variables. They also proposed a combination method that combined univariate

KNN, LSTM, and RF. According to their study, the proposed method outper-

formed individual models and the average univariate forecasts used by the Central

Bank of Costa Rica. Their result provides an unbiased forecast for all horizons.

Medeiros et al. (2021) implemented machine learning models and used this

dataset to improve inflation forecasting accuracy. According to the authors, ML

models with numerous covariates outperform traditional benchmarks. They em-

phasized that the RF model outperformed all other models due to its variable se-

lection method and the ability to capture nonlinear relationships between macroe-

conomic variables and inflation. Paranhos (2021) utilized neural network models,

LSTM model, to forecast inflation for various horizons. Using US data, results
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showed that neural networks provide better forecasts than standard benchmarks,

especially for longer horizons. The LSTM model outperforms traditional feed-

forward networks at long horizons, due to its capacity to incorporate older infor-

mation for improved accuracy.

Jamil (2022) proposed a hybrid model combining ARIMA and LSTM mod-

els to forecast the CPI of six developed countries. The proposed hybrid model

outperformed the individual forecast model. Theoharidis et al. (2023) proposed

a hybrid deep learning model VAE-ConvLSTM combining Variational Autoen-

coders and Convolutional LSTM Networks to forecast inflation. Using a public

macroeconomic database (FRED-MD) with 134 monthly U.S. time series from

January 1978 to December 2019, the authors compared the hybrid model against

popular time-series and machine learning benchmarks, including Ridge regres-

sion, LASSO regression, RF, Bayesian methods, Vector Error Correction Model

(VECM), and multilayer perceptron. The VAE-ConvLSTM model consistently

outperformed these benchmarks in out-of-sample performance. Their result is ro-

bust and supported by cross-validation and Monte Carlo simulations with different

training, validation, and test samples.

Araujo and Gaglianone (2023) investigated the application of machine learn-

ing methods to enhance inflation forecasting in Brazil. An extensive out-of-

sample forecasting exercise is conducted with multiple horizons using a large

dataset of 501 series and 50 forecasting methods, including newly proposed ML

techniques, traditional time-series models, and forecast combination methods.

The results indicate that ML methods often outperform traditional time-series

models in terms of mean-squared error. The top-performing forecasts frequently

include combinations of methods, tree-based techniques like RF and XGboost,

breakeven inflation, and survey-based expectations. Cobbinah and Alnaggar (2024)
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proposed a novel approach using a deep learning method. They applied a Re-

current Neural Network (RNN) encoder-decoder attention model to forecast the

Canadian CPI, demonstrating its superiority over traditional time-series and ma-

chine learning methods.

In similar manner, by referring to all research papers about inflation from

different countries, our research included some important economic external vari-

ables and advanced forecasting tools to address the gap in forecasting inflation in

Canada.
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Chapter 3

Methodology

This study has implemented different approaches for forecasting Canadian infla-

tion. We projected inflation for different horizons (h = 1, 3, 6, 12 months) which

can be useful in planning economic activity. Additionally, we have proposed a

DDWFC approach to enhance forecast accuracy and provide findings to policy-

makers. This chapter will explain the implemented models such as time-series and

machine learning, novel approach, time-series cross-validation, evaluation matrix,

and data collection.

In this context, yt represents the current inflation rate at time t, while ŷt+h

denotes the forecasted inflation rate at time t + h. These projections will be for

various horizons (h = 1, 3, 6, 12 months), which will allow us to observe the

behavior of inflation as the horizon increases.
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3.1 Time series Models

Before implementing any models on the time series data, we should perform some

preprocessing steps. It typically involves differencing to stabilize mean values and

transformations such as logarithmic scaling to handle variance. We do these types

of adjustments and transformations to make the pattern of time-series data more

simpler. This helps the model to produce a more accurate forecast (Hyndman

and Athanasopoulos, 2018). The following are the different models that were

implemented in our research to forecast inflation.

3.1.1 Autoregressive Integrated Moving Average (ARIMA) Mod-

els

Classical regression is not able to capture the fluctuations of the time-series data

fully. To capture the autocorrelation of the data, the ARIMA model is the most

commonly used approach in analyzing and forecasting time series data. It is devel-

oped by Box and Jenkins (Shumway et al., 2017). The ARIMA model is designed

to analyze and forecast time series data by incorporating autoregressive (AR), in-

tegrated (I), and moving average (MA) components. The integrated (I) component

involves differencing the series to achieve stationarity. Statistical properties of the

stationary time series do not depend on the time at which the series is observed.

That is data should be from white noise series (Box et al., 2015). The ARIMA

full model can be written as:

y′t = c+ ϕ1y
′
t−1 + · · ·+ ϕpy

′
t−p + θ1εt−1 + · · ·+ θqεt−q + εt, (3.1)
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We call this an ARIMA(p, d, q) model where p represents the order of the AR part,

q represents the order of the MA part, and d is the degree of first-order differenc-

ing. The differenced series, denoted as y′t, represents the transformed time series

at time t, where differencing is applied to make non-stationary data stationary.

The model includes a constant term c, which serves as the intercept. The autore-

gressive (AR) part of the model is defined by the coefficients ϕ1, ϕ2, . . . , ϕp, cor-

responding to the lagged values of the differenced series y′t−1, y
′
t−2, . . . , y

′
t−p, with

p indicating the order of the AR part. In the moving average (MA) part, the coeffi-

cients θ1, θ2, . . . , θq are associated with the lagged error terms εt−1, εt−2, . . . , εt−q,

where q is the order of the MA part. The term εt represents the error (white noise)

at time t.

The appropriate p, d, and q parameters are identified from Autocorrelation

Function (ACF) and Partial Autocorrelation Function (PACF) plots initially. The

model parameters are obtained by minimizing the error sum of squares. Then

the values of p, d, and q are fine-tuned with the help of Akaike’s Information

Criterion (AIC) or Bayesian Information Criterion (BIC) values. Lower AIC/BIC

values indicate a better model.

For this research, we used ARIMA as a benchmark model to forecast Cana-

dian inflation. The ARIMA() function is utilized from the fable package in R. It

tries different combinations p, d, and q and prefers the AIC value to select the best

model. Once the model order p, d, and q are identified, the model uses maximum

likelihood estimation (MLE) to estimate its parameters. In MLE, it maximizes the

probability of obtaining the observed data (Hyndman and Athanasopoulos, 2018).
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3.1.2 Dynamic Regression (DR) Models

The time series models like ARIMA, NAIVE, etc enable the inclusion of past

observations but restrict the use of other related information like exchange rates,

existing regulatory policies, or shifts in the global economy. On the other hand,

the regression models allow for the inclusion of predictors but do not handle time

series features leveraged by the ARIMA models. DR models are extensions of

traditional linear regression since they also include time series dynamics and other

variables that can affect the dependent variable. However, while carrying out

the estimations of the coefficients, the DR models consider the error terms as

an ARIMA process to account for the autocorrelation within the error terms as

opposed to the linear regression models wherein the error terms are assumed to be

independent.

DR models are particularly advantageous as they combine the forecast ability

of the dependent variables while preserving the temporal ordering of observations,

which is very essential for the forecast process. The model can be expressed as:

ŷt+h = β0 + β1x1,t + β2x2,t + . . .+ βkxk,t + ηt (3.2)

In forecasting the inflation rate at time t + h, the forecasted value is denoted by

ŷt+h. The model includes regression coefficients represented by β0, β1, . . . , βk,

where β0 is the intercept and β1, . . . , βk are the coefficients for the external vari-

ables. The external variables at time t are denoted as x1,t, x2,t, . . . , xk,t. The error

term ηt is also modeled using an ARIMA process due to its autocorrelation and

non-stationary characteristics. This error term ηt follows an ARIMA structure,

which is represented by the equation:

(1− ϕ1B)(1−B)ηt = (1 + θ1B)ϵt (3.3)
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where B is the backshift operator, defined as Byt = yt−1, ϕ1 and θ1 are the pa-

rameters of the ARIMA model, and ϵt represents white noise. This formulation

captures the dynamics of the error term within the ARIMA framework, enabling

more accurate forecasting of the inflation rate. In this model, ηt and ϵt are two

distinct error terms: ηt is the error in the regression model following an ARIMA

process while ϵt is the error in the ARIMA model. The ARIMA structure of ηt

guarantees that model residuals are independent and stationary, thus, satisfying

the assumptions that are mandatory for reliable forecasting.

Estimation of DR models requires validating the stationarity of all the vari-

ables in addition to the selection of appropriate values of the parameters of the

ARIMA models to produce the best fit and forecast. In this study, we forecasted

the Canadian inflation rate, serving as the dependent variable, using external eco-

nomic variables such as the exchange rate against the US dollar, the unemploy-

ment rate, and the interest rate of Canada, along with oil prices, the commodity

price index, and Canada’s money supply. The ARIMA() function with predictors

is utilized from the forecast package in R to implement the DR model.

3.2 Machine Learning Models

3.2.1 Neural Network Autoregression (NNAR) Models

This section explains how to use a NNAR model for time series forecasting. Arti-

ficial Neural Networks (ANN), also known as Neural Networks (NN), are compu-

tational models inspired by the structure and functioning of the human brain. They

enable the modeler to incorporate nonlinear effects or interactions between the de-
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pendent variable and its predictors. A neural network can be described as a series

of “neurons” grouped in layers. The predictors (or inputs) are the first or bottom

layer and the dependent variables (or outputs) are the final or top layer. There may

also be other layers in between containing “hidden neurons,” thereby making the

model complicated. Figure 3.1 shows an example of a feed-forward ANN model

with an input layer, a single hidden layer with three neurons, and an output layer.

Each connection between neurons is assigned a weight, and each neuron applies

an activation function to determine the output, facilitating the learning process

(Islam et al., 2019).

The neural networks without the hidden layers are called the simplest neu-

ral networks and these are equivalent to the linear regressions. If intermediate

layers contain hidden neurons, the complexity of the neural network increases

and becomes nonlinear. Also known as the multilayer feed-forward network, the

structure of the network is such that each layer of nodes receives the input from

the previous layer. An output of a node is produced by passing inputs through

a weighted linear combination and then through a nonlinear function. In these

networks, the coefficients of the predictors are referred to as the weights, and the

predictions of the outputs are determined by the weighted sum of the inputs. The

weights are chosen by a “learning algorithm” by minimizing a “cost function” like

the Mean Squared Error (MSE).

NNAR expands the basic ANN framework for time-series forecasting by in-

corporating lagged values of the dependent variable. An NNAR(p, k) model uses

the past p values of the variable, yt−1, yt−2, yt−3, . . . , yt−p, along with k hidden

neurons, to predict the next value of the variable, ŷt+h. For example, NNAR(10,6)

refers to a model that uses 10 past observations and includes 6 neurons in the

single hidden layer to forecast the dependent variable. This relationship is repre-
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Figure 3.1: An example of a feed-forward neural network with one hidden layer

with three neurons. Source: LearnOpenCV

sented by the equation:

ŷt+h = h(yt, yt−1, yt−2, . . . , yt−p) + ϵt (3.4)

where f stands for the function that the neural network aims to learn, while ϵt is

the error term which, in this case, is assumed to be homoscedastic. For instance,

the input to a hidden neuron j in the NNAR model is computed as:

zj = bj +

p∑
i=1

wijyt−i (3.5)

where bj is the bias term, and wij are the weights related to each lagged input yt−i.

The output of each hidden neuron is then transformed using a nonlinear activation

function S(z), such as the sigmoid function:

S(z) =
1

1 + e−z
(3.6)

This nonlinearity also enables the NNAR models to generate the functional forms

of the relationships between the variables. The weights wij of the neurons and
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the biases bj are adjusted with methods that allow minimizing a cost function, the

most frequent one being the Mean Squared Error (MSE), in order to achieve pre-

cise predictions. We used the NNETAR() function from the forecast package

in R to implement NNAR models (Hyndman and Athanasopoulos, 2018).

3.2.2 Neural Network Autoregression with External Variables

(NNARX) Models

We implemented a NNAR model by including the exchange rate, interest rate, un-

employment rate, money supply, commodity price index, and oil price to forecast

the inflation rate for Canada.

The model can be expressed as:

ŷt+h = f(yt−1, yt−2, yt−3, . . . , yt−p, x1,t, x2,t, . . . , xk,t) + ϵt (3.7)

The forecasted inflation rate at time t + h is denoted as ŷt+h. The model

utilizes lagged values of the inflation rate, specifically yt−1, yt−2, yt−3, . . . , yt−p,

where p represents the number of lags included in the model. In addition, the

model accounts for external variables at time t, which include factors such as the

exchange rate, interest rate, unemployment rate, money supply, commodity price

index, and oil price, denoted as x1,t, x2,t, . . . , xk,t. Including external variables

helps capture important economic indicators’ influence on the inflation rate, en-

hancing the model’s ability to produce accurate and reliable forecasts.

RF and XGBoost, powerful ensemble learning methods, have traditionally

been used for classification and regression tasks in machine learning. These meth-
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ods are based on bagging and boosting techniques respectively. ML models, un-

like traditional time series models like ARIMA or ETS, cannot directly handle

time series data due to the correlations between time-dependent values. To apply

machine learning models to time series data, it’s necessary to restructure the data

by creating a new dataset that includes lagged values of the time series as predic-

tors. For my analysis, I included 6 lagged values and external economic variables

as predictors in the RF and XGB models.

Data Generation for Implementing RF and XGB Models: For inflation fore-

cast, we considered various forecast horizons h, including h = 1, h = 3, h = 6,

and h = 12. For each forecast horizon, the dataset is generated which is described

below. Specifically, if yt represents the actual value at time t, the predictors are as

follows:

- For h = 1, the predictors are the values from lag 1 to lag 6, i.e., yt−1, yt−2, yt−3,

yt−4, yt−5, yt−6.

- For h = 3, the predictors are the values from lag 3 to lag 8, i.e., yt−3, yt−4, yt−5,

yt−6, yt−7, yt−8.

- For h = 6, the predictors are the values from lag 6 to lag 11, i.e., yt−6, yt−7, yt−8,

yt−9, yt−10, yt−11.

- For h = 12, the predictors are the values from lag 12 to lag 17, i.e., yt−12, yt−13,

yt−14, yt−15, yt−16, yt−17.

For model evaluation, we utilized rolling window cross-validation with the

trainControl() function from the caret package in R. The configuration

included specifying the windowSize, which defines the number of periods in-

cluded in each training window, and h, which indicates the number of periods
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to forecast ahead. We employed the timeslice method for cross-validation,

which partitions the data into sequential training and test sets based on time slices.

This approach involves training the model on the initial time window and testing

it on subsequent slices, with each slice advancing in time. The fixedWindow

= TRUE parameter ensures that the size of the training window remains constant

throughout the cross-validation process. Using this setup, we trained the Random

Forest model, allowing for a thorough and robust evaluation of its performance

across various time periods. This rolling window method effectively captures

temporal dependencies and variations in the data over time.

3.2.3 Random Forest (RF) Models

RF is an ensemble learning method that uses bagging (Bootstrap Aggregating)

to improve the stability and accuracy of machine learning algorithms. Bagging

helps to reduce variance by training multiple decision trees (base learners) on

different subsets of the training data, and then aggregating their predictions. The

RF model combines predictions from multiple decision trees, T (x,Θt), where x

represents the input features (including lagged variables and external variables),

and Θt denotes the parameters of the tth tree. The final prediction ŷt+h for a time

point t is obtained through the aggregation of individual tree predictions:

ŷt+h =
1

B

B∑
b=1

T (x,Θ(b)t) (3.8)

where B denotes the number of trees in the forest, and Θ
(b)
t represents the pa-

rameters of the b-th tree. Hyperparameter tuning is essential for enhancing the

performance of the RF model, with key hyperparameters including the number

of trees (n estimators), the maximum depth of each tree (max depth), and

the minimum number of samples required at a leaf node (min samples leaf).
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Adjusting these parameters allows the model to strike a balance between bias and

variance, thus improving its generalization to unseen data.

3.2.4 Extreme Gradient Boosting (XGBoost) Models

XGBoost is a powerful ensemble learning method that employs boosting to en-

hance predictive accuracy. Boosting sequentially trains base learners, with each

learner attempting to correct the errors of its predecessor. This process reduces

both bias and variance, making XGBoost highly effective for complex datasets.

In the context of time series forecasting, XGBoost also requires preprocessing

steps such as creating lagged variables and incorporating external factors. The

model aims to minimize the residual errors from previous iterations through se-

quential learning. The forecast for a time point t in XGBoost is the sum of the

predictions from all the base learners (trees):

ŷt+h =
B∑
b=1

fb(x) (3.9)

where K is the number of trees, and bk represents the prediction from the bth

tree. Each tree is built to minimize a specified loss function L, typically MSE for

regression tasks. Hyperparameter tuning is crucial for optimizing the XGBoost

model’s performance. Key hyperparameters include (n estimators), which

denotes the number of trees in the model; (max depth), representing the max-

imum depth of each tree; (learning rate), the step size shrinkage used to

prevent overfitting; and (subsample), which refers to the proportion of training

data used for each tree. By carefully tuning these hyperparameters, XGBoost can

effectively model the temporal dependencies in time series data and provide accu-

rate forecasts.
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3.3 Forecast Combination Approaches

There are many research that used a combination approach to improve accuracy

in various fields. It has been witnessed that some researchers said that the combi-

nation approach provides better inflation forecast than individual models (Pratap

and Sengupta, 2019), (Araujo and Gaglianone, 2023), etc. There are different

ways to combine methods like simple average (SA) method, inverse rank method,

Ordinary Least Squares (OLS) regression, Constrained Least Squares (CLS) re-

gression, etc (Weiss et al., 2018). In our research, we implemented the SA and

OLS combination method. Additionally, we have proposed a novel DDWFC ap-

proach which is explained in detail in the below section 3.3.3.

3.3.1 Simple Average (SA) Method

The SA method is one of the most straightforward and widely used techniques

for combining forecasts from multiple models. This method involves calculating

the average of all available forecasts to produce a combined forecast. Despite its

simplicity, it has established itself as a robust benchmark in forecasting practices

due to its ease of implementation and effectiveness. Mathematically, the combined

forecast ŷt+h using the SA method is computed as:

ŷ
(SA)
t+h =

1

M

M∑
i=1

ŷ
(i)
t+h (3.10)

where M is the total number of forecasts, and ŷ
(i)
t+h represents the h-step ahead

forecast of inflation rate from model i. Despite its simplicity, the SA method

provides a reliable and effective approach to combining forecasts, often serving

as a valuable benchmark for evaluating the performance of more sophisticated
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forecasting methods (Weiss et al., 2018).

3.3.2 Ordinary Least Squares (OLS) Regression Method

Crane and Crotty (1967) were the first to propose the use of regression for com-

bining forecasts. In this approach, the combined forecast is a linear function of

the individual forecasts, with the weights determined through a regression of the

forecasts on the actual values. OLS method estimates the weights by minimizing

the sum of squared errors. Once the OLS coefficients are estimated, the combined

forecast ŷ(OLS)
t+h ) is given by:

ŷ
(OLS)
t+h = α +

M∑
i=1

βiŷ
(i)
t+h + ϵ (3.11)

where ŷt+h represents the combined h-step ahead forecast of inflation rate, ŷ(i)t+h

are the individual forecasts, βi are the weights to be estimated, α is the intercept,

and ϵ is the error term. One advantage of the OLS forecast combination method

is that it can produce unbiased combined forecasts due to the inclusion of the in-

tercept term. This means that even if some individual forecasts are biased, the

combined forecast can still be unbiased. However, a disadvantage of this method

is that it places no restrictions on the combination weights—these weights do not

need to sum to one and can even be negative. This can complicate the interpreta-

tion of the results (Weiss et al., 2018).
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3.3.3 The Proposed Approach: A Novel Data-driven Weighted

Forecast Combination (DDWFC) Approach

Traditional forecasting methods often rely on single models, which may not fully

capture the underlying patterns and complexities of the data. In the context of

the combination approach, the SA method assigns equal weight to each forecast.

However, this approach does not guarantee the best performance in all scenarios.

In contrast, the OLS regression method minimizes the RMSE but lacks constraints

on the weights, allowing them to be negative, which can be difficult to interpret.

To address these issues, we introduced the Data-Driven Weighted Forecast

Combination (DDWFC) approach. The idea of a data-driven approach is taken

from (Hoque et al., 2021). The DDWFC method is called “data-driven” because

it derives weights based on the forecast data itself. This approach calculates a

weighted average of forecasts, assigning higher weights to more accurate fore-

casts. In this manner, DDWFC improves overall forecast accuracy and leverages

the strengths of an individual model, resulting in more precise and robust predic-

tions.

In the first stage, we generate monthly forecasts using individual models for

each of the specified horizons h ∈ {1, 3, 6, 12}. In the DDWFC approach, these

forecasts are combined using random weights tailored for each horizon. The steps

to generate the forecast for each horizon are performed separately, and the key idea

behind the data-driven random weights approach is as follows: we begin with R

iterations. In each iteration, a set of m random weights is generated from a uni-

form distribution on (0, 1). These weights have an equal probability of taking any

value within this range and are then standardized to ensure their sum equals one.

Then the corresponding DDWFC forecasts are calculated based on the random
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Algorithm 1 Data-Driven Weighted Forecast Combination (DDWFC) Approach

Require: Set of forecasting models {M1,M2, . . . ,Mm}, time series data {yt},

forecast horizon h

Ensure: For each horizon h ∈ {1, 3, 6, 12}:

Optimized Weights (W opt
m )

Optimized Combined Forecast (ŷ(DDWFCopt)
t+h )

1: for h← 1, 3, 6, 12 do

2: for each model Mm in the set of models do

3: Generate h-step ahead forecast ŷ(m)
t+h

4: end for

5: for r ← 1, . . . , R do

6: for t← t+ h, . . . , n do

7: Wm ∼ Unif(0, 1), m = 1, 2, . . . ,M ▷ Generate random

m-weights

8: Wm ← Wm∑M
m=1 Wm

, m = 1, 2, . . . ,M ▷ Standardize the weights to

sum to 1

9: DDWFCh,t ←
∑M

m=1 Wmŷ
(m)
t+h, m = 1, 2, . . . , M ▷ Compute the

DDWFC forecast

10: end for

11: FESS.DDWFCh,r ←
∑

t (yt+h −DDWFCh,t)
2 ▷ Compute the

forecast error sum of squares (FESS)

12: end for

13: W opt
m ← argminFESS.DDWFCh,r, r = 1, . . . , R ▷ Determine optimal

weights based on minimum FESS

14: DDWFCopt
h ←

∑M
m=1W

opt
m ŷ

(m)
t+h ▷ Compute optimal combined forecast

15: end for

return W opt
m , DDWFCopt

h
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weights, W = (W1, . . . ,Wm). Then the h-step ahead FESS are computed to get

the optimal weights. This process results the FESS values with r sets of random

weights and we select the one that yields the minimum FESS. Finally, the optimal

weights are used to calculate the inflation forecasts using DDWFC approach.

The combined inflation forecasts using DDWFC are computed based on these

random weights, denoted as W = (W1,W2, . . . ,Wm). We then calculate the h-

step ahead forecast errors to identify the optimal weights. To do this, we evaluate

the FESS values (FESS1,FESS2, . . . ,FESSr) for all R sets of random weights

and select the set with the minimum FESS. The weights derived from this mini-

mum FESS are considered optimized and are used to compute the final inflation

forecasts. Algorithm 1 details the steps for computing the DDWFC forecast for

inflation.

Let ŷt+h be the h-step ahead forecast of the inflation rate yt. The DDWFC

model is defined as follows:

ŷ
(DDWFC)
t+h =

M∑
m=1

W opt
m ŷ

(m)
t+h (3.12)

where, M denotes the total number of different models utilized in the forecast

combination. Each model m provides an h-step ahead forecast, represented as

ŷ
(m)
t+h. The weights assigned to these forecasts are constrained such that their sum

equals 1, i.e.,
∑M

m=1Wm = 1, with each weight Wm being non-negative (Wm ≥

0). For example, if we have 3 models then the DDWFC model can be written as:

ŷ
(DDWFC)
t+h = W opt

1 ŷ
(1)
t+h +W opt

2 ŷ
(2)
t+h +W opt

3 ŷ
(3)
t+h (3.13)

The proposed DDWFC model innovates by optimizing forecast weights through

the minimization of the FESS, thus bypassing traditional forecasting constraints
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and enhancing forecast accuracy. Additionally, all possible forecast combinations

are made manually from the existing individual forecast. The number of possible

combinations for M individual forecasts is given by:

Total no. of Comb. =
M∑
k=2

(
M

k

)
=

(
M

2

)
+

(
M

3

)
+ · · ·+

(
M

M

)
= 2M −M −1

(3.14)

Among these combinations, the one providing the minimum RMSE is considered

the optimized combination for forecasting. The optimized weights are then calcu-

lated from the minimum FESS.

However, manually selecting and evaluating combinations of forecast models

is time-consuming and computationally very intensive. Manual selection might

not explore all possible combinations. And there is the possibility of human er-

ror that may not identify the best combination. As the number of models and

combinations increases, the complexity of manual evaluation increases making

it impractical. Finally, we automated a process of selecting the best combina-

tion of models. The algorithm explores all possible combinations from the given

forecasts. For example, with 6 different forecasts, the algorithm evaluates com-

binations of 2, 3, 4, 5, and 6 forecasts, using
(
6
2

)
+

(
6
3

)
+

(
6
4

)
+

(
6
5

)
+

(
6
6

)
= 57

combinations in total to find the optimal set. Then for each combination, it calcu-

lates optimal DDWFC and FESS; the combination that provides minimum FESS

is considered the best combination for the inflation forecast for the given period.

In this automated algorithm, we identify the optimal model combination for

each forecast horizon. Specifically, for each horizon h, we determine which

combination of models provides the best performance. For instance, at horizon

h = 1, the optimal combination might be {A,B}; at horizon h = 3, it could be

{B,C,D}; at horizon h = 6, {A,B,C}; and at horizon h = 12, {B,C,D}. By

analyzing all the recommended best combinations from the automated algorithm
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Algorithm 2 An Automated Algorithm of the Best Model Combination Selection
Require: Set of forecasting models {M1,M2, . . . ,Mm}, time series data {yt})

Ensure: For each horizon h ∈ {1, 3, 6, 12}:

Best Combination, Optimized Weights (W opt
m ), Optimized Combined Forecast (ŷ(DDWFCopt)

t+h )

1: Let N = 2M −M − 1 ▷ Calculate the number of possible combinations excluding

single-model combinations

2: for h← 1, 3, 6, 12 do

3: for each model Mm in the set of models do

4: Generate h-step ahead forecast ŷ(m)
t+h

5: end for

6: end for

7: for each non-empty combination of models C such that |C| ≥ 2 do

8: for h← 1, 3, 6, 12 do

9: for r ← 1, . . . , R do

10: for t← t+ h, . . . , n do

11: Wm ∼ Unif(0, 1), m = 1, 2, . . . ,M ▷ Generate random m-weights

12: Wm ← Wm∑M
m=1 Wm

, m = 1, 2, . . . ,M ▷ Standardize the weights to sum to 1

13: DDWFCC,h,t ←
∑M

m=1 Wmŷ
(m)
t+h, m = 1, 2, . . . , M ▷ Compute the

DDWFC forecast

14: end for

15: FESS.DDWFCC,h,r ←
∑

t (yt+h −DDWFCC,h,t)
2

▷ Compute the forecast

error sum of squares (FESS)

16: end for

17: W opt
m ← argminFESS.DDWFCC,h,r, r = 1, . . . , R ▷ Determine optimal weights

based on minimum FESS

18: DDWFCopt
C,h ←

∑M
m=1 W

opt
m ŷ

(m)
t+h ▷ Compute optimal combined forecast

19: FESS.DDWFCC,h ←
∑

t

(
yt+h −DDWFCopt

C,h

)2

, h=1,3,6,12 ▷ Compute optimal

FESS for each combination of models C

20: end for

21: Best Combination← argminC FESS.DDWFCC,h ▷ Determine best combination of

models based on minimum FESS

22: end for

return Best Combination, W opt
m , DDWFCopt
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for each horizon, we create a single combined model. This model incorporates the

distinct models identified for each horizon from the automated algorithm. In this

scenario, the combined DDWFC model would include {A,B,C,D}, with each

model being incorporated exactly once. This combined model aims to provide the

minimum RMSE and the most accurate forecast, as it allocates more weight to

the more accurate forecasts. Algorithm 2 outlines the steps for selecting the best

combination model forecast. This automated process not only saves time and ef-

fort but also simplifies the implementation of any dataset with available forecasts.

Future research could explore the application of DDWFC in various domains.

3.4 Evaluation Metrics

Thus, the following evaluation measures are used in this work to compare the

effectiveness of the developed forecasting models. These are quantitative mea-

sures of forecast accuracy and are very useful when comparing the performance

of different models to identify the best one. RMSE, MAE, and MAPE are defined

below, where T is the number of observations, yt represents the actual time series

value at time t, and ŷt represents the forecast at time t.

3.4.1 Root Mean Squared Error (RMSE)

RMSE is a widely used metric that measures the average magnitude of the forecast

errors. It is defined as:

RMSE =

√√√√ 1

T

T∑
t=1

(yt − ŷt)2 (3.15)
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RMSE is higher in the sense that it assigns more weight to large error values,

making it sensitive to outliers (Hyndman and Athanasopoulos, 2018).

3.4.2 Mean Absolute Error (MAE)

MAE measures the average magnitude of the absolute errors between the fore-

casted and actual values:

MAE =
1

T

T∑
t=1

|yt − ŷt|

MAE is less sensitive to outliers compared to RMSE since it does not square

the errors. It provides a straightforward measure of average forecast error magni-

tude (Hyndman and Athanasopoulos, 2018).

3.4.3 Mean Absolute Percentage Error (MAPE)

MAPE expresses the forecast errors as a percentage of the actual values. It is

defined as:

MAPE =
100

T

n∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣
MAPE is useful for understanding the relative magnitude of errors in the con-

text of the actual values. However, it has limitations when actual values are close

to zero, potentially leading to undefined or infinite errors (Hyndman and Athana-

sopoulos, 2018).
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These evaluation metrics are crucial for assessing the accuracy and reliability

of forecasting models. By comparing RMSE, MAE, and MAPE across different

models, researchers can identify which model provides the most accurate forecasts

for their specific application.

3.5 Unbiasedness

To evaluate the accuracy and potential bias of the combined forecasts, we applied

the Wald test across various forecast horizons. For each horizon (h = 1, 3, 6, 12

months) we fitted a linear regression model to compare the forecasts of all imple-

mented models against the actual inflation values. Specifically, for each forecast

horizon h, we used the regression model:

yt+h = α + βŷt+h + ϵ (3.16)

where yt+h represents the actual inflation values, ŷt+h is the forecast values for

the h-step ahead, and α and β are the intercept and slope parameters, respectively.

The null hypothesis H0 tested whether the forecasts were unbiased, i.e., α = 0

and β = 1.

First, the lm() function is used to model the relationship between the true

values and the forecasts. To test whether the forecasts are unbiased, we conducted

a Wald test using the linearHypothesis function from the car package in R,

which assesses whether the constraints on α and β holds true. The Wald test evalu-

ates whether the estimated parameters significantly deviate from the hypothesized

values of α = 0 and β = 1. The p-values obtained from the Wald test indicate

39



whether the null hypothesis can be rejected. A low p-value (p < 0.05) suggests

that the forecasts are systematically biased, while a high p-value (p > 0.05) im-

plies that the forecasts are unbiased.

3.6 Time series Cross Validation

The Canada inflation study is conducted for different horizons (h = 1, 3, 6, 12

months). For example,

• 1-Step Ahead Forecast: A 1-step ahead forecast involves predicting the

value of a time series for the next single time period based on previous data.

For instance, if the actual values up to December 2023 are given, then the

1-step ahead forecast will be the value of January 2024.

• 3-Step Ahead Forecast: A 3-step ahead forecast predicts the value of a time

series exactly three periods into the future. For example, if using data up

to December 2023 to create a forecast, a 3-step ahead forecast will estimate

the value for March 2024.

Based on a literature review, Time Series Cross-Validation (TSCV) is a special

kind of cross-validation technique for evaluating model performance. Unlike the

other types of cross-validation, TSCV retains the order of data points because,

in forecasting tasks, future data should not influence past data. This makes it

possible for models to be trained with data only up to a certain point and tested on

the subsequent data, a procedure that mimics real-life forecasting more accurately.

Thus, by maintaining the temporal structure in its testing, TSCV provides robust

assessments of a model’s ability to generalize to new data, thereby improving the
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reliability of the forecasts in time series domains (Hyndman and Athanasopoulos,

2018).

For our research, we implemented rolling window cross-validation. It is one

of the common time series cross-validation techniques where a fixed-size training

window is shifted along the data set. In this approach, at each step, the model

learns from the data within the current window and then tests against the data

in the next window. This iterative process continues until all data points have

been used for both training and evaluation. While, as opposed to other methods

which keep the training set fixed, the rolling window cross-validation allows the

model to adapt the changes in data over time. This approach ensures that the

model’s performance is assessed under realistic conditions, reflecting its ability to

generalize across different segments of the time series data (Pal, 2021). Figure 3.2

shows the schematic diagram of a one-step-ahead forecast.

1

2

3

4

5

Dropped Train Test

Figure 3.2: Schematic diagram of rolling window time series cross-validation for

1-step ahead forecast.
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3.7 Data

This work is based on monthly time-series data and the required data for Canada

inflation forecasting is downloaded from the Federal Reserve Economic Data

FRED and the Bank of Canada BoC spanning from January 1972 to August 2023.

Inflation is measured in terms of the Consumer Price Index (CPI) which is calcu-

lated by Statistics Canada. It is measured as the 12-month percentage change in

the Consumer Price Index (CPI) which involves determining the percent change

in the CPI of a given month compared to those of the same month in the previous

year.

Inflation Rate, yt =
(

CPIt − CPIt−12

CPIt−12

)
× 100 (3.17)

where yt is the inflation rate at month t, CPIt is the CPI for the current month,

and CPIt−12 is the CPI for the same month from the previous year. Figure 3.3

represents the trend of the inflation rate from January 1972 to August 2023.

There are various external economic variables that impact inflation dynamics.

This research has included the following variables for inflation analysis.

• Unemployment Rate: Many researchers often use unemployment in in-

flation forecasting due to its significant relationship with inflation. The

Philips curve indicates the inverse relation between inflation and unemploy-

ment which is used by many researchers in inflation forecasting (Engemann,

2020). This emphasizes to the importance of unemployment in inflation

forecasting. Guirguis et al. (2022) explored the combination of the Phillips

curve with global inflation data and was able to provide a more accurate

inflation forecast for the US. Changes in the Employment-to-Employment

rate influence macroeconomic conditions and policy development (Birinci
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Figure 3.3: Monthly Inflation Rate of Canada from January 1972 to August 2023

et al., 2022). According to a recent article by Beaudry (2023), countries

with higher unemployment rates tend to experience greater volatility in in-

flation. In order to project inflation, Araujo and Gaglianone (2023) and

Barkan et al. (2023) employed the unemployment rate as a covariate in ad-

dition to other factors.

• Interest Rate: Central banks use interest rates as inflation control tools

(Angelina and Nugraha, 2020; BoC, 2023b; Rodrı́guez-Vargas, 2020). This

means there is a strong relationship between interest rates and inflation.

Bank of Indonesia uses the SBI interest rate as a benchmark interest rate

to monitor and control the inflation of Indonesia (Angelina and Nugraha,

2020). Similarly, the BoC uses the overnight rate of Canada (interest rate).

A recent article says a high interest rate reduces inflation (Fix, 2023). Mu-

cuk et al. (2023) examined the long-term effect of some covariates like in-

43



terest rate, exchange rate, and money supply, etc. on the inflation of some

countries like Haiti, Sudan, Türkiye, and Zambia, which are among the

world’s highest-inflation countries according to 2021 data. According to

the result, the interest rate is negatively correlated to inflation.

• Exchange Rate: Numerous academic papers have examined the complex

link between exchange rate pass-through (ERPT) and domestic inflation

(Angelina and Nugraha, 2020). Currency rate movements have both direct

and indirect effects on the Canada inflation rate (Savoie-Chabot and Khan,

2015). Monitoring exchange rates is crucial for understanding variations in

the inflation rate and hence researchers consider exchange rates in inflation

forecasting (Rodrı́guez-Vargas, 2020).

• Oil Price: The rise in oil prices after COVID and Russia’s invasion of

Ukraine had impacted inflation which resulted in an increase in inflation.

It is one of the most important external economic variables that influences

inflation and thus economic activity of any country. Inflation studies from

Rodrı́guez-Vargas (2020), Medeiros et al. (2021), Theoharidis et al. (2023),

etc have included oil prices to forecast inflation.

• Money Supply: Studies from Angelina and Nugraha (2020),Mucuk et al.

(2023) proved money supply is positively related to the inflation. Similarly,

Medeiros et al. (2021) and Araujo and Gaglianone (2023) also used money

supply as one of the covariates to forecast the inflation of their respective

countries.

• BCPI: Some studies say that the commodity price index is the leading indi-

cator for inflation or some studies say that there is a weak relation between

them. Boughton and Branson (1988) examined the relation between the
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commodity price index and inflation for G-7 countries. For our research,

we included this variable to analyze the impact of BCPI on inflation.

Figure 3.4 represents the dynamics of external economic variables that are

being used for projecting inflation for various horizons.

Figure 3.4: Dynamics of all External Economic Variables

Overall, for this research, CPI, the unemployment rate of Canada, the overnight

rate of Canada (interest rate), the Canadian exchange rate against the US dollar,

the WTI crude oil price, and the M3 money supply of Canada are collected from

FRED whereas the Canadian commodity price index (BCPI) sourced from BoC.

And aim to forecast the inflation rate using the above-mentioned external eco-

nomic variables.
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Chapter 4

Data Analysis

The main goal of this study is to forecast inflation in Canada across various time

horizons ((h = 1, 3, 6, 12 months) and to provide insights that can be useful for

policymakers and economists. The analysis uses a time-series dataset on infla-

tion and external economic variables such as unemployment rates, interest rates,

exchange rates, oil prices, money supply, and commodity price indexes to assess

their impact on inflation. The dataset covers the period from January 1972 to Au-

gust 2023, totaling 620 months. For the analysis, the dataset is split into a training

set (January 1972 to December 2016) having 540 observations, and a test set (Jan-

uary 2017 to August 2023). Figure 4.1: Monthly inflation rate of Canada over the

period, with the red vertical line indicating the division between the training set

and the test set.
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Figure 4.1: Monthly Inflation Rate of Canada from January 1972 to August 2023

4.1 Timeseries Cross-Validation Approach

We utilized cross-validation specifically designed for time-series data to develop

a robust model. Random partition of the time-series data can not be done, to

perform cross-validation due to the temporal nature and autocorrelation between

the data. We used rolling window time-series cross-validation (rolling CV) on

monthly inflation data across all horizons to ensure reliable forecasts. Rolling

CV preserves the chronological order of the data. In this procedure, the training

window is kept fixed while the test set consists of a single observation at each

iteration. For example, in a 1-step ahead forecast, the initial training window

covers the period from January 1972 to December 2016. The model then forecasts

the next month. As shown in Figure 3.2, the dark blue represents the training

window, the grey box indicates the monthly inflation rate and the yellow part
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shows the forecast. In the second iteration, the earliest month is dropped from the

training window, and one additional month is included at the end, thus moving

the training window forward. This process continues until forecasts are generated

up to August 2023. This rolling window technique was applied for forecasting

horizons of 3, 6, and 12 months. Table 4.1 outlines the forecast periods based on

the initial training window and the number of forecast months.

Horizon Initial Window (540 months) Forecast Window Total Forecasts (months)

h = 1 Jan 1972 to Dec 2016 Jan 2017 to Aug 2023 80

h = 3 Jan 1972 to Dec 2016 Mar 2017 to Aug 2023 78

h = 6 Jan 1972 to Dec 2016 Jun 2017 to Aug 2023 75

h = 12 Jan 1972 to Dec 2016 Dec 2017 to Aug 2023 69

Table 4.1: Initial and Forecast Windows for Different Horizons

4.2 Descriptive Statistics

This dataset has been checked for missing values, and none are present. Before

implementing and evaluating models, we analyzed the inflation time series. Ana-

lyzing the inflation data from 1972 to 2023 provides a comprehensive view of its

behavior over different economic regimes and cycles. Figure 4.1 highlights the

significant variability in the inflation rate due to various economic events and pol-

icy responses. During this period, the maximum inflation rate recorded was 12.9%

in December 1974, coinciding with the first oil crisis, which led to a significant

increase in energy prices and broad-based inflationary pressures. The high infla-

tion rates of the 1970s and early 1980s contrast sharply with the low and stable

inflation experienced from the mid-1990s onwards. The minimum inflation rate
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was -0.9% in July 2009, following the global financial crisis, which resulted in a

severe economic downturn and deflationary conditions. After COVID-19, due to

supply chain disruptions, the rise in energy prices, and the Russia-Ukraine inva-

sion, inflation reached 8.1% in June 2022.

The summary statistics Table 4.2 shows the distribution and characteristics of

inflation and external variables that influence it. These statistics include the mean,

median, standard deviation, minimum, maximum, range, skewness, and kurtosis.

The mean inflation rate is 4.01%, and the median is 2.70%, indicating a slight pos-

itive skew in the inflation distribution. The standard deviation is 3.24%, reflecting

moderate fluctuations around the mean. The skewness value of inflation is 1.07.

This suggests that the distribution has more frequent lower inflation values, with

occasional higher spikes. Kurtosis has a value of 0.12 for inflation, indicating

that while there are outliers, they are not extreme enough to heavily influence the

overall distribution.

In addition to inflation, the external variables also exhibit notable characteris-

tics that influence its behavior. For example, the interest rate has a mean of 5.79%

with a standard deviation of 4.27%, indicating considerable variability in mone-

tary policy over time. Other external variables, such as oil prices and unemploy-

ment rates, display higher levels of skewness and kurtosis, reflecting significant

fluctuations and the presence of extreme values that could potentially impact in-

flation dynamics.
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Variable Mean Median SD Min Max Range Skewness Kurtosis

Inflation Rate 4.01 2.70 3.24 -0.95 12.90 13.85 1.07 0.12

Interest Rate 5.79 4.75 4.27 0.50 21.03 20.53 0.74 0.03

Money Supply 8.92 7.63 5.03 0.65 28.35 27.70 1.13 1.16

Exchange Rate -0.35 -0.71 6.45 -22.63 24.17 46.80 0.33 1.32

Unemployment Rate 1.06 -2.90 18.85 -41.84 161.11 202.96 3.04 16.83

Oil Price 12.82 4.98 42.45 -74.08 272.93 347.01 1.78 5.19

BCPI 355.92 289.10 161.35 100.00 889.08 789.08 0.95 0.17

Table 4.2: Summary Statistics of Economic Variables

4.3 STL Decomposition

“STL is an acronym for Seasonal and Trend decomposition using Loess, while

Loess is a method for estimating nonlinear relationships” (Hyndman and Athana-

sopoulos, 2018). To check seasonality in the data, we performed seasonal decom-

position, which breaks down time-series data into trends, seasonal patterns, and

residual components. The trend represents the long-term progression or direction

in the data, seasonal patterns reflect repeating cycles, and residuals are the random

fluctuations or noise. Figure 4.2 shows the seasonal decomposition of Canada’s

inflation data. The decomposition reveals that the seasonal component is negligi-

ble, with the analysis primarily highlighting the trend and residual components.

This suggests that seasonality does not significantly influence Canada’s inflation

rate.
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Figure 4.2: STL Decomposition of Inflation Rate

4.4 Distribution and Transformation of Data

When analyzing time-series data, stationarity is a key concept because simpler,

stationary series are easier to model and often provide more accurate forecasts.

This is achieved through transformations and adjustments to the time-series data.

Therefore, we examined the distribution and trend of all time-series used for the

inflation analysis. Figure 4.3 shows that the inflation rate distribution is not normal

and is positively skewed, with some outliers. This skewness indicates a deviation

from normality, which can affect the performance of time-series models.

The Box-Cox transformation is designed to stabilize variance and make the

data more normally distributed. However, because the inflation series contained

negative values, a direct application of the Box-Cox transformation was not fea-
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sible, as it requires strictly positive values. To address this issue, we applied a

shifted transformation to ensure all values were positive. Specifically, we added a

constant to all values in the inflation time-series, calculated as the absolute value

of the minimum inflation rate yt plus one. This shifting transformation was ap-

plied as (y′t = yt + |min(y)| + 1), where min(y) is the minimum value in the

dataset, and y′t is the shifted value. This transformation allowed us to use the

Box-Cox transformation on the adjusted data. The optimal parameter λ for the

Box-Cox transformation was estimated using Guerrero’s method and was found

to be approximately 1.05. Since λ close to 1 suggests that the transformation is

close to the original data and did not significantly alter the variance. Therefore,

we decided to retain the original inflation series for further analysis.

Figure 4.3: Distribution of Inflation Rate

In time-series analysis, particularly when forecasting inflation, outliers can

significantly impact the results and interpretation of models. In our analysis, out-

liers are present across all external economic variables, including inflation rates.
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Figure 4.4 depicts the boxplots of these variables, highlighting the presence of

outliers. Examples of these outliers include extreme inflation rates during periods

of oil crises (1973–1974) or the financial downturn (2020–2021). Outliers often

represent critical economic shocks or events that are crucial for accurate inflation

forecasting. So, we chose to retain these outliers in our dataset rather than re-

move them. By including outliers, we can assess the robustness of our forecasting

models under extreme conditions. This can be helpful for real-world applications

where extreme events are possible.

Figure 4.4: Boxplot of External Economic Variables

To assess the stationarity of the inflation and external variable time series data,

we conducted the Augmented Dickey-Fuller (ADF) test. The ADF test helps de-

termine whether a time series has a unit root, indicating non-stationarity. The in-

flation rate series (inflation rate) has a p-value of 0.1442, suggesting it is

non-stationary and may require further adjustment. Conversely, the money supply

(money supply), exchange rate (exchange rate), interest rate (interest
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rate), unemployment rate (unemployment rate), and oil price (oil price)

series all exhibit p-values below 0.01, indicating they are stationary. The BCPI se-

ries (bcpi) has a borderline p-value of 0.064, suggesting it is close to stationary.

The non-stationarity of the inflation series can also be seen from ACF plot 4.5.

This plot reveals significant autocorrelation at various lags, indicating a strong

relationship between past and present values. Differencing might make the series

stationary.

Figure 4.5: ACF Plot of Inflation Rate

4.5 Correlation Analysis

The following Figure, 4.6, illustrates the correlation between inflation and external

variables.
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Figure 4.6: Correlation Plot of Inflation Rate and External Variables(Infl=Inflation

Rate, IntRt = Interest Rate, MS = Money Supply, ExRt = Exchange Rate, Unemp

= Unemployment Rate, OilPr = Oil Price)

The Figure reveals a linear relationship between the inflation rate and the in-

terest rate, with a correlation coefficient of 0.722. Similarly, the inflation rate

shows a linear relationship with the money supply. However, the interaction be-

tween the inflation rate and unemployment rate, exchange rate, oil price, and BCPI

is characterized by a non-linear relation. Different modeling approaches will help

to capture these relationships and the impact on inflation more accurately.
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4.6 Models for Forecast

Various models were implemented to forecast Canada’s inflation data for different

horizons h = 1, 3, 6, 12 using rolling window cross-validation. The results and

behavior of each model are detailed below.

4.6.1 Time-series Models

ARIMA Model

As discussed, inflation time-series data is non-stationary. To effectively imple-

ment time-series models, the data must be transformed to achieve stationarity.

ARIMA model is a widely used model for forecasting time-series data. In this

analysis, we first fitted ARIMA models to the inflation training set and forecasted

for various horizons using rolling window cross-validation.

The auto.arima() function from the forecast package in R was em-

ployed to select the optimal ARIMA model configuration at each iteration au-

tomatically. This function takes care of stationarity by incorporating necessary

differencing. A notable finding from this process was that, across different itera-

tions, the models selected by auto.ARIMA() consistently included a differencing

component (d=1). In time series forecasting differencing is used to achieve sta-

tionarity in the data. Figure 4.7 illustrates the differenced time series (d=1) of the

inflation rate, demonstrating that the series has achieved stationarity. Figure 4.8

presents the ACF plot of the differenced series, which shows the underlying cor-

relation structure of the stationary series. For different forecasting horizons, the

ARIMA models selected were as follows: ARIMA(1,1,0) for horizon 1 (h = 1),
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ARIMA(0,1,1) for horizon 3 (h = 3), and ARIMA(0,1,1) for horizons 6 (h = 6)

and 12 (h = 12). Figure 4.9 illustrates the arima forecast graphs for all horizons.

For h = 1, the model provided the best forecast as compared to other horizons.

We used the result of the ARIMA model as the benchmark result.

Figure 4.7: First Difference of Inflation Rate
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Figure 4.8: ACF plot of Inflation Differenced Series
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Figure 4.9: ARIMA Forecast at various horizons from Jan 2017 to Aug 2023. The

black line represents the actual Inflation Rate (IR), while the red line shows the

ARIMA forecast.

Dynamic Regression (DR) Model

Unlike the ARIMA model, which only depends on past values of the target vari-

able for forecasting, the DR model integrates the influence of external variables

along with lagged values. DR model can include past values due to the inclusion

of ARIMA errors. In this study, the external variables incorporated into the model

include the unemployment rate, exchange rate, oil price, money supply, interest

rate, and BCPI.

We used the Arima() function with predictors from the forecast pack-

age in R to implement the DR model. To ensure robustness, we employed a
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rolling window cross-validation technique for each horizon. At every horizon,

this method uses different subsets of the data in each iteration, leading to varying

residual patterns. Therefore, the model uses different ARIMA errors to capture

the changing autocorrelation structures in the residuals at each iteration. The infla-

tion forecast shown in Figure 4.10 across all horizons indicates that the forecasts

produced by the DR model closely align with the actual inflation rates. Fluctu-

ations in the external variables significantly impact inflation, and their inclusion

allows the DR model to forecast inflation more accurately. By incorporating these

factors, the model becomes more responsive to real-world economic conditions,

potentially leading to more precise and reliable forecasts.

Figure 4.10: DR Forecast at various horizons from Jan 2017 to Aug 2023. The

black line represents the actual Inflation Rate (IR), while the red line shows the

DR forecast.
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4.6.2 Machine Learning Models

Neural Network Autoregression (NNAR) Model

The NNAR model is specifically designed for time series data to capture its non-

linearity and complexity. NNAR utilizes a neural network with a single hidden

layer and incorporates lagged values as inputs. In our implementation, we em-

ployed the NNETAR() function from the forecast package in R to apply the

NNAR methods. We used rolling window cross-validation to forecast Canada’s

inflation across horizons h = 1, 3, 6, 12. We implemented both NNAR models

with and without external variables. Figure 4.11 shows the forecast of the NNAR

model without using an external variable.

Figure 4.11: NNAR Forecast at various horizons from Jan 2017 to Aug 2023. The

black line represents the actual Inflation Rate (IR), while the red line shows the

NNAR forecast.
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We employed the NNAR model with external variables such as the unem-

ployment rate, exchange rate, oil price, money supply, interest rate, and BCPI.

The RMSE values indicate that there is minimal improvement in forecasting ac-

curacy for horizons h = 1 and h = 3, the inclusion of external variables led to

notable improvements in accuracy for horizons h = 6 and h = 12. For both mod-

els, the most frequently used configurations were NNAR(13,7) or NNAR(26,14)

at each iteration. Here, NNAR(26,14) refers to a model that uses 26 past observa-

tions and includes 14 neurons in the hidden layer to forecast inflation. Figure 4.12

shows the forecast of the NNAR model including external variables. The forecast

graph demonstrates that the NNAR model with external variables performs better

than the NNAR model without external variables for all horizons (h = 3, 6, 12),

except for the h = 1 forecast.

Figure 4.12: NNARX Forecast at various horizons from Jan 2017 to Aug 2023.

The black line represents the actual Inflation Rate (IR), while the red line shows

the NNARX forecast.
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Random Forest (RF) Model

As the RF model can not be directly implemented on time-series data, six lagged

values of inflation rate are included as predictors to capture temporal relationships.

Separate datasets were created for each forecast horizon, as detailed in Section 3.2.

The RF model was implemented using the randomForest package and trained

with the caret package, utilizing rolling window time series cross-validation

with a window size of 500. The model was trained using the rf method with an

mtry value of 4 and 100 trees (ntree). Figure 4.13 presents the forecasts from

the RF model across different horizons. However, as shown in the RMSE table

Table 4.6, the RF model did not perform well for shorter horizons.

Figure 4.13: RF Forecast at various horizons from Jan 2017 to Aug 2023. The

black line represents the actual Inflation Rate (IR), while the red line shows the

RF forecast.
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Extreme Gradient Boosting (XGBoost) Model

Similar to the RF model, six lagged values are included as predictors. The XG-

Boost model was implemented using the xgbTree method from the caret

package, with hyperparameters tuned through a grid search. The model was con-

figured with 100 boosting rounds, a maximum depth of 4, a learning rate (eta) of

0.1, and other relevant parameters. Rolling window time series cross-validation

with a window size of 500 was used for training, ensuring robust evaluation. Fig-

ure 4.14 illustrates the forecasts from the XGBoost model across different hori-

zons, while Table 4.6 presents the RMSE results, showing the XGB model has

poor performance than RF model across all horizons.

Figure 4.14: XGB Forecast at various horizons from Jan 2017 to Aug 2023. The

black line represents the actual Inflation Rate (IR), while the red line shows the

XGB forecast.
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4.6.3 Forecast Combination Approaches

Simple Average (SA) Method

This is the most common combination method of combining different forecasts.

In our analysis, we combined forecasts from the DR, NNAR, NNARX, and XGB

models, assigning equal weights to each model. However, the average combina-

tion model did not improve accuracy due to the equal contribution of each forecast.

Ordinary Least Squares (OLS) Regression Method

The combined OLS forecast incorporates forecasts from DR, NNAR, NNARX,

and XGB models to get a more precise forecast. This approach allows different

weights to be assigned to each model, potentially improving accuracy across var-

ious horizons. However, this method derives negative weights, which makes it

complicated to interpret the negative contribution of the model and seems unre-

alistic. Additionally, there is no constraint on the weights. Table 4.3 presents the

weights derived using the OLS method.

Model Weights h = 1 h = 3 h = 6 h = 12

DR β1 0.775 0.598 0.381 1.419

NNAR β2 0.315 -0.069 -0.017 -0.392

NNARX β3 0.127 -0.097 0.052 -0.039

XGB β4 -0.228 0.895 2.046 2.148

Sum of Weights 0.988 1.327 2.462 3.135

Table 4.3: Weights derived from OLS Regression Method
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We employed the lm() function in R for the OLS regression method. This

function, by default, includes an intercept in the regression model. Although

this combination method provides an unbiased forecast and yields the minimum

RMSE, we have opted not to consider it further due to the negative weights and

the lack of constraints on the weights.

Proposed Data-driven Weighted Forecast Combination (DDWFC) Approach

This paragraph explains the evaluation of the novel approach. Combination meth-

ods, such as the SA and OLS, did not yield satisfactory results, with the SA

method failing to improve accuracy and OLS producing negative weights. To

overcome these limitations, a novel DDDWFC approach was proposed. This

method combines forecasts from different models by assigning weights that mini-

mize the FESS. Algorithm 1 outlines the steps involved in the DDWFC approach.

Based on Algorithm 1 for the DDWFC approach we chose R=4000 to optimize

the weights.

From the six models considered (ARIMA, DR, NNAR, NNARX, RF, and

XGB), there are a total of(
6

2

)
+

(
6

3

)
+

(
6

4

)
+

(
6

5

)
+

(
6

6

)
= 57

possible combinations. After manually testing all possible combinations, it was

found that the combination of DR, NNAR, NNARX, and XGB yielded the mini-

mum RMSE. The DDWFC method ensures that the weights are positive and sum

to 1, allowing the combined forecast to leverage the strengths of each model. Ta-

ble 4.5 will show the weights derived through the DDWFC method. Notably, the

optimized weights heavily favor the DR model, highlighting its significant contri-

bution to forecast accuracy.
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Manually selecting the optimal models for forecast combinations for each

horizon is time-consuming. And there is a possibility of selecting a biased com-

bination due to human error. Hence we employed an automated Algorithm 2 to

determine the best set of forecast model combinations. The results obtained from

this automated approach are presented in Table 4.4.

Horizon Combination RMSE

h = 1 DR+NNAR+NNARX 0.374

h = 3 DR+NNAR+XGB 0.740

h = 6 DR+NNARX+XGB 1.172

h = 12 DR+XGB 1.739

Table 4.4: Best Combination from the Automated Algorithm 2 for different hori-

zon

As per the automated Algorithm 2, we combine DR, NNAR, NNARX and

XGB models using the DDWFC approach. That is, we can write the DDWFC

approach as

ŷ
(DDWFC)
t+h = W opt

1 ŷ
(DR)
t+h +W opt

2 ŷ
(NNAR)
t+h +W opt

3 ŷ
(NNARX)
t+h +W opt

4 ŷ
(XGB)
t+h (4.1)

The results from this automated algorithm were consistent with those obtained

through manual selection. Specifically, Table 4.6 presents the RMSE values for

the DDWFC model, which were identical to the outcomes from the automated

approach. This automated method proves to be highly efficient, as it minimizes the

manual effort required to evaluate different model combinations. It is especially

beneficial when dealing with a large number of individual forecasts, making the

process of selecting the optimal forecast combination much more manageable and

less error-prone.
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Model Optimal Weights h = 1 h = 3 h = 6 h = 12

DR W1 0.639 0.831 0.783 0.967

NNAR W2 0.250 0.122 0.027 0.003

NNARX W3 0.107 0.007 0.107 0.009

XGB W4 0.004 0.040 0.084 0.022

Sum of Weights 1 1 1 1

Table 4.5: Weights derived from DDWFC approach

This optimized weight assignment, particularly the emphasis on the Dynamic

Regression model, underscores the importance of incorporating external economic

variables to enhance forecasting precision. The DDWFC method’s ability to adap-

tively select and weight models based on historical performance provides a robust

and reliable forecasting framework that can guide policymakers and economists

effectively.

Graphical analysis (Figure 4.15) of the actual inflation rate versus forecasts

from the DDWFC models demonstrates that our approach closely aligns with

actual values. As the forecast horizon lengthens, uncertainty increases, which

explains the greater deviation in forecasts. Nonetheless, the DDWFC method

outperforms all other implemented models, offering a more accurate and reliable

forecast.
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Figure 4.15: Forecast for horizon h = 1 using the DDWFC model.

Figure 4.15 depicts forecasts for horizon h = 1 using the DDWFC model. The x-

axis represents time periods, while the y-axis shows the forecasted inflation rate.

The forecast accuracy for the h = 1 horizon is observed to be high, indicating that

the DDWFC model performs well in short-term forecasts.
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Figure 4.16: Forecast for horizon h = 3 using the DDWFC model.

Figure 4.16 shows the forecast for horizon h = 3 using the DDWFC model. Com-

pared to h = 1, the forecast error increases, which is typical as forecasting accu-

racy tends to decline with longer horizons. The DDWFC model still maintains

relatively stable performance.

70



Figure 4.17: Forecast for horizon h = 6 using the DDWFC model.

Figure 4.17 depicts that, for horizon h = 6, the forecasted values continue to show

some increase in error. However, the DDWFC model provides a more accurate

forecast compared to other models evaluated, showcasing its robustness even at

mid-range horizons.
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Figure 4.18: Forecast for horizon h = 12 using the DDWFC model.

At the horizon, h = 12, Figure 4.18 illustrates the forecast accuracy for the longest

period considered. Despite an increase in forecast error, the DDWFC model per-

forms competitively, demonstrating its effectiveness in longer-term forecasting

while showing an acceptable level of accuracy.

4.7 RMSE

We have evaluated all implemented models using RMSE values across various

forecast horizons, as shown in Table 4.6. Among the individual models, the DR

model consistently provides the most accurate forecasts across all horizons. In

contrast, models such as ARIMA, NNAR, and XGB exhibit increasing errors as

the forecast horizon extends, indicating that they are better suited for short-term
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predictions. When considering combination approaches, the SA method did not

improve accuracy beyond what the DR model achieved. Although the OLS model

delivers the lowest RMSE values, its use of negative weights in the forecast com-

bination raises concerns about its interpretability and reliability. The proposed

DDWFC model shows superior performance, particularly for the 1, 3, and 6-

month horizons. Overall, DDWFC emerges as the most reliable model across

all horizons, with the DR model also demonstrating strong performance, espe-

cially for long-term forecasts.

Model h = 1 h = 3 h = 6 h = 12

ARIMA 0.491 0.997 1.583 2.455

DR 0.393 0.753 1.203 1.739

NNAR 0.459 1.141 1.885 3.106

NNARX 0.481 1.126 1.713 2.641

RF 0.598 0.970 1.631 2.243

XGB 0.528 1.200 2.005 2.547

SA 0.409 0.883 1.335 2.211

OLS 0.369 0.678 0.887 1.185

DDWFC 0.374 0.741 1.174 1.746

Table 4.6: RMSE Value for Implemented Models across various Horizons

4.8 Unbiasedness

To check the unbiasedness of the forecasts, we performed the Wald test. High

p-values (p > 0.5) across these models typically indicate that the forecasts are

unbiased, whereas low p-values (p < 0.5) suggest significant bias. The p-values
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of the Wald test for the various models are shown in Table 4.7 and demonstrate

that horizons reveal differing degrees of forecast bias. For the ARIMA model,

forecasts exhibit significant bias at horizons of 3, 6, and 12 months, though they

appear unbiased at the 1-month horizon. The DR model, on the other hand, con-

sistently shows unbiased forecasts across all horizons. Forecasts from the NNAR

and NNARX models are biased at the 3, 6, and 12-month horizons. Similarly, the

RF model demonstrates bias at the 6 and 12-month horizons. The XGB model

generally shows bias except at the 12-month horizon. The SA method produced

unbiased forecasts for most horizons except the 12 months. The OLS method re-

sults in unbiased forecasts across all horizons. Lastly, the DDWFC method also

maintains unbiased forecasts across all horizons.

Model h = 1 h = 3 h = 6 h = 12

ARIMA 0.270 0.030 0.001 0.000

DR 0.834 0.776 0.601 0.800

NNAR 0.538 0.013 0.000 0.000

NNARX 0.207 0.008 0.000 0.000

RF 0.303 0.083 0.011 0.001

XGB 0.000 0.000 0.000 0.024

SA 0.236 0.395 0.838 0.018

OLS 1.000 1.000 1.000 1.000

DDWFC 0.775 0.472 0.736 0.850

Table 4.7: P-values from the Wald test for Implemented Models across various

Horizons
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Chapter 5

Simulation

In order to evaluate the performance of the proposed DDWFC approach, we also

conducted some simulation experiments. We simulated time-series inflation data

(Yt) and other external economic variables—X1t, X2t, X3t, X4t, X5t to evaluate

the proposed DDWFC model.

5.1 Simulation Design

Simulated inflation rate and external variables are generated using an ARIMA

model and each variable has a similar historical pattern as the Canadian inflation

dataset. ARIMA model parameters, including AR and MA coefficients and resid-

ual variances, is derived from Canadian inflation and other external historical data,

ensuring that the simulated series closely mimics the original economic dynamics.

The inflation rate(Yt) was generated with an ARIMA(0,1,0) model, while the X1

and X2 were simulated using ARIMA(2,0,1) and ARIMA(1,1,0) models, respec-
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tively. The X3 followed an ARIMA(3,1,0) process, the X4 used an ARIMA(5,0,0)

model, and the X5 was simulated with an ARIMA(2,0,2) model. The generated

data spans 520 monthly observations, covering around 44 years.

Our objective is to forecast the inflation rate across various horizons (h =

1, 3, 6, 12 months). To ensure robust forecast accuracy, we employed a rolling

window time-series cross-validation technique with a fixed window size of 440

months. The initial training period spans 440 months, and the test period covers

80 months. We implemented the models on the training data and evaluated their

performance using RMSE on the test data across various horizons. Table 5.1

shows the number of forecast months generated from the training data.

Horizon Initial Window (months) Forecast Window (months)

h = 1 440 80

h = 3 440 78

h = 6 440 75

h = 12 440 69

Table 5.1: Initial and Forecast Windows for Different Horizons

5.2 Simulation Results

We implemented the automated Algorithm 2 and it identified the best combination

for each horizon which can be seen from Table the 5.2. Considering this we

combined AR, RF, and XGB to construct the proposed DDWFC model. That is,

we can write the DDWFC approach for the simulated data as

ŷ
(DDWFC)
t+h = W opt

1 ŷ
(AR)
t+h +W opt

2 ŷ
(RF)
t+h +W opt

3 ŷ
(XGB)
t+h (5.1)
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Horizon Model Combination RMSE

h = 1 AR+RF 0.430

h = 3 AR+RF 0.710

h = 6 AR+XGB 0.928

h = 12 AR+XGB 1.260

Table 5.2: Best Combination derived from the Automated Algorithm

We implemented AR, DR, RF, NNAR, XGB, SA, OLS and DDWFC methods

on this simulated dataset. Table 5.3 shows the weights derived from OLS method

whereas 5.4 eights derived from DDWFC approach.

Model Weights h = 1 h = 3 h = 6 h = 12

ARIMA β1 0.903 0.600 0.435 0.224

RF β2 0.337 0.482 0.446 1.157

XGB β3 -0.206 0.147 0.499 0.111

Sum of Weights 1.034 1.230 1.380 1.492

Table 5.3: Weights derived from OLS Regression Method

Table 5.5 presents the RMSE values for all implemented models. While the

OLS regression model shows the lowest RMSE values across all horizons, it is not

considered the best model due to its limitations. Specifically, it assigns a negative

weight for h = 1, and although the weights for h = 3, 6, and 12 are positive,

their sum exceeds 1. Following the OLS model, the DDWFC model achieves the
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Model Optimal Weight h = 1 h = 3 h = 6 h = 12

ARIMA W1 0.9787 0.8320 0.6851 0.3819

RF W2 0.0193 0.1482 0.0260 0.0187

XGB W3 0.0020 0.0198 0.2889 0.5994

Sum of Weights 1 1 1 1

Table 5.4: Weights(W) derived from DDWFC Approach

next lowest RMSE values. This indicates that our model is robust and capable of

delivering superior forecasts across various datasets.

Model h = 1 h = 3 h = 6 h = 12

ARIMA 0.432 0.742 1.023 1.605

DR 0.450 0.810 1.140 1.886

NNAR 0.447 0.827 1.199 2.073

RF 1.252 1.258 1.374 1.431

XGB 1.318 1.317 1.334 1.394

SA 0.903 0.959 1.063 1.269

OLS 0.423 0.625 0.725 0.855

DDWFC 0.430 0.710 0.928 1.260

Table 5.5: RMSE values for Implemented models on Simulated Data
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Figure 5.1: Forecast for horizon h = 1 using the DDWFC model.

Figure 5.2: Forecast for horizon h = 3 using the DDWFC model.
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Figure 5.3: Forecast for horizon h = 6 using the DDWFC model.

Figure 5.4: Forecast for horizon h = 12 using the DDWFC model.
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Figure 5.1 depicts forecasts for horizon h = 1 using the DDWFC model,

showing high accuracy that aligns closely with the ARIMA model’s forecast. For

horizon h = 3, as shown in Figure 5.2, the DDWFC model maintains better fore-

casting performance compared to other models, though forecast errors increase

relative to h = 1. Figures 5.3 and 5.4 illustrate forecasts for horizons h = 6

and h = 12, respectively. While DDWFC consistently outperforms other models

across all horizons, forecast errors tend to grow with longer horizons. Conversely,

the RF and XGB models show inferior performance throughout.
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Chapter 6

Conclusion

6.1 Findings

Monetary policy is more effective when it is forward-looking Nyoni (2018). Our

findings align with this perspective, demonstrating that the DDWFC method pro-

vides a superior forecast over other models. This method has proven robust, even

when incorporating the period affected by COVID-19, maintaining consistent per-

formance throughout. The robustness of the DDWFC method underscores its re-

liability and adaptability in varying economic conditions.

DR model outperforms other individual models by providing the lowest RMSE.

This advantage is largely attributed to the DR model’s ability to incorporate ex-

ternal economic variables, which significantly enhances its forecasting accuracy.

The inclusion of these external variables allows the model to better capture fluctu-

ations and provide more accurate inflation forecasts. Consequently, the DDWFC

method assigns greater weight to the DR model in the forecast combination. Both
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the DR model and the DDWFC approach suggest the benefits of including exter-

nal variables, highlighting their importance in improving forecast accuracy.

By analyzing the extremes of inflation data, we can glean insights into the

factors that contribute to both high and low inflation periods. This understanding

is crucial for assessing the effectiveness of different policy measures in managing

inflation. Such a long-term perspective is vital for developing robust strategies

to maintain price stability in the future. Both models suggested adding external

variables.

Our study also emphasizes the importance of unbiased forecasting. The Wald

test results indicate that the forecasts generated by the DDWFC model are un-

biased across all horizons, enhancing the reliability of the predictions. Before

the COVID-19 period, all models produced comparable forecasts. However, in

the post-COVID-19 era, the dynamic regression model, along with the proposed

DDWFC model, exhibited superior performance. This distinction underlines the

adaptability and robustness of the DDWFC method in capturing and predicting

inflation trends amidst unprecedented economic disruptions.

These findings offer valuable insights for policymakers. The enhanced pre-

diction reliability and robustness of the DDWFC model empower policymakers to

make more informed decisions. Particularly, this model aids in achieving the pri-

mary goal of maintaining inflation at the target rate of 2%. The ability to forecast

accurately and reliably across different economic scenarios ensures that policy-

makers can implement timely and effective measures to manage inflation.
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6.2 Implications for Future Research

The findings of this study pave the way for several promising future research di-

rections. One notable avenue is the incorporation of additional external economic

variables to further enhance forecast accuracy. Expanding the set of variables

could provide a more comprehensive understanding of inflation dynamics and im-

prove model performance.

A comparative analysis of the proposed DDWFC model with other forecast

combination methods represents another key research direction. Evaluating vari-

ous combination techniques across different economic contexts will help identify

the most effective approaches, refine the DDWFC model, and improve its robust-

ness and accuracy.

Moreover, extending the current focus from point forecasting to include volatil-

ity forecasting could provide a more nuanced view of inflation dynamics. This

extension would offer additional insights into the variability and uncertainty asso-

ciated with inflation forecasts.

In conclusion, the DDWFC method demonstrates robustness and reliability in

inflation forecasting, showing superior performance even during periods of eco-

nomic disruption. By addressing the limitations identified and pursuing the sug-

gested research directions, we can further enhance the model’s effectiveness and

contribute to more informed and effective monetary policy decisions.

84



Bibliography

Jason Fernando. Inflation: What is it, how it can be controlled, and extreme ex-

amples. June 2024. URL https://www.investopedia.com/terms/

i/inflation.asp.

BoC. Understanding the consumer price index, May 2021a. URL

https://www.bankofcanada.ca/2021/05/understanding-

consumer-price-index/.

Statistics Canada. Consumer price index: Frequently asked questions. Statistics

Canada, 2024. URL https://www.statcan.gc.ca/en/subjects-

start/prices_and_price_indexes/consumer_price_

indexes/faq.

The Globe and Mail. Inflation in canada. November 2023. URL

https://www.theglobeandmail.com/topics/inflation/#:

˜:text=What%20is%20the%20inflation%20rate,highest%

20in%20nearly%20four%20decades.

Yu Chen and Trevor Tombe. The rise (and fall?) of inflation in canada: A de-

tailed analysis of its post-pandemic experience. Canadian Public Policy, 49

(2):197–217, 2023. URL https://www.utpjournals.press/doi/

full/10.3138/cpp.2022-068.

85

https://www.investopedia.com/terms/i/inflation.asp
https://www.investopedia.com/terms/i/inflation.asp
https://www.bankofcanada.ca/2021/05/understanding-consumer-price-index/
https://www.bankofcanada.ca/2021/05/understanding-consumer-price-index/
https://www.statcan.gc.ca/en/subjects-start/prices_and_price_indexes/consumer_price_indexes/faq
https://www.statcan.gc.ca/en/subjects-start/prices_and_price_indexes/consumer_price_indexes/faq
https://www.statcan.gc.ca/en/subjects-start/prices_and_price_indexes/consumer_price_indexes/faq
https://www.theglobeandmail.com/topics/inflation/#:~:text=What%20is%20the%20inflation%20rate,highest%20in%20nearly%20four%20decades
https://www.theglobeandmail.com/topics/inflation/#:~:text=What%20is%20the%20inflation%20rate,highest%20in%20nearly%20four%20decades
https://www.theglobeandmail.com/topics/inflation/#:~:text=What%20is%20the%20inflation%20rate,highest%20in%20nearly%20four%20decades
https://www.utpjournals.press/doi/full/10.3138/cpp.2022-068
https://www.utpjournals.press/doi/full/10.3138/cpp.2022-068


Oleksiy Kryvtsov, Jim MacGee, and Luis Uzeda. The 2021–22 surge in in-

flation. Technical report, Bank of Canada, January 2023. URL chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https:

//www.bankofcanada.ca/wp-content/uploads/2023/01/

sdp2023-3.pdf.

BoC. A snapshot of how inflation is affecting canadians, February

2023a. URL https://www.statcan.gc.ca/o1/en/plus/3096-

snapshot-how-inflation-affecting-canadians.

BoC. Monetary policy report- october 2023, 2023b. URL https://www.

bankofcanada.ca/2023/10/mpr-2023-10-25/.

BoC. Joint statement of the government of canada and the bank of canada

on the renewal of the monetary policy framework, December 2021b. URL

https://www.bankofcanada.ca/2021/12/joint-statement-

of-the-government-of-canada-and-the-bank-of-canada-

on-the-renewal-of-the-monetary-policy-framework/.

Mehmet Pasaogullari and Brent Meyer. Simple ways to forecast infla-

tion: what works best? Economic Commentary, (2010-17), 2010. URL

https://www.clevelandfed.org/publications/economic-

commentary/2010/ec-201017-simple-ways-to-forecast-

inflation-what-works-best.

Adolfo Rodrı́guez-Vargas. Forecasting costa rican inflation with machine

learning methods. Latin American Journal of Central Banking, 1(1-4):

100012, 2020. URL https://www.sciencedirect.com/science/

article/pii/S2666143820300120.

86

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.bankofcanada.ca/wp-content/uploads/2023/01/sdp2023-3.pdf
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.bankofcanada.ca/wp-content/uploads/2023/01/sdp2023-3.pdf
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.bankofcanada.ca/wp-content/uploads/2023/01/sdp2023-3.pdf
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.bankofcanada.ca/wp-content/uploads/2023/01/sdp2023-3.pdf
https://www.statcan.gc.ca/o1/en/plus/3096-snapshot-how-inflation-affecting-canadians
https://www.statcan.gc.ca/o1/en/plus/3096-snapshot-how-inflation-affecting-canadians
https://www.bankofcanada.ca/2023/10/mpr-2023-10-25/
https://www.bankofcanada.ca/2023/10/mpr-2023-10-25/
https://www.bankofcanada.ca/2021/12/joint-statement-of-the-government-of-canada-and-the-bank-of-canada-on-the-renewal-of-the-monetary-policy-framework/
https://www.bankofcanada.ca/2021/12/joint-statement-of-the-government-of-canada-and-the-bank-of-canada-on-the-renewal-of-the-monetary-policy-framework/
https://www.bankofcanada.ca/2021/12/joint-statement-of-the-government-of-canada-and-the-bank-of-canada-on-the-renewal-of-the-monetary-policy-framework/
https://www.clevelandfed.org/publications/economic-commentary/2010/ec-201017-simple-ways-to-forecast-inflation-what-works-best
https://www.clevelandfed.org/publications/economic-commentary/2010/ec-201017-simple-ways-to-forecast-inflation-what-works-best
https://www.clevelandfed.org/publications/economic-commentary/2010/ec-201017-simple-ways-to-forecast-inflation-what-works-best
https://www.sciencedirect.com/science/article/pii/S2666143820300120
https://www.sciencedirect.com/science/article/pii/S2666143820300120


Rob J Hyndman and George Athanasopoulos. Forecasting: principles and prac-

tice. OTexts, 2018. URL https://otexts.com/fpp3/.

Robert R Andrawis, Amir F Atiya, and Hisham El-Shishiny. Combina-

tion of long term and short term forecasts, with application to tourism

demand forecasting. International Journal of Forecasting, 27(3):870–

886, 2011. URL https://www.sciencedirect.com/science/

article/abs/pii/S0169207010001147?via%3Dihub.

Aidan Meyler, Geoff Kenny, and Terry Quinn. Forecasting irish inflation using

arima models. 1998. URL https://mpra.ub.uni-muenchen.de/

11359/.

Thabani Nyoni. Modeling and forecasting inflation in kenya: Recent in-

sights from arima and garch analysis. Dimorian Review, 5(6):16–40,

2018. URL https://scholar.google.ca/scholar?hl=en&as_

sdt=0%2C5&q=Thabani+Nyoni.+Modeling+and+forecasting+

inflation+in+kenya%3A+Recent+insights+from+arima+

and+garch+analysis.+Dimorian+Review%2C+5%286%29%

3A16%E2%80%9340%2C+2018.+URL&btnG=.

Abraham Deka and Nil Gunsel Resatoglu. forecasting foreign exchange rate and

consumer price index with arima model: The case of turkey. International

Journal of Scientific Research and Management, 7(8):1254–1275, 2019.

Fatlinda Shaqiri, Ralf Korn, and Hong-Phuc Truong. Dynamic regression pre-

diction models for customer specific electricity consumption. Electricity, 4

(2):185–215, 2023. doi: 10.3390/electricity4020012. URL https://doi.

org/10.3390/electricity4020012.

87

https://otexts.com/fpp3/
https://www.sciencedirect.com/science/article/abs/pii/S0169207010001147?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0169207010001147?via%3Dihub
https://mpra.ub.uni-muenchen.de/11359/
https://mpra.ub.uni-muenchen.de/11359/
https://scholar.google.ca/scholar?hl=en&as_sdt=0%2C5&q=Thabani+Nyoni.+Modeling+and+forecasting+inflation+in+kenya%3A+Recent+insights+from+arima+and+garch+analysis.+Dimorian+Review%2C+5%286%29%3A16%E2%80%9340%2C+2018.+URL&btnG=
https://scholar.google.ca/scholar?hl=en&as_sdt=0%2C5&q=Thabani+Nyoni.+Modeling+and+forecasting+inflation+in+kenya%3A+Recent+insights+from+arima+and+garch+analysis.+Dimorian+Review%2C+5%286%29%3A16%E2%80%9340%2C+2018.+URL&btnG=
https://scholar.google.ca/scholar?hl=en&as_sdt=0%2C5&q=Thabani+Nyoni.+Modeling+and+forecasting+inflation+in+kenya%3A+Recent+insights+from+arima+and+garch+analysis.+Dimorian+Review%2C+5%286%29%3A16%E2%80%9340%2C+2018.+URL&btnG=
https://scholar.google.ca/scholar?hl=en&as_sdt=0%2C5&q=Thabani+Nyoni.+Modeling+and+forecasting+inflation+in+kenya%3A+Recent+insights+from+arima+and+garch+analysis.+Dimorian+Review%2C+5%286%29%3A16%E2%80%9340%2C+2018.+URL&btnG=
https://scholar.google.ca/scholar?hl=en&as_sdt=0%2C5&q=Thabani+Nyoni.+Modeling+and+forecasting+inflation+in+kenya%3A+Recent+insights+from+arima+and+garch+analysis.+Dimorian+Review%2C+5%286%29%3A16%E2%80%9340%2C+2018.+URL&btnG=
https://doi.org/10.3390/electricity4020012
https://doi.org/10.3390/electricity4020012


Manuel Tilgner. Time series forecasting with random forest, 2019. URL

https://www.r-bloggers.com/2019/09/time-series-

forecasting-with-random-forest/. Posted on September 25,

2019 by Manuel Tilgner in R bloggers — 0 Comments.

Joshua Gordon. Practical guide for feature engineering of time series data,

June 2023. URL https://dotdata.com/blog/practical-guide-

for-feature-engineering-of-time-series-data/. Technical

Posts.

Vesna Karadzic and Bojan Pejovic. Inflation forecasting in the western balkans

and eu: a comparison of holt-winters, arima and nnar models. Amfiteatru

Econ, 23:517–532, 2021. URL https://www.ceeol.com/search/

article-detail?id=945646.
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tická ekonomie, 71(3):238–266, 2023. URL https://www.ceeol.com/

search/article-detail?id=1212565.

Laurence Savoie-Chabot and Mikael Khan. Exchange rate pass-through to con-

sumer prices: Theory and recent evidence. Technical report, Bank of Canada

Discussion Paper, October 2015. URL http://dx.doi.org/doi:10.

34989/sdp-2015-9.

93

https://www.bankofcanada.ca/speech-url
https://www.sciencedirect.com/science/article/pii/S0169207022000607?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0169207022000607?via%3Dihub
https://heinonline.org/HOL/Page?handle=hein.journals/techssj10&div=38&g_sent=1&casa_token=yCPYfabf1XUAAAAA:Eo9ngRQt5YI4WwGfq5EZbDFJfuaZhqLrY8vlBi2bStxFdXcYRPsJKwrkwwWxeeK6Ly6Vd3Yk6sU&collection=journals
https://heinonline.org/HOL/Page?handle=hein.journals/techssj10&div=38&g_sent=1&casa_token=yCPYfabf1XUAAAAA:Eo9ngRQt5YI4WwGfq5EZbDFJfuaZhqLrY8vlBi2bStxFdXcYRPsJKwrkwwWxeeK6Ly6Vd3Yk6sU&collection=journals
https://heinonline.org/HOL/Page?handle=hein.journals/techssj10&div=38&g_sent=1&casa_token=yCPYfabf1XUAAAAA:Eo9ngRQt5YI4WwGfq5EZbDFJfuaZhqLrY8vlBi2bStxFdXcYRPsJKwrkwwWxeeK6Ly6Vd3Yk6sU&collection=journals
https://heinonline.org/HOL/Page?handle=hein.journals/techssj10&div=38&g_sent=1&casa_token=yCPYfabf1XUAAAAA:Eo9ngRQt5YI4WwGfq5EZbDFJfuaZhqLrY8vlBi2bStxFdXcYRPsJKwrkwwWxeeK6Ly6Vd3Yk6sU&collection=journals
https://heinonline.org/HOL/Page?handle=hein.journals/techssj10&div=38&g_sent=1&casa_token=yCPYfabf1XUAAAAA:Eo9ngRQt5YI4WwGfq5EZbDFJfuaZhqLrY8vlBi2bStxFdXcYRPsJKwrkwwWxeeK6Ly6Vd3Yk6sU&collection=journals
https://www.ceeol.com/search/article-detail?id=1212565
https://www.ceeol.com/search/article-detail?id=1212565
http://dx.doi.org/doi:10.34989/sdp-2015-9
http://dx.doi.org/doi:10.34989/sdp-2015-9


James M Boughton and William H Branson. Commodity prices as a leading

indicator of inflation, 1988. URL https://www.nber.org/papers/

w2750.

94

https://www.nber.org/papers/w2750
https://www.nber.org/papers/w2750


Appendix A

Additional Results

A.1 Tools

In the case of the inflation data analysis, R programming language has been used.

I have employed the R Studio integrated development environment (IDE) to write

and execute the code. It also has features that enable the user to code, debug,

and visualize the data. Since we are working with time series data we have used

the tsibble (Tidy Temporal Data Frame) data structure to handle time-series data.

tsibble is a package in R used in the handling and analysis of temporal data.

A.2 The Role of MAPE in DDWFC

In our study, the initial approach for optimizing the DDWFC was based on mini-

mizing the FESS. Subsequently, we shifted our optimization criterion to MAPE.

The lowest possible MAPE is achieved by adjusting the weights assigned to each
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model to find the optimal forecast. This adjustment highlights the sensitivity of

forecast accuracy to the chosen error metric.

Our automated algorithm suggested the combination of ARIMA, DYN, NNAR,

RF, and XGB. We implemented the DDWFC approach using this combination.

Table A.1 presents the MAPE values for all evaluated models. The proposed

DDWFC approach proved to be the best as compared to other implemented mod-

els in terms of MAPE. DDWFC approach has the lowest MAPE for all horizons

except at h = 1. At h = 1 the OLS method provides a superior forecast. As

discussed earlier, we are not considering the OLS regression combination method

for final selection as it produces negative weights which are hard to interpret. In

real-world applications, this approach proves valuable when MAPE is selected as

the preferred evaluation criterion for particular datasets.

Model h=1 h=3 h=6 h=12

ARIMA 0.281 0.576 1.034 1.240

DYN 0.273 0.465 0.862 1.002

NNAR 0.296 0.493 0.926 1.196

NNARX 0.363 0.753 1.672 2.342

RF 0.314 0.390 0.590 0.701

XGB 0.321 0.444 0.646 0.772

SA 0.276 0.408 0.755 0.930

OLS 0.256 0.397 0.618 0.716

DDWFC 0.264 0.387 0.584 0.703

Table A.1: MAPE values of Implemented Models
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