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ABSTRACT

Skin cancer is one of the most prevalent cancer types worldwide cur-

rently, underscoring the significance of early detection and precise diagnosis

for effective treatment. This study employs the HAM10000 dataset, com-

prising 10015 skin lesion instances across seven categories of pigmented skin

lesions. Preprocessing techniques are applied, including image resizing and

normalization, and data augmentation is implemented to address dataset

imbalances. The research primarily employs supervised machine learning

models for skin cancer detection, utilizing Convolutional Neural Networks

(CNNs). Specifically, VGG16, VGG19, ResNet50, MobileNet, MobileNetV2,

and MobileNetV3 are examined for their performance on the dataset. Re-

sults indicate that ResNet50, with 92.31% accuracy and 91.98% F1-score,

demonstrates higher performance, while MobileNetV3, with about 13 min-

utes of training time, outperforms in terms of computational efficiency.

Key Words: Skin Cancer Detection; CNNs; VGG16; ResNet50; MobileNet,

MobileNetV2, MobileNetV3.
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Chapter 1

Introduction

1.1 What is skin cancer?

Skin cancer stands out as one of the most prevalent forms of cancer glob-

ally currently [14]. Skin cancer is mainly categorized into two major groups:

melanoma, which is the dangerous type, and non-melanoma, which is more

common but generally less deadly [15]. Based on the World Cancer Research

Fund International (WCRFI) report, estimating the incidence of skin cancer

poses a distinctive challenge for several reasons. The existence of various

sub-types of skin cancer complicates the compilation of data. For instance,

non-melanoma skin cancer is frequently not monitored by cancer registries,

and registrations for this type of cancer are often incomplete as many cases

are effectively treated through surgical procedures or ablation. Consequently,

the reported global incidence of skin cancer is likely lower than the actual

occurrence due to these factors. WCRFI reported that melanoma is the 17th

most common cancer worldwide; it is the 13th most common cancer in men
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and the 15th most common cancer in women. Among women aged 30 to

35, skin cancer is the second most prevalent cancer, following breast cancer,

and among women aged 25 to 29, it stands as the most common cancer [16].

In addition, WCRFI reports that there were more than 150,000 new cases

of melanoma skin cancer worldwide in 2020, with a total of 324,635 cases

around the world. Australia, New Zealand, Denmark, The Netherlands, and

Norway were the five countries with the highest melanoma skin cancer rates

in 2020. This is likely due to a combination of factors, including high sun

and UV exposure levels, especially in Australia and New Zealand, and the

predominance of light-skinned populations in these countries, who are more

susceptible to UV-induced skin damage. The mortality of melanoma skin

cancer around the world in 2020 was 57,043 deaths, where New Zealand, Nor-

way, Montenegro, Slovakia, and Slovenia had the highest number of deaths.

There were 1,198,071 cases of non-melanoma type in 2020, and the five coun-

tries with the highest rates were Australia, New Zealand, the US, Canada,

and Switzerland. The worldwide mortality rate for non-melanoma skin can-

cer was 63,731 in 2020, whereas Papua New Guinea, Namibia, Mozambique,

Zimbabwe, and Angola had the highest mortality rates [17].

1.1.1 Types of skin cancer

Melanoma and nonmelanoma represent the principal categories of skin can-

cer. This section outlines the specific subtypes within the families of skin

cancers.

2



Melanoma

Melanoma is a dangerous form of skin cancer originating from melanocytes,

which produce skin pigment, melanin [18]. Melanoma can potentially impact

any region of the human body, with a common occurrence on sun-exposed

areas like the hands, face, neck, and lips [18]. UV radiation from the sun can

penetrate the skin and damage the DNA within skin cells, particularly in

melanocytes, the cells responsible for producing the pigment melanin. This

damage often takes the form of DNA mutations, such as the formation of

thymine dimers, which can lead to errors during DNA replication. If these

mutations affect genes that regulate cell growth and division—such as tumor

suppressor genes or oncogenes—they can disrupt normal cellular functions

and lead to uncontrolled cell proliferation. Over time, these changes can ac-

cumulate, transforming normal melanocytes into malignant melanoma cells.

[18]. Timely diagnosis is crucial for effectively treating melanoma; otherwise,

it can metastasize to other parts of the body and ultimately lead to death

[19]. Prolonged exposure to specific forms of light, such as ultraviolet rays

from the sun or tanning devices, constitutes the primary factor responsible

for the development of both melanoma and non-melanoma skin cancers [20].

Additionally, several factors have been linked to an elevated risk of skin can-

cer, including radiation exposure, genetic predisposition, and family history,

as well as variations in skin pigmentation [20]. In 2024, an estimated 200,340

cases are projected in the U.S., with 8,290 deaths expected [18]. Figure 1.1

indicates melanoma skin cancer image.
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Figure 1.1: Melanoma skin lesions examples [1].
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Non-Melanoma

Non-Melanoma Skin Cancer, alternatively referred to as keratinocyte cancer,

originates in the skin’s keratinocyte cells, and it has two major subtypes:

Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) [21].

Basal Cell Carcinoma (BCC)

Basal cell carcinoma (BCC), the most prevalent form of skin cancer, origi-

nates in basal cells responsible for renewing skin cells in the lower epidermis

[2]. While typically confined to sun-exposed areas and rarely metastatic,

BCC can lead to disfigurement or, in rare instances, life-threatening spread

[2]. According to the American Cancer Society (ACS), around 80 percent

of all skin cancers are basal cell cancers [22]. BCC manifests on the skin’s

surface, resembling sores, growths, bumps, scars, or red patches. Diagnosed

through visual inspection and biopsy, BCC, if untreated, may invade adja-

cent areas and recur [22]. Its occurrence in sun-exposed regions, such as the

face, head, neck, and arms, is linked to long-term sun or UV exposure [2].

Figure 1.2 shows some examples of BCC skin lesions.

Squamous cell carcinoma (SCC)

Squamous cell carcinoma (SCC) is a common form of skin cancer, accounting

for approximately 20% of all non-melanoma skin cancers [3]. It is charac-

terized by abnormal growth of squamous cells. Since the primary cause of

SCC is UV radiation, it typically appears as scaly patches or raised growths

on sun-exposed areas but can occur anywhere on the body. Early detection
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Figure 1.2: Basal Cell Carcinoma (BCC) skin lesion instance [2].
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Figure 1.3: Squamous cell carcinoma (SCC) skin lesions examples [3].

is crucial for successful treatment, as advanced SCCs can become dangerous

by invading deeper layers of the skin, underlying tissues, or even spreading

(metastasizing) to lymph nodes and other organs, which can lead to signifi-

cant complications and be life-threatening [3]. Regular self-examination and

annual dermatologist visits are recommended, particularly for individuals at

higher risk—such as those with a history of excessive sun exposure, fair skin,

or a family history of skin cancer. These practices and sun safety measures

can significantly reduce the risk of developing skin cancer [23]. Figure 1.3

shows some examples of SCC skin lesions.
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Figure 1.4: Actinic keratosis (AK) skin lesions examples [3].

Actinic keratosis (AK)

Actinic keratosis (AK), known as solar keratosis, is a skin condition triggered

by prolonged exposure to ultraviolet radiation, typically from sunlight [21].

Actinic keratosis (AK) is a pre-malignant skin growth that can potentially

progress into squamous cell carcinoma (SCC). AKs usually emerge on skin

areas exposed to the elements, such as the head, neck, hands, and forearms

[23]. Figure 1.4 shows some examples of AK skin lesions.

Dysplastic Nevi

Atypical moles, also known as dysplastic nevi, share similarities with regular

moles but also display specific characteristics akin to melanoma. They often

have an irregular shape or color and are larger than typical moles. Atypical

moles can develop on skin that is usually covered, such as the buttocks or

scalp, as well as on skin exposed to the sun [23]. Figure 1.5 shows some

examples of dysplastic nevi skin lesions.
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Figure 1.5: Dysplastic Nevi skin lesions examples [4].
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1.2 Summary of contribution

This research is motivated by two primary goals. First, to improve the ef-

ficiency and accuracy of skin cancer diagnosis by developing an artificial

intelligence-based screening system using dermoscopic images of skin lesions.

Such a system could aid clinical screening tests, reduce diagnostic errors,

and enhance early detection, which is critical for successful treatment. Sec-

ond, this study aims to address the urgent need for reliable automated skin

cancer detection systems, particularly in regions with limited access to der-

matology specialists. By evaluating the classification performance of six CNN

models and analyzing their training behavior and time requirements, this re-

search provides a comprehensive assessment of AI-based solutions for skin

cancer diagnosis. Ultimately, this study seeks to bridge diagnostic gaps, en-

able timely treatment, improve patient outcomes, and potentially save lives.

Most recent studies focus on optimizing model accuracy without addressing

the computational complexity, making them less suitable for real-time or mo-

bile applications. Additionally, many approaches do not adequately address

class imbalance in datasets, which can lead to biased models that under-

perform on minority classes. This study addresses these gaps by evaluating

a diverse set of pre-trained CNN models, focusing on accuracy and com-

putational efficiency. Moreover, by fine-tuning these models and analyzing

their performance across a balanced dataset, this research aims to develop a

practical, scalable solution for skin cancer detection that can be deployed in

resource-limited settings.

A portion of this thesis was peer reviewed and accepted for publication

to appear in the proceedings of The International Conference on Intelligent

10



Informatics and Biomedical Sciences (ICIIBMS) 2024. The accepted, not the

final published, version of the manuscript, is provided in the Appendix.

In reference to IEEE copyrighted material which is used with permission

in this thesis, the IEEE does not endorse any of Thompson Rivers University’s

products or services. Internal or personal use of this material is permitted.

1.3 Artificial intelligence and skin cancer de-

tection

1.3.1 Skin cancer detection

Early detection and accurate diagnosis are critical factors in treating skin

cancer. Typically, physicians rely on the biopsy method for skin cancer de-

tection, which involves extracting a sample from a suspected skin lesion for

laboratory-based confirmation of cancer [24]. However, this process is often

painful, slow, and time-consuming. A biopsy is usually conducted to confirm

the diagnosis of a suspected lesion or to remove a lesion for cosmetic or thera-

peutic reasons [24]. Dermatologists can correctly classify skin cancer with an

accuracy of 75% to 84% when diagnosing melanoma [25, 26].However, glob-

ally, there is a shortage of skilled dermatologists in public healthcare systems,

exacerbating the challenges in dermatological diagnosis and treatment [27],

and demonstrating the need for fast and accurate diagnostic techniques that

clinicians can easily employ.
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1.3.2 Artificial intelligence methods in medical imag-

ing

Artificial intelligence (AI), a domain within computer science characterized

by using machines and programs to emulate intelligent human behavior

through various technological approaches, stands as a pivotal catalyst driv-

ing the fourth industrial revolution [28]. Within this domain, Machine learn-

ing (ML) emerges as a prominent technique, employing statistical models

and algorithms to progressively learn from data, enabling the prediction of

characteristics of new samples and the execution of desired tasks [29]. ML

trains computers to emulate human cognitive processes, learning from past

experiences and expanding upon them with minimal human intervention.

Its profound impact spans various societal domains, including production

lines, healthcare, education, transportation, and food industries [29]. In-

deed, machine learning is actively reshaping everyday life, and industries

such as housing, automotive, retail, etc. Central to the objective of ma-

chine learning is the endowment of computers with the capacity to collect

and interpret data, thereby facilitating informed decision-making processes

based on past and present outcomes [30]. ML enables computers to gain

insights from data through various paradigms such as supervised, unsuper-

vised, semi-supervised, or reinforcement learning [31]. Supervised learning

involves pattern recognition from labeled datasets containing descriptive fea-

tures and corresponding class labels. In contrast, unsupervised learning al-

gorithms discern patterns from unlabeled datasets, often applied in anomaly

detection tasks [32]. Deep Learning (DL), as a subcategory of ML com-

prising deep neural networks, shares similarities with ML yet operates on a

deeper level of complexity. DL techniques can be supervised, unsupervised,

12



or semi-supervised, demonstrating widespread application in medical imag-

ing for tasks such as image segmentation, classification, and object detection

due to their superior performance [33]. In recent decades, deep learning has

profoundly transformed the field of machine learning. The significant increase

in processing power has facilitated remarkable progress in computer vision

technologies, notably by developing deep learning models like Convolutional

Neural Networks (CNNs) [34]. The urgency for early skin cancer detection

has intensified, and deep learning has emerged as a powerful tool in this en-

deavor. Studies have demonstrated that early identification of skin cancer us-

ing deep learning improves the performance of human specialists, ultimately

leading to a reduction in mortality rates [35]. By incorporating efficient

formulations into deep learning techniques, exceptional and state-of-the-art

processing and classification accuracy can be achieved [36]. Computer-based

technology presents a promising avenue for diagnosing skin cancer symptoms,

offering advantages in comfort, cost-effectiveness, and speed [36]. Typically,

the process of skin cancer detection entails several stages, starting with the

acquisition of images of skin lesions. These images are then subjected to

preprocessing techniques to enhance quality and remove noise [37]. Subse-

quently, relevant features are extracted from the preprocessed images, which

are crucial inputs for classification algorithms. Finally, these algorithms uti-

lize the extracted features to categorize skin lesions into their classes [38].

This approach leverages the capabilities of computer-based technology in the

diagnosis process, enabling efficient and accurate identification of potential

skin cancer symptoms.

This research tries to develop a skin lesion diagnosis model using the

HAM10000 dataset [39], including a wide array of dermatoscopic images.

The research methodology involves exploring and analyzing the HAM10000
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dataset, focusing on harnessing the inherent complexities within the der-

matoscopic images. Applying deep learning techniques and algorithms aims

to develop a model that can effectively recognize patterns and characteristics

within skin lesion images. The study aims to contribute to the progress of

dermatological diagnostics, particularly in the classification of skin lesions.

1.4 Data Description

Quality data plays a pivotal role in the performance of machine learning

models. Therefore, a diverse and comprehensive collection of dermoscopic

images is necessary to assess the effectiveness of computer-based systems

for skin cancer diagnosis. The HAM10000 dataset, which consists of high-

resolution dermoscopic images, is used in this research. The dataset con-

sists of 10,015 dermatoscopic images obtained from different populations

and acquired through various modalities. The dataset was gathered from

two sources: Cliff Rosendahl’s skin cancer practice in Queensland, Australia,

and the Dermatology Department of the Medical University of Vienna, Aus-

tria. It includes representative cases of all significant diagnostic categories

for pigmented lesions such as actinic keratoses and intraepithelial carcinoma

(AKIEC), basal cell carcinoma (BCC), benign keratosis-like lesions (BKL),

dermatofibroma (DF), melanoma (MEL), melanocytic nevi (nv), and vascu-

lar lesions (vasc) [36]. The dataset is publicly available through the Kaggle

[40]. The resulting dataset includes 327 images of AKIEC, 514 images of

basal cell carcinomas, 1099 images of benign keratoses, 115 images of der-

matofibromas, 6705 images of melanomas, 1113 images of melanocytic nevi,

and 142 images of vascular skin lesions [39]. Figure 1.6 indicates images from

14



the dataset for seven lesion types.

1.4.1 Exploratory Data Analysis - EDA

Exploratory data analysis (EDA) involves analyzing and summarizing datasets

to understand their characteristics better before formal modeling. The main

goal of EDA is to identify patterns, trends, and relationships in the data that

can inform further analysis and modeling. The following shows the analysis

of the HAM10000 dataset to gain some insights into the data structures and

samples.

Figure 1.7 indicates information about the distribution of lesion types in

the HAM10000 dataset. The lesion types bar chart indicates that melanocytic

nevi are the most diagnosed condition among people in this dataset among

the various types of skin diseases. On the other hand, dermatofibroma is a

benign skin lesion less common than other lesion types in the dataset. It

shows a kind of imbalance in the HAM10000 dataset.

The pie chart in Figure 1.8 illustrates the distribution of skin lesion types

in the HAM10000 dataset. Approximately 67% of the dataset comprises nevi

lesions, while dermatofibroma skin lesions constitute only 1.2%. Such an im-

balanced distribution may pose challenges in training models and potentially

impact their generalization capabilities. We use data augmentation to solve

the problem of imbalance in the dataset.
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Figure 1.6: Skin lesion images of HAM10000 Dataset.
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Figure 1.7: Distribution of Lesion Types in HAM10000 dataset.
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Figure 1.8: Distribution of skin lesion types in the HAM10000 dataset.
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Chapter 2

Literature Review

The rising incidence of skin cancer necessitates timely diagnosis and con-

tinuous monitoring, placing a strain on specialist medical services. This

burden could be alleviated by promoting patient self-surveillance techniques

and integrating decision support systems for less experienced physicians.

Unlike human diagnosis, machine diagnosis is objective and remains unaf-

fected by external factors, offering consistent results. If properly applied,

leveraging AI for skin cancer detection and progression monitoring can po-

tentially reduce the need for biopsies and detect cancers early before they

progress.Additionally, training interventions can empower patients and their

caregivers to conduct self-skin examinations, which can facilitate teleder-

moscopy — a process where images of skin lesions are captured using a

smartphone or digital camera and then transmitted to a dermatologist for

remote evaluation. This approach can reduce the frequency of in-person med-

ical consultations while effectively monitoring skin conditions [28].

Finding an automatic classification system for skin cancer is challenging
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due to the complexity and diversity of skin cancer images. First, it’s im-

portant to note that different skin lesions often share significant similarities

among various classes, increasing the risk of misdiagnosis [41]. Additionally,

even within the same class, several skin lesions can vary in color, features,

structure, size, and location [42].

2.1 Machine Learning Techniques

While traditional machine learning approaches perform well in specific skin

cancer classification tasks, they often prove ineffective in handling compli-

cated diagnostic problems. Typically, conventional machine learning meth-

ods for skin cancer diagnosis require extracting features from skin disease

images and classifying these extracted features [43]. Commonly used fea-

tures include the asymmetry, borders, color, and diameter of moles (known

as ABCD features) [44], as well as 2D wavelet transformations [25] and the

gray-level co-occurrence matrix (GLCM) features [45]. Various classification

techniques like Support Vector Machines (SVM) [43], XGBoost [46], and de-

cision trees [47] are frequently employed. Because of the limited number

of selected features, machine learning algorithms may find it challenging to

classify only a subset of skin cancer diseases. They may struggle to generalize

to a broader spectrum of disease types [48].

2.1.1 Decision trees

Decision trees, another machine learning technique that is a supervised learn-

ing method primarily employed for classification problems, offer an intuitive
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algorithm for assessing the long-term risk of non-melanoma skin cancer post-

liver transplant, utilizing variables linked to the peri-transplant period [49].

In a different context, [50] utilizes decision trees as a visual representation

mode, dividing branches to depict various outcomes during a clinical pro-

cedure. This application involves assessing the cost-effectiveness of sentinel

lymph node biopsy, a standard technique in melanoma and breast cancer

treatment, specifically in the context of head and neck cutaneous squamous

cell carcinoma, a subset of skin cancer.

Moreover, decision trees can function as an intermediate layer, as demon-

strated in [51], which showcases their effectiveness in region extraction and

skin cancer classification using deep convolutional neural networks. In this

architecture, decision trees, support vector machines, and k-nearest neigh-

bors are crucial in classifying most features.

Notably, the decision tree model in [49] reports a specificity of 42% and

a sensitivity of 91%, while models akin to those in [50] exhibit a sensitivity

of 77% with a reported 100% specificity. It’s essential to recognize that

decision tree model predictions are significantly influenced by the quality of

the datasets they are trained on [50].

2.1.2 Support Vector Machines

Support Vector Machines (SVMs) are powerful supervised learning models

widely used for classifying, predicting, and analyzing data. Within the do-

main of skin lesion classification, SVMs have proven effective. In [52], us-

ing ABCD features facilitates the extraction of critical attributes, including

shape, color, and size, from clinical images. These features are then employed
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to classify skin lesions into distinct categories, such as melanoma, seborrheic

keratosis, and lupus erythematosus, demonstrating the efficacy of the ABCD

feature set when coupled with SVMs. In [53], preprocessing steps such as

grayscale conversion, noise removal, and binarization are applied to the in-

put image to enhance accuracy. Similarly, a bag-of-features approach incor-

porating spatial information is employed for skin cancer detection. SVMs

are trained using histograms of oriented gradients, resulting in promising

outcomes compared to existing algorithms [54]. A suggested methodology

consisting of several phases, including pre-processing, segmentation, feature

extraction, and classification, was proposed in [55]. Experimentation was

conducted on a dataset comprising 1800 images, resulting in an accuracy

83% for a six-class classification task. This accuracy was attained using a

support vector machine (SVM) with a quadratic kernel.

2.1.3 Artificial Neural Network

An artificial neural network (ANN) is a nonlinear and statistical prediction

technique that draws its structural inspiration from the biological framework

of the human brain. As shown in Figure 2.1 An ANN comprises three layers

of neurons; the initial layer is called the input layer, where these input neu-

rons transmit data to the second layer, often referred to as the intermediate

or hidden layer. In a typical ANN, multiple hidden layers can exist. The

intermediate neurons convey data to the third layer, consisting of output

neurons. At each layer, computations are learned through backpropagation,

which is employed to grasp the intricate associations and relationships be-

tween the input and output layers.
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Figure 2.1: Artificial Neural Networks (ANNs) basic architecture [5].

Xie et al. [56] introduced a skin lesion classification system designed

to categorize lesions into two primary classes: benign and malignant. The

proposed system’s classification results were benchmarked against various

classifiers, including SVM, KNN, random forest, Adaboost, and others. The

proposed model demonstrated an accuracy rate of 91.11%, outperforming the

other classifiers by at least 7.5% in sensitivity.

Choudhari and Biday [45] introduced another skin cancer diagnostic sys-

tem based on artificial neural networks (ANN). In their approach, images

were segmented using a maximum entropy thresholding measure, and unique

features of skin lesions were extracted using a gray-level co-occurrence matrix

(GLCM). Subsequently, a feed-forward ANN was employed to classify the in-

put images into either a malignant or benign stage of skin cancer, achieving

an accuracy level of 86.66%.
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2.1.4 Näıve Bayes

Näıve Bayes classifiers are another group of machine learning techniques that

operate on Bayes’ theorem and are probabilistic classifiers widely employed in

skin cancer research to accurately classify clinical and dermatological images

[57]. These models have demonstrated 70.15% and 73.33% for accuracy and

specificity, respectively[57]. Expanding their utility, Näıve Bayes classifiers

offer a method for detecting and segmenting skin diseases, as documented in

[58]. The iterative process of obtaining posterior probability distributions for

each output class enables efficient utilization of computational resources, min-

imizing the need for multiple training sessions. Results of this study indicate

the diagnostic accuracy reached 72.7%. The Bayesian approach is valuable in

various applications, including probabilistically predicting the nature of data

points with high accuracy, as demonstrated in [59]. An iterative process ob-

tains a posterior probability distribution for each output class, reducing the

computational resources required and eliminating the need for multiple train-

ing sessions. This Bayesian sequential framework extends its utility to aiding

models designed to detect melanoma invasion into human skin. In this con-

text, three model parameters are estimated: the melanoma cell proliferation

rate, the melanoma cell diffusivity, and a constant determining the degrada-

tion rate of melanoma cells in skin tissue. The algorithm learns from data

sequentially, including a spatially uniform cell assay, a 2D circular barrier

assay, and a 3D invasion assay. The versatility of this Bayesian framework

allows for its extraction and application in various biological contexts beyond

skin cancer detection.
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2.1.5 K-Nearest Neighbors

The k-nearest neighbors algorithm (KNN) is a supervised classification method

that leverages distance and proximity metrics to classify data points. KNNs

have been utilized and assessed in skin cancer detection, with evaluations

involving the generation of a confusion matrix to depict the model’s accu-

racy [60]. The research shows an accuracy of 66.8% in terms of performance

metrics. Furthermore, for positive predictions, the precision and recall stand

at 71% and 46%, respectively. In [61], KNN is extended using the Radius

Nearest Neighbors classifier to classify breast cancer, overcoming limitations

posed by extreme values of k. Normalizing the radius value of each point

helps effectively recognize outliers, mitigating sensitivity to outliers and un-

derfitting issues.

Despite its effectiveness in skin cancer diagnosis, KNN classifiers necessi-

tate continuous training and encounter challenges related to limited training

data availability [60, 61].

2.1.6 Machine Learning Techniques Summary

Upon analyzing the diverse implementations of machine learning models in

skin cancer diagnosis, it becomes evident that Support Vector Machines

(SVMs) show better precise and accurate models [20]. However, their re-

quirement for meticulous pre-processing of input data presents a significant

challenge. For user flexibility, K-means clustering and K-nearest neighbors

offer viable alternatives without substantial compromises in accuracy and

performance. Nonetheless, K-nearest neighbors necessitate continuous train-
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Figure 2.2: Shallow ANNs vs Deep neural networks [6].

ing as additional data points are introduced, which can be burdensome due to

the unpredictable volume of input data [20]. In contrast, Näıve Bayes models

exhibit the lowest accuracy among the studied machine learning techniques,

likely because other methods, such as decision trees and random forests, build

upon the foundational principles of the Näıve Bayes theorem [20].

2.2 Deep learning

Deep neural networks are ANNs with a higher number of hidden layers.

Figure 2.2 represents the shallow neural networks with less than two hid-

den layers and deep neural networks with five hidden layers. Following this

section, we go through the mathematics behind neural networks and deep

learning and then describe the families of deep learning models commonly

used in skin cancer detection.

Standard notations for neural networks and deep learning [6]
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• superscript (i) will denote the ith training example.

• m: number of examples in the dataset. {(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))}

• nx: input size

• ny: output size (or number of classes)

• n
[l]
h : number of hidden units of the lth layer.

• L: number of layers in the network.

• X ∈ Rnx×m is the input matrix. X =


...

...
...

x(1) x(2) . . . x(m)

...
...

...


• x(i) ∈ Rnx is the ith example represented as a column vector.

• Y ∈ Rny×m is the label matrix. Y =


...

...
...

y(1) y(2) . . . y(m)

...
...

...


• y(i) ∈ Rny is the output label for the ith example.

• W [l] ∈ Rnumberofunitsinnextlayer×numberofunitsinthepreviouslayer is the weight

matrix, and subscription [l] indicates the layer.

• b[l] ∈ Rnumberofunitsinnextlayer is the bias vector in the lth layer.

• ŷ ∈ Rny is the predicted output vector. It can also be denoted a[L]

where L is the number of layers in the network.

• a = g[l](Wxx
(i) + b1) = g[l](z1) where g[l] is the lth layer activation

function.

• General Activation Formula: a
[l]
j = g[l](ΣkWjk

[l]a
[l−1]
k + b

[l]
j ) = g[l](z

[l]
j )
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Figure 2.3: Notations of neural network. [6].

• J(x,W, b, y) or J(ŷ, y) denote the cost function. Examples of cost

function: JCE(ŷ, y) = −Σm
i=0y

(i)logŷ(i)

J(ŷ, y) = − 1
m
Σ[y(i)logŷ(i) + (1− y(i))log(1− ŷ(i))]

Figure 2.3 indicates notations for a neural network with two hidden lay-

ers. In this representation, nodes represent inputs, activations, or outputs,

and edges represent weights or biases.

Activation Function

Activation functions introduce non-linearity into the CNN architecture, en-

abling the networks to learn complex relationships in the data. Common

activation functions include ReLU (Rectified Linear Unit), Leaky ReLu, sig-

moid, and tanh. ReLU is widely used due to its simplicity and effectiveness
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Figure 2.4: Most Common Activation Functions.

in mitigating the vanishing gradient problem. Figure 2.4 shows the most

common activation functions in CNNs. The top left activation function is

the sigmoid function, the top right function is tanh, the button left function

is the Rectified unit function (ReLU), and the button right function is Leaky

ReLu. The following indicates the formula for these functions.

a = g(z) = sigmoid(z) = σ(z) = 1
1+e−z

a = g(z) = tanh(z) = ez−e−z

ez+e−z

a = g(z) = ReLU(z) = max(0, z)

a = g(z) = LeakyReLU(z) = max(0.01z, z)

The derivatives of activation functions play a crucial role in neural net-

work optimization. Thus, we present the derivatives corresponding to each

activation function in the subsequent discussion.

a = g(z) = σ(z) = 1
1+e−z → g

′
(z) = a(1− a)
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a = g(z) = tanh(z) = ez−e−z

ez+e−z → g
′
(z) = 1− a2

g(z) = ReLU(z) = max(0, z)

→ g
′
(z) =


0, if z < 0

1, if z > 0

undefined, otherwise

g(z) = LeakyReLU(z) = max(0.01z, z)

→ g
′
(z) =


0.01, if z < 0

1, if z > 0

undefined, otherwise

Calculation for shallow and deep neural networks

Let’s start with doing calculations for a shallow neural network with one

hidden layer for binary classification and then expand it to deep networks.

Figure 2.5 indicates the architecture of the network. Figure 2.6 represents

each node in the network, including two parts; z is the multiplication of

weights and the input of the node in summation with bias, and a is the

result of z through the activation function for that node.

In a neural network, we have two processes: forward propagation from

input to output (left to right), where we propagate the input in different

layers of the network to find the ŷ, and backward propagation from output to

input (right to left) for updating the parameters w and b in a way minimizing

the error. First, do the forward propagation calculation for one input with

three features. For the hidden layer, we have the following calculations:
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Figure 2.5: A neural network with one hidden layer.

Figure 2.6: Calculation in each node on neural network.
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Z
[1]
1 = w

[1]T
1 x+ b

[1]
1 , a

[1]
1 = σ(z

[1]
1 )

Z
[1]
2 = w

[1]T
2 x+ b

[1]
2 , a

[1]
2 = σ(z

[1]
2 )

Z
[1]
3 = w

[1]T
3 x+ b

[1]
3 , a

[1]
3 = σ(z

[1]
3 )

Z
[1]
4 = w

[1]T
4 x+ b

[1]
4 , a

[1]
4 = σ(z

[1]
4 )

We can rewrite the above calculation in matrix form as below: The weight

matrix W [1] includes the weights in layer one for all nodes.

W [1] =


. . . w

[1]T
1 . . .

. . . w
[1]T
2 . . .

. . . w
[1]T
3 . . .

. . . w
[1]T
4 . . .


The bias vector b[1] includes all biases in the first layer.

b[1] =


b
[1]
1

b
[1]
2

b
[1]
3

b
[1]
4


The multiplication and summation calculation vector as below:

z[1] =


z
[1]
1

z
[1]
2

z
[1]
3

z
[1]
4


The same for a:

32



a[1] =


a
[1]
1

a
[1]
2

a
[1]
3

a
[1]
4


a[1] = σ(z[1])

We can write the same calculation for the output layer, a node for binary

classification. Ensuring the right dimension for the matrices and vectors in

the calculation is pivotal.

The whole calculation for both layers in matrix form is like this:

z
[1]
(4,1) = W

[1]
(4,3)x(3,1) + b

[1]
(4,1)

a
[1]
(4,1) = σ(z[1])

z
[2]
(1,1) = W

[2]
(1,4)a

[1]
(4,1) + b

[2]
(1,1)

a
[2]
(1,1) = σ(z[2])

Now we can expand the calculation for m inputs with a ”for loop” like

the following:

for i = 1 to m :

z[1](i) = W [1]x(i) + b[1]

a[1](i) = σ(z[1](i))

z[2](i) = W [2]a[1](i) + b[2]

a[2](i) = σ(z[2](i))
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We also can use vectorization instead of using ”for loop” in programming,

which means writing all the calculations in matrix form and using dot product

instead of using loops in programming to speed up the process.

Z [1] = W [1]X + b[1]

A[1] = σ(Z [1])

Z [2] = W [2]A[1] + b[2]

A[2] = σ(Z [2])

Where X is the input matrix as below:

X =


...

...
...

x(1) x(2) . . . x(m)

...
...

...



Z [1] =


...

...
...

z[1](1) z[1](2) . . . z[1](m)

...
...

...



A[1] =


...

...
...

a[1](1) a[1](2) . . . a[1](m)

...
...

...


These matrices indicate that we go through the examples or inputs hori-

zontally and vertically through the units (nodes) in hidden layers. These are

the calculations for the forward propagation.

Let’s start the calculation for backward propagation from output to in-

put. It’s an optimization problem where we try to update the network pa-
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Figure 2.7: Computational graph of the model.

rameters w and b to minimize the error so that the predicted value of ŷ is

closer to the actual target variable y. Gradient descent is a popular method

for optimizing the cost function in neural networks to update the model pa-

rameters. This method is iterative and tries to minimize the error in each

iteration by updating the parameters. In our neural network model, we have

four sets of parameters including W
[1]

(n[1],n[0]
)
, b

[1]

(n[1],1)
, W

[2]

(n[2],n[1]
)
, and b

[2]

(n[2],1)
,

where nx = n[0], and n[2]=1. In gradient descent, we update the parameters

by finding the derivative of the cost function concerning that parameter. We

start with a computational graph to make the calculation easier. Figure 2.7

indicates the graph, where the black arrows show the forward propagation

path and the red arrows show the backward propagation path from output

to input.

We define the derivatives of the cost function to the parameters in the

following:

dw[1] = dJ
dw[1] , db

[1] = dJ
db[1]

,

dw[2] = dJ
dw[2] , db

[2] = dJ
db[2]

,

and then updates the parameters in an iterative process like below:

Repeat {
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compute predictions (ŷ, i = 1 to m)

compute dw[1], db[1], dw[2], db[2]

W [1] := W [1] − αdw[1], b[1] := b[1] − αdb[1]

W [2] := W [2] − αdw[2], b[2] := b[2] − αdb[2] }

Where α is the learning rate, below are the derivatives based on the com-

putational graph in Figure 2.7. In this example, solve a binary classification,

and the loss function is equal to L(a[2], y) = −[ylog(a[2])+(1−y)log(1−a[2])].

da[2] = dL(a[2],y)

da[2]
= − y

a[2]
+ 1−y

1−a[2]

dz[2] = dL(a,y)

dz[2]
= dL(a,y)

da[2]
da[2]

dz[2]
= da[2] dσ(z

[2])

dz[2]
= [− y

a[2]
+ 1−y

1−a[2]
][a[2](1− a[2])] =

a[2] − y

dW [2] = dL(a[2],y)

dw[2] = dL(a[2],y)

da[2]
da[2]

dz[2]
dz[2]

dw[2] = dz[2]a[1]T = (a[2] − y)a[1]T

db[2] = dL(a[2],y)

db[2]
= dL(a[2],y)

da[2]
da[2]

dz[2]
dz[2]

db[2]
= dz[2]

dz[1] = dz[2] dz
[2]

da[1]
da[1]

dz[1]
= W [2]Tdz[2] ∗ g[1]′(z[1])

dW [1] = dz[1]xT

db[1] = dz[1]

Where g(z) is the activation function layer one, and ∗ denotes the element-

wise multiplication.

The vectorization for the above calculation can be written below:

dZ [2] = A[2] − Y

36



dW [2] = 1
m
dZ [2]A[1]T

db[2] = 1
m
[Σm

j=1(dZ
[2]
i,j )]

n
[2]
h

i=1

dZ [1] = W [2]TdZ [2] ∗ g[1]′(Z [1])

dW [1] = 1
m
dZ [1]XT

db[1] = 1
m
[Σm

j=1(dZ
[1]
i,j )]

n
[1]
h

i=1

After calculation for a shallow neural network, we can expand the calcu-

lation for deep neural networks in the following:

Forward Propagation:

Z [1] = W [1]X + b[1]

A[1] = g[1](Z [1])

Z [2] = W [2]A[1] + b[2]

A[2] = g[2](Z [2])

...

A[L] = g[L](Z [L])

Backward Propagation:

dZ [L] = A[L] − Y

dW [L] = 1
m
dZ [L]A[L−1]T

db[L] = 1
m
[Σm

j=1(dZ
[L]
i,j )]

n
[L]
h

i=1
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dZ [L−1] = W [L]T dZ [L] ∗ g′[L−1](Z [L−1])

...

dZ [1] = W [2]TdZ [2] ∗ g′[1](Z [1])

dW [1] = 1
m
dZ [1]XT

db[1] = 1
m
[Σm

j=1(dZ
[1]
i,j )]

n
[1]
h

i=1

These are the calculations from shallow to deep neural networks in a

binary classification problem. In multiclass classification, all the processes are

the same, but the output layer activation function is softmax. The following

indicates the formula for the Softmax activation function.

z[L] = W [L]a[L−1] + b[L]

k = ez
[L]

ŷ = a[L] = g[L](z[L]) = ez
[L]

Σ#ofclasses
j=1 kj

This activation function takes a vector as input and produces a vector

as output. Figure 2.8 illustrates a multiclass classification scenario with the

softmax activation function utilized at the output layer. The following are

the commonly used deep learning models in skin cancer detection.

2.2.1 Deep learning models in skin cancer detection

The discipline of deep learning within artificial intelligence is rapidly expand-

ing, offering numerous potential applications. Deep learning is one of the

most potent and extensively employed machine learning techniques based on
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Figure 2.8: Multiclass classification output layer.

artificial neural networks, particularly for recognizing and categorizing im-

ages [62]. In recent years, deep learning algorithms have gained extensive

usage for skin cancer classification. In contrast to traditional machine learn-

ing techniques, deep learning algorithms can accurately analyze data from

large-scale datasets, enabling them to extract relevant features efficiently

[63]. Deep learning techniques find applications in various domains, includ-

ing speech recognition [64], computer vision and pattern recognition [65], and

bioinformatics [66]. In recent years, diverse deep learning approaches, includ-

ing Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM),

Generative Adversarial Network (GAN), and Convolutional Neural Networks

(CNN) have been employed for computer-based skin cancer detection.

2.2.2 Recurrent Neural Networks

A recurrent neural network (RNN) is a subset of artificial neural networks

and has found application in melanoma skin cancer detection [67]. Figure 2.9

shows the architecture of RNN models. In [68], deep features are extracted

from clinical images in a feature extraction process using the hamming dis-
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Figure 2.9: Recurrent neural networks architecture [7].

tance approach and fed into a dual bidirectional long short-term memory

(LSTM) network for feature learning and a SoftMax activation function for

image classification. Similarly, ensemble models are employed for automating

mammogram breast cancer detection, where features extracted through the

grey-level co-occurrence matrix and grey-level run-length matrix are inputted

into the RNN layer. The segmented tumor binary image is provided as input

to the CNN layer, leading to improved diagnostic accuracy. Moreover, RNNs

have been instrumental in segmenting various dermoscopic images [69]. The

recurrent model’s ability to train deeper and larger models enhances perfor-

mance, ensuring better feature representation.

The modified RNNs proposed in [67] exhibit an average accuracy of

around 90%, with an F1-score of 0.865. Similarly, RNNs in [70] achieve

an accuracy of 98% and an F1-score of 0.745. The model in [69] reports a

testing accuracy of 87.09% and an average F1-score of 0.86.
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2.2.3 Long Short-Term Memory

Long Short-TermMemory (LSTM) is an artificial neural network architecture

with feedback connections representing a specialized form of recurrent neural

network architecture engineered to address the vanishing gradient challenge

encountered in RNNs. Their capability to learn intricate temporal depen-

dencies in sequential data makes them highly effective across various tasks,

including time series prediction, natural language processing, and speech

recognition. Figure 2.10 indicates the architecture of LSTM models.

Memory cells are central to the LSTM model’s structure, which sustain

a cell state capable of retaining information over extended durations. These

memory cells incorporate a range of gates, including input, forget, and output

gates, which manage the flow of information within the cell.

This model efficiently maintains stateful information, leading to accurate

predictions and fast recognition of target regions while requiring fewer com-

putations than previous algorithms. Including LSTM improves the prediction

accuracy due to its ability to retain information from earlier timestamps.

LSTMs can predict cancer and tumors in irregular medical data, lever-

aging their superior performance in screening time-series data [71]. Skin

disease classification models utilize deep learning approaches like LSTM, of-

ten enhanced with hybrid optimization algorithms such as the Hybrid Squir-

rel Butterfly Search Optimization algorithm (HSBSO) [72]. This modified

LSTM, incorporating HSBSO and optimized parameters, maximizes classi-

fication accuracy and overall efficiency, achieving an average sensitivity of

53% and specificity of 80%.
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Figure 2.10: Long short term (LSTM) architecture [8].
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2.2.4 Generative Adversarial Network

A Generative Adversarial Network (GAN) is a powerful class of deep neural

networks (DNN) inspired by zero-sum game theory [73]. GANs consist of

two neural networks, a generator and a discriminator, which compete to

analyze and capture the variance in a given dataset. The generator module

creates fake data samples based on the data distribution, aiming to deceive

the discriminator, while the discriminator distinguishes between real and

fake data samples [74]. Through repeated iterations during training, both

networks improve their performance as they compete against each other.

GANs excel at generating fake samples resembling real ones, addressing the

problem of insufficient training examples in deep learning. Figure 2.11 shows

the architecture of generative adversarial networks.

Rashid et al. [64] proposed a GAN-based classification system, aug-

menting a training set with realistic-looking skin lesion images generated via

GAN. A deconvolutional network was the generator, while the discrimina-

tor utilized a CNN classifier. The proposed system achieved an accuracy of

86.1% for skin lesion classification.

To address limitations in deep learning methods, such as the need for

large, unbalanced datasets, [65] proposed a system combining data purifi-

cation with GAN-based data augmentation. Decoupled deep convolutional

GANs were employed for data generation, resulting in improved performance

compared to the baseline ResNet-50 model.

These studies demonstrate the effectiveness of GANs in enhancing the

performance of skin cancer diagnostic systems by addressing challenges re-
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Figure 2.11: Generative Adversarial Network (GAN) architecture [9].

lated to dataset size and imbalance.

2.2.5 Convolutional Neural Network

A convolutional neural network (CNN) is a crucial subtype of deep neural

networks extensively used in computer vision. CNNs are particularly adept

at image classification, grouping, and recognition tasks. In CNNs, the con-

volution operation is a fundamental process that helps extract features from

the input data, such as images. Equation 2.1 represents the mathematical

expression for a 2D convolution.

S(i, j) =
M−1∑
m=0

N−1∑
n=0

K(m,n) · I(i+m, j + n) (2.1)

S(i, j) is the output feature map, I(i, j) is the input image, and K(m,n)

is the convolutional kernel (filter) of size M ×N . The convolution operation

slides the kernel K over the input image I. At each position, it computes

the sum of element-wise products between the kernel and the corresponding
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patch of the input image. The result is stored in the output feature map S.

In [75], Deep CNNs have been utilized to classify skin cancer into four

categories: basal cell carcinoma, squamous cell carcinoma, actinic keratosis,

and melanoma. The authors assess the performance using evaluation pa-

rameters such as accuracy, sensitivity, and specificity. Recent research has

explored integrating patient data with CNNs to enhance diagnostic accuracy

in dermatology [76]. The patient data typically included information such as

sex, age, and lesion location, and one-hot encoding was used to incorporate

this data. The decision to fuse image features with patient data was contin-

gent on the complexity of each classification task. These studies highlight

the potential advantages and benefits of incorporating patient data into deep

CNN algorithms in dermatology. In [77], the pre-trained Inception v3 model

has been fine-tuned on two different resolution scales of input lesion images:

a coarse scale and a finer scale. The coarse scale captured the lesions’ shape

characteristics and overall contextual information. In contrast, the finer scale

focused on gathering detailed texture information of the lesion, facilitating

the differentiation between various skin lesions. In [78], a deep convolutional

neural network (CNN) architecture was introduced to classify 12 distinct

types of skin lesions. Initially, it was trained using 3797 lesion images; sub-

sequently, data augmentation was applied, expanding the dataset 29 times

through variations in lighting conditions and scale transformations. The pro-

posed technique achieved an impressive AUC (Area Under the Curve) value

of 0.99 for the classification of hemangioma lesions, pyogenic granuloma (PG)

lesions, and intraepithelial carcinoma (IC) skin lesions.
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2.2.6 Related Works

Previous studies have demonstrated the effectiveness of Convolutional Neural

Networks (CNNs) in skin cancer classification. For instance, a study utilizing

the HAM10000 dataset employed MobileNet for skin lesion detection, achiev-

ing an accuracy of 83% [79]. Another study introduced a Fully Convolutional

Residual Network (FCRN) with 16 residual blocks for melanoma detection,

achieving an accuracy of 85.5% with segmentation and 82.8% without seg-

mentation [80]. Huang et al. developed two deep learning models using

DenseNet and EfficientNet, achieving 89.5% accuracy in binary classifica-

tion on the KCGMH dataset and 85.8% on the HAM10000 dataset [81].

Furthermore, using Enhanced Super-Resolution Generative Adversarial Net-

works (ESRGAN) for image enhancement, coupled with a modified ResNet-

50 model, has improved classification metrics such as accuracy, precision,

recall, and F1-score [82].

Another study focused on accurately classifying skin lesions into seven

categories using the HAM10000 dataset by leveraging 13 deep transfer learn-

ing models. The research emphasizes the importance of early detection in

reducing mortality rates. It highlights the potential of AI-based systems

to enhance diagnostic accuracy, particularly in regions with limited access

to dermatological care [83]. Most current state-of-the-art approaches rely

on either hybrid models [[84], [85]] or ensembles of deep learning classifiers

[[86], [87], [88]], which, despite their high accuracy, are often too resource-

intensive for mobile applications. Developing a practical mobile application

requires identifying a deep learning model that balances state-of-the-art per-

formance with lightweight architecture. Therefore, this paper evaluates the
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performance of six different CNN models and analyzes their training time

requirements.

Despite these advancements, several limitations remain. Many studies

focus primarily on optimizing model accuracy without addressing computa-

tional complexity, which makes these models less suitable for real-time or

mobile applications. Additionally, class imbalance in datasets is often not

adequately addressed, leading to biased models that underperform on mi-

nority classes. This study addresses these gaps by evaluating a diverse set

of pre-trained CNN models, focusing on accuracy and computational effi-

ciency. Moreover, by fine-tuning these models and analyzing their perfor-

mance across a balanced dataset, this research aims to develop a practical,

scalable solution for skin cancer detection that can be deployed in resource-

limited settings. Table 2.1 summarizes related works, their limitations, and

our contribution to this research.

2.2.7 CNN Architecture

In this research, we use the CNN family of deep neural networks to detect the

skin lesions on our dataset. Therefore, we go through the architecture details

and different layers of CNNs. The hidden layers of a CNN typically include

convolution layers, nonlinear pooling layers, and fully connected layers [89].

Figure 2.12 shows the basic architecture of a CNN.
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Table 2.1: Summary of Related Works

Dataset Method Accuracy Limitations Our Contribution

HAM10000 MobileNet[79] 83% Focuses on accuracy;

lacks discussion on

computational effi-

ciency

Evaluates models for accu-

racy, F1-Score and compu-

tational efficiency

HAM10000 FCRN (16

residual

blocks)[80]

85.5% with

segmenta-

tion, 82.8%

without

Computationally in-

tensive, segmentation

requirement

Proposes real-time applica-

tions models

KCGMH

HAM10000

DenseNet,

EfficientNet[81]

89.5%

(KCGMH),

85.8%

(HAM10000)

Focuses on binary

classification

Evaluates performance on

multi-class classification

HAM10000 ESRGAN

+ ResNet-

50[82]

86% High resource usage Developed a lightweight so-

lution for mobile applica-

tions

HAM10000 13 deep

transfer

learning

models[83]

82.9% Low accuracy; Com-

putationally expen-

sive

Improve Accuracy; Devel-

ops a mobile-friendly solu-

tion

Convolutional Layer

The convolutional layer is the core building block of CNNs. It applies a set

of learnable filters to the input image to extract features. Each filter scans

through the input image and produces a feature map by performing element-

wise multiplication and summation. The output feature maps capture differ-

ent aspects of the input image, such as edges, textures, and patterns. This
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Figure 2.12: CNNs Architecture.

powerful aspect enables Convolutional Neural Networks to automatically ex-

tract essential features at each layer, eliminating the necessity for manual

feature engineering or selection. CNNs inherently possess the capability to

learn hierarchical representations of data, starting from low-level features

such as edges and textures and progressing to higher-level features that cap-

ture complex patterns and structures. The output dimension of convolutional

layers can be calculated using the equation 2.2.

[
nh + 2p− f

s
+ 1]× [

nw + 2p− f

s
+ 1] (2.2)

nh and nw are the input image height and width, f is the filter size (both

height and width), p is the padding (both height and width), and s is the

stride length. This formula computes the height and width of the output

feature map produced by a convolutional layer based on the input image’s

parameters, filter size, padding, and stride length.

Stride: The stride is a parameter within the filter, influencing the extent

of movement across an image. When employing a stride of 1, the network

processes data pixel by pixel. Alternatively, setting a stride of 2 entails pro-
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Figure 2.13: Filtering with the stride of 2.

cessing data while skipping every other pair of adjacent pixels. Figure 2.13

indicates the calculation for filtering with the stride of 2. After any calcula-

tion, the filter skips one column and one row after completing all columns.

Below is the calculation for the first row of the output matrix.

(2× (−1)) + (6× 0) + (8× 1) + (2× (−2)) + (7× 0) + (4× 2) + ((−1)×

(−1)) + (1× 0) + (9× 1) = 20

(8× (−1)) + ((−1)× 0) + (0× 1) + (4× (−2)) + (3× 0) + (2× 2) + (9×

(−1)) + (0× 0) + (3× 1) = −18

(0× (−1)) + (5× 0) + (3× 1) + (2× (−2)) + (8× 0) + ((−1)× 2) + (3×

(−1)) + (6× 0) + (4× 1) = −2

Padding: Padding pertains to the augmentation of an image with ad-

ditional pixels during kernel processing. For instance, when employing zero-

padding in a CNN, extra pixels with zero value are appended to the image.

Applying filters or kernels to scan the image often results in a size reduc-

tion. To retain the original image dimensions and extract low-level features

effectively, it becomes necessary to prevent such size reduction by adding
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supplementary pixels around the image boundaries. Figure 2.14 shows the

padding for a 5× 5 matrix in a 3× 3 filtering process.

Generating the results matrix involves multiplying each element of the

3×3 filter with its corresponding neighbor in the input matrix and summing

these products. As an illustration, the first row values of the result matrix

are computed in the following manner:

(0 × (−1)) + (0 × 0) + (0 × 1) + (0 × (−2)) + (7 × 0) + (1 × 2) + (0 ×

(−1)) + (2× 0) + (9× 1) = 11

(0 × (−1)) + (0 × 0) + (0 × 1) + (7 × (−2)) + (1 × 0) + (2 × 2) + (2 ×

(−1)) + (9× 0) + (3× 1) = −9

(0 × (−1)) + (0 × 0) + (0 × 1) + (1 × (−2)) + (2 × 0) + (4 × 2) + (9 ×

(−1)) + (3× 0) + (7× 1) = 4

(0 × (−1)) + (0 × 0) + (0 × 1) + (2 × (−2)) + (4 × 0) + (8 × 2) + (3 ×

(−1)) + (7× 0) + (6× 1) = 15

(0 × (−1)) + (0 × 0) + (0 × 1) + (4 × (−2)) + (8 × 0) + (0 × 2) + (7 ×

(−1)) + (6× 0) + (0× 1) = −15

In this instance, with the stride value of one, we shift the filter one column

to the right, compute the second value of the results matrix, and so on.

Convolutions on RGB images

The composition of color images involves three distinct channels—red, green,

and blue—each represented by a pixel intensity values matrix. The fusion
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Figure 2.14: Padding in filtering [10].

of these channels generates an RGB image. Notably, convolution operations

for RGB images deviate from those applied to 2D images with one channel.

Precisely, in RGB image convolution, the filter or kernel matches the number

of channels in the input RGB image.

Illustrated in Figure 2.15, an RGB image with the dimension of 6×6×3

undergoes convolution with a filter sized 3× 3× 3. This convolution yields a

resulting output of dimensions 4× 4, constituting a 2D image. Each pixel in

this output is computed by multiplying and summing the 27 values within

the 3 × 3 × 3 filter, aligned with their respective pixels in the input image.

For the present example, no padding is applied, and a stride of 1 is assumed.

Convolutional layers typically integrate multiple filters in practical con-

volutional neural network (CNN) implementations. Incorporating a greater

number of filters facilitates the extraction of additional features from the

input data. The output is a volume where the number of output channels

equals the number of filters. Each channel within the output represents

the feature maps associated with its corresponding filter, as depicted in Fig-

ure 2.16. Here, the outcomes derived from two distinct filters yield an output

featuring two channels.
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Figure 2.15: Convolution on RGB images.

Figure 2.16: Convolution on RGB images with 2 filters.
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Figure 2.17: One layer of a convolutional network.

One Layer of a Convolutional Network

Examine a single layer within a convolutional neural network (CNN) and ex-

plore how neural network principles can illuminate its operations. Figure 2.17

illustrates such a layer, where the input is a 6 × 6 × 3 RGB image, and the

output is a 4 × 4 × 2 feature map. Each channel in the output represents

distinct features extracted by individual filters.

In neural network mathematics, these filters can be viewed as matrices

of weights, and the sample calculations may be coerced into standard matrix

algebra. When the input is convolved with each filter, the resulting outputs

undergo nonlinear activation functions and bias addition. These processed

outputs from each filter are then stacked together to form the final output.

Convolutional layer notation

A summary of notation in a convolutional layer in a CNN network. If layer

l is a convolutional layer, the dimension and notation for this layer are as
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follows:

f [l] = filter size, p[l] = padding, s[l] = stride, n
[l]
c = number of filters

Input size : n
[l−1]
H × n

[l−1]
W × n

[l−1]
c

each filter size : f [l] × f [l] × n
[l−1]
c

activations size (a[l]) : n
[l]
H × n

[l]
W × n

[l]
c

activations matrix size (A[l]) : m× n
[l]
H × n

[l]
W × n

[l]
c

wieghts size : f [l] × f [l] × n
[l−1]
c × n

[l]
c , where n

[l]
c is number of filters in

layer l.

bias size : n
[l]
c

Output size : n
[l]
H × n

[l]
W × n

[l]
c

n
[l]
H =

n
[l−1]
H +2p[l]−f [l]

s[l]
+ 1

n
[l]
W =

n
[l−1]
W +2p[l]−f [l]

s[l]
+ 1

Pooling Layer

Pooling layers downsample, or reduce the dimension through sampling, of

the feature maps generated by convolutional layers, reducing their spatial

dimensions. Max pooling and average pooling are two commonly used pool-

ing techniques. Max pooling selects the maximum value within each pooling

region, while average pooling computes the average values. Pooling helps to

reduce computational complexity, control overfitting, and increase the net-

work’s translational invariance [90]. The pooling layer does not have any
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Figure 2.18: Pooling layer.

parameters for learning in the network. Figure 2.18 indicates the max and

average pooling process.

The pooling layer hyperparameters are outlined as follows:

f : filter size, s : stride, and Pooling type : [max, average]

In most instances, padding is not applied in pooling layers, except for

certain special cases. Typically, common values for the stride (s) and filter

size (f) parameters are set to 2. This configuration results in a halving of

the input dimension in each pooling layer.

Fully Connected (Dense) Layer

Fully connected layers are artificial neural network layers where each neuron

is connected to every neuron in the previous layer. These layers integrate

high-level features extracted by convolutional and pooling layers, which are

then used for final classification or regression tasks. The outputs from fully

connected layers are typically passed through activation functions.
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Dropout

Deep neural networks are powerful tools in supervised learning but often

face a significant challenge known as overfitting. Overfitting occurs when a

model learns to perform exceptionally well on the training data but fails to

generalize to new, unseen data. This issue is prevalent in deep networks due

to their large number of parameters.

Dropout is a regularization technique designed to combat overfitting. It

randomly removes a subset of neurons (along with their connections) from

the neural network during training. This forces the network to learn more ro-

bust features, as no single neuron can rely on the presence of others. During

training, dropout effectively generates numerous ”thinned” networks. Dur-

ing testing, the averaging effect of these thinned networks is approximated

by using a single network with scaled-down weights, significantly reducing

overfitting and improving generalization [91]. Dropout is typically governed

by a probability parameter p, which determines the percentage of neurons

to exclude from the network, often ranging between 0.2 and 0.5. Figure 2.19

illustrates the dropout process in neural networks.

Please refer to the Evaluation metrics section (see Section 3.1.4) for a

more detailed discussion of overfitting.

Convolutional neural networks used in this research

In this study, we employ pre-trained CNNmodels and adjust their parameters

to address challenges in skin lesion detection. The CNN architectures utilized

in this study include VGG16 [92], VGG19 [92], MobileNet [93], MobileNetV2
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Figure 2.19: Dropout layer. [10].

[94], MobileNetV3 [13], and ResNet [12]. Below, we outline the architectures

and distinctive features of these CNN families.

VGG16 & VGG19

VGG16 and VGG19 are convolutional neural network models introduced by

K. Simonyan and A. Zisserman from the Visual Geometry Group at the

University of Oxford [92]. The numbers 16 and 19 indicate the number of

weight layers in these models. These models gained prominence for their

exceptional performance, achieving a top-5 test accuracy of 92.7% on the

ImageNet dataset, comprising over 14 million images distributed across 1000

classes. VGG16 was notably submitted to the ILSVRC-2014 competition,

where it showcased significant improvements over its predecessor, AlexNet.

Figure 2.20 shows the VGG16 architecture.

One of the key advancements of VGG16 over previous models like AlexNet

[95] is its utilization of multiple 3×3 kernel-sized filters in place of larger ker-

nel sizes (e.g., 11×11 and 5×5 in the first and second convolutional layers of
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Figure 2.20: VGG16 architecture. [11].

AlexNet). The network architecture consists of convolutional layers followed

by ReLU activation functions, with a fixed input size of 224× 224× 3 RGB

images. All the convolutional layers in VGG16 have 3× 3 filters, stride of 1,

and padding of 1, so the input and output of each convolutional layer have

the same size. VGG16 uses 3×3 filters to capture spatial features effectively.

VGG16 incorporates spatial pooling through five max-pooling layers,

which are interspersed among the convolutional layers. Max-pooling lay-

ers use 2 × 2 filters with a stride of 2, aiding in downsampling and feature

extraction.

VGG16 includes three fully connected (FC) layers following the convo-

lutional layers. The first two contain 4096 channels each, and the third per-

forms a 1000-way classification for the ImageNet Large Scale Visual Recog-

nition Challenge (ILSVRC). The final layer employs a softmax function for

classification.
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Residual Neural Network (ResNet)

The ResNet is a deep learning model designed for computer vision tasks.

It introduced significant advancements in the ILVRSC 2015 competition.

ResNet achieved unprecedented results by effectively addressing challenges

associated with training profound neural networks. ResNet surpassed other

architectures by a substantial margin, winning the image classification task

in ILVRSC 2015 with an impressive top-five error rate of 3.57% [12].

One of the primary issues ResNet aims to tackle is the Vanishing/Exploding

Gradient Problem commonly encountered in deeper neural networks. As the

number of layers increases, gradients of the loss function to the weights may

become either excessively small or excessively large during backpropagation,

hindering effective learning.

The key components of the ResNet architecture include:

Residual Block: Residual blocks are fundamental components of Resid-

ual Neural Networks. Unlike in plain neural networks, where the input is

transformed by convolutional layers and passed through an activation func-

tion, ResNet introduces a residual connection. In a residual block, the input

to the block is added to the output, creating a residual connection:

a[l+2] = g[l+2](z[l+2] + a[l]) (2.3)

Here, g[l+2] represents the activation function in layer l + 2. Figure 2.21

represents the residual block.

Skip Connection: Skip connections play a crucial role in forming residual
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Figure 2.21: Residual Block.

Figure 2.22: Residual Network.

blocks. They involve bypassing the residual block’s input over the convolu-

tional layer and adding it to the block’s output.

Stacked Layers: ResNet architectures are constructed by stacking mul-

tiple residual blocks together. By leveraging these stacked residual blocks,

ResNet can achieve remarkable depth. Various versions of ResNet, including

those with 50, 101, and 152 layers, were introduced. Figure 2.22 represents

stacking residual blocks to make a residual network.

Global Average Pooling (GAP): ResNet architectures typically employ

Global Average Pooling as the final layer before the fully connected layer.
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Figure 2.23: ResNet Architecture. [12].

GAP reduces spatial dimensions to a single value per feature map, providing

a compact representation of the entire feature map. Figure 2.23 shows the

architecture of ResNet models compared to VGG16 and plain networks.

MobileNets

MobileNets represent a class of efficient models tailored for mobile and em-

bedded vision tasks. They employ a streamlined architecture that relies on

depthwise separable convolutions to construct lightweight deep neural net-

works [93]. One notable feature of MobileNets is the incorporation of two

straightforward global hyperparameters, which effectively balance latency

and accuracy. These hyperparameters offer model builders the flexibility to

select an appropriately sized model that aligns with the constraints of their

specific application.

MobileNets exhibit effectiveness across diverse applications and use cases,

spanning object detection, fine-grained classification, analysis of facial at-
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tributes, and large-scale geo-localization tasks. This versatility underscores

the adaptability and practical utility of MobileNets in various scenarios, par-

ticularly those requiring efficient and accurate vision processing on resource-

constrained devices.

The core concept underlying the MobileNet revolves around utilizing

depthwise separable convolutions instead of conventional convolutions, aim-

ing to diminish computational complexity and model size. This approach

disassembles the standard convolution operation into two distinct stages:

depthwise convolution and pointwise convolution.

Depthwise convolution conducts independent convolutions on each in-

put channel, utilizing a single filter per channel. Compared to conventional

convolutions, this segmentation minimizes the number of parameters and

computational requirements. It employs a 3× 3 depthwise convolution with

a stride of 1, followed by batch normalization and ReLU activation, thereby

effectively capturing spatial information within each channel.

Pointwise convolution operates on the output of the depthwise convo-

lution, employing a 1 × 1 convolution to amalgamate information across

channels. It uses a small number of 1 × 1 filters to facilitate cross-channel

feature combinations and dimensionality reduction, enabling the mixing and

transformation of features from diverse channels. Figure 2.24 indicates the

standard convolution and depthwise separable convolution.

MobileNet efficiently reduces parameters and computations while main-

taining satisfactory accuracy by dividing the convolution process into specific

stages. Utilizing depthwise separable convolutions enables the network to ob-

tain concise representations of input data, rendering MobileNet suitable for
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Figure 2.24: Normal Convolution Vs. Depthwise Separable Convolution. [6].

Figure 2.25: MobileNet architecture. [6].

resource-limited scenarios. The architecture of MobileNet, depicted in Fig-

ure 2.25, comprises 13 blocks of depthwise separable convolutional layers as

described in the original paper by [93].

MobileNet version 2 (MobileNetV2) represents a significant advancement

in mobile model performance across various tasks and benchmarks and in dif-

ferent model sizes [94]. The architecture of MobileNetV2 revolves around an

inverted residual structure, which diverges from traditional residual models

by employing thin bottleneck layers at the input and output of the residual

block. Figure 2.26 represents the MobileNetV2 architecture.
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Figure 2.26: MobileNet Version 2 architecture. [6].

MobileNetV2 adopts an inverted residual structure, where the input and

output of the residual block consist of thin bottleneck layers. This design

contrasts with conventional residual models that typically use expanded rep-

resentations in the input.

Instead of employing standard convolutions, MobileNetV2 utilizes lightweight

depthwise convolutions to filter features within the intermediate expansion

layer. This approach helps reduce computational complexity and model size.

So and so performed a comparison and found this approach reduced com-

putational complexity and model size while maintaining effective feature ex-

traction [94].

Removal of Non-linearities in Narrow Layers: MobileNetV2 removes non-

linear activation functions in the narrow layers to preserve the representa-

tional power, referring to its ability to capture and model the complex pat-

terns and structures in the input data [94]. This design choice ensures that

the model can capture intricate patterns and features, even in layers with

fewer parameters.

Overall, MobileNetV2’s innovative architectural design, incorporating in-

verted residual structures and lightweight depthwise convolutions, enhances

performance across various tasks and model sizes. By prioritizing efficiency
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Figure 2.27: MobileNet Version 3 architecture. [13].

without compromising accuracy, MobileNetV2 remains a powerful solution

for mobile and embedded vision applications [94].

MobileNet version 3 (MobileNetV3) introduces complementary search

techniques and innovative architectural designs. Tailored specifically for mo-

bile phone CPUs, MobileNetV3 integrates hardware-aware network archi-

tecture search (NAS) [13] alongside the NetAdapt algorithm [13], further

refined through novel architecture advancements. This iteration introduces

two variants, MobileNetV3-Large and MobileNetV3-Small, catering to high

and low-resource use cases. Figure 2.27 indicates the architecture of Mo-

bileNetV3.

Compared to MobileNetV2, MobileNetV3 incorporates the Squeeze and

Excitation (SE) module, initially introduced in SENet [96], to enhance fea-

ture learning. To improve computational efficiency, MobileNetV3 replaces

the sigmoid activation function in the SE module with the hard-sigmoid

function, where the 2.4 and 2.5 indicate the equation for this function. Ad-

ditionally, MobileNetV3 replaces the traditional ReLU activation function

with the Swish activation function to enhance non-linearity [13]. 2.6 shows
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Figure 2.28: MobileNetV3 activation functions. [13].

the swish function.

RELU6(x) = min(max(0, x), 6) (2.4)

h− sigmoid(x) =
RELU6(x+ 3)

6
(2.5)

h− swish(x) = x.h− sigmoid(x) (2.6)

The swish activation can be computationally inefficient on mobile and

embedded hardware [97, 13]. This issue was spurned the hard-swish (H-

Swish) and was incorporated in mobilenetv3. H-Swish retains the non-linear

properties of Swish while offering improved efficiency for mobile hardware im-

plementations. This ensures that MobileNetV3 maintains high performance

while being well-suited for deployment on mobile and embedded devices [13].

Figure 2.28 represents the activation functions of the MobileNetV3 model.
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2.2.8 Transfer Learning

With the remarkable advancements in deep learning, transfer learning has

become a central element in various computer vision fields, including mul-

timedia [98], surveillance [99], and medical applications [100]. The concept

involves leveraging pre-trained models originally trained on non-medical or

natural image datasets. These models are then fine-tuned with new data to

adapt to specific tasks [101]. Transfer learning is crucial in deploying con-

volutional neural networks for diagnostic imaging tasks such as skin cancer

detection [37], Alzheimer’s Disease diagnosis [102], and chest X-ray analysis

[103].

Figure 2.29 illustrates the architectures used in the transfer learning ap-

proach. Typically, open-source pre-trained models are trained on extensive

datasets containing numerous classes. For instance, the ImageNet dataset

comprises 14 million images distributed across 1000 classes. Transfer learn-

ing allows us to modify pre-trained networks by replacing the top layer with

an output layer tailored to our dataset. Depending on the size of our dataset,

we can adjust or fine-tune the parameters of the pre-trained models to better

suit our specific needs.
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Figure 2.29: Transfer learning methodology.
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Chapter 3

Methodology

This chapter focuses on detecting skin cancer in the HAM10000 dataset and

the pre-trained CNN methods. Figure 3.1 visually depicts the critical steps

of our methodology.

We use an ASUS TUF Gaming A15 system with AMD Ryzen 7 6800H

processor information with Radeon Graphics, 3201 Mhz, 8 Core(s), 16 Logical

Processor(s), and 16GB of RAM.

3.1 Main stages of the methodology

The methodology consists of four main steps: pre-processing, data augmen-

tation, model architecture, and evaluation metrics.
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Figure 3.1: Our methodology process steps.

3.1.1 Pre-processing

Pre-processing plays a crucial role in detecting skin cancer using deep learning

models. This improves the performance of our models. The initial stage of

our analysis involved reading images from the dataset and pre-processing

them. The initial size of images is 600 × 450 × 3, and we resized images to

dimensions of 244 × 224 × 3, ensuring compatibility with the convolutional

neural network (CNN) architectures employed. Additionally, we use built-

in functions in the Keras [104] library in Python for data normalization

to enhance the uniformity of their pixel values, thus preparing them for

subsequent training procedures. After pre-processing, we divided the dataset

into training, validation (development), and test sets with an 80/10/10 ratio.

3.1.2 Data Augmentation

The HAM10000 dataset includes an imbalanced distribution, where some

categories have many images while others have only a few. The imbalance
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is one of the significant challenges because classifiers tend to be influenced

by the dominant class while neglecting the smaller ones [105]. This means

that the classifier does not achieve the desired level of accuracy across all

classes. The idea of resampling can be applied to tackle this problem. Data

augmentation, achieved by applying transformations to images, is commonly

employed to mitigate the challenges of imbalanced datasets. The available

data can be diversified by augmenting the dataset through transformations

such as rotation, flipping, scaling, and cropping, helping to address the class

imbalance issue. This augmentation process enriches the dataset with vari-

ations of existing images, providing the model with a more comprehensive

understanding of different instances within each class. Consequently, it en-

hances the model’s ability to generalize effectively across all classes, even in

scenarios where certain classes are underrepresented in the original dataset.

3.1.3 Model Architecture

We use pre-trained CNN models and try to fine-tune their parameters to

alleviate skin lesion detection issues. Transfer learning gives us the power

of flexibility in using all the parameters of these powerful CNN models or

freezing the parameters and just using pre-trained weights. The exploration

of transfer learning, utilizing pre-trained models such as VGG16 [92], VGG19

[92], MobileNet [93], MobileNet V2 [94], MobileNet V3 [13], and ResNet [12],

is integral to the project. Transfer learning is employed to enhance the gener-

alization ability of computer-aided diagnostic systems. Figure 3.2 represents

the model architecture, where we drop the top layer of pre-trained models

and add average pooling, dropout, and softmax layers with the number of

classes in our dataset.
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Figure 3.2: Model architecture.

In our skin lesion detection application, we employ transfer learning

by adjusting the pre-trained weights of VGG16, VGG19, ResNet50, Mo-

bileNetV1, MobileNetV2, and MobileNetV3, which collectively have been

trained on the ImageNet dataset including over 14 million images of 1000

classes. This allows us to capitalize on the rich feature representations these

models learn from diverse categories. We fine-tune pre-trained model pa-

rameters, including weights and biases, based on the HAM10000 dataset, en-

hancing the performance and accuracy of our skin lesion detection systems.

This process involves removing the top layer of the networks and replacing

it with average pooling, dropout, and softmax layers tailored to classify our

dataset’s categories, including seven classes. By adapting the pre-trained

weights to our unique classification tasks, we optimize the performance of

our models for effective skin cancer lesion detection, saving computational

resources and training time while leveraging the generalization power of these

architectures.

3.1.4 Evaluation Metrics

Evaluating the performance of a skin cancer detection model is essential to

assess its accuracy and effectiveness. In deep learning, it is crucial to ensure
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that a model performs well on the training data and generalizes effectively

to unseen data. This is where the concepts of overfitting and underfitting

become particularly important.

Overfitting and underfitting are two critical challenges in machine learn-

ing that directly impact model performance. Overfitting occurs when a

model is too complex, capturing noise and outliers in the training data rather

than the underlying distribution. This results in excellent performance on

the training data but poor generalization to new data. Techniques such as

dropout, cross-validation, and regularization are commonly employed to mit-

igate overfitting [106].

In contrast, underfitting happens when a model is too simple to capture

the underlying patterns in the data. An underfit model fails to perform well

even on the training data, leading to poor predictions. To address underfit-

ting, one might consider increasing model complexity, using more sophisti-

cated algorithms, or providing more features to the model [106].

Based on established evaluation metrics in the skin cancer image classi-

fication domain [15, 19, 56, 80], this thesis assesses the performance of the

models using metrics such as accuracy and weighted F1-score. Overfitting or

underfitting is monitored by comparing the performance of both the training

and validation datasets.

Accuracy: Accuracy measures the proportion of correctly classified in-

stances from the total number of cases in the dataset. Equation 3.1 indicates

how we calculate the accuracy.
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Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

Where:

TP (True Positives) are the instances correctly classified as positive.

TN (True Negatives) are the instances correctly classified as negative. FP

(False Positives) are the instances incorrectly classified as positive. FN (False

Negatives) are the instances incorrectly classified as negative.

Precision: Precision measures the proportion of true positive predic-

tions among all positive predictions made by the model. Equation 3.2 shows

the formula for calculating the precision.

Precision =
TP

TP + FP
(3.2)

Recall (Sensitivity): Recall measures the proportion of true positive

predictions among all actual positive instances in the dataset. The formula

for calculating recall is shown in equation 3.3.

Recall =
TP

TP + FN
(3.3)

F1-Score: The F1-score is the harmonic mean of precision and recall,

balancing the two metrics. Equation 3.4 indicates the formula for F1−Score.

F1 =
2× Precision×Recall

Precision+Recall
(3.4)
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Weighted F1-Score: The weighted F1-score is a metric used to evalu-

ate the performance of a classification model, particularly in scenarios where

there is class imbalance [107]. It is computed as the weighted average of the

F1-scores for each class, with the weights assigned based on the number of

actual occurrences (true instances) of each class in the dataset. This weight-

ing ensures that classes with more instances significantly influence the final

score, which can be crucial in datasets where some classes are underrepre-

sented.

F1-Score for each class: calculate F1-score for each class using 3.4,

and the computing the weighted F1-score using

WeightedF1 = ΣC
i=1F1i ×Wi (3.5)

C denotes the total number of classes in the dataset, and Wi represents

the weight for class i. Specifically, Wi is the proportion of true instances of

class i relative to the total number of instances in the dataset. This means

that classes with more true instances contribute more to the weighted F1-

score, reflecting their prevalence in the dataset.

Training time: We assess the models’ performance by considering their

training time alongside other evaluation metrics to determine which model is

more efficient and suitable for real-world applications, particularly low-power

devices.
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Chapter 4

Results & Discussion

In this chapter, we present the findings of our investigation into skin lesion

detection using deep learning models.

4.1 Transfer Learning and Data Augmenta-

tion

4.1.1 Parameter Tuning and Implementation Details

We fine-tuned the parameters for the pre-trained models, including Mo-

bileNetV1, MobileNetV2, MobileNetV3, VGG16, VGG19, and ResNet50.

Fine-tuning was carried out on specific layers tailored to each architecture,

as follows:

Tuning Process:
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To optimize the performance of these models, we conducted extensive

parameter tuning. The critical parameters adjusted during this process in-

cluded:

Batch Size: We experimented with 16, 32, 64, 128, and 256 batch sizes

to identify the optimal size for efficient learning and model convergence.

Learning Rate: Various learning rates, ranging from 0.00001 to 0.01,

were tested to ensure the models converged effectively without overshooting

the optimal point.

Number of Epochs: We varied the number of epochs, testing 10, 20,

50, 70, and 100 epochs to balance sufficient training and the prevention of

overfitting.

Layers for Fine-Tuning: Depending on the architecture, various lay-

ers were tested to determine the best configuration for the model. Finally,

specific layers were selected for fine-tuning based on performance.

Dropout: Different dropout probabilities ranging from 0.1 to 0.9 were

used to prevent overfitting and find the most robust model.

Implementation:

The tuning process was implemented using Python’s Keras [104] library.

For each model, we monitored performance metrics on the validation set to

identify the best combination of parameters. The final results were reported

based on validation accuracy and loss.

Here are the parameters selected during the freezing and unfreezing

stages:
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Freezing Stage:

Optimizer: Adam with parameters β1 = 0.9, β2 = 0.999, and α = 0.001.

Dropout: p = 0.2

Batch Size: 32

Epochs: 20

Unfreezing Stage:

Learning Rate: α = 0.0001

Epochs: 50

This detailed tuning and implementation strategy ensured that each

model was fine-tuned to achieve optimal performance on our skin cancer

detection task.

4.1.2 CNN models without data augmentation

In this section, we present the results obtained from our experimentation

with transfer learning techniques applied to pre-trained CNN models on the

HAM10000 dataset. We initially explore the performance of these mod-

els without any data augmentation, focusing on the freezing and training

of pre-trained weights while training the top layers on our dataset. Ta-

ble. 4.1 presents the outcomes obtained from employing pre-trained models

with frozen weights and without data augmentation, focusing on accuracy

and F1-score evaluation metrics. Based on the results, ResNet50 achieves
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the highest accuracy among the considered models, indicative of its supe-

rior adaptability when utilizing frozen pre-trained weights and adjusting the

upper layers to our dataset. Conversely, MobileNetV3 exhibits the most effi-

cient runtime, emphasizing its potential suitability for real-time applications

and low-power devices.

Table 4.1Pre-trained CNNs without Data Augmentation.

Model
Training

Accuracy

Training

F1-Score

Validation

Accuracy

Validation

F1-Score
Run Time

VGG16 0.7679 0.5350 0.749 0.5289 128m 39s

VGG19 0.7644 0.5777 0.754 0.5721 162m 19s

ResNet50 0.8534 0.7531 0.8085 0.6451 61m 48.5s

MobileNetV1 0.8156 0.6878 0.7944 0.6065 20m 51.4s

MobileNetV2 0.8179 0.7039 0.7752 0.5469 22m 53.9s

MobileNetV3 0.7843 0.6027 0.7772 0.5429 6m 57.6s

Parameter Tuning and Implementation Details:

”

Following that, we proceed with fine-tuning the parameters of the pre-

trained models, focusing on specific layers tailored to each architecture. For

MobileNetV1, MobileNetV2, MobileNetV3, VGG16, VGG19, and ResNet50,

the fine-tuning of parameters commences from layers 50, 100, 120, 10, 13,

and 120 out of a total of 86, 154, 157, 19, 22, and 175 layers, respectively. Ta-

ble 4.2 showcases transfer learning results utilizing pre-trained CNN models,

where weights are trained based on the HAM10000 dataset without resam-

pling or data augmentation. ResNet50 is the top performer in training and

validation accuracy and the F1-score. Furthermore, MobileNetV3 demon-
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strates rapid training, requiring less than 9 minutes, while achieving a train-

ing accuracy of 98.54% and a validation accuracy of 85.79%.

Table 4.2Fine-tuned CNNs without Data Augmentation.

Model
Training

Accuracy

Training

F1-Score

Validation

Accuracy

Validation

F1-Score
Run Time

VGG16 0.9842 0.8868 0.8427 0.7752 263m 16.5s

VGG19 0.9868 0.8903 0.8306 0.7511 277m 51s

ResNet50 0.9934 0.9233 0.8639 0.8131 92m 40.1s

MobileNetV1 0.9712 0.8561 0.833 0.761 32m 21.2s

MobileNetV2 0.9823 0.8839 0.8538 0.7782 37m 22.5s

MobileNetV3 0.9854 0.8871 0.8579 0.7802 8m 44.8s

Examine the confusion matrix of the models on the test data. Table 4.3

illustrates the true labels of the test dataset, which comprises 1001 images

from 7 classes.

Table 4.4 displays the confusion matrix results for MobileNetV1 on the

test dataset without augmentation. The confusion matrix results reveal that

MobileNetV1 successfully identifies the nv skin lesion family, achieving 642

correct predictions out of 654 instances. Bkl lesions also show a relatively

high number of correct predictions (77). However, the model struggles with

the vasc lesion family, which is frequently misclassified. Precisely, mel lesions

are often mistaken for nv and bkl, with 64 and 30 instances, respectively.

Akiec and df also show considerable misclassifications between these classes

and others like bcc and nv. This indicates that MobileNetV1 has difficulty

distinguishing between these classes.

Table 4.5 illustrates the confusion matrix results for MobileNetV2 on the

81



Table 4.3: True labels of the test dataset.

 

         

     Predicted Label   
 

   
akiec bcc bkl df nv mel vasc 

 akiec 37 0 0 0 0 0 0 

 bcc 0 51 0 0 0 0 0 

 bkl 0 0 108 0 0 0 0 

 df 0 0 0 10 0 0 0 

 nv 0 0 0 0 654 0 0 

 mel 0 0 0 0 0 131 0 

 vasc 0 0 0 0 0 0 10 
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Table 4.4: Confusion matrix of MobileNetV1 on the test dataset.

 

         

     Predicted Label   
 

   
akiec bcc bkl df nv mel vasc 

 akiec 19 3 9 0 6 0 0 

 bcc 1 31 9 0 9 1 0 

 bkl 0 2 77 2 26 1 0 

 df 0 1 3 4 2 0 0 

 nv 2 2 7 0 642 1 0 

 mel 2 1 30 0 64 33 1 

 vasc 0 0 0 0 3 0 7 
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Table 4.5: Confusion matrix of MobileNetV2 on the test dataset.

 

         

     Predicted Label   
 

   
akiec bcc bkl df nv mel vasc 

 akiec 20 1 5 0 10 1 0 

 bcc 6 24 5 0 12 3 1 

 bkl 5 0 71 0 28 4 0 

 df 1 1 2 4 2 0 0 

 nv 3 3 13 0 628 6 1 

 mel 2 1 30 0 47 51 0 

 vasc 0 0 1 0 3 0 6 
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test dataset without augmentation. While MobileNetV2 performs well on

identifying nv (628 correct predictions), it struggles with mel lesions correctly

identifying only 51 out of 131 samples, frequently misclassifying them as nv

and bkl. There are also notable confusions between akiec and mel with nv.

Table 4.6 indicates the confusion matrix for MobileNetV3 on the test

dataset without augmentation. The model correctly identifies 16 instances

of akiec but struggles with misclassifications, especially with bkl and nv. It

correctly predicts 36 cases of bcc lesions, yet confusion remains with akiec,

bkl, nv, and mel. While the model excels in identifying bkl with 64 cor-

rect predictions, it also misclassifies these as nv and mel. Df is relatively

well-predicted, though minor confusions with other types persist. The model

performs strongly in predicting nv with 602 correct predictions but faces

challenges with misclassifications such as bkl and mel. Similarly, while it

correctly identifies 65 instances of mel, significant misclassifications with bkl
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Table 4.6: Confusion matrix of MobileNetV3 on the test dataset.

 

         

     Predicted Label   
 

   
akiec bcc bkl df nv mel vasc 

 akiec 16 2 10 0 5 4 0 

 bcc 4 36 4 0 3 3 1 

 bkl 4 4 64 2 24 10 0 

 df 1 2 0 6 1 0 0 

 nv 3 8 14 1 602 26 0 

 mel 2 1 22 1 40 65 0 

 vasc 0 1 0 0 1 0 8 
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and nv occur. Vasc identification is highly accurate, with eight instances cor-

rectly classified. Overall, MobileNetV3 demonstrates excellent performance

in identifying nv and vasc, but struggles significantly with distinguishing mel

and faces challenges with certain other class confusions.

Table 4.7 represents the confusion matrix for VGG16 on the test dataset

without augmentation. The model identifies 18 akiec instances. However,

it misclassified this akiec class with mel and nv. Regarding the bcc class,

the model demonstrates a correct prediction rate of 33 cases; nevertheless,

confusion persists with akiec, bkl, nv, and mel. While the model accurately

predicts 65 bkl cases, it misclassifies some instances as nv and mel. Df

prediction encounters minor confusion with other lesion types. The model

showcases proficiency in predicting nv, accurately identifying 618 instances,

albeit facing challenges with misclassifications as bkl, bcc, and mel. Similarly,

while correctly identifying 87 mel instances, misclassifications with nv are
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Table 4.7: Confusion matrix of VGG16 on the test dataset.

 

         

     Predicted Label   
 

   
akiec bcc bkl df nv mel vasc 

 akiec 18 2 3 0 5 9 0 

 bcc 7 33 1 0 5 5 0 

 bkl 5 3 65 1 16 18 0 

 df 0 1 1 7 0 1 0 

 nv 0 5 6 1 618 23 1 

 mel 3 0 5 0 36 87 0 

 vasc 0 1 0 0 0 0 9 

Tr
ue

 L
ab

el
 

noted. Vasc classification is highly accurate, with nine instances correctly

identified out of 10. In summary, while the VGG16 model performs well in

identifying nv and vasc lesions, it struggles when classifying mel and akiec

instances.

Table 4.8 depicts the confusion matrix for VGG19 on the test dataset

without augmentation. The model successfully identifies 25 instances of

akiec. However, it misclassifies some akiec cases as bcc, bkl, and nv. Regard-

ing the bcc class, the model achieves an accuracy rate of 30 cases; nonetheless,

confusion persists with akiec, bkl, nv, and mel. While accurately predicting

75 bkl cases, the model also misclassifies some as nv and mel. Confusion

with other lesion types is observed in df prediction. Notably, the model

demonstrates proficiency in predicting nv, correctly identifying 614 instances,

despite encountering challenges with misclassifications as bkl, bcc, and mel.

Similarly, while correctly identifying 76 mel instances, misclassifications with
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Table 4.8: Confusion matrix of VGG19 on the test dataset.

 

         

     Predicted Label   
 

   
akiec bcc bkl df nv mel vasc 

 akiec 25 2 7 0 3 0 0 

 bcc 7 30 3 0 10 1 0 

 bkl 5 2 75 0 15 11 0 

 df 3 0 1 5 1 0 0 

 nv 3 5 12 0 614 19 1 

 mel 5 0 14 0 34 76 2 

 vasc 0 0 0 0 0 0 10 
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nv, bkl, and akiec are observed. Vasc classification is highly accurate, with

all ten cases correctly identified. In conclusion, although the VGG19 model

performs well in identifying vasc lesions, it faces difficulties in accurately

classifying df instances.

Table 4.9 shows the confusion matrix for ResNet50 on the test dataset

without augmentation. The model identifies 16 instances of akiec, but it

incorrectly categorizes some as bkl and nv. For the bcc class, the model

achieves an accuracy rate of 28 cases; however, confusion remains with other

classes. While accurately predicting 63 bkl cases, it also misclassifies some

instances as nv and mel. Df prediction, with six cases correct out of 10, expe-

riences confusion with other lesion types. Notably, the model demonstrates

proficiency in predicting nv, accurately identifying 630 instances, despite en-

countering challenges with misclassifications as bkl, bcc, vasc, and mel. Sim-

ilarly, while correctly identifying 65 mel instances, misclassifications with nv
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Table 4.9: Confusion matrix of ResNet50 on the test dataset.

 

         

     Predicted Label   
 

   
akiec bcc bkl df nv mel vasc 

 akiec 16 2 7 2 9 1 0 

 bcc 3 28 3 3 4 8 2 

 bkl 2 0 63 2 18 21 2 

 df 0 0 1 6 3 0 0 

 nv 0 5 5 1 630 9 4 

 mel 2 1 14 0 45 65 4 

 vasc 0 0 0 0 0 1 9 
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and bkl are observed. Vasc classification stands out for its high accuracy, cor-

rectly identifying nine out of 10 cases. In summary, although the ResNet50

model performs well in identifying nv lesions, it faces difficulties in accurately

classifying akiec instances.

In summary, the findings from Table 4.1 and Table 4.2 underscore the

efficacy of transfer learning in leveraging pre-trained models for skin lesion de-

tection, despite working with imbalanced datasets such as HAM10000. How-

ever, the confusion matrices provide deeper insights into how dataset imbal-

ance impacts model classification challenges. Moreover, the results suggest

that models perform better in classes with more training data, highlighting

the importance of dataset balance in improving classification accuracy.
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4.1.3 CNN models with data augmentation

After assessing the effectiveness of transfer learning in using pre-trained mod-

els across various image types and fine-tuning the weights based on our

dataset, we try to address the imbalance issue in the HAM10000 dataset.

To enhance the performance of our model, we applied transfer learning in

conjunction with data augmentation techniques. Data augmentation helps

to increase both the diversity and size of the training dataset without the

need for additional data collection. Specifically, we employed the following

augmentation methods:

Geometric Transformations:

Rotation: Random rotations up to ±20 degrees.

Horizontal Flip: Random flipping of images.

Random Cropping: Randomly cropping a portion of the image to

simulate different perspectives.

Color Transformations

Brightness Adjustment: Random adjustments to the brightness of

the images.

These transformations were applied to generate additional instances for

each class in the training dataset.

Figure 4.1 shows the distribution of images across the different classes

before applying data augmentation. Each class is represented by numerical

values where 0, 1, 2, 3, 4, 5, and 6 correspond to ’nv,’ ’mel,’ ’bkl,’ ’bcc,’
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Figure 4.1: Distribution of skin lesions in training dataset before augmenta-

tion.

’akiec,’ ’vasc,’ and ’df,’ respectively. This figure highlights the class imbalance

present in the original dataset.

After applying the augmentation techniques, the dataset was balanced by

generating additional samples for each class. Specifically, each class contained

exactly 2,000 samples, resulting in a balanced training dataset with a total

of 14,000 images (2,000 samples per each of the 7 classes).

Table 4.10 presents the outcomes obtained using pre-trained CNN models

without any fine-tuning on weights coupled with data augmentation. Once

more, ResNet50 emerges as the top performer, demonstrating strong perfor-

mance in training and validation accuracy and F1-score metrics. Specifically,

by solely training the top layers and leveraging knowledge transferred from

other datasets, ResNet50 achieves a validation accuracy of 84.94% and an

F1-score of 83.59%. Conversely, MobileNetV3 demonstrates comparatively

lower accuracy and F1-score than ResNet50 and different versions of the Mo-

bileNet model. However, it stands out in terms of runtime efficiency and

computational costs.

Following data augmentation, we proceeded to fine-tune the parame-
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Table 4.10Frozen Weight CNNs with Data Augmentation.

Model
Training

Accuracy

Training

F1-Score

Validation

Accuracy

Validation

F1-Score
Run Time

VGG16 0.7753 0.7077 0.7668 0.6954 182m 33.6s

VGG19 0.7788 0.7268 0.7690 0.7055 228m 11.3s

ResNet50 0.8550 0.8494 0.8359 0.8171 86m 14.6s

MobileNetV1 0.8089 0.8013 0.8041 0.7663 26m 51.5s

MobileNetV2 0.8148 0.8056 0.8115 0.7834 30m 10.9s

MobileNetV3 0.7961 0.7770 0.7833 0.7581 10m 4.2s

ters of the pre-trained models, incorporating the augmented data. Specifi-

cally, for MobileNetV1, MobileNetV2, MobileNetV3, VGG16, VGG19, and

ResNet50, parameters were fine-tuned from specific layers within each archi-

tecture. These layers were chosen based on their position within the network

architecture to strike a balance between retaining the learned features from

the pre-trained model and adapting to the specifics of the target dataset.

Table 4.11 showcases the outcomes obtained through transfer learning uti-

lizing pre-trained CNN models, where the weights are trained based on the

HAM10000 dataset with data augmentation.

After fine-tuning with augmented data, all methods exhibited commend-

able accuracy and F1-score performance. ResNet50, once again, emerged as a

top performer, achieving 99.89% accuracy on the training dataset and 92.31%

accuracy on the validation dataset. Following ResNet50, MobileNetV2, Mo-

bileNetV3, VGG16, VGG19, and MobileNetV1 demonstrated progressively

better accuracy performance.

Runtime is a crucial metric for gauging the computational costs incurred
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by the models. Larger networks such as VGG19, VGG16, and ResNet50

incurred significantly higher computational costs. Among them, VGG19,

with almost 430 minutes, had the highest training time. Conversely, Mo-

bileNet models demonstrated notable efficiency in terms of computational

costs. Among these, MobileNetV3 stood out with a training time of less

than 13 minutes, making it an optimal choice for resource-constrained de-

vices like smartphones.

This comprehensive evaluation underscores the effectiveness of transfer

learning and data augmentation in addressing class imbalance and enhancing

model performance across various CNN architectures. ResNet50 performs

best, while MobileNetV3 offers an attractive balance between performance

and computational efficiency.

Let’s proceed to table 4.11 to delve into each model’s detailed perfor-

mance metrics and runtime statistics.

Table 4.11Fine-tuned CNNs with Data Augmentation.

Model
Training

Accuracy

Training

F1-Score

Validation

Accuracy

Validation

F1-Score
Run Time

VGG16 0.9936 0.9896 0.9106 0.9052 327m 23.1s

VGG19 0.9944 0.9902 0.9092 0.9064 430m 20.8s

ResNet50 0.9989 0.9957 0.9231 0.9198 133m 28.1s

MobileNetV1 0.9949 0.9815 0.9011 0.8981 48m 11.9s

MobileNetV2 0.9959 0.9911 0.9161 0.9131 38m 9s

MobileNetV3 0.9951 0.9903 0.9155 0.9112 13m 27.9s

The confusion matrices for the models on the test data after data aug-

mentation provide valuable insights into their performance. Let’s analyze
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each model’s results:

Table 4.12 shows the confusion matrix for MobileNetV1 on the test

dataset after augmentation. The model correctly identifies 29 instances of

akiec, though it misclassifies several cases as bkl and nv. The model achieves

40 correct predictions for bcc cases, yet there is still notable confusion with

nv and other classes. It accurately predicts 89 instances of bkl, but some

are incorrectly classified as nv and bcc. For df class, the model correctly

identifies 7 out of 10 instances, despite occasional confusion with other lesion

types. The model predicts nv, with 650 correct identifications out of 654

cases. However, it struggles with misclassifications involving bkl, bcc, and

akiec. While 58 melanoma lesions are correctly identified, many are misclas-

sified as nv and bkl. The classification of vasc lesions is highly accurate, with

8 out of 10 instances correctly identified. Overall, MobileNet demonstrates

a high accuracy rate of 99.38% for nv lesions but struggles significantly with

mel lesions, achieving a detection rate of only 44.27%.

Table 4.13 displays the confusion matrix results for MobileNetV2 on the

test dataset after data augmentation. The model accurately identifies 33 in-

stances of akiec but misclassifies some as bkl and nv. It correctly predicts 34

bcc cases, though confusion with other classes like nv and akiec persists. The

model predicts 86 instances of bkl accurately but misclassifies some as akiec

and nv. The model achieves a high accuracy rate for df, correctly identifying

8 out of 10 cases, though it occasionally confuses other lesion types. Mo-

bileNetV2 is proficient in predicting nv, with 643 correct identifications out

of 654 instances, but faces challenges with misclassifications involving bkl,

mel, and akiec. It correctly identifies 80 mel instances but often misclassifies

these as nv and bkl. The classification of vasc lesions is accurate, with 8 out
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Table 4.12: Confusion matrix of MobileNetV1 on the test dataset after data

augmentation.

 

         

     Predicted Label   
 

   
akiec bcc bkl df nv mel vasc 

 akiec 29 2 4 0 2 0 0 

 bcc 0 40 4 0 6 1 0 

 bkl 0 2 89 1 15 1 0 

 df 0 1 1 7 1 0 0 

 nv 1 1 2 0 650 0 0 

 mel 3 3 20 0 45 58 2 

 vasc 0 0 0 0 2 0 8 
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of 10 instances correctly identified.

Table 4.14 indicates the confusion matrix of MobileNetV3 on the test

dataset with data augmentation. The model correctly identifies 29 instances

of akiec, though some are misclassified as bkl and nv. It achieves 46 correct

predictions for bcc, yet confusion with other classes persists. The model ac-

curately predicts 84 instances of bkl, but some are misclassified as nv, bcc,

and akiec. It demonstrates a high accuracy rate for df, correctly classifying

9 out of 10 instances despite occasional confusion with other lesion types.

MobileNetV3 excels in predicting nv, accurately identifying 644 out of 654

instances, although it faces challenges with misclassifications involving bkl,

mel, and bcc. The model correctly identifies 92 instances of mel but fre-

quently misclassifies these as nv and bkl. The classification of vasc lesions is

highly accurate, with all 10 cases correctly identified, achieving 100% accu-
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Table 4.13: Confusion matrix of MobileNetV2 on the test dataset after data

augmentation.

 

         

     Predicted Label   
 

   
akiec bcc bkl df nv mel vasc 

 akiec 33 0 2 0 2 0 0 

 bcc 5 34 3 0 7 1 1 

 bkl 4 0 86 0 15 3 0 

 df 0 0 1 8 1 0 0 

 nv 2 1 5 0 643 2 1 

 mel 1 1 18 0 31 80 0 

 vasc 0 0 1 0 1 0 8 

Tr
ue
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el
 

racy for this lesion type. In summary, MobileNetV3 performs exceptionally

well in detecting vasc and nv lesions, with a high accuracy rate of 98.47% for

nv. However, it struggles with the mel lesion family, achieving a detection

rate of only 70.23%.

Table 4.15 represents the confusion matrix for VGG16 on the test dataset

with data augmentation. The model identifies 30 instances of akiec but

misclassifies some as mel and nv. It achieves 41 correct predictions for bcc,

yet confusion with other classes remains an issue. The model accurately

predicts 81 instances of bkl but misclassifies some as nv, mel, bcc, and akiec.

It shows a high accuracy rate for df, correctly classifying 9 out of 10 instances

despite occasional confusion with other lesion types. VGG16 is proficient in

predicting nv, accurately identifying 638 out of 654 cases, but faces challenges

with misclassifications involving mel, bkl, and bcc. It correctly identifies 100
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Table 4.14: Confusion matrix of MobileNetV3 on the test dataset after data

augmentation.

 

         

     Predicted Label   
 

   
akiec bcc bkl df nv mel vasc 

 akiec 29 2 2 0 2 2 0 

 bcc 2 46 1 0 1 1 0 

 bkl 3 3 84 1 12 5 0 

 df 0 1 0 9 0 0 0 

 nv 0 2 3 0 644 5 0 

 mel 1 1 11 0 26 92 0 

 vasc 0 0 0 0 0 0 10 

Tr
ue

 L
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el
 

mel instances but often misclassifies them as nv and bkl. The classification

of vasc lesions is highly accurate, with all ten instances correctly identified,

achieving 100% accuracy for this lesion type. While VGG16 achieves perfect

accuracy in detecting vasc lesions, it shows lower accuracy in detecting bkl

lesions.

Table 4.16 represents the confusion matrix for VGG19 on the test dataset

with data augmentation. The model correctly identifies 35 instances of akiec

but misclassifies some cases as bkl and nv. It achieves 38 correct predictions

for bcc, though confusion with other classes persists. The model accurately

predicts 89 instances of bkl but misclassifies some as nv, mel, and akiec. It

shows a high accuracy rate for df, correctly classifying 8 out of 10 instances

despite occasional confusion with other lesion types. VGG19 is proficient

in predicting nv, accurately identifying 637 out of 654 cases, but faces chal-
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Table 4.15: Confusion matrix of VGG16 on the test dataset after data aug-

mentation.

 

         

     Predicted Label   
 

   
akiec bcc bkl df nv mel vasc 

 akiec 30 1 1 0 2 3 0 

 bcc 4 41 1 0 2 3 0 

 bkl 3 2 81 1 9 12 0 

 df 0 0 1 9 0 0 0 

 nv 0 2 3 1 638 10 0 

 mel 2 0 4 0 25 100 0 

 vasc 0 0 0 0 0 0 10 

Tr
ue
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el
 

lenges with misclassifications involving mel, bkl, akiec, and bcc. It correctly

identifies 90 mel instances but frequently misclassifies them as nv and bkl.

The classification of vasc lesions is highly accurate, with all ten instances cor-

rectly identified, achieving 100% accuracy for this lesion type. While VGG19

excels in detecting vasc lesions, it faces significant challenges in accurately

detecting the mel skin lesion family.

Table 4.17 shows the confusion matrix for ResNet50 on the test dataset

with data augmentation. The model successfully identifies 32 instances of

akiec but misclassifies some as bkl and nv. It achieves 43 correct predictions

for bcc, but confusion with other classes remains an issue. The model ac-

curately predicts 88 instances of bkl but misclassifies some as nv and mel.

It demonstrates a high accuracy rate for df, correctly classifying 9 out of 10

instances despite occasional confusion with other lesion types. ResNet50 is
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Table 4.16: Confusion matrix of VGG19 on the test dataset after data aug-

mentation.

 

         

     Predicted Label   
 

   
akiec bcc bkl df nv mel vasc 

 akiec 35 0 1 0 1 0 0 

 bcc 4 38 2 0 6 1 0 

 bkl 3 1 89 0 9 6 0 

 df 1 0 0 8 1 0 0 

 nv 2 2 5 0 637 7 1 

 mel 3 0 10 0 26 90 2 

 vasc 0 0 0 0 0 0 10 

Tr
ue

 L
ab

el
 

proficient in predicting nv, accurately identifying 646 out of 654 cases, but

faces challenges with misclassifications involving mel, bkl, and bcc. It cor-

rectly identifies 89 mel instances but frequently misclassifies them as nv and

bkl. The classification of vasc lesions is highly accurate, with all ten instances

correctly identified, achieving 100% accuracy for this lesion type. ResNet50

achieves the highest accuracy in detecting vasc lesions but struggles signifi-

cantly with the mel skin lesion family.

In summary, the results confirm the effectiveness of transfer learning

in combination with data augmentation for skin lesion detection. While

ResNet50 demonstrates acceptable accuracy on both the dev and test datasets,

MobileNetV3 is a promising choice for real-world deployment due to its effi-

cient runtime and compatibility with low-power devices. These findings are

consistent with the performance metrics presented in Table 4.10 and Table
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Table 4.17: Confusion matrix of ResNet50 on the test dataset after data

augmentation.

 

         

     Predicted Label   
 

   
akiec bcc bkl df nv mel vasc 

 akiec 32 1 2 0 2 0 0 

 bcc 1 43 1 1 2 3 0 

 bkl 1 0 88 1 6 11 1 

 df 0 0 0 9 1 0 0 

 nv 0 2 2 0 646 3 1 

 mel 1 1 10 0 28 89 2 

 vasc 0 0 0 0 0 0 10 

Tr
ue
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el
 

4.11, reinforcing the efficacy of the applied methodologies.

4.2 Discussion

The analysis presented in this thesis highlights the effectiveness of transfer

learning and data augmentation techniques in improving the performance

of deep learning models for skin lesion detection. By leveraging pre-trained

models on the HAM10000 dataset, we were able to develop classifiers that

achieve high accuracy and F1 scores across multiple skin lesion types. How-

ever, the performance of each model varied depending on the specific charac-

teristics of the dataset and the model architecture, as summarized in Table

4.18.
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Table 4.18: Summary of Model Performance, Strengths, and Weaknesses

Model Accuracy F1 Score Strengths Weaknesses

VGG16 90.81% 0.9065 - Strong performance

in identifying nv and

vasc lesions.

- Challenges in classi-

fying mel and akiec.

- Some confusion be-

tween bcc and mel.

VGG19 90.61% 0.9036 - Effective in detecting

nv and df.

- Struggles with mis-

classification between

mel and nv.

ResNet50 91.61% 0.9132 - Consistently strong

across most classes,

especially akiec and

bcc.

- Challenges with dis-

tinguishing bkl from

mel and mel from nv.

MobileNetV1 88.01% 0.8686 - Good at predicting

common classes like

nv.

- High misclassifica-

tion rates in df and

mel.

MobileNetV2 89.11% 0.8863 - High accuracy in de-

tecting df and nv.

- Issues with distin-

guishing mel from nv

and bkl.

MobileNetV3 91.31% 0.9102 - Excels in identifying

nv and vasc with high

accuracy.

- Struggles signifi-

cantly with distin-

guishing mel.

- Misclassifies bkl and

nv frequently.

As shown in the table, ResNet50 emerged as the most robust model,

with an accuracy of 91.61% and an F1 score of 0.9132. Its strengths lie in
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its ability to accurately classify akiec and bcc lesions, which are critical for

identifying malignant conditions. However, it faces challenges distinguishing

bkl from mel and mel from nv, indicating areas where further improvement

is needed.

While slightly less accurate at 91.31%, MobileNetV3 demonstrated no-

table efficiency in runtime and performed exceptionally well in identifying

nv and vasc lesions. However, it struggled significantly with mel lesions,

highlighting the limitations of this model when dealing with visually similar

classes. These findings suggest that while MobileNetV3 is a strong candidate

for real-time applications, particularly in resource-constrained environments,

further refinement is necessary to enhance its performance in more challeng-

ing classification tasks.

VGG16 and VGG19, with accuracies of 90.81% and 90.61%, respectively,

also demonstrated strong performance, particularly in identifying nv and

vasc lesions. However, both models exhibited difficulties in classifying mel

and akiec; in some cases, there was confusion between bcc and mel. This

highlights the potential need for advanced augmentation techniques or alter-

native model architectures to capture the subtle differences between these

lesion types better.

While efficient, the MobileNetV1 and MobileNetV2 models showed lower

accuracy than their counterparts, particularly in classifying df and mel le-

sions. Their performance underscores the trade-off between computational

efficiency and classification accuracy, particularly in models designed for de-

ployment on devices with limited processing power.

These results align with existing literature, suggesting that deeper models
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like ResNet50 perform better on complex classification tasks. In contrast,

more lightweight models like MobileNet are better suited for scenarios where

computational resources are limited. The findings also emphasize the critical

role of dataset characteristics, particularly class imbalance, in influencing

model performance.
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Chapter 5

Conclusion

In conclusion, the results of this study demonstrate the effectiveness of trans-

fer learning and data augmentation in developing high-performance deep-

learning models for skin lesion detection. ResNet50 consistently emerged as

a top performer, achieving the highest accuracy and F1 scores across most

lesion classes, making it a reliable model for clinical applications where ac-

curacy is paramount.

On the other hand, MobileNetV3, with its impressive runtime efficiency,

is particularly well-suited for deployment in real-time applications and on

resource-constrained devices such as smartphones. However, its struggles

with distinguishing mel lesions from other types underscore further refine-

ment, perhaps through more sophisticated data augmentation techniques or

by incorporating additional features to enhance its discriminative power.

The limitations of the HAM10000 dataset, including its size, demographic

representation, and potential biases related to skin type, highlight the impor-
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tance of using diverse and representative datasets in future research. These

biases can impact the model’s generalizability and effectiveness across dif-

ferent populations, emphasizing the need for careful consideration in both

dataset selection and model development. Expanding the dataset to include

images from varied populations and skin types and incorporating advanced

augmentation techniques, such as Generative Adversarial Networks (GANs),

could help address these limitations and improve model generalization.

Future research should also explore integrating domain adaptation tech-

niques to enhance model adaptability across different datasets and real-world

scenarios. Additionally, real-world validation through clinical trials and con-

tinuous learning systems will be crucial for maintaining the accuracy and

relevance of these models over time.

Ultimately, the findings of this study contribute to the ongoing develop-

ment of accurate and efficient diagnostic tools for skin lesion detection, with

significant implications for clinical practice and patient care. By continuing

to refine and optimize these models, focusing on diversity and bias mitiga-

tion, we can move closer to achieving reliable, real-time diagnostic systems

that are both effective and accessible to a broad range of patients.
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Abstract— Skin cancer, a global health concern, requires 

early and accurate detection methods to improve patient 

outcomes. Despite significant advancements in deep learning, 

challenges like dataset imbalances and the trade-off between 

model accuracy and computational efficiency persist. This study 

introduces a comprehensive analysis of various Convolutional 

Neural Network (CNN) architectures for skin cancer detection 

using the HAM10000 dataset, comprising 10,015 dermatoscopic 

images of seven pigmented lesions. This research addresses class 

imbalances and enhances model robustness by implementing a 

data augmentation strategy combined with standard 

preprocessing techniques, such as image resizing and 

normalization. Six state-of-the-art CNN models—VGG16, 

VGG19, ResNet50, MobileNet, MobileNetV2, and 

MobileNetV3—are systematically evaluated to determine their 

effectiveness. The findings reveal that ResNet50 achieves the 

highest accuracy and F1-score, making it reliable for precise 

diagnosis. At the same time, MobileNetV3 excels in 

computational efficiency, suggesting its suitability for resource-

constrained environments or real-time applications. This study 

provides critical insights into the trade-offs between accuracy 

and efficiency in CNN-based skin cancer detection, offering a 

practical framework for selecting the appropriate model based 

on specific application needs. 

Keywords—Skin Cancer Detection; CNNs; VGG16; ResNet50; 

MobileNet, MobileNetV2, MobileNetV3 

I.  INTRODUCTION 

Skin cancer stands out as one of the most prevalent forms 
of cancer in the current decade [1]. It is mainly categorized into 
two major groups: melanoma and nonmelanoma skin cancer 
[2]. Based on the World Cancer Research Fund International 
(WCRFI) report, melanoma is the 17th most common cancer 
worldwide. It is the 13th most common cancer in men and the 
15th most common cancer in women. The mortality of 
melanoma skin cancer around the world in 2020 was 57,043 
deaths, where New Zealand, Norway, Montenegro, Slovakia, 
and Slovenia had the highest number of deaths. The worldwide 
mortality rate for non-melanoma skin cancer was 63,731 in 

2020, whereas Papua New Guinea, Namibia, Mozambique, 
Zimbabwe, and Angola had the highest mortality rates. 

Early detection and accurate diagnosis are pivotal factors in 
treating skin cancer. Typically, physicians rely on the biopsy 
method for skin cancer detection, which is often painful, slow, 
and time-consuming [3]. Studies have indicated that 
dermatologists exhibit classification performance values of 
75% to 84% when diagnosing melanoma, drawing upon their 
professional experiences [4, 5]. Additionally, globally, there is 
a shortage of skilled dermatologists in public healthcare 
systems, exacerbating the challenges in dermatological 
diagnosis and treatment [6]. 

This research is motivated by two primary goals. First, to 
improve the efficiency and accuracy of skin cancer diagnosis 
by developing an artificial intelligence-based screening system 
using dermoscopic images of skin lesions. Such a system could 
aid clinical screening tests, reduce diagnostic errors, and 
enhance early detection, which is critical for successful 
treatment. Second, this study aims to address the urgent need 
for reliable automated skin cancer detection systems, 
particularly in regions with limited access to dermatology 
specialists. By evaluating the classification performance of six 
CNN models and analyzing their training behavior and time 
requirements, this research provides a comprehensive 
assessment of AI-based solutions for skin cancer diagnosis. 
Ultimately, this study seeks to bridge diagnostic gaps, enable 
timely treatment, improve patient outcomes, and potentially 
save lives. 

Machine learning (ML) is a technique that employs 
statistical models and algorithms to learn from data 
progressively, enabling the prediction of characteristics of new 
samples and the execution of desired tasks [7]. ML's profound 
impact spans various societal domains, including production 
lines, healthcare, education, transportation, and food industries 
[7]. Deep Learning (DL), a subcategory of ML comprising 
deep neural networks, shares similarities with ML yet operates 
on a deeper level of complexity.  

979-8-3503-6304-3/24/$31.00 ©2024 IEEE 
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In recent decades, deep learning has profoundly 
transformed the field of machine learning. The significant 
increase in processing power has facilitated remarkable 
progress in computer vision technologies, notably by 
developing deep learning models like Convolutional Neural 
Networks (CNNs) [8]. Deep Learning has been widely 
successfully applied in a variety of classification problems, 
such as signal processing and radar systems [9, 10], 
autonomous vehicles [11, 12], cybersecurity [13, 14], and 
healthcare [15, 16].  

The urgency for early skin cancer detection has intensified, 
and deep learning has emerged as a powerful tool in this 
endeavor. Studies have demonstrated that early identification 
of skin cancer using deep learning improves the performance 
of human specialists, ultimately leading to a reduction in 
mortality rates [17]. By incorporating efficient formulations 
into deep learning techniques, exceptional and state-of-the-art 
processing and classification accuracy can be achieved [18]. 
Computer-based technology presents a promising avenue for 
diagnosing skin cancer symptoms, offering advantages in 
comfort, cost-effectiveness, and speed [18]. 

Quality data plays a pivotal role in the performance of 
machine learning models. Therefore, a diverse and 
comprehensive collection of dermoscopic images is necessary 
to assess the effectiveness of computer-based systems for skin 
cancer diagnosis. The HAM10000 dataset [19] is used in this 
research. The dataset was gathered from two sources: Cliff 
Rosendahl’s skin cancer practice in Queensland, Australia, and 
the Dermatology Department of the Medical University of 
Vienna, Austria. It comprises 10,015 dermatoscopic images 
obtained from different populations and acquired through 
various modalities. It includes representative cases of the most 
significant diagnostic categories for pigmented lesions, such as 
actinic keratoses and intraepithelial carcinoma (AKIEC), basal 
cell carcinoma (BCC), benign keratosis-like lesions (BKL), 
dermatofibroma (DF), melanoma (MEL), melanocytic nevi 
(NV), and vascular lesions (vasc). Each image is annotated 
with one of seven skin lesion types. Using dermoscopic images 
for training and applying AI models involves handling 
sensitive personal health information. To protect patient 
identities and prevent unauthorized access, all the images in the 
dataset are anonymized. The dataset is publicly available 
through the ISIC archive. HAM10000 dataset has an imbalance 
where it includes 327 images of AKIEC, 514 images of basal 
cell carcinomas, 1099 images of benign keratoses, 115 images 
of dermatofibromas, 6705 images of melanomas, 1113 images 
of melanocytic nevi, 142 images of vascular skin lesions. The 
imbalance is one of the significant challenges because 
classifiers tend to be influenced by the dominant class while 
neglecting the smaller ones [20].  

II. LITERATURE REVIEW 

Leveraging AI for skin cancer detection has the potential to 
significantly reduce the need for biopsies and empower patients 
to conduct self-examinations, facilitating teledermoscopy and 
decreasing the frequency of medical consultations [21]. 
However, developing an automatic classification system for 

skin cancer is challenging due to the complexity and diversity 
of skin cancer images. Skin lesions can share significant 
similarities across classes, increasing the risk of misdiagnosis 
[22]. Even within the same class, variations in color, features, 
structure, size, and location add to the difficulty of accurate 
classification [23]. 

CNNs are among the most powerful and widely used ML 
techniques for image recognition and categorization [24]. Their 
architecture typically includes convolutional layers, nonlinear 
pooling layers, and fully connected layers [25]. Fig. 1 shows 
the basic architecture of a CNN.  

 

Fig. 1 CNN architecture. 

Previous studies have demonstrated the effectiveness of 
CNNs in skin cancer classification. For instance, a study 
utilizing the HAM10000 dataset employed MobileNet for skin 
lesion detection, achieving an accuracy of 83% [25]. Another 
study introduced a fully convolutional residual network 
(FCRN) with 16 residual blocks for melanoma detection, 
achieving an accuracy of 85.5% with segmentation and 82.8% 
without segmentation [26]. Huang et al. developed two deep 
learning models using DenseNet and EfficientNet, achieving 
89.5% accuracy in binary classification on the KCGMH dataset 
and 85.8% on the HAM10000 dataset [27]. Furthermore, using 
Enhanced Super-Resolution Generative Adversarial Networks 
(ESRGAN) for image enhancement, coupled with a modified 
ResNet-50 model, improved classification metrics such as 
accuracy, precision, recall, and F1-score [28]. 

Another study aims to accurately classify skin lesions into 
seven categories using the HAM10000 dataset by leveraging 
13 deep transfer learning models. The research emphasizes the 
importance of early detection in reducing mortality rates. It 
highlights the potential of AI-based systems to enhance 
diagnostic accuracy, especially in regions with limited access 
to dermatological care [29].  

Most current state-of-the-art approaches rely on either 
hybrid models [30, 31] or ensembles of deep learning 
classifiers [32, 33, 34], which are often too resource-intensive 
for mobile applications. Developing a practical mobile 
application requires identifying a deep learning model that 
balances state-of-the-art performance with lightweight 
architecture. Therefore, this paper evaluates the performance of 
six different CNN models and analyzes their training time 
requirements. 

Despite these advancements, several limitations remain. 
Most studies focus on optimizing model accuracy without 
addressing the computational complexity, making them less 
suitable for real-time or mobile applications. Additionally, 
many approaches do not adequately address class imbalance in 
datasets, which can lead to biased models that underperform on 
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minority classes. This study addresses these gaps by evaluating 
a diverse set of pre-trained CNN models, focusing on accuracy 
and computational efficiency. Moreover, by fine-tuning these 
models and analyzing their performance across a balanced 
dataset, this research aims to develop a practical, scalable 
solution for skin cancer detection that can be deployed in 
resource-limited settings. 

In this study, we employ pre-trained CNN models and fine-
tune their parameters to address challenges in skin lesion 
detection. The CNN architectures utilized in this study include 
VGG16 [35], VGG19 [35], MobileNet [36], MobileNetV2 
[37], MobileNetV3 [38], and ResNet [39]. 

VGG16 and VGG19 are convolutional neural network 
(CNN) models named for their 16 and 19 weight layers, 
respectively. A notable advancement of VGG16 over earlier 
models like AlexNet [40] is its use of multiple 3×3 kernel-sized 
filters, which replaced larger kernels. The architecture of 
VGG16 consists of convolutional layers with ReLU activation 
functions designed for fixed input dimensions of 224 × 224 × 3 
RGB images. Each convolutional layer employs 3×3 filters 
with a stride of 1 and padding of 1. Following the 
convolutional layers, VGG16 incorporates three fully 
connected layers, with the first two containing 4096 channels 
each and the final layer performing 1000-way classification for 
the ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) using a softmax function for output classification. 

ResNet is a deep learning model designed for computer 
vision tasks. It introduced significant advancements in the 
ILVRSC 2015 competition. One of the primary issues ResNet 
aims to tackle is the Disappearing/Exploding gradient problem 
commonly encountered in deeper neural networks.  

The critical components of the ResNet architecture include 
Residual Block, Skip Connection, Stacked Layers, and Global 
Average Pooling (GAP). Fig.3 shows the architecture of 
ResNet models compared to VGG16 and plain networks. 

 

Fig. 3 ResNet architecture [39]. 

MobileNets represent a class of efficient models tailored for 
mobile and embedded vision tasks. They employ a streamlined 
architecture that relies on depthwise separable convolutions to 
construct lightweight deep neural networks [36].  

The core concept underlying the MobileNet revolves 
around utilizing depthwise separable convolutions and 
disassembling the standard convolution operation into two 
distinct stages: depthwise convolution and pointwise 
convolution. The architecture of MobileNet, depicted in Fig. 4, 

comprises 13 blocks of depthwise separable convolutional 
layers, as described in the original paper [36]. 

 

Fig. 4 MobileNet architecture [36]. 

MobileNet version 2 (MobileNetV2) significantly advances 
mobile model performance across various tasks and 
benchmarks and in different model sizes [37]. The architecture 
of MobileNetV2 revolves around an inverted residual structure, 
which diverges from residual models by employing thin 
bottleneck layers at the input and output of the residual block. 
Fig. 5 represents the MobileNetV2 architecture. 

 

Fig. 5 MobileNetV2 architecture [37]. 

MobileNet version 3 (MobileNetV3) introduces 
complementary search techniques and innovative architectural 
designs. Tailored specifically for mobile phone CPUs, 
MobileNetV3 integrates hardware-aware network architecture 
search (NAS) [38] alongside the NetAdapt algorithm [38]. Fig. 
6 indicates the architecture of MobileNetV3. 

 

Fig. 6 MobileNetV3 architecture [38]. 

Compared to MobileNetV2, MobileNetV3 incorporates the 
Squeeze and Excitation (SE) module, initially introduced in 
SENet [41], to enhance feature learning. MobileNetV3 replaces 
the sigmoid activation function in the SE module with the hard-
sigmoid function to improve computational efficiency.  

With the remarkable advancements in deep learning, 
transfer learning has become a central element in various 
computer vision fields, including multimedia [42], surveillance 
[43], and medical applications [44]. The concept involves 
leveraging pre-trained models originally trained on non-
medical or natural image datasets and then fine-tuning these 
models with new data to adapt to specific tasks [45]. Transfer 
learning plays a crucial role in deploying convolutional neural 
networks for diagnostic imaging tasks such as skin cancer 
detection [46], Alzheimer’s Disease diagnosis [47], and chest 
X-ray analysis [48]. 

Fig. 7 illustrates the architectures used in the transfer 
learning approach. Typically, open-source pre-trained models 
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are trained on extensive datasets containing numerous classes. 
Transfer learning allows us to modify pre-trained networks by 
replacing the top layer with an output layer tailored to our 
dataset. Depending on the size of our dataset, we can adjust or 
fine-tune the parameters of the pre-trained models to better suit 
our specific needs. 

 

Fig. 7 Transfer learning methodology. 

III. METHODOLOGY 

The methodology consists of four main steps: pre-
processing, data augmentation, model architecture, and 
evaluation metrics. 

Pre-processing: The initial stage of our analysis involved 
reading images from the dataset and pre-processing them. The 
initial size of images is 600 × 450 × 3, and we resized images 
to dimensions of 244 × 224 × 3, ensuring compatibility with 
the convolutional neural network (CNN) architectures 
employed. Additionally, we use built-in functions in the Keras 
library in Python for data normalization to enhance the 
uniformity of their pixel values, thus preparing them for 
subsequent training procedures. 

Data augmentation: The HAM10000 dataset includes an 
imbalanced distribution of data. Resampling is applied to 
tackle this problem. The available data is diversified by 
augmenting the dataset through transformations such as 
rotation, flipping, scaling, and cropping, helping to address the 
class imbalance issue and enriching the dataset with variations 
of existing images. 

Model architecture: In our skin lesion detection application, 
exploring transfer learning utilizing pre-trained models such as 
VGG16, VGG19, MobileNet, MobileNet V2, MobileNet V3, 
and ResNet is integral to the project. Fig. 8 represents the 
model architecture, where we drop the top layer of pre-trained 
models and add average pooling, dropout, and softmax layers 
with the number of classes in our dataset. 

 

Fig. 8 Model architecture. 

Evaluation metrics: Based on the evaluation metrics in the 
skin cancer image classification domain [49, 50, 51], our 
assessment will encompass standard metrics, including 
accuracy and Weighted F1-Score. Additionally, we evaluate 

the proposed model based on training time for low-power 
devices. 

IV. RESULTS & DISCUSSION 

This research was done using an ASUS TUF Gaming A15 
system with AMD Ryzen 7 6800H processor information with 
Radeon Graphics, 3201 Mhz, 8 Core(s), 16 Logical 
Processor(s), and 16GB of RAM. 

A. CNN models without data augmentation 

First, the results of transfer learning based models without 
any data augmentation are reported. We proceed with fine-
tuning the parameters of the pre-trained models, focusing on 
specific layers tailored to each architecture. For MobileNetV1, 
MobileNetV2, MobileNetV3, VGG16, VGG19, and ResNet50, 
the fine-tuning of parameters commences from layers 50, 100, 
120, 10, 13, and 120 out of a total of 86, 154, 157, 19, 22, and 
175 layers, respectively. Table 1 showcases the results, where 
ResNet50 emerges as the top performer in training and 
validation accuracy and the F1-score. Furthermore, 
MobileNetV3 demonstrates rapid training, requiring less than 9 
minutes, while achieving a training accuracy of 98.54% and a 
validation accuracy of 85.79%. 

 

TABLE 1. FINE-TUNED CNNS WITHOUT DATA AUGMENTATION. 

Model Training 

Accuracy 

Training 

F1-Score 

Validation 

Accuracy 

Validation 

F1-Score 

Run Time 

VGG16 0. 9842 0.8868 0.8427 0.7752 263m 16.5s 

VGG19 0.9868 0.8903 0.8306 0.7511 277m 51s 

ResNet
50 

0.9934 0.9233 0.8639 0.8131 92m 40.1s 

Mobile
Net 

0.9712 0.8561 0.833 0.761 32m 21.2s 

Mobile
NetV2 

0.9823 0.8839 0.8538 0.7782 37m 22.5s 

Mobile
NetV3 

0.9854 0.8871 0.8579 0.7802 8m 44.8s 

 

Examine the confusion matrix of the models on the test 
data. Fig. 9 illustrates the test dataset's true labels, comprising 
1001 images from 7 classes. 

 

Fig. 9 True labels of the test dataset. 

Fig. 10 displays the confusion matrix results for 
MobileNetV1. The confusion matrix results reveal that 
MobileNetV1 successfully identifies the nv skin lesion family, 
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achieving 642 correct predictions out of 654 instances. Bkl 
lesions also show a relatively high number of correct 
predictions (77). However, the model struggles with the vasc 
lesion family, which is frequently misclassified. Mel lesions 
are often mistaken for nv and bkl, with 64 and 30 instances, 
respectively. Akiec and df also show considerable 
misclassifications between these classes and others like bcc and 
nv. This indicates that MobileNetV1 has difficulty 
distinguishing between these classes. 

 

Fig. 10 Confusion matrix of MobileNet on the test dataset. 

Fig. 11 illustrates the confusion matrix results for 
MobileNetV2. The model shows significant misclassification 
between classes with likely visual similarities. Many akiec 
instances are misclassified as nv (10 out of 37), and some bcc 
instances as akiec or nv, indicating overlapping features. While 
bkl is correctly classified in 71 out of 108 cases, there are 
substantial errors with nv. The model poorly distinguishes df, 
with only 4 out of 10 correctly classified. It performs well on 
nv (628 out of 651), though some are misclassified as mel. The 
mel class has lower accuracy, with frequent misclassification 
into bkl and nv. Despite its small size, vasc is mostly correctly 
classified (6 out of 10). 

 

Fig. 11 Confusion matrix of MobileNetV2 on the test dataset. 

Figure 12 presents the confusion matrix for MobileNetV3 
on the test dataset without augmentation. The model correctly 
identifies 16 instances of akiec but struggles significantly with 
misclassifications, particularly confusing akiec with bkl and nv. 
This confusion suggests that the model might focus on shared 
features, such as color and texture, which are not distinctive 
enough for accurate differentiation. Similarly, although the 
model accurately predicts 36 cases of bcc lesions, it often 
confuses them with akiec, bkl, nv, and mel, indicating a 
potential overlap in the feature space of these classes. The 
model performs well in predicting bkl with 64 correct 
identifications, but the confusion with nv and mel raises 
concerns about its ability to differentiate between lesions with 
subtle variations. The model’s strong performance in predicting 
nv (602 correct identifications) reflects its effectiveness with 
more distinct classes. Yet, the misclassifications as bkl and mel 
suggest a need for more refined feature extraction. The high 

accuracy in vasc identification (8 correct cases) highlights the 
model's proficiency with more easily distinguishable lesions. 

 

Fig. 12 Confusion matrix of MobileNetV3 on the test dataset. 

Figure 13 shows the confusion matrix for VGG16 on the 
test dataset without augmentation. The model identifies 18 
instances of akiec but frequently misclassifies this class as mel 
and nv. This pattern of errors may stem from the model’s 
struggle to capture the unique characteristics of akiec that 
distinguish it from other lesions, which is crucial given the 
clinical significance of akiec. While the model correctly 
predicts 33 cases for the bcc class, the ongoing confusion with 
akiec, bkl, nv, and mel suggests that the model might overly 
rely on shared features, leading to ambiguity. Although the 
model performs well in predicting bkl with 65 correct 
identifications, the misclassifications with nv and mel indicate 
that these classes might share overlapping features that the 
model is not effectively separating. Df prediction shows minor 
confusion with other types, possibly due to insufficient 
distinctive features being learned. The model performs strongly 
in predicting nv (618 correct identifications), but 
misclassifications such as bkl, bcc, and mel suggest difficulties 
differentiating between lesions with similar visual 
characteristics. The high accuracy in vasc classification (9 out 
of 10 cases) underscores the model’s proficiency with more 
easily distinguishable classes. 

 

Fig. 13 Confusion matrix of Vgg16 on the test dataset. 

Figure 14 depicts the confusion matrix for VGG19 on the 
test dataset without augmentation. The model successfully 
identifies 25 instances of akiec but struggles with 
misclassifications, particularly confusing akiec with bcc, bkl, 
and nv. This suggests that the model may be focusing on 
features that are not distinctive enough, leading to errors in 
classification, which is particularly concerning for a class as 
clinically crucial as akiec. While the model achieves an 
accuracy rate of 30 cases for the bcc class, the confusion with 
akiec, bkl, nv, and mel indicates that subtle visual similarities 
among these classes may challenge the model. The model 
performs strongly in predicting bkl with 75 correct 
identifications. Still, the misclassifications with nv and mel 
suggest that the model might benefit from more refined feature 
extraction or additional training data that better highlights the 
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distinctions between these classes. While the model 
demonstrates proficiency in predicting nv (614 correct 
identifications), the persistent misclassifications as bkl, bcc, 
and mel highlight a need for more effective differentiation of 
these classes. The accurate classification of all 10 vasc cases 
showcases the model’s strength with more visually distinct 
lesions. 

 

Fig. 14 Confusion matrix of Vgg19 on the test dataset. 

Figure 15 presents the confusion matrix for ResNet50 on 
the test dataset without augmentation. The model correctly 
identifies 16 instances of akiec, but significant 
misclassifications with bkl and nv are observed. These errors 
suggest that the model may struggle to distinguish between 
akiec and other lesions with overlapping features, which could 
be problematic in clinical settings where accurate identification 
of akiec is critical. While the model achieves an accuracy rate 
of 28 cases for the bcc class, confusion with other classes 
remains, indicating that the model may need more 
discriminative features to improve its accuracy. The model 
performs well in predicting bkl with 63 correct identifications. 
Still, the confusion with nv and mel suggests that the model 
may not adequately capture the subtle differences between 
these classes. Df prediction shows moderate performance with 
6 correct cases out of 10, indicating potential challenges in 
differentiating this class from others, possibly due to limited 
training data or insufficient feature representation. The model 
excels in predicting nv with 630 correct identifications, but the 
misclassifications as bkl, bcc, vasc, and mel highlight areas 
where the model could benefit from further refinement. The 
high accuracy in vasc classification (9 out of 10 cases) reflects 
the model’s strength in identifying more distinct lesions. 

 

Fig. 15 Confusion matrix of ResNet50 on the test dataset. 

In summary, the findings from Table 1 demonstrate the 
effectiveness of transfer learning in utilizing pre-trained models 
for skin lesion detection, even when working with imbalanced 
datasets like HAM10000. However, the confusion matrices 
reveal critical insights into how this dataset imbalance 
exacerbates classification difficulties, particularly for less-
represented classes. The results indicate that models perform 
significantly better in classes with more abundant training data. 

This underscores the need for a balanced dataset to achieve 
optimal classification accuracy across all lesion types. This 
highlights the importance of addressing dataset imbalance 
through data augmentation, re-sampling, or advanced loss 
functions to mitigate the bias toward majority classes and 
improve overall model performance. 

B. CNN models with data augmentation 

After assessing the effectiveness of transfer learning in 
using pre-trained models across various image types and fine-
tuning the weights based on our dataset, we try to address the 
imbalance issue in the HAM10000 dataset. To improve our 
results, we employ transfer learning again, incorporating the 
data augmentation concept. This involves techniques such as 
random flipping, rotation, adjustment of brightness and 
contrast, and cropping of images within the dataset to generate 
additional data instances. 

After data augmentation, each class in the training dataset 
has been augmented to contain 2000 samples, resulting in a 
balanced training dataset. 

Table 2 showcases the outcomes obtained through transfer 
learning utilizing pre-trained CNN models, where the weights 
are trained based on the HAM10000 dataset with data 
augmentation. 

 

TABLE 2. FINE-TUNED CNNS WITH DATA AUGMENTATION 

Model Training 

Accuracy 

Training 

F1-Score 

Validation 

Accuracy 

Validation 

F1-Score 

Run Time 

VGG16 0. 9936 0.9896 0.9106 0.9052 327m 23.1s 

VGG19 0.9944 0.9902 0.9092 0.9064 430m 20.8s 

ResNet
50 

0.9989 0.9957 0.9231 0.9198 133m 28.1s 

Mobile
Net 

0.9949 0.9815 0.9011 0.8981 48m 11.9s 

Mobile
NetV2 

0.9959 0.9911 0.9161 0.9131 38m 9s 

Mobile
NetV3 

0.9951 0.9903 0.9155 0.9112 13m 27.9s 

 

After fine-tuning with augmented data, all methods 
exhibited commendable accuracy and F1-score performance. 
ResNet50, once again, emerged as a top performer, achieving 
99.89% accuracy on the training dataset and 92.31% accuracy 
on the validation dataset. Following ResNet50, MobileNetV2, 
MobileNetV3, VGG16, VGG19, and MobileNetV1 
demonstrated progressively better accuracy. 

Runtime is a crucial metric for gauging the computational 
costs incurred by the models. Larger networks such as VGG19, 
VGG16, and ResNet50 incurred significantly higher 
computational costs. Among them, VGG19, with almost 430 
minutes, had the highest training time. Conversely, MobileNet 
models demonstrated notable efficiency in terms of 
computational costs. Among these, MobileNetV3 stood out 
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with a training time of less than 13 minutes, making it an 
optimal choice for resource-constrained devices like 
smartphones. 

The confusion matrices for the models on the test data after 
data augmentation provide valuable insights into their 
performance. 

Fig. 16 shows the confusion matrix for MobileNet on the 
test dataset after data augmentation, highlighting the model's 
strengths and weaknesses. While MobileNet accurately 
identifies 29 instances of akiec, it struggles with 
misclassifications, particularly confusing akiec with bkl and nv. 
The model correctly predicts 40 bcc cases, but confusion with 
nv and other classes remains significant. Although 89 instances 
of bkl are correctly identified, the model misclassifies several 
as nv and bcc, indicating challenges in distinguishing between 
these lesion types. The model shows moderate accuracy in 
classifying df lesions, correctly identifying 7 out of 10 cases, 
but occasional misclassifications suggest room for 
improvement. MobileNet demonstrates a high accuracy rate 
(99.38%) for nv, successfully identifying 650 out of 654 cases; 
however, the misclassification of 4 instances, particularly as 
bkl, underscores the challenges in differentiating between these 
similar lesion types. Detecting melanoma (mel) is notably 
problematic, with only 44.27% accuracy, as the model 
frequently confuses mel with nv and bkl, which could have 
severe clinical implications. The classification of vasc lesions 
is commendable, with 8 out of 10 instances correctly identified. 

 

Fig. 16 Confusion matrix of MobileNet on the test dataset after data 

augmentation.  

Fig. 17 represents the confusion matrix for MobileNetV2 
on the test dataset with data augmentation, revealing its overall 
strong performance, particularly with nv lesions, correctly 
identifying 643 out of 654 instances. However, the model 
encounters substantial difficulties distinguishing mel and akiec 
from classes like nv and bkl. This pattern of misclassification 
highlights the potential visual similarities between these 
lesions, which are often clinically significant. For instance, the 
frequent misclassification of mel as nv could lead to severe 
clinical consequences, emphasizing the need for more nuanced 
feature extraction or additional augmentation strategies. The 
results indicate that while MobileNetV2 is proficient in 
handling well-represented classes, it requires further refinement 
to improve the differentiation of lesions with overlapping 
features. 

 

Fig. 17 Confusion matrix of MobileNetV2 on the test dataset after data 

Fig. 18 demonstrates the confusion matrix for 
MobileNetV3 after data augmentation showcases the model's 
balanced performance across various classes. While it correctly 
identifies 29 instances of akiec, it still misclassifies some as bkl 
and nv, suggesting challenges in distinguishing between these 
classes. The model's 46 correct predictions for bcc indicate 
good performance, yet confusion with other classes persists. 
Although the model accurately predicts 84 instances of bkl, it 
struggles with misclassifications involving nv, bcc, and akiec, 
highlighting potential areas for improvement. MobileNetV3 
demonstrates high accuracy for df, correctly identifying 9 out 
of 10 cases. The model excels in nv classification, with 644 out 
of 654 instances accurately identified, yet it continues to face 
challenges with bkl, mel, and bcc misclassifications. Melanoma 
detection shows improvement with 92 instances correctly 
identified, yet the model frequently misclassifies these as nv 
and bkl, indicating that subtle distinctions between these 
lesions remain challenging to capture. The classification of 
vasc lesions is perfect, with all ten instances correctly 
identified, achieving 100% accuracy. While MobileNetV3 
performs exceptionally well in detecting nv and vasc lesions, 
its lower accuracy in detecting mel (70.23%) suggests further 
model refinement to better distinguish between closely related 
lesions. 

 

Fig. 18 Confusion matrix of MobileNetV3 on the test dataset after data 

Fig. 19 showcases the confusion matrix for VGG16 on the 
test dataset, with data augmentation providing a detailed view 
of the model's performance. VGG16 correctly identifies 30 
instances of akiec but struggles with misclassifications, 
particularly with mel and nv, reflecting the challenges in 
distinguishing between these visually similar lesions. The 
model's 41 correct predictions for bcc indicate a solid 
performance, though misclassifications with other classes 
persist. The model accurately predicts 81 instances of bkl but 
also shows significant misclassifications as nv, mel, bcc, and 
akiec, suggesting that the model may benefit from further 
refinement in distinguishing between these classes. VGG16 
demonstrates high accuracy in df classification, correctly 
identifying 9 out of 10 instances. The model is proficient in 
predicting nv, with 638 out of 654 cases correctly classified, 
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but continues to face challenges with misclassifications 
involving mel, bkl, and bcc. Melanoma detection is relatively 
strong, with 100 instances correctly identified; however, 
frequent misclassifications as nv and bkl highlight the need for 
improved feature extraction. The classification of vasc lesions 
is perfect, achieving 100% accuracy. While VGG16 excels in 
detecting vasc lesions, its lower accuracy in detecting bkl 
lesions indicates the need for targeted improvements in model 
training. 

 

Fig. 19 Confusion matrix of Vgg16 on the test dataset after data 

Fig. 20 shows the confusion matrix for VGG19 on the test 
dataset with data augmentation. The model correctly identifies 
35 instances of akiec, yet misclassifications as bkl and nv 
persist, indicating the challenges in distinguishing these 
lesions. VGG19 achieves 38 correct predictions for bcc, though 
confusion with other classes remains an issue. The model 
accurately predicts 89 instances of bkl but struggles with 
misclassifications as nv, mel, and akiec, suggesting potential 
areas for improvement. VGG19 demonstrates a high accuracy 
rate for df, correctly identifying 8 out of 10 cases, although 
occasional confusion with other lesion types is observed. The 
model is proficient in predicting nv, correctly identifying 637 
out of 654 instances, yet continues to face challenges with 
misclassifications involving mel, bkl, akiec, and bcc. 
Melanoma detection is relatively strong, with 90 cases 
correctly identified, but frequent misclassifications as nv and 
bkl highlight the need for enhanced feature differentiation. The 
classification of vasc lesions is perfect, achieving 100% 
accuracy. Although VGG19 excels in detecting vasc lesions, it 
faces significant challenges in accurately detecting the mel skin 
lesion family, suggesting further model adjustments. 

 

Fig. 20 Confusion matrix of Vgg19 on the test dataset after data 

Fig. 21 illustrates the confusion matrix for ResNet50 on the 
test dataset with data augmentation. ResNet50 successfully 
identifies 32 instances of akiec but misclassifies some as bkl 
and nv, indicating difficulties distinguishing these lesions. The 
model achieves 43 correct predictions for bcc, but confusion 
with other classes remains a challenge. ResNet50 accurately 
predicts 88 instances of bkl but misclassifies some as nv and 
mel, suggesting that the model may struggle with subtle 

differences between these lesion types. The model 
demonstrates high accuracy in df classification, correctly 
identifying 9 out of 10 cases. ResNet50 excels in predicting nv, 
with 646 out of 654 instances accurately identified, yet faces 
challenges with misclassifications involving mel, bkl, and bcc. 
Melanoma detection is strong, with 89 cases correctly 
identified, but frequent misclassifications as nv and bkl 
highlight the need for improved model precision. The 
classification of vasc lesions is perfect, achieving 100% 
accuracy. While ResNet50 achieves the highest accuracy in 
detecting vasc lesions, its struggles with the mel skin lesion 
family underscore the need for targeted refinements to better 
distinguish between these critical lesion types. 

 

Fig. 21 Confusion matrix of ResNet50 on the test dataset after data 

The results affirm the effectiveness of combining transfer 
learning with data augmentation for skin lesion detection. 
ResNet50 achieves substantial accuracy on both the 
development and test datasets, showcasing its robust 
performance across various lesion types. However, 
MobileNetV3 is optimal for real-world deployment, given its 
efficient runtime and suitability for low-power devices. This 
aligns with the performance metrics detailed in Tables 1 and 2, 
which underscore the effectiveness of the applied 
methodologies and their practical implications for deploying 
these models in resource-constrained environments. 

V. LIMITATIONS AND FUTURE RESEARCH DIRECTIONS 

The current approach and dataset have some problems. The 
HAM10000 dataset, while comprehensive, has limitations in 
size and demographic diversity, predominantly featuring 
images from specific population groups, which restricts the 
model’s generalizability across broader populations. A notable 
challenge is the class imbalance, where benign lesions are more 
prevalent, potentially biasing the model and reducing its 
accuracy for less common, malignant lesions. Although 
transfer learning from pre-trained CNNs improves 
performance, the model may not generalize well to new 
datasets or real-world scenarios due to the specific features 
learned from HAM10000. Data augmentation efforts may 
mitigate overfitting, but the risk remains if the augmented 
images do not fully represent real-world variability. 

Real-world deployment presents additional challenges, 
including the need for validation across diverse populations, 
seamless integration into clinical workflows, and adherence to 
regulatory standards. The potential for false positives or 
negatives also raises ethical concerns, underscoring the need 
for interpretable models that clinicians can trust. 
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Future research should expand and diversify the dataset, 
incorporate images from varied populations, and explore 
advanced augmentation techniques such as Generative 
Adversarial Networks (GANs). Fine-tuning more varied 
datasets and investigating domain adaptation techniques will be 
critical for improving adaptability. Real-world validation 
through clinical trials and the implementation of continuous 
learning systems will help maintain the model’s accuracy and 
relevance over time. 

VI. CONCLUSION 

Based on the findings presented in this research, transfer 
learning and data augmentation are effective strategies for 
improving the performance of deep learning models in skin 
lesion detection tasks. Using the HAM10000 dataset and pre-
trained CNN models allowed for the development of classifiers 
that accurately identify skin lesions. 

ResNet50 consistently emerged as a top performer in 
accuracy and F1-score metrics, demonstrating its adaptability 
and effectiveness in leveraging pre-trained weights for feature 
extraction. On the other hand, MobileNetV3 showcased 
notable efficiency in runtime, making it a viable option for 
real-time applications and resource-constrained devices. 

Incorporating data augmentation techniques further 
enhanced model performance, particularly in mitigating issues 
related to dataset imbalance. The models were better equipped 
to generalize unseen data and improve classification accuracy 
by generating additional training instances through random 
transformations. 

Overall, the results highlight the importance of thoughtful 
model selection and optimization strategies in achieving high-
performance skin lesion detection systems. The findings have 
implications for clinical practice, where accurate and efficient 
diagnostic tools are essential for timely and effective patient 
care. Future research could investigate additional augmentation 
techniques like color shifting and explore advanced model 
architectures like vision transformers. Moreover, enhancing 
datasets could further improve performance and broaden the 
applicability of deep learning models in dermatology. 
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