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ABSTRACT

This project employs the Maximum Likelihood (ML) approach to reconstruct the

ancestral states of bird plumage colors, with a special focus on the belly colors of male

birds due to their diversity and significance. Markov chain Monte Carlo simulations are

used to assess the accuracy of the ML model in inferring the correct states, examining

the influence of factors such as phylogenetic tree size, number of states, transition rates,

node positions, and the root state’s prior probability. The study finds orange to be the

most likely color for the most ancient ancestor in the bird phylogenetic tree. However, the

accuracy of these predictions is greatly influenced by the evolutionary rates, becoming

less reliable for nodes further from the tips, especially for the root node. The research

suggests that lower evolutionary rates, larger trees, and fewer states enhance the accuracy

of the ML models.

Key Words: maximum likelihood; reconstruct the ancestral states; simulations; phyloge-

netic tree.
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Chapter 1

Introduction

The plumage color of birds plays a vital role in their phylogenetic history. Their

vibrant hues and patterns serve as signals for crucial aspects for their survival and repro-

duction, such as attracting mates, deterring predators, and facilitating parent-offspring

communication (Price-Waldman and Stoddard, 2021). Furthermore, the unique struc-

ture of birds’ retinas allows them to perceive colors in a four-dimensional space, including

the ultraviolet spectrum, making their colors even more impressive to themselves than

to humans (Hill and McGraw, 2006). Therefore, understanding the ancestral coloration

of birds and the most likely color transitions can offer valuable insights into their phy-

logenetic history. Given the limited evidence about the color of their ancestral species,

statistical methods can be employed to estimate the likely plumage colors of extinct

species by analyzing the plumage colors of existing bird species in conjunction with the

phylogenetic tree.

The colorful plumage of birds is generated by the interaction between molecular

structures and light. As outlined by Hill and McGraw (2006), bird coloration is influenced

by various factors, including pigments and the arrangement of pigments within the feather

microstructure, as well as environmental conditions.

According to Hill and McGraw (2006), the pigmentary color is determined by the
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structure and arrangement of pigments within the tissue. There are two primary types

of pigments: melanins and carotenoids. Melanins contribute to darker shades, with two

distinct types: eumelanins, responsible for black, grey, or brown hues, and pheomelanins,

which give rise to chestnut, rufous, and reddish. Carotenoids, a diverse group of chemical

compounds, play a significant role in generating red, orange, and yellow feathers. How-

ever, the presence of melanins can also mask the colors yielded by carotenoids. Structural

colors, produced by the physical interactions of light waves with nanostructures, are an-

other important component of bird coloration. These colors can complement or interact

with pigmentary colors to produce a wide range of hues like blue, green, and iridescence.

Unpigmented feathers appear as white in color, while those with structural effects exhibit

an even brighter white appearance.

The evolution of plumage color patterns is primarily influenced by pigments and

nanometre scale structures changes in feathers. However, due to limited biological data,

estimating colors through their production mechanisms is challenging. In a comprehen-

sive overview, Vinther (2015) synthesizes findings from multiple studies to reveal that

the presence of pigments has been identified in fossil material and some studies have

established correlations between color categories and melanosome morphology. The ac-

curacy of inferring the color categories such as brown, black, and grey from the melanin

morphological variables can exceed 80%. However, Vinther also notes that carotenoids

do not preserve well and are barely observed in fossil, and the production of structural

colors is not well studied. Given the complexity of avian plumage coloration, including

interactions between structural and pigmentary colors, limited evidence is available for

extinct bird coloration.

In evolutionary biology, comparative methods are commonly used to reconstruct

the ancestral states (Felsenstein, 1985), which involve mapping the states of characters

or traits onto a phylogenetic tree. A phylogenetic tree is a graphical hypothesis that

illustrates the lineage relationships among different organisms (Hall, 2013). The length

of branches on the tree can be measured in units of time, representing things like genetic

distance, possibly generation time, etc (Pagel, 1999). Comparative methods rely on
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comparing traits, behaviors, or genetic sequences across different species to infer their

evolutionary history. The states reconstruction process involves analyzing similarities

and differences among species to estimate the most possible states for those that are

currently unknown.

In the realm of discrete character reconstruction in biology, two widely utilized

comparative methods are Maximum Parsimony (MP) and Maximum Likelihood (ML)

(Williams et al., 2006).The MP approach operates under the assumption that the proba-

bilities of character state gains and losses are equal and seeks to minimize the number of

state change events. Basically, the MP algorithm follows the rule that an ancestral node

in the phylogenetic tree should share the same states with its immediate descendants. In

cases where there are no common states shared by the descendants, the ancestral state is

assigned the union of its descendants’ states. The MP approach is usually satisfied, es-

pecially when the transition rates between states are relatively slow (Cunningham et al.,

1998). On the other hand, ML assumes constant state transition rates, treating evolution

as a time-continuous Markov process, which takes the evolution time into account. The

ML approach considers every combination of ancestral states, searching for the optimal

transition rate between states to maximize the likelihood of observed states of the extant

species.

The ancestral character reconstruction problem is widely studied using binary states,

such as the presence of phenotypes, DNA sequences or protein sequences. In the context

of protein sequence reconstruction (Williams et al., 2006), both MP and ML are capable

of accurately estimating ancestral states, with ML generally outperforming MP. In sim-

ulations regarding binary state reconstruction, Royer-Carenzi et al. (2013) suggest that

the accuracy of both models relies on specific conditions, such as the topology of the tree

and even the position of individual nodes within the evolutionary tree. While Holland

et al. (2020) finds that MP outperforms ML in most cases, except the the transition rate

between two state is highly asymmetrical. These simulations show that the performance

is also influenced by the transition rate and the distance of the ancestral to the tips.

However, usually, it is considered that when state changes are infrequent, MP can be
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Table 1.1: Color codes and types of production.

Code Color Type

BK black melanin (eumelanin)
BR brown melanin (eumelanin)
BL blue structural (melanin components)
GR green structural (melanin components)
RE red carotenoid
WH white unpigmented (structural)
OR orange carotenoid
GE grey melanin (eumelanin)
IR irridescent structural (melanin components)
RU rufous melanin (phaeomelanin)
TU turquoise structural (carotenoids components)
YG yellow-green structural (carotenoids components)
YE yellow carotenoid

viewed as a limiting case of ML and ML performs better when the evolution rate is high

(Schluter et al., 1997).

The bird color dataset employed in this project was compiled by a student under

the supervision of Dr. Reudink, drawing data from Birds of the Worlds (Billerman

et al., 2022). The colors were identified by referencing online bird photographs, and were

categorized into 13 distinct color categories, as detailed in Table 1.1 along with their

corresponding production types. While most studies focus on binary state, both MP

and ML approaches can be applied to the reconstruction for more than two states. For

the phenotype of plumage color, each color category is considered as one possible state

value, and the values can change from one to another. In this project, we assume that

the process of bird plumage color change parallels the DNA mutation, without delving

into the mechanisms behind color production. Given that plumage traits are believed

to evolve rapidly (Omland and Lanyon, 2000) and the lack of certainty regarding equal

probabilities for transitions between colors and their reversals, the ML method is used

and assessed for reconstructing ancestral bird plumage colors. The phylogenetic tree of

birds used in this project is one of the hypothesis trees on the website ‘birdtree.org’ with

9993 species (Jetz et al., 2012). All the species in the dataset are included in the tree.

4



Chapter 2

Data Description

The bird color dataset contains color records for 346 bird species. This dataset

includes 20 variables representing colors found in 10 different parts of the birds. Each part

can have up to two colors, and records for male and female birds are recorded separately.

The first entry from the dataset is presented in Table 2.1, showcasing the coloration of

the male species Melanogenys in the Anisognathus genus, belonging to the Thraupidae

family. The auricular plumage is black, while the rump displays a combination of blue

and black plumage.

Within the dataset, birds exhibit varying colors on different parts of their bodies.

On average, each species displays an average of 3.32 distinct colors in their plumage. Male

birds typically have a slightly higher average of 3.38 colors, while females average 3.25

colors. It is worth noting that only a minority of species have a single color across their

entire body, and most species showcase a diversity of coloration attributed to different

production mechanisms (Figure 2.1).

Figure 2.2 illustrates the distribution of feather colors across various parts of the

birds. Notably, black, brown, and green colors are the most prevalent in each part, with

the exception of crissum feathers, where rufous and white are the most common colors.

It’s worth highlighting that carotenoid-based coloration, encompassing red, yellow, and
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Table 2.1: An instance of the original bird coloration data. Column names end with ‘2’
is the second color presents on one bird.

Column Value

Species Anisognathus melanogenys

Sex M
Auricular BK
Auricular2 <NA>

Rump BL
Rump2 BK
Back BL
Back2 BK
Crown BL
Crown2 <NA>

WingTip BK
WingTip2 <NA>

DorTail BL
DorTail2 BK
Throat YE
Throat2 <NA>

Breast YE
Breast2 <NA>

Belly YE
Belly2 <NA>

Crissum YE
Crissum2 <NA>
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Figure 2.1: Distribution of the number of colors per bird and the distribution of the
number of production mechanisms per bird.
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Figure 2.2: Birds species color distribution break down by parts.

orange hues, is relatively uncommon among all body parts in the dataset.

In this project, we have chosen to focus on the belly color, given that it is a body

part that does not exhibit extreme color preferences like the DorTail and WingTip. In

cases where a species presents two colors at the belly, we consider a 50% probability to

the appearance of each color.
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Chapter 3

Literature Review

3.1 Notation of Phylogenetic Tree

Figure 3.1 is an illustrative example of an phylogenetic tree. The nodes located at

the tips correspond to extant species, while the internal nodes are the common ancestors.

For instance, node 1 and node 2 share a most recent common ancestor denoted as node

5. Similarly, node 1 and node 3 trace their most recent common ancestor to node 6,

and so forth. A phylogenetic tree can be defined by a set of nodes, denoted as N , an

immediate ancestor function, represented by f(i), where i is a node, and a branch length

function e(f(i), i), which denotes the length of branch to node i and its parent (Farris,

1970). In Figure 3.1, we can observe a tree consisting of nodes 1, 2, 3, 4, 6, 7, along with

their corresponding ancestor functions:

f(1) = 5, f(2) = 5, f(3) = 6,

f(4) = 7, f(5) = 6, f(6) = 7

and branch length functions, which simply equal the prescribed constants for illustration:

e(5, 1) = e5,1, e(5, 2) = e5,2, e(6, 3) = e6,3,

e(7, 4) = e7,4, e(6, 5) = e6,5, e(7, 6) = e7,6.
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Figure 3.1: A phylogenetic tree with 4 tips.

3.2 Maximum Likelihood

Felsenstein (1981) introduced the ML approach for constructing phylogenetic trees

from DNA sequences. This approach paved the way for the development of computa-

tionally feasible methods to find the ML of a tree. Pagel (1994) applied these methods to

reconstruct the states of discrete characters. The use of the ML method is also extended

to test correlations between two binary characters in the context of phylogenetic analysis.

The likelihood of a phylogenetic tree in a particular state is calculated as the product

of the probabilities of all the nodes achieving those states. In this context, let si represent

the state of node i, and p(si) denotes the probability of node i occupies state si. Assuming

that in the evolutionary process, each branch’s evolution depends solely on its immediate

ancestor, The likelihood of Figure 3.1 in a state of (s1, s2, ...s7) can be expressed as:

Ls1,..,s7 = p(s7)p(s6|s7)p(s5|s6)p(s1|s5)p(s2|s5)p(s3|s6)p(s4|s7).

Here, Lsj1 ,sj2 ,...,sjN denotes the likelihood of the tree with node i as the root and its descen-

dants j1, j2, ..., jN having states sj1 , sj2 , ..., sjN , respectively. By grouping the expressions

within brackets

Ls1,..,s7 = p(s7){p(s6|s7)[p(s5|s6)p(s1|s5)][p(s2|s5)p(s3|s6)]}{p(s4|s7)},
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we can observe that the likelihood can be defined in a recursive format, where it becomes

a function of the likelihood of its two sub-trees.

The general model for the likelihood of a sub-tree with root k at state Sk (a collection

of states for nodes in tree k) can be expressed as:

LSk = p(sk|sf(k))LSiLSj , (3.1)

where i and j represent the immediate descendants of k, and p(sk|sf(k)) represents the

probability of node k being in state sk given the state of its parent node, f(k). LSk is

the likelihood for one possible state assignment.

In Equation (3.1), when considering a node k without an ancestor, p(sk|sf (k)) is

replaced with its prior probability p(sk) . If the state of the node k is known, such as

in the case of tips, then LSk will be zero for all Sk except when Sk is observed, in which

case LSk = 1.

To take into account the uncertainty of internal nodes, the overall likelihood is

calculated as the sum over all possible assignments of states to all the nodes. Let Sk

represent all possible state combination of the tree with root k. The likelihood of all the

states combination can be expressed as

∑
Sk∈Sk

LSk =
∑
Sk∈Sk

p(sk|sf(k))LSiLSj

=
∑
sk

p(sk|sf(k))(
∑
Si∈Si

LSi)(
∑
Sj∈Sj

LSj).

The summation operators on Si and Sj could move to right because the change of prob-

ability on one sub-tree does no influence that of its sibling sub-tree. We use Lk denotes

the likelihood of a sub-tree with root k with all possible state combinations. Then,

Lk =
∑
sk

p(sk|sf(k))LiLj, (3.2)
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For a ML model M on a tree with a root node r, the likelihood

L(M) = Lr =
∑
sr

p(sr)LiLj. (3.3)

To estimate the value of p(sk|sf(k)), let q(sf(k), sk) be the probability of transition

from node f(k) at state sf(k) to node k at state sk, then p(sf(k), sk) = p(sf(k))q(sf(k), sk).

The posterior probability

p(sk|sf(k)) =
p(sf(k), sk)

p(sf(k))
= q(sf(k), sk). (3.4)

The transition probability is commonly assumed to adhere to a time-continuous

Markov process. In this process, state change rates depend solely on the previous state,

and they remain constant over a specific period of evolutionary time. Felsenstein (1981)

initially assumed the existence of a base change rate shared by all states, while Pagel

(1994) extended this idea by developing simultaneous transition rate estimation. Fol-

lowing Pagel’s approach, all the transition probability from one state to another across

different time can be represented by the transition matrix Q(t), with each entry qxy(t)

denoting the probability of transition from state x to state y after a time interval t. If

rxy is the transition rate from x to y, then rxy = dqxy(t)

dt
when x and y are different. To

build the transition rate matrix R, each entry rx,y reflects the transition rate from state

x to state y if x ̸= y. Otherwise, rxy is defined as −
∑

x ̸=y rxy. For instance, in the case

of 3× 3 transition rate matrix R, it can be illustrated as follows:
−(r12 + r13) r12 r13

r21 −(r21 + r23) r23

r31 r32 −(r31 + r32)

 .

The transition probability after a short time dt from time t can be approximated

as:

Q(t+ dt) = Q(t)(I +Rdt). (3.5)
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To find the solution, the equation can be rearranged and expressed differentially as

Q(t)

dt
=

Q(t+ dt)−Q(t)

dt
= Q(t)R.

From this, the solution can be derived as

Q(t) = exp(Rt), (3.6)

in which the exp function is the matrix exponential. Let X be a square matrix, the

exponential of X is defined as 1

exp(X) =
∞∑
k=0

1

k!
Xk.

Combining with Equation (3.4) and (3.6), the objective of ML model is to maximize

Equation (3.3) by optimizing all non-diagonal entries of the transition rate matrix R.

However, the prior probability of the root is unknown, which significantly influences the

inference process and also poses a challenge in the analysis (FitzJohn et al., 2009). To

assign priors to the root node, one can carefully choose appropriate values based on

prior knowledge or beliefs. However, in cases where there is no prior belief, Pagel (1999)

suggests an iterative approach in finding a proper prior root state.

In Equation (3.3), each element in the summation can be considered as the contri-

bution of the root in each separate state to the likelihood. The proportion of root in

state a

P (sr = a) =
p(sr = a)LiLj

L(M)
(3.7)

is used as the posterior weight as the root in preference of state a. In Pagel’s method,

modelM is achieved by maximizing the likelihood of each combination of ancestral states,

which uses different transition rate parameter, and is therefore considered as the “quasi-

posterior weight”.

1“Matrix exponential”, Wikipedia, last modified Nov 13, 2023,
https://en.wikipedia.org/w/index.php?title=Matrix exponential&oldid=1184902135
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The iterative approach initially builds an ML model with an equally distributed root

state. The prior probability of the root state is then replaced with the quasi-posterior

weight and recalculates the ML. Repeat this procedure until there is no improvement in

the likelihood. During the this process, the prior probability of root node could shift the

weights towards the most likely state. Pagel suggests more simulation work to assess its

behaviour.

3.3 Performance

The likelihood ratio (LR) test is a practical tool for comparing any two nested

models, where one model is a special case of the other (Pagel, 1994). In this context,

nested models mean that one model partially constrains the parameters of the other,

making it a more restricted or specific version of the larger model. The LR test used to

assess whether the constrained model (I) significantly degenerates the general model (D)

is defined as:

LR = −2 ln[LI/LD]. (3.8)

When model I can be expressed as a special case of D, the test statistic is asymptotically

distributed as χ2 with degree of freedom equal to the difference between the number of

free parameters of two model D and I.

When dealing with non-nested models, the LR test may not follow a χ2 distribution.

In such cases, a Monte Carlo procedure (Goldman, 1993), can be applied to estimate

the distribution of the LR test statistic. By using this Monte Carlo procedure and

combining it with nonparametric techniques like bootstrapping, an empirical estimate of

the distribution of the LR test statistic can be obtained. In this approach, LR is often

interpreted as a measure of “support”. If there is evidence of an LR value greater than

2, it is typically considered an indication that the two models are significantly different

(Pagel, 1999). This can help in assessing whether a model performs similarly with the

other model.

Both Royer-Carenzi et al. (2013) and Holland et al. (2020) conduct simulations to

13



assess the performance of ML models with binary states. Performance is measured by

the models’ accuracy in correctly inferring unknown node states, with a match between

the inferred and true states considered as a success.

In a ML model M , the posterior probability of node k in state i given the observed

data d, which is the combination of leaf states, is given by

pM(sk = i|d) = pM(sk = i,d)

pM(d)
.

By the definition of likelihood, pM(d) = L(M |d), in which L(M |d) is the same with the

former notation L(M). Then the posterior probability can be expressed by likelihood of

the data:

pM(sk = i|d) = L(M |sk = i)

L(M)
, (3.9)

where L(M |sk = i) is the likelihood of the leaf states with the state of node k in i.

In the recursive process of calculating likelihood (Equation 3.2), Lk is replaced with

p(sk = si|sf(k))LiLj.

Royer-Carenzi uses expectation of success assessing the performance. The simulation

returns the most likely state of each unknown node, which is the state with largest

posterior probability. In case the two states are equally weighted, a random state is

returned. The probability of success is then set to 1 if the returned state matches the

true state, which is recorded during simulation, otherwise the probability is set to 0.

Holland introduces two metrics to assess the error rate: quantised score and raw

score. To calculate the quantised score, the probability of a node state is converted to

state as Royer-Carenzi’s method, except that it uses 0.7 as the threshold. A state of a

node is returned when probability of being in the state is greater than 0.7, otherwise the

state is considered as ambiguous. Only an unambiguous state that does not match the

true state counts as an error. This error rate is referred as quantised score. The raw

score directly uses the the posterior probability of incorrectly identifying the state of the

unknown node. If a node is estimated to have a 0.10 probability of being in state A, 0.90

14



probability of being in state B, and the true state is A, the error rate is 0.90.

Both expectation of success and quantised score loses some certain of information

compared to raw score, because they convert the continuous probability to discrete num-

bers. They are useful while evaluating the performance between ML and MP models,

because MP only yields the state of the node other than probability.
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Chapter 4

Methodology

The ML problem-solving process of Equation (3.3) is referred to Holland et al.

(2020). It is executed through the functions ‘make.mkn’ and ‘find.mle’ from ‘diversitree’

package in R. The method that is used for optimization is nlminb. The ‘make.mkn’ func-

tion is slightly modified to make it support tips with more than one possible states. The

nlminb optimization method necessitates initial parameter values for the optimization

process. Depending on these initial values and the nature of the objective function, the

outcomes may either reach global optimization or become entrapped in local optima.

To avoid the local convergence problem, five different random starting conditions are

set to perform optimizations and the best solution is taken. For the first condition, all

non-diagonal entries of the transition rate matrix—our initial parameters—are set to a

value of 10−6. For subsequent conditions, we multiply each initial parameter by a ran-

dom factor ranging from 1.2 to 2.5. This results in initial transition rates varying from

10−6 to 10−4. Such a strategy ensures that the initial parameters are not excessively

close to the true transition rates in any scenario within this project, thus maintaining

the comparability of our findings. The ‘keep.tip’ function from the same package is used

to prune a subset from the entire birds phylogenetic tree, keeping only the 346 species in

the dataset.

In our model, all combination of ancestral states shares the same transition rate
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matrix. In this case, to employ the iterative approach for inferring the root state Equation

(3.7) is equivalent to the posterior probability of the root state. The approach provides a

way to shift the root state towards a preferred distribution that maximizes the likelihood.

It, however, does not guarantee that the root state would move toward the true state

value, in which case the iteration could make the performance even worse.

In this project, we come up with a likelihood weight approach to infer the prior of

the root state. In this approach, we first build ML models for the root in each separate

state. Let Mi be the model when root state is i, the prior probability of the root state

at state i is given by

p(sr = si) =
L(Mi)∑
sr
L(Msr)

. (4.1)

The proportion of the likelihood in each state over the that of the summation of all the

states does not work as a true weight, as the likelihood in the denominator comes from

different models. This method, however, provides a sensible estimator on how much the

root is preferred in each state.

This chapter begins with a demonstration to illustrate the ML process of recon-

structing the ancestral states using both methods to infer the prior probability of root

node. Following this, simulations are designed to compare the accuracy of both models

in inferring the correct states of unknown nodes.

4.1 Ancestral State Reconstruction Illustrative Ex-

ample

The ML method is applied to the data shown in Figure 4.1 to demonstrate the

process of reconstructing the color of the ancestral species. In this phylogenetic tree,

there are 4 colors for the species - black, yellow, blue and red. The number of parameters

to the optimize problem is 12, which are all the entries of the transition rate matrix

except for the diagonals.

In the iterative approach to infer the root state, the prior probability of the root is
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Figure 4.1: An example phylogenetic tree of 30 tips with branch lengths. The states of
tips are represented by the color of nodes.

equally set to 25% in initial. The maximum log-likelihood of the model with this prior

is -23.94, with contributions of -30.86, -30.40, -24.77, and -24.51 from the root in each

state (Table 4.1). The posterior distribution of the root state, calculated based on the

likelihood proportion of the root in each state, is (0.10%, 0.16%, 43.46%, 56.28%). This

posterior is subsequently assigned as the new prior to root node. After nine iterations,

the ML no longer improves beyond four decimal places, and the root node demonstrates

a preference for the red color in this process (Figure 4.2).

The root state in the final model is predominantly red, with nearly 100% probability.
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Table 4.1: Applying iterative approach to the tree of Figure 4.1. The table only show
first three loops of the iteration. The proportion of root in each state contribute to the
likelihood is used as the prior of the root state.

Iteration
Root Prior Log

Likelihood
Contribution of Each State

black yellow blue red black yellow blue red

1 0.25 0.25 0.25 0.25 -23.94 -30.86 -30.40 -24.77 -24.51
2 9.8e-4 1.6e-3 0.43 0.56 -23.22 -36.31 -35.78 -24.47 -23.56
3 2.1e-6 3.5e-6 0.29 0.71 -23.07 -42.27 -43.06 -25.79 -23.14

(a) Change of ML during iteration. (b) Change of root state prior distribution
across iterations. Beginning with the second
iteration, the prior probability for the root is
derived from the posterior distribution of the
previous iteration. The colors of the lines rep-
resent corresponding states.

Figure 4.2: The process of modelling using iterative method.
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The transition rate matrix R for the model is

black yellow blue red


black −0.0113 0.0113 0 0

yellow 0 −0.0070 0.0070 0

blue 0 0 −0.0097 0.0097

red 0.0039 0 0.0219 −0.0258

.

The entry in the row corresponding to black and the column corresponding to yellow

indicates that the transition from black to yellow occurs at a rate of 0.0113. Under this

transition rate, the state transition matrix between node r and a is

exp(R ∗ 8) =

black yellow blue red


black 0.9137 0.0839 0.0024 0.0001

yellow 0 0.9453 0.0527 0.0020

blue 0.0011 0 0.9314 0.0675

red 0.0270 0.0013 0.1521 0.8196

.

With the transition rate matrix, the posterior probability of each node state can be

computed following Equation (3.9). The estimated distribution of each node is illustrated

in Figure 4.3.

In the likelihood weight approach for selecting the prior probability of the root node,

we initially hypothesize the root state to be black, yellow, blue and red, respectively.

The corresponding maximum log-likelihoods of the leaf states are found to be -24.07,

-23.90, -22.97 and -22.79. Then the likelihood weights of the root are calculated to be

11.39%, 13.52%, 34.28%, 40.80% according to Equation (4.1). We employ this probability

distribution as the prior probability of the root, and recalculate the ML. In this model,
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Figure 4.3: Estimated posterior probabilities of the ancestral nodes using iterative ap-
proach on data Figure 4.1.

The transition rate matrix R is

black yellow blue red


black −0.0113 0.0113 0 0

yellow 0 −0.0069 0.0069 0

blue 0.0011 0 −0.0130 0.0119

red 0.0029 0 0.0226 −0.0255

,

which is similar with that from the iterative approach, with a notable difference in the

transition from blue to black. In the likelihood weight method, blue has a chance to transit

to black, while in the iterative method, this is 0, because of the difference of the prior of

the root state.
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4.2 Simulation

The simulation is to evaluate the performance of ML method in estimating the

average probability of correctly inferring the states of all the unknown nodes. Markov

chain Monte Carlo (MCMC) method is used to generate the samples. Then based on

the states of the tips, we build the ML models to infer the probability of true state of

unknown nodes. Multiple scenarios are established to evaluate the impact of variables

such as the number of tips, total states, and evolutionary rate on performance. The

scenario of bird ancestral plumage color reconstruction is also simulated to estimate the

accuracy of ML model for the bird plumage color dataset. The sample size is 100 in each

scenario.

Input

The simulation input includes phylogenetic trees with branch length, number of

states, a root state and transition rates between all states.

Three subsets of phylogenetic trees are created from phylogenetic tree we use to

reconstruct the ancestral birds plumage color. These subsets keep the first 50, 100 and

150 tips, respectively. The length of each tree from root to the tips is normalized to

10, which is not necessarily varied because it only affects the transition probability on a

given branch, while this can be achieved by scaling transition rate.

The number of states is varied from 3 to 9 step by 2. The root state is randomly

drawn from all states.

There are three patterns that we consider for the transition rate matrix. The first

pattern is symmetric (Figure 4.4a). That is the transition rates between two states in

two directions are almost the same. The second pattern is grouped states matrix (Figure

4.4b), in which the state transition shows high rate within the same group, while the

transition rate is low for states in different groups. The third pattern is asymmetric

(Figure 4.4c), which is opposite to the symmetric pattern. The the transition rates
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(a) Symmetric. (b) Grouped. (c) Asymmetric.

Figure 4.4: Three patterns of transition matrix in the example where there are 5 states.
The color depth represents different levels of transition rate.

between two states in two directions are greatly different.

Four sets of transition rate matrices are designated for the symmetric pattern. Each

set includes free parameters with mean values of 0.02, 0.2, 0.1, and 1, respectively. These

parameters follow uniform distributions: Uniform(0.01, 0.03), Uniform(0.07, 0.13), Uni-

form(0.17, 0.23), and Uniform(0.7, 1.3). For grouped and asymmetric pattern, there is

one transition rate matrix for each. The larger values are sampled from aforementioned

distributions, while the smaller values are drawn from another distribution with a lower

mean. The choice of the distributions depends on the performance of the symmetric

pattern, as explained in the scenario section.

In summary, there are six sets of transition rate matrices, with examples of 5x5

matrices illustrated in Figure 4.5. We refer to these sets as sym1, sym2, sym3, sym4, grp

and asy, respectively.

The mean of lowest transition rate is 0.02, because when the number of states is

5, the probability of the state remains unchanged is about 50% after 10 units of length

during evolution. Lower transition rate than that may result in insufficient diversity

in exhibition all the states in tips. For the transition rate being 0.1, the transition

probability does not change too much after 10 units length. When the transition rate is

0.2, the transition probability achieves almost stable after evolving 5 units length, and

that is 1 unit length when the transition rate is 1. Higher transition rate will not change

the transition matrix too much (Figure 4.6).
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(a) Symmetric matrix: mean transition rate
0.02.

(b) Symmetric matrix: mean transition rate
0.1.

(c) Symmetric matrix: mean transition rate
0.2.

(d) Symmetric matrix: mean transition rate 1.

(e) Grouped matrix: High transition rates
within first three and last two states (mean:
0.1). Mean transition rate between states in
each group is 0.02.

(f) Asymmetric matrix: If transition rate from
state i to j is sampled from uniform distribu-
tion with mean 0.02, the reverse rate has a
mean of 0.1.

Figure 4.5: Examples of transition rate matrix factors for state count of 5.
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Figure 4.6: Change of transition probability over time with different transition rates
among 5 states.

Generate Samples

MCMC sampling process explains as following. Assuming the transition rate matrix

to be R, the transition probability matrix Q(t) on a single branch with length t can be

obtained following Equation (3.6). If the parent state is i, the probability of its child

node’s state to be j is qij(t), which is the i, j entry of transition matrixQ(t). By sampling

from the transition probability distribution, starting from the root node and traversing

the tree in preorder, we can simulate an evolutionary history with full knowledge of all

node states. The ML models are constructed with the leaf states known, while the states

of the other node remain unknown.

To compare the effect of the prior probability of the root state on the performance

of the ML models, four choices of prior distributions of the root state are used to build

the ML models on each sample. Two of the prior distributions are determined by using

iterative method and likelihood weight method. The other two prior are set to the true

root state and a random false root state, respectively, which are used to build benchmark

models.
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Table 4.2: Simulation scenarios with phylogenetic tree and number of states fixed.

Number of Tips Number of States Transition Rate Matrix

100 5 sym1
100 5 sym2
100 5 sym3
100 5 sym4
100 5 grp
100 5 asy

The output of all four models is the posterior probability of inferring the correct

state of each node, which is used in this project to evaluate the performance of the

models. The probability is similar to the raw score to evaluate error rate in Holland

et al. (2020), except that we use “success rate” here.

Scenarios

To reduce the scenarios of the simulation, we initially conduct simulations by main-

taining the phylogenetic tree featuring 100 tips and 5 states, while varying all 4 symmetric

transition rate matrices. Subsequently, we identify two transition rate matrices that ex-

hibit the best performance in inferring the correct states. The distributions utilized to

generate these two transition matrices are then employed to generate grouped and asym-

metric matrices. Finally, simulations are conducted using both grouped and asymmetric

matrices, each with 100 tips and 5 states (Table 4.2).

Next, we maintain a constant transition rate matrix type and vary the phylogenetic

tree by adjusting the number of tips to one of three specific values: 50, 100, or 150. The

type of transition rate matrix which yields the highest average success rate in previous

scenarios are chosen. Table 4.3 uses the symmetric matrix with the mean of transition

rate 0.02 as example.

Finally, we choose the optimal phylogenetic tree which performs best in above sce-

narios, and vary the states. Suppose the number of tree tips is 150, the scenarios are

presented as Table 4.4.
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Table 4.3: Simulation scenarios with number of states and transition rate matrix fixed.

Number of Tips Number of States Transition Rate Matrix

50 5 sym1
100 5 sym1
150 5 sym1

Table 4.4: Simulation scenarios with phylogenetic tree and transition rate matrix fixed.

Number of Tips Number of States Transition Rate Matrix

150 3 sym1
150 5 sym1
150 7 sym1
150 9 sym1

An additional scenario is established to assess the accuracy of inferring bird plumage

color for this project. In this scenario, the number of tips and states matches the dataset.

However, the ML algorithm is time-consuming under these conditions. On average, the

execution time for a single solution ranges from 5 minutes to 2 hours, with an average

duration of 35 minutes, on a CPU clocked at 4.3 GHz. For the likelihood weight approach,

14 priors are set and each prior is executed five times with varying initial parameters to

mitigate the risk of local convergence issues. Producing a single sample for a single task

would require approximately 40 hours. To speed up the process, multitasking parallel

processing is employed, reducing the time required to 8 days for 100 samples distributed

across 20 tasks.

Therefore, the choice of transition rate is limited to two types for assessing the

accuracy of plumage color inference and its sensitivity to different transition rates. Fol-

lowing insights gained from earlier simulation outcomes, the accuracy primarily depends

on the average transition rate, with minimal influence from the transition pattern. Con-

sequently, both transition rate matrices adopt a symmetric pattern.

To ensure that the simulated data is similar to the bird color dataset, the proportion

of tips in each state ranges from 1% to 30%. Transition rates, with means of 0.02

and 0.05, are drawn from Uniform(0.01, 0.03) and Uniform(0.04, 0.06) distributions for
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Figure 4.7: Change of transition probability over time with different transition rates
among 13 states.

the two matrices, respectively. The phylogenetic tree’s height is approximately 18.6.

Throughout the evolutionary process, the transition probability stabilizes with a rate of

0.02, whereas it stabilizes midway with a rate of 0.05 (Figure 4.7).

Evaluation

The performance of the ML models is assessed by calculating the average success rate

across all ancestral nodes, based on the success rates of each node derived from simulation

outputs. Notably, the root node is specifically examined as a unique individual node to

offer additional insights into the model’s performance. The accuracy in reconstructing

the bird plumage color is assessed through simulations, along with the examination of

various factors such as the distance of the ancestral node to the tips, the transition

pattern and rate, and the number of tips and states.
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Chapter 5

Result

5.1 Simulations on Small-scale Scenarios

The simulations present a comprehensive examination of the accuracy of ancestral

state reconstruction across different scenarios with varying node heights (Figure 5.1).

In general, across all methods tested, the posterior probability of inferring the correct

state, which defines our accuracy measure, decreases as the distance from the inferred

nodes to the tips increases. The exception is that the accuracy of the models built with

the true root state increases when the nodes close to root node. The true root method

consistently shows the highest success rate across almost all scenarios, especially when the

nodes are far from the tips. The false root method generally has the lowest success rate,

significantly deviating from the performance of the true root method with the increase

of nodes’ height. The iterative method and likelihood weight method perform similarly

between the two benchmark methods across most scenarios, with the likelihood weight

method slightly outperforming the iterative method in some cases.

As seen in Figure 5.1a, the accuracy of all methods decreases with the increase

transition rate when the transition follows the symmetric pattern. For a symmetric tran-

sition matrix with rate sym1, all the methods perform better than any other transition

matrices. The accuracy of all methods is almost the same when the nodes are close to
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(a) Accuracy for scenarios with a tree of 100 tips and 5 states. Each non-diagonal entry
in symmetric transition rate matrices sym1, sym2, sym3 and sym4 are drawn from
uniform distribution (0.01, 0.03), (0.07, 0.13), (0.17, 0.23), and (0.7, 1.3), respectively.
The higher values in grouped and asymmetric matrices are from uniform(0.01, 0.03),
while the lower values are from uniform(0.07, 0.13).

(b) Accuracy for scenarios with 5 states and the sym1 transition rate.

Figure 5.1: States reconstruction accuracy for different scenarios. The height of the nodes
is defined as the distance from the inferred nodes to the tips. The root node and tips are
not included to avoid their influence on the smoothing fitted line.
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(c) Accuracy for scenarios with a tree of 100 tips and the sym1 transition rate.

Figure 5.1: States reconstruction accuracy for different scenarios (cont.).

the tips, while with the increase of the heights, that of the false root model decays the

quickest. The performance of the true root model decreases slowest and even goes up

when the height is greater than 4. As the transition rate increases, the performance of all

four models converges, particularly at the higher-level nodes. For the sym2, sym3 and

4 transition rate matrices, the accuracy declines rapidly with the increase of transition

rate and eventually stabilizing at a constant value for all models. For the sym2, the

accuracy stops decreasing when the height of the node is 6, while that of the true root

model slightly increases after that. The accuracy stabilizes at around 0.2 for nodes at a

height of 4 for sym3, and at roughly 0.5 for sym4. The influence of the transition rate

on inferring the nodes close to tips is limited, with a little decrease when the transition

rate is 1.

The accuracy patterns observed in models using the grp and asy transition rate

matrices exhibit similarities. In both scenarios, the models’ performances are ranked be-

tween the symmetric transition sym1 and sym2 in terms of accuracy. The true root model

consistently outperforms others, while the false root model ranks lowest in effectiveness.
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The iterative and likelihood weight models show comparable outcomes. This indicates

that the specific pattern of the transition rate matrix, whether grouped or asymmetric,

does not significantly affect model performance.

Figure 5.1b compares the success rates of four different methods across three different

phylogenetic tree sizes. The success rate for all methods tends to increase as the tree size

increases. The false root method shows the most sensitivity to node height, especially

when the number of tree tips is 150. There is a deep decline in accuracy when the

height of tree exceeds 4. The likelihood weight method consistently outperforms the

iterative method, with both achieving intermediate success rates. While accuracy for

these methods also decreases as the increase of node height, the decline is not as marked

as seen with the false root method.

The difficulty of reconstructing ancestral states increases with the number of states

increases as shown in Figure 5.1c. Same as the former scenarios, the true root method

is consistently the most effective, while the false root method is the least effective and

shows significant sensitivity to both the number of states and the height of the node.

Uniquely in this context, the iterative method shows the poorest performance when the

state count reaches 9.

Figure 5.2 presents scatterplots comparing success rates against node height for a

phylogenetic tree characterized by 100 tips and 5 states using a symmetric transition pat-

tern. For both the iterative and likelihood weight methods, the patterns of distribution

across each scenario appear similar. At lower transition rates, the success rates predom-

inantly cluster near 1, indicating a high likelihood of accurate ancestral state inference.

As the transition rates and node heights increase, the success rates tend to converge

around a value, which is 0.2 in this context. The distinction between the two methods

lies in the iterative method’s tendency to produce a higher frequency of extreme success

rates (0 or 1) compared to the likelihood weight method when the nodes are close to the

root.

The comparison of the root state reconstruction success rates between the iterative
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Figure 5.2: Success rate distribution for iterative and likelihood weight methods with 100
tips, 5 states and symmetric transition.

method and likelihood weight method indicates that the performance of the two methods

varies significantly across most scenarios (Figure 5.3). As seen in Figure 5.3a, the in-

terquartile range (IQR) for iterative method is broader than that of the likelihood weight

method. For the iterative method, the lower quartiles are near zero, suggesting a tendency

towards lower success rates, while the likelihood weight method consistently shows higher

values for these quartiles. As the transition rate increases, the success rate distributions

for both methods appear to converge near a success rate of 0.2. It is noteworthy that

with grp and asy transition matrices, both methods exhibit lower performance compared

to the sym1 matrix. This observation contrasts with the patterns seen when evaluating

average success rates.

As the number of tips in the phylogenetic trees increases, there is a noticeable

improvement in the performance of both the iterative and likelihood weight methods.

This improvement is marked by higher median success rates, as depicted in Figure 5.3b.

By contrast, as depicted in Figure 5.3c), there is a decline in success rates with an

increased number of states. These trends suggest that the complexity added by more
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(a) Accuracy for scenarios with a tree of 100 tips and 5 states.

(b) Accuracy for scenarios with 5 states and
the sym1 transition rate.

(c) Accuracy for scenarios with a tree of 150
tips and the sym1 transition rate.

Figure 5.3: Root state reconstruction success rate boxplot for iterative method and
likelihood weight method.
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Figure 5.4: Distribution of average success rate in each scenarios. ‘L’ and ‘S’ in the
scenario label represents number of tips and number of states, respectively.

states negatively impacts the success rate, while a greater number of tips provides more

data that may enhance the accuracy of both methods. As seen in both figures, the

iterative method displays greater variability in response to changes in the number of tips

and states, indicating that the likelihood weight method may be more robust under a

range of scenarios.

Average success rate of all nodes is used to evaluate the overall performance of both

iterative and likelihood weight. The distribution of average success rate of both method

is all most identical in each scenario (Figure 5.4). As the success rates of both methods

from each sample are calculated from the same object, the paired two sample test is used

to compare the two-sample mean. The Shapiro-Wilk normality test on the difference of

the average success rate shows that the difference is not normally distributed. Therefore,

a percentile test combined with bootstrap sampling method is applied.

Bootstrap is also employed for the root node. However, the distributions of the suc-

cess rate for the two methods are distinct. In Figure 5.5, the success rate of the iterative

method demonstrates a bimodal distribution, indicating two peaks in performance at 0
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Figure 5.5: Root state reconstruction success rate distribution for iterative method and
likelihood weight method with 5 states and the sym1 transition rate.

and 1, whereas the likelihood method method presents a generally unimodal distribution

with slight fluctuations. Consequently, using the sample mean as a comparative statistic

is inappropriate. Instead, the comparison is based on the proportion of success rates

exceeding the threshold associated with random chance. Specifically, this threshold is

0.20 for a state count of five, and 0.33 for three states. This chosen metric effectively

quantifies the frequency at which each method successfully predicts the correct state

with a notably high rate of success. We refer to this metric as Exceedance Success Rate

(ESR).

The null hypothesis of the test is that the parameter (p) of two methods are equal.

One-sided tests in both directions are conducted to determine which method performs

better. All the tests use the significant level of 5%. The test results show that the

likelihood weight method performs better than the iterative method in most scenarios

(Table 5.1). In instances where this is not the case, the accuracy levels of the two

methods are comparable. For the average success rate, the performance of the two

methods aligns closely, except that there is significant evidence to suggest that mean

value of likelihood weight method is greater than that of iterative method in scenarios 7,

8, and 11. In these scenarios, the success rates are moderate for both methods (Figure

5.1 and 5.4). In the majority of cases, the likelihood weight method outperforms the

iterative method in terms of inferring the root state. The exception arises under extreme

conditions where both methods face difficulties in accurately inferring the root state,

leading to no significant difference in their performance. Overall, the iterative method
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Table 5.1: P-value of hypothesis test on the mean value of average success rate and
ESR of root node, comparing between the iterative (iter.) and likelihood weight (l.w.)
methods. The p-value is the proportion of the difference less than 0 for right-sided test
and more than 0 for left-sided test.

H1 : p(iter.) > p(l.w.) H1 : p(iter.) < p(l.w.)scenario
no.

scenario
average root average root

1 L:100, S:5, sym1 0.7678 1 0.2322 0
2 L:100, S:5, sym2 0.3238 1 0.6762 0
3 L:100, S:5, sym3 0.6694 0.9986 0.3306 0.0014
4 L:100, S:5, sym4 0.7940 0.5617 0.2060 0.4383
5 L:100, S:5, grp 0.4196 1 0.5804 0
6 L:100, S:5, asy 0.3909 1 0.6091 0
7 L:50, S:5, sym1 0.9976 1 0.0024 0
8 L:150, S:5, sym1 0.9859 0.9998 0.0141 0.0002
9 L:150, S:3, sym1 0.4896 1 0.5104 0
10 L:150, S:7, sym1 0.3900 0.9951 0.6100 0.0049
11 L:150, S:9, sym1 0.9967 0.9317 0.0033 0.0683

does not surpass the likelihood weight method in any of the scenarios.

Figure 5.6 shows how the average success rate and ESR of root state changes across

different scenarios. In both methods, The average success rate decreases as the transition

rate and number of states increase, or as the size of the phylogenetic tree decreases

(Figure 5.6a). This trend also holds for the ESR of the root state, with a notable

exception: the accuracy is lower at a transition rate of 0.2 (sym3) compared to a rate of

1.0 (sym4). For iterative method, the accuracy of inferring the root state further declines

under grouped or asymmetric transition patterns. Overall, the effectiveness of both ML

models is significantly tied to factors such as transition rate, the scale of the phylogenetic

tree, and the diversity of states.

5.2 Simulations for Real Data

Given its consistent performance, the likelihood weight method is exclusively uti-

lized in simulations involving real data scenarios. Specifically, this approach is applied

to a phylogenetic tree with 346 tips, where 13 distinct states have been identified at
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(a) Average success rate.

(b) ESR of root state.

Figure 5.6: 90% bootstrap percentile confidence interval of the average success rate and
ESR of root state in each scenario.

38



Figure 5.7: Success rate from simulations on a phylogenetic tree with 346 tips and 13
states. Likelihood weight method is employed. Root node is included.

the tips, to simulate conditions closely mirroring observed data. Across both transition

rate scenarios, success rates diminish as node height increases, and it deteriorates faster

with higher transition rate (Figure 5.7). Notably, the ESR for the root state at a mean

transition rate of 0.02 is lower compared to when it’s at 0.05. The 90% percentile confi-

dence interval for the mean of average success rate ranges between 0.5070 and 0.5274 at

a 0.02 transition rate, and between 0.2461 and 0.2533 at a 0.05 transition rate. The 90%

confidence interval of the proportion of the success rate exceeding 1/13 is (0.21, 0.36) for

the 0.02 transition rate, and is (0.43, 0.59) for the 0.05 transition rate.

5.3 Plumage Color Reconstruction

The likelihood weight method is employed to set the prior probability for the root

state to reconstruct the ancestral plumage color. The log-likelihood of the observed data

under the assumption of the root in each color is shown in Table 5.2, and the weight of

likelihoods shows orange (OR) color weighs most among all the colors, exceeding 40%

(Figure 5.8). Based on the new root prior, the posterior probability of root shows that the

root has 99% chance to be orange. However, the accuracy is dependent on the transition
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Table 5.2: Maximum log-likelihoods of the birds color supposing the root state in each
color.

BK BR BL GR RE

-613.6069 -611.9785 -613.2790 -614.7886 -612.1578
WH OR GE IR RU

-615.8971 -610.7384 -612.4108 -611.9778 -616.0901
TU YG YE

-613.2344 -613.5475 -616.6292

rate among different colors. If the transition probability between colors has just reached

the stable state over the evolution (transition rate is 0.02), the average success rate falls

within 0.7007 and 0.7227. But the accuracy in inferring the root state is equivalent to

making a random guess. An increase in the transition rate diminishes the accuracy in

identifying the correct states. Specifically, for nodes situated midway between the root

and the tips, the model loses its predictive efficacy when the transition rate is 0.05 (Figure

5.7).

The estimated transition rate matrix is shown as Figure 5.9. It indicates that orange

(OR), red (RE), grey (GE) and rufous (RU) are the most unstable colors, as the rate

that they stay unchanged are the lowest, whereas green (GR) and yellow (YE) are most

unlikely to change to other colors. The transition probabilities from red (RE) to black

(BK) and from rufous (RU) to green (GR) are higher than other transitions. As the given

transition rate matrix is not verified for its accuracy, it simply indicates that, under these

transition rates, the dataset aligns with a time-continuous Markov process evolution as

suggested by Maximum Likelihood analysis.
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Figure 5.8: Likelihood weight of each color.

Figure 5.9: Transition rate matrix under likelihood weight model.
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Chapter 6

Conclusion and Discussion

The study evaluates the efficacy of the ML approach for reconstructing ancestral

plumage colors of birds. It is found that the accuracy of inferring the ancestral state by

ML models is influenced by several factors, including the size of the phylogenetic tree,

the number of states, the transition rates, and the positions of nodes within the tree.

6.1 Impact of Evolution on Accuracy

Generally, the transition rate between states was a crucial factor, with lower rates

leading to more accurate predictions as they allowed for a slower and thus more traceable

evolution. The pattern of transition, whether grouped or asymmetric, seems to have a

negligible impact, showing similar performance to the symmetric pattern with an average

rate. High accuracy is achievable across all nodes when when the transition rate is

relatively low, that is the transition probability has not reached the stable status during

the evolutionary history. Conversely, higher transition rates reduce the reliability of

predictions, especially for nodes further from the tips.

Large phylogenetic trees tend to provide more accurate predictions due to richer

evidence supporting the hypothesis. On the other hand, an increase in the number of

states, which introduces new variables at a exponential pace, results in greater uncertainty
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and subsequently leads to a decrease in accuracy.

The accuracy of inferring ancestral states typically diminishes with the increase of

the height of the nodes within a tree. This decrease in accuracy can be accelerated by

factors such as an increased number of states or a reduction in tree size, potentially

reducing the model accuracy to near-random outcomes. However, in scenarios where the

ancestral root state is known, accuracy tends to improve for the nodes that are close to

the root.

The simulation scenarios presented offer a preliminary insight into the general trends

of the accuracy of ancestral state inference. However, due to the computational demands,

only a limited number of levels are assigned to each input factor. To comprehensively

assess the quantitative effects of various factors on the accuracy of ancestral state infer-

ence, further in-depth studies and extensive simulations are required.

6.2 Impact of Prior Root State on Accuracy

The study also reveals the significance of the root state’s prior probability, which

has a remarkable influence on model accuracy when transition rates are not excessively

high. Two methods for estimating the root’s prior probability are evaluated against

benchmarks of two fixed root states. Accuracy changes among the four models are

similar across various scenarios. The model based on the true root state is consistently

the highest reliability in ancestral states reconstruction. In contrast, the model using an

incorrect root state is the least reliable, and its performance is particularly affected by

evolution factors. The iterative and likelihood weight methods perform better than the

false root method but do not reach the high success rates of the true root method. The

iterative method exhibits extreme low or high accuracy, especially notable at the nodes

close to root. In most scenarios, the likelihood weight method performs better in inferring

the node states.

As the node height increases, the success rate declines across all methods, yet the

true root method is notably less impacted by node height. For the nodes close to the tips,
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all methods achieve very high success rates. However, under conditions of high transition

rates, where transition probabilities reach a stable state throughout evolutionary history,

the efficacy of all four methods aligns, demonstrating a uniform level of performance.

6.3 Discussion on Reconstructing Ancestral Bird Col-

ors

The likelihood weight method is applied to determine the prior probability of the root

states for reconstructing the belly color of the bird species provided in the dataset. The

result shows that the root state of the bird color is most probably to be orange. However,

the accuracy is notably affected by the rate of evolutionary changes in bird plumage

colors. It is observed that the closer the nodes are to the tips, the more reliable the

results become. Conversely, the accuracy diminishes as the height of the node increases.

To gain initial insights into the expected accuracy, this study conducted simulations on a

phylogenetic tree with 346 tips, distributed across 13 distinct states, and evaluated them

at two separate transition rates.

Lacking evidence about the speed of evolutionary changes makes it challenging to

ascertain the accuracy level confidently. Enhancing accuracy could benefit from more ob-

served data and fewer parameters. One straightforward strategy could involve expanding

the dataset to include a broader range of species.

This project has limited its focus to reconstructing the belly color of male birds

only. If color changes across different body parts are independent and follow identical

transition rates, employing more complex models that consider plumage colors across

different parts of the bird’s body can be applied to improve accuracy. This could be a

potential direction for future research.
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