
Numerical Approximation of Spike-Type Solutions

to a One-Dimensional Sub-Diffusive

Gierer-Meinhardt Model with Controlled Precision.

by

Nehemie Nguimbous

a thesis submitted in partial fulfillment

of the requirements for the degree of

Bachelor of Science (Hons.)

in the

Department of Mathematics & Statistics

©Nehemie Nguimbous 2024

We accept this thesis as conforming to the required standards:

Supervisor’s Name
Dept. of Mathematics & Statistics
Thesis Supervisor

First Examiner’s Name
Dept. of Mathematics & Statistics

Second Examiner’s Name
Dept. of Mathematics & Statistics

Dated April 8 2024, Kamloops, British Columbia, Canada

Yana Nec

Shirin Boroushaki

Richard Brewster

THOMPSON RIVERS UNIVERSITY

DEPARTMENT OF MATHEMATICS & STATISTICS

Permission is herewith granted to Thompson Rivers University to circulate and to have copied
for non-commercial purposes, at its discretion, the above title upon request of individuals or
institutions.

Signature of Author

the author reserves other publication rights, and neither the thesis nor ex-
tensive extracts from it may be printed or otherwise reproduced without the
author’s written permission.

the author attests that permission has been obtained for the use of
any copy-righted material appearing in this thesis (other than brief excerpts
requiring only proper acknowledgement in scholarly righting) and that all
such use is clearly acknowledged.

ii

Abstract

This thesis focuses on numerically solving the sub-diffusive Gierer-Meinhardt model with con-
trolled precision. We start by defining and explaining basic concepts of reaction diffusion,
highlighting the main differences between normal and anomalous diffusion. Sub-diffusion is
modelled at continuum level by fractional derivatives replacing regular ones in PDEs. There-
fore a crucial part of our study involves fractional calculus, which provides a solid framework
for describing subdiffusive processes. We explore integer and fractional derivatives and inte-
grals, their main properties, those that can be extended from classical to fractional calculus,
and the reasons for limitations in some cases.

We then delve into the well-known Gierer-Meinhardt model, a reaction-diffusion system
used to describe pattern formation in biological systems. Leveraging the matched asymptotic
expansion technique, which is applicable due to the asymptotic smallness of certain parame-
ters in the system, we transform the differential Gierer-Meinhardt model into a differintegro-
algebraic system.This differintegro-algebraic system contains a fractional operator denoted Dγ

t ,
which involves the integral of a complex function impossible to determine analytically. This
operator depends on multiple parameters, and the number of subdivisions needed for numerical
computation varies significantly with these parameters and the desired precision. To address
this challenge, we have developed a program capable of precalculating the required number
of subdivisions before computation, thus saving significant computation time. All elements in
place, we use these tools to study the dynamics of the obtained spikes.

iii

Acknowledgements

I extend my gratitude to my thesis supervisor for her invaluable guidance and support through-
out this research endeavor. Additionally, I am deeply grateful for the financial support pro-
vided by the Undergraduate Reseach Apprenticeship Fund and the Telus Exellence in Science
Award , which made this undergraduate thesis project possible. My sincere thanks also go
to Thompson Rivers University for their provision of resources and facilities essential for this
study.

iv

Contents

Abstract iii

Acknowledgements iv

1 Reaction-Diffusion 1

2 Classical and Fractional Calculus 3
2.1 Background, Properties, Similarities and Differencies 3

2.1.1 Classical or Integer Calculus . 4
2.1.2 Fractional Derivatives and Integrals: Definitions and Equivalencies . . . 12
2.1.3 Differentiation of Simple Functions . 24
2.1.4 General Properties . 30
2.1.5 Auxiliary Proofs . 41

3 Gierer-Meinhardt Model 48
3.1 Representation, Matched Asymptotic Expansion and Solution 48

3.1.1 Neumann Boundaries Conditions . 49
3.1.2 Asymptotic Solution of the Gierer-Meinhardt Model 50
3.1.3 Auxiliary Proofs . 63

4 Numerical Approximation of Dγ
t u with a Controlled Precision 72

4.1 Introduction, Method and Verification . 72
4.1.1 Introduction and Background . 72
4.1.2 Procedure . 73
4.1.3 Plan . 74
4.1.4 Regularization of Dγ

t u . 75
4.1.5 Numerical Approximation of I with a Controlled Precision 77
4.1.6 Number of Subdivisions Required to Compute I for Continuous Values

of t and Discrete Values of p and γ . 91
4.1.7 Number of Subdivisions Required to Compute I with a Controlled Pre-

cision for Continuous Values of t, p and γ 93
4.1.8 Summary of the Interpolation Process 94

v

4.1.9 Assessment of the Accuracy of the Results 96

5 Conclusion 100

Appendix A Structure of the Project 103

References 105

vi

Chapter 1

Reaction-Diffusion

Definitions and Types

Reaction-diffusion is a dynamic process in which the spatial distribution of chemical substances
evolves over time due to the interplay between those chemicals and their diffusion through
space. The system typically involves an ”activator,” a chemical component that promotes its
own production and that of other substances. Simultaneously, an ”inhibitor” is present, which
suppresses its own production and that of other substances. The delicate balance between the
concentrations of the activator and the inhibitor, along with their diffusion properties, gives
rise to intricate patterns and structures such as stripes, spots, and spikes. These patterns are
observed in various animals’ skins, such as zebras, cheetahs, or giraffes. Moreover, reaction-
diffusion is also responsible for the regulation that must take place during organism growth,
such as the formation of new tissue.

Types of Diffusion

Depending on specific system parameters and conditions, we can distinguish between two main
types of diffusion: normal and anomalous diffusion.

1. Normal diffusion: is characterized by Fick’s law:

J = −D∇C,

where J represents the diffusion flux, D the diffusion coefficient, and C the concentration
of the substance. This process involves the random linear movement of particles from
regions of higher concentration to lower concentration. The mean square displacement
of the particles is expressed as a linear function of time.

r2(t) ∼ t.

2. Anomalous diffusion is characterized by a non-linear displacement of particles. The mean
square displacement of the particles is expressed as a power function of time:

1

2

r2(t) ∼ tγ .

There exist two main types of anomalous diffusion: sub-diffusion and super-diffusion. The
former occurs when the spread of particles is slower than that of normal diffusion, characterized
by γ < 1, while the latter arises when the displacement of the particles is faster, with γ > 1.

Chapter 2

Classical and Fractional Calculus

2.1 Background, Properties, Similarities and Differencies

This section is based in its entirety on the textbook [7]. The main topic of the text is to
generalise integer derivatives and integrals to fractional orders. Before embarking on this
journey, an auxiliary topic needed throughout the book is the Γ function, distinguished by its
extensive usage throughout the text and its significant contributions to key results. The Γ
function, defined as

Γ(z) =

∫ ∞

0
tz−1e−tdt for Re(z) > 0,

and it has several fundamental properties, including:

1. Factorial Property: For a positive integer n, Γ(n) = (n− 1)!.

2. Recurrence Relation: Γ(z + 1) = zΓ(z).

3. Reflection Formula: Γ(z)Γ(1− z) =
π

sin(πz)
, z ̸∈ Z.

4. Euler’s Identity: Γ(z) = lim
n→∞

nzn!

z(z + 1) · · · (z + n)
.

5. Duplication Formula: Γ(2z) = 22z−1Γ(z)Γ

(
z +

1

2

)
1√
π
.

6. Asymptotic expansion:

Γ(j − q)

Γ(j + 1)
∼ j−1−q

[
1 +

q[q + 1]

2j
+O(j−2)

]
, q ∈ R, j ∈ N, and j → ∞. (2.1)

3

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 4

A function that is closely related to the Gamma function is the Beta function B (p, q). For
positive values of the two parameters, p and q, the function is defined by the Beta integral

B (p, q) =

∫ 1

0
yp−1[1− y]q−1dy, p > 0 < q, (2.2)

also known as Euler’s integral of second kind. If either p or q is non-positive, the integral
diverges and the Beta function is defined by the relationship

B (p, q) =
Γ(p)Γ(q)

Γ(p+ q)
. (2.3)

2.1.1 Classical or Integer Calculus

Integer calculus, commonly known as classical calculus, has its origins deeply rooted in the
monumental contributions of Isaac Newton and Gottfried Wilhelm Leibniz during the 17th
century. These mathematical pioneers independently developed the fundamental principles of
differentiation and integration, forming the bedrock of classical calculus. Hereinafter we will
review the classical notions of differentiation and integration with the view to unify them as
one overarching concept and from there generalise to a non-integer order.

Integer Derivative

In classical calculus, the derivative of a function represents the rate at which the function’s
output changes with respect to its input. The first order integer derivative is defined as

d1f(x)

[d(x− a)1]
=

df(x)

d(x− a)
= lim

δx→0

{[
δx
]−1[

f(x)− f(x− δx)
]}
, (2.4)

where δx =
x− a

N
, with a being an immaterial real number less than x and N being a positive

integer greater or equal to 1. Subsequently, the second order integer derivative, ensued by
applying the derivative once to (2.4) is defined as

d2f(x)

[d(x− a)2]
= lim

δx→0

{[
δx
]−2[

f(x)− 2f(x− δx) + f(x− 2δx)
]}
. (2.5)

In the same way, the third order integer derivative is defined as

d3f(x)

[d(x− a)3]
= lim

δx→0

{[
δx
]−3[

f(x)− 3f(x− δx) + 3f(x− 2δx)− f(x− 3δx)
]}
. (2.6)

The nth order integer derivative is generalized as follows

dnf(x)

[d(x− a)n]
= lim

δx→0

{[
δx
]−n

n∑
j=0

[
− 1
]j(n

j

)
f(x− j δx)

}
. (2.7)

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 5

Integer Integration or Antidifferentiation

The integral of a function represents the accumulation of a quantity described by the function
over an interval. Geometrically, it corresponds to the area under the curve of the function in
a given interval. Because integration and differentiation are inverse operations, it is natural
to unify their symbolism. Using the definition of an integral as a limit of a Riemann sum, we
have

d−1f(x)

[d(x− a)−1]
=

∫ x

a
f(t) dt = lim

δx→0

{[
δx
][
f(x) + f(x− δx) + f(x− 2δx) + . . .+ f

(
x− (N − 1)δx

)]}

= lim
δx→0

{[
δx
]N−1∑

j=0

f(x− j δx)

}
.

(2.8)
Applying the same definition to a double integration leads to

d−2f(x)

[d(x− a)−2]
=

∫ x

a

∫ x1

a
f(t) dt dx1

= lim
δx→0

{[
δx
]2[

f(x) + 2f(x− δx) + 3f(x− 2δx) + . . .+Nf
(
x− (N − 1)δx

)]}

= lim
δx→0

{[
δx
]2 N−1∑

j=0

[
j + 1

]
f(x− j δx)

}
.

(2.9)
We need to integrate one more time to get a better grasp of the overall formula:

d−3f(x)

[d(x− a)−3]
=

∫ x

a

∫ x2

a

∫ x1

a
f(t) dt dx1 dx2 = lim

δx→0

{
[δx]3

N−1∑
j=0

[j + 1][j + 2]

2
f(x− j δx)

}
.

(2.10)

This time, we observe that the coefficients accumulate as

(
j + n− 1

j

)
, with n representing

the integral’s order, and all coefficients are positive. Hence,

d−nf(x)

[d(x− a)−n]
= lim

δx→0

{[
δx
]n N−1∑

j=0

(
j + n− 1

j

)
f(x− j δx)

}
. (2.11)

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 6

Matching of the Differentiation and Integration Expressions: Differintegration

Using the convention that

(
n

j

)
= 0 when j > n, with both numbers integers, equation (2.7)

can be reformulated as:

dnf(x)

[d(x− a)n]
= lim

δx→0

{[
δx
]−n

N−1∑
j=0

[
− 1
]j(n

j

)
f(x− j δx)

}
, (2.12)

where N − 1 > n. This convention is consistent with the Γ function interpretation, since Γ of
a negative integer is infinite. By comparing formulas (2.7) and (2.11), and recalling that[

−1
]j(n

j

)
=

(
j − n− 1

j

)
=

Γ(j − n)

Γ(−n)Γ(j + 1)
,

equations (2.7) and (2.11) can be unified in the following equation:

dqf(x)

[d(x− a)q]
= lim

δx→0

{
[δx]−q

Γ(−q)

N−1∑
j=0

Γ(j − q)

Γ(j + 1)
f(x− j δx)

}
, (2.13)

with q being an integer of either sign. Note that for a positive q the expression Γ(−q) is infinite,
but for j ≤ q within the sum the infinite Γ(j− q) divided by Γ(j+1) will together give a finite
value after using the recursion formula for the Gamma function. For all other j > q the factor
Γ(−q) will nullify the contribution.

Composition Rule

For positive integers, we have

dn

[d(x− a)n]

{
dNf(x)

[d(x− a)N]

}
=

dN

[d(x− a)N]

{
dnf(x)

[d(x− a)n]

}
=

dn+Nf(x)

[d(x− a)n+N]
(x). (2.14)

For negative integers, we have

d−n

[d(x− a)−n]

{
d−Nf(x)

[d(x− a)−N]

}
=

d−N

[d(x− a)−N]

{
d−nf(x)

[d(x− a)−n]

}
=

d−n−Nf(x)

[d(x− a)−n−N]
. (2.15)

However, a problem arises when it comes to mixed composition. In fact, we will show that in
some cases, for orders of opposite signs the composition is not commutative.

On one hand, let us adopt the notation
dNf(x)

[d(x− a)N]
= fN (x) with N a positive integer.

For n = 1 we have

d−1f (N)(x)

[d(x− a)−1]
=

∫ x

a
f (N)(x)dx = f (N−1)(x)− f (N−1)(a).

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 7

For n = 2 we have

d−2f (N)(x)

[d(x− a)−2]
=

∫ x

a

(
f (N−1)(x)− f (N−1)(a)

)
dx = f (N−2)(x)− f (N−2)(a)− (x− a)f (N−1)(a).

(2.16)
Based on the expressions for different values of n, the general expression for any positive integer
n is

d−nfN (x)

[d(x− a)−n]
= f (N−n)(x)−

n−1∑
k=0

[x− a]k

k!
f [N+k−n](a). (2.17)

On the other hand, by substituting N = 0 in (2.17), we have

d−nf(x)

[d(x− a)−n]
= f (−n)(x)−

n−1∑
k=0

[x− a]k

k!
f (k−n)(a). (2.18)

Upon differentiating (2.18) once we have

d

[d(x− a)]

{
d−nf(x)

[d(x− a)−n]

}
= f (1−n)(x)−

n−1∑
k=1

[x− a]k−1

(k − 1)!
f (k−n)(a).

After N such differentiations, the equation

dN

[d(x− a)N]

{
d−nf(x)

[d(x− a)−n]

}
= f (N−n)(x)−

n−1∑
k=N

[x− a]k−N

(k −N)!
f (k−n)(a)

emerges. This expression encompasses the case N ≥ n where
n−1∑
k=N

[x− a]k−N

(k −N)!
f (k−n)(a) = 0

and the case N < n. Finally, we have established that

dN

[d(x− a)N]

{
d−nf(x)

[d(x− a)−n]

}
= f (N−n)(x)−

n−1∑
k=N

[x− a]k−N

(k −N)!
f (k−n)(a)

= f (N−n)(x)−
n−1−N∑
k=0

[x− a]k

k!
f (k−n+N)(a)

= f (N−n)(x)−
n−1∑
k=0

[x− a]k

k!
f (k−n+N)(a)

+

n−1∑
k=n−N

[x− a]k

k!
f (k−n+N)(a)

=
d−nfN (x)

[d(x− a)−n]
+

n−1∑
k=n−N

[x− a]k

k!
f (k−n+N)(a).

(2.19)

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 8

In summary, the composition rule
dq

[d(x− a)q]

{
dQf(x)

[d(x− a)Q]

}
=

dq+Qf(x)

[d(x− a)q+Q]
(x) holds unless

Q is positive and q is negative. In other words, unless f is first differentiated and then
integrated. In this case the equality holds only if f(a) = 0 and if all derivatives of f through
the (N − 1)th are also zero at x = a.

Product Rule for Multiple Integrals

In this section our focus is on establishing a rule for iterated integration of a product of two
functions, akin to Leibniz’s theorem for repeated differentiation of a product. To initiate this
process, we start with the well-known formula of integration by parts∫ x

a
g(y)dv(y) = g(x)v(x)− g(a)v(a)−

∫ x

a
v(y)dg(y). (2.20)

Let

v(y) =

∫ y

a
f(z)dz,

then ∫ x

a
g(y)f(y)dy = g(x)

∫ x

a
f(z)dz −

∫ x

a

[∫ y

a
f(z)dz

]dg(y)
dy

dy, (2.21)

or in the previous symbolism we have

d−1[fg]

[d(x− a)]−1 = g
d−1f

[d(x− a)]−1 − d−1

[d(x− a)]−1

{
g(1)

d−1f

[d(x− a)]−1

}
. (2.22)

Upon applying (2.22) recursively to the product within the braces and invoking the composition
rule, we obtain:

d−1[fg]

[d(x− a)]−1 = g
d−1f

[d(x− a)]−1 − g(1)
d−2f

[d(x− a)]−2

+
d−1

[d(x− a)]−1

{
g(2)

d−2f

[d(x− a)]−2

}
.

(2.23)

Repeatedly applying this process indefinitely yields:

d−1[fg]

[d(x− a)]−1 =

∞∑
j=0

[
(−1)jg(j)

d−1−jf

[d(x− a)]−1−j

]
=

∞∑
j=0

(
−1

j

)
g(j)

d−1−jf

[d(x− a)]−1−j
.

(2.24)

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 9

When (2.24) is integrated, using this same formula inside summation, and the composition
rules for integrals and derivatives are applied, we obtain

d−2[fg]

[d(x− a)]−2 =
∞∑
j=0

(
−1

j

) ∞∑
k=0

(
−1

k

)
g(j+k) d−j−k−2f

[d(x− a)]−j−k−2

=

∞∑
j=0

∞∑
l=j

(
−1

j

)(
−1

l − j

)
g(l)

d−2−lf

[d(x− a)]−2−l

=

∞∑
l=0

l∑
j=0

(
−1

j

)(
−1

l − j

)
g(l)

d−2−lf

[d(x− a)]−2−l

=
∞∑
l=0

(
−2

l

)
g(l)

d−2−lf

[d(x− a)]−2−l
.

(2.25)

In the final steps of (2.25), we have made use of the permutation (2.95)

∞∑
k=0

k∑
j=0

=
∞∑
j=0

∞∑
k=j

,

and the summation
l∑

j=0

(
−1

j

)(
−1

l − j

)
=

(
−2

l

)
. The latter result is derived from the well-

known summation formula (2.93)

l∑
k=0

(
q

k

)(
Q

l − k

)
=

(
q +Q

l

)
,

the proof of which can be found in subsection 2.1.5. The proofs of all equalities and summations
employed here are established in Section 3.1.3. Continuing the iteration of the procedure that
yielded (2.25) from (2.24), we arrive at the desired formula:

d−n[fg]

[d(x− a)]−n =
∞∑
j=0

(
−n
j

)
g(j)

d−n−jf

[d(x− a)]−n−j
, (2.26)

with n being a positive integer greater or equal to 1. A general expression of the product rule for
multiple differintegration combining (2.26) with the Leibniz’s rule for repeated differentiation
of a product is established in Section 2.1.4.

The Chain Rule for Multiple Derivatives

The chain rule for differentiation states that for two differentiable functions g and f defined
in R,

d

dx
f(g(x)) =

d

du
f(u)

d

dx
g(x) = g′(x)f ′ (g(x)) . (2.27)

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 10

This formula, facilitating the differentiation of g(u) with respect to x, given the derivatives
of g(u) with respect to u and u with respect to x, stands as one of the most crucial tools in
integer differential calculus. However, the chain rule doesn’t apply in fractional calculus due
to the non-local nature of fractional derivatives, which incorporate information from the entire
function rather than just a specific point or neighborhood. The proof for the chain rule from
[2] heavily depends on the local nature of integer derivatives, as demonstrated below. Suppose
f is differentiable at u = g(a), g is differentiable at a, and h(x) = f (g(x)). According to the
definition of the derivative of h:

h′(a) = lim
x→a

h(x)− h(a)

x− a
= lim

x→a

f (g(x))− f (g(a))

x− a
. (2.28)

We assume that g(a) ̸= g(x) for values of x near a but not equal to a.

We multiply the right hand of (2.28) by
g(x)− g(a)

g(x)− g(a)
, which equals 1, and let v = g(x), and

u = g(a). This result is

h′(a) = lim
x→a

f (g(x))− f (g(a))

g(x)− g(a)

g(x)− g(a)

x− a

= lim
x→a

f(v)− f(u)

v − u

g(x)− g(a)

x− a
.

By assumption, g is differentiable at a; therefore it is continuous at a. This means that
limx→a g(x) = g(a), so v → u as x→ a. Consequently,

h′(a) = lim
v→u

f(v)− f(u)

v − u
lim
x→a

g(x)− g(a)

x− a
= f ′(u)g′(a),

with f ′(u) = lim
v→u

f(v)− f(u)

v − u
and g′(a) = limx→a

g(x)− g(a)

x− a
. Because f and g are differen-

tiable at u and a, respectively, the two limits in this expression exist; therefore h′(a) exists.
Noting that u = g(a), we have h′(a) = f ′ (g(a)) g′(a). Replacing a with the variable x gives
the chain rule h′(x) = g′(x)f ′ (g(x)) .

Iterated Integrals

Consider the formula

d−1f

[d(x− a)]−1 =

∫ x

a
f(y)dy =

1

n!

dn

dxn

∫ x

a
[x− y]n f(y)dy, n = 0, 1, 2, 3, · · · (2.29)

For n = 0, (2.29) is the identity (in this context the notational convention 0!=1 is used), while
for n = 1, it follows easily from Leibniz’s theorem for differentiation and integration. For
general integer n, one need only notice that the evaluation of the integrand on the right-hand
side at the upper limit x gives 0, while the differentiation n times inside the integral produces
n!f(y). A single integration of (2.29) for n = 1 produces:

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 11

d−2f

[d(x− a)]−2 =

∫ x

a

∫ x1

a
f(x0) dx0 dx1 =

1

1!

∫ x

a
[x− y] f(y)dy, (2.30)

and an (n− 1)-fold integration produces Cauchy’s formula for repeated integration.

d−nf

[d(x− a)]−n =

∫ x

a

∫ xn−1

a
· · ·
∫ x1

a
f(x0) dx0 · · ·dxn−1 =

1

(n− 1)!

∫ x

a
[x− y]n−1 f(y)dy. (2.31)

Thus an iterated integral may be expressed as a weighted integral with a weight function, a
fact that provides an important clue for generalizations involving non-integer orders.

Differentiation and Integration of Series

Many functions are often represented by infinite series expansions. Understanding the condi-
tions for term-by-term differentiation or integration of such series is crucial. Below are two key
results, with further extensions discussed in Section 2.1.4 for differintegrals of any order. Let
f0, f1, . . . be functions defined and continuous on the interval a ≤ x ≤ b. Then,

d−1

[d(x− a)]−1

{ ∞∑
j=0

fj

}
=

∞∑
j=0

d−1fj

[d(x− a)]−1 , a ≤ x ≤ b, (2.32)

assuming that the series
∑

fj converges uniformly in the interval a ≤ x ≤ b. The conditions

necessary to apply differentiation across the terms of an infinite series are slightly distinct. In
this case, it is necessary for each fj to possess continuous derivatives on a ≤ x ≤ b. Then,

d

dx

{ ∞∑
j=0

fj

}
=

∞∑
j=0

dfj
dx
, a ≤ x ≤ b, (2.33)

provided
∑

fj converges pointwise and
∑ dfj

dx
converges uniformly on the interval a ≤ x ≤ b.

This demonstrates that a series of continuous functions, converging uniformly (thus defining
a continuous function), can be integrated term by term. Similarly, a series of continuously
differentiable functions, converging pointwisely, can be differentiated term by term, provided
the resulting series of derivatives converges uniformly.

Differentiation and Integration of Powers

We gather here the elementary formulas that express
dq[x− a]p

[d(x− a)]q
for possible positive and

negative integer values of q. We have

dn[x− a]p

[d(x− a)]n
= p[p− 1] · · · [p− n+ 1][x− a]p−n =

p![x− a]p−n

(p− n)!
, n = 0, 1, · · · (2.34)

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 12

and
d−n[x− a]p

[d(x− a)]−n =

∫ x

a

∫ xn−1

a
· · ·
∫ x1

a
[x0 − a]pdx0 · · · dxn−1dx.

=

[x− a]p+n

[p+ 1][p+ 1] · · · [p+ n]
, p > −1,

∞, p ≤ −1, n = 1, 2, · · ·

(2.35)

Let us highlight that for p > −1,

[x− a]p+n

[p+ 1][p+ 2] · · · [p+ n]
=

[x− a]p+n

(p+ n)!

p!

=
p![x− a]p+n

(p+ n)!
=
p![x− a]p−(−n)

(p− (−n))!
.

Let us denote by q an integer of either sign and p > −1.
Upon substituting q = n, a positive integer, in equation (2.34), we obtain

dq[x− a]p

[d(x− a)]q
=
p![x− a]p−q

(p− q)!
=

Γ(p+ 1)[x− a]p−q

Γ(p− q + 1)
. (2.36)

Similarly, q = −n in (2.35) leads to

dq[x− a]p

[d(x− a)]q
=

Γ(p+ 1)[x− a]p−q

Γ(p− q + 1)
. (2.37)

Combining (2.36) and (2.37) yields

dq[x− a]p

[d(x− a)]q
=

∞, q = −1,−2, · · ·, p ≤ −1,

Γ(p+ 1)[x− a]p−q

Γ(p− q + 1)

q = 0, 1, 2, · · ·, all p

q = −1,−2, · · ·, p > −1.

(2.38)

The coefficient
Γ(p+ 1)

Γ(p− q + 1)
may be positive, negative or zero.

2.1.2 Fractional Derivatives and Integrals: Definitions and Equivalencies

Equation (2.13) defines an entity that we will refer to as a differintegral of an integer order.
This can be extended to any real order q. In fact, nothing in the expression of (2.13) prevents
it from being applied to real orders, and the Γ function present in its formula, which is an
extension of the factorial to real numbers, smooths the whole process. In this chapter, we
compare several definitions of the differintegral of a function f of an arbitrary order q. Perhaps
the least ambiguous symbolism for the value at x of the differintegral of order q of a function
defined on an interval a ≤ y ≤ x would be

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 13

dqf

[d(y − a)]q
, q ∈ R.

We shall eventually relate this differintegral to an ordinary integral in which y is a ”dummy”
variable of integration, and a and x are limits of integration. In line with conventions adopted
in Section 2.1.1, our normal abbreviations for the qth differintegral of the function f will be

dqf

[d(x− a)]q
, and

dqf(x0)

[d(x− a)]q
or

[dqf

[d(x− a)]q

]
x=x0

.

It being understood that f and
dqf

[d(x− a)]q
are functions of the independent variable x when

the x is omitted.

Differintegrable Functions

It is now time to define the class of functions to which we will apply differintegration operators.
We will primarily focus on classically defined functions. For such classically defined functions,
we follow the principles of integral calculus and stipulate that our candidate functions must
be defined on the closed interval a ≤ y ≤ x, bounded everywhere in the half-open interval
a < y ≤ x, and be ”well behaved” at the lower limit a (i.e not diverge at the lower limit a).
Good examples of such functions are polynomials, exponential, logarithms and all functions
whose differintegrals can be determined. In this section, we will direct our attention to a
category known as ”differintegrable series”, defined as finite sums of functions, each of which
can be expressed as

f(y) = [y − a]p
∞∑
j=0

cj [y − a]
j
n , c0 ̸= 0, p > −1, n ≥ 1, an integer. (2.39)

Notice that p has been chosen to ensure that the leading coefficient is nonzero. Such differin-
tegrable series f then satisfy

lim
y→a

{
[y − a]f(y)

}
= 0.

An important consequence of this representation is that given the fact that

∞∑
j=0

j

n
= 0 +

1

n
+

2

n
+ · · ·+ n− 1

n
+

1 +

(
1 +

1

n

)
+

(
1 +

2

n

)
+ · · ·

(
1 +

n− 1

n

)
+

2 +

(
2 +

1

n

)
+

(
2 +

2

n

)
+ · · ·

(
2 +

n− 1

n

)
+

N +

(
N +

1

n

)
+

(
N +

2

n

)
+ · · ·

(
N +

n− 1

n

)
+ · · ·

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 14

Let us consider the following result:

∞∑
j=0

j

n
= 0 + 1 + 2 + 3 + 4 + · · ·+N + · · ·

+
1

n
+

(
1 +

1

n

)
+

(
2 +

1

n

)
+ · · ·+

(
N +

1

n

)
+ · · ·

+
2

n
+

(
1 +

2

n

)
+

(
2 +

2

n

)
+ · · ·+

(
N +

2

n

)
+ · · ·

+
n− 1

n
+

(
1 +

n− 1

n

)
+

(
2 +

n− 1

n

)
+ · · ·+

(
N +

n− 1

n

)
+ · · ·

Let us denote

∞∑
j1=0

j1 = 0 + 1 + 2 + 3 + 4 + · · ·+N + · · ·

∞∑
j2=0

(
j2 +

1

n

)
=

1

n
+

(
1 +

1

n

)
+

(
2 +

1

n

)
+ · · ·+

(
N +

1

n

)
+ · · ·

∞∑
jn=0

(
jn +

n− 1

n

)
=
n− 1

n
+

(
1 +

n− 1

n

)
+

(
2 +

n− 1

n

)
+ · · ·+

(
N +

n− 1

n

)
+ · · · .

We then finally have

∞∑
j=0

j

n
=

∞∑
j1=0

j1 +

∞∑
j2=0

(
j2 +

1

n

)
+ · · ·+

∞∑
jn=0

(
jn +

n− 1

n

)
.

Utilizing this result in (2.39) leads to the following decomposition of f as a finite sum of units
of power series.

f(y) = [y−a]p
∞∑

j1=0

cj1 [y−a]j1+[y−a][np+1]/n
∞∑

j2=0

cj2 [y−a]j2+···+[y−a][np+n−1]/n
∞∑

jn=0

cjn [y−a]jn ,

of n differintegrable units fv, each of which is a product of a power(greater than -1) of (y− a)
and a function analytic in (y−a). The desirability of this property will become more apparent
in the subsequent sections.

Fundamental Definitions

The initial definition we present is what we consider the most fundamental, because it imposes
the fewest restrictions on the functions it applies to and avoids explicit use of the concepts of
ordinary derivative and integral. This definition, which directly extends and unifies notions

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 15

of difference quotients and Riemann sums, was first introduced by Grünwald (1867) and later
expanded by Post (1930). Referring to Section 2.1.1 and the discussion leading to equation
(2.13), we define the differintegral of order q using the formula:

dqf(x)

[d(x− a)q]
= lim

δx→0

{
[δx]−q

Γ(−q)

N−1∑
j=0

Γ(j − q)

Γ(j + 1)
f(x− j δx)

}
, (2.40)

where q is arbitrary.

Note:

On one hand, if q < 0, N ≥ 1 represents the number of subdivisions employed in defining an
integral as a limit of sums. On the other hand, if q ≥ 0, in order to unify the formula of the
nth derivative with one that defines an integral as a limit of sums, we define the derivatives in
terms of a restricted limit. This limit occurs as δx tends to zero through discrete values only,

by setting δx =
[x− a]

N
, N = 1, 2, · · · .

It is worth noting that this definition solely relies on evaluations of the function itself;
no explicit use is made of derivatives or integrals of f . However, the most commonly encoun-
tered definition of an integral of fractional order is through an integral operator known as the
Riemann-Liouville integral. To justify this definition, one only needs to consider Cauchy’s for-
mula in equation (2.31) and replace ”−n” with q, suggesting the generalization to non-integer
orders: [

dqf

[d(x− a)]q

]
R−L

=
1

Γ(−q)

∫ x

a
[x− y]−q−1 f(y)dy, q < 0. (2.41)

In equation (2.41), we have utilized the subscript [· · ·]R−L to denote the Riemann-Liouville
fractional integral, which may be distinct from our more fundamental definition in (2.40). We
will now demonstrate that the two definitions produce identical outcomes, and the subscript
[· · ·]R−L will be omitted thereafter. Formula (2.41) will be retained as the q < 0 definition
of the differintegral; it is extended to q ≥ 0 by insisting that equation (2.41) satisfies by the
”restricted composition”.[

dqf

[d(x− a)]q

]
R−L

=
dn

dxn

[
dq−nf

[d(x− a)]q−n

]
R−L

, (2.42)

where
dn

dxn
denotes ordinary n-fold differentiation and n is an integer chosen large enough so

that q − n < 0. Together with equation (2.41), definition (2.42) then defines the operator[
dqf

[d(x− a)]q

]
R−L

, (2.43)

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 16

for all q. Before demonstrating the equivalence between the two differintegral formulas (2.40)
and (2.43), it is necessary to establish the ”restricted composition rule” for (2.40). This rule
is utilized for both (2.40) and (2.41) in the proof of equivalence.
Based on definition (2.40), we aim to demonstrate that

dn

dxn

[
dqf

[d(x− a)]q

]
=

dn+qf

[d(x− a)]n+q , (2.44)

for all positive integers n and all q. One might consider this property as a limited composition
law, i.e., a rule for composing orders of the generalized differintegral. To validate this assertion,

let δx =
x− a

N
,

dqf(x)

[d(x− a)]q
= lim

δx→0

{
[δx]−q

Γ(−q)

N−1∑
j=0

Γ(j − q)

Γ(j + 1)
f(x− j δx)

}
.

Upon subdividing the interval a ≤ y ≤ x− δx into only N − 1 equally spaced subintervals, we
see that

dqf

[d(x− a)]q
(x− δx) = lim

δx→0

{
[δx]−q

Γ(−q)

N−2∑
j=0

Γ(j − q)

Γ(j + 1)
f(x− δx− j δx)

}

= lim
δx→0

{
[δx]−q

Γ(−q)

N−1∑
j=1

Γ(j − q − 1)

Γ(j)
f(x− j δx)

}
.

On differentiation making use of restricted limits as explained at the start of section (2.1) to

define
d

dx
, one gets

d

dx

[
dqf

[d(x− a)]q

]
= lim

N→∞

{
[δx]−1

[
dqf

[d(x− a)]q
(x)− dqf

[d(x− a)]q
(x− δx)

]}

= lim
N→∞

{
[δx]−q−1

Γ(−q)

[
Γ(−q)f(x) +

N−1∑
j=1

{
Γ(j − q)

Γ(j + 1)
− Γ(j − q − 1)

Γ(j)

}]}
.

Making use of the recurrence properties of the Γ function,

Γ(j − q)

Γ(j + 1)
− Γ(j − q − 1)

Γ(j)
=

Γ(−q)Γ(j − q − 1)

Γ(−q − 1)Γ(j + 1)
,

is obtained. Therefore,

d

dx

[
dqf

[d(x− a)]q

]
= lim

N→∞

{
[δx]−q−1

Γ(−q − 1)

[
N−1∑
j=0

Γ(j − q − 1)

Γ(j + 1)
f(x− j δx)

]}

=
dq+1

[d(x− a)]q+1
.

Equation (2.44) follows by induction.

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 17

Equivalence of Definitions

It is now relevant to inquire whether the Riemann-Liouville definition, based on equation (2.41)
for negative q and its extension to q ≥ 0 by means of equation (2.42), yields operators that
coincide for all functions f . We will demonstrate that this is indeed the case. Firstly, we
establish the identity for a subset of q values and then utilize property (2.42) to extend the
identity to all orders q. To begin, let f be an arbitrary but fixed function on the interval

a ≤ y ≤ x. As before, we define δx =
x− a

N
, then the difference

∆ =
dqf

[d(x− a)]q
(x)−

[
dqf

[d(x− a)]q
(x)

]
R−L

= lim
δx→0

{
[δx]−q

Γ(−q)

N−1∑
j=0

Γ(j − q)

Γ(j + 1)
f(x− j δx)

}
−
∫ x−a

0

f(x− u)

Γ(−q)u1+q
du

= lim
δx→0

 [δx]−q

Γ(−q)

N−1∑
j=0

Γ(j − q)

Γ(j + 1)
f(x− j δx)

− lim
δx→0

N−1∑
j=0

f(x− j δx)δx

Γ(−q)[j δx]1+q

= lim
N→∞

{
[δx]−q

Γ(−q)

N−1∑
j=0

f(x− j δx)

[
Γ(j − q)

Γ(j + q)
− j−1−q

]}

=
[x− a]−q

Γ(−q)
lim

N→∞

{
N−1∑
j=0

f
(Nx− jx+ ja

N

)
N q

[
Γ(j − q)

Γ(j + q)
− j−1−q

]}
.

(2.45)

The N terms within the summation are divided into two groups: 0 ≤ j ≤ J − 1 and J ≤ j ≤
N − 1, where J is independent of N . Thus

∆ =
[x− a]−q

Γ(−q)
lim

N→∞

{
J−1∑
j=0

f
(Nx− jx+ ja

N

)
N q

[
Γ(j − q)

Γ(j + q)
− j−1−q

]}

+
[x− a]−q

Γ(−q)
lim

N→∞

{
1

N

N−1∑
j=J

f
(Nx− jx+ ja

N

)[j
N

]−2−q
][
q[q + 1]

2N
+

O(j−1)

N

]}
,

(2.46)

where N is sufficiently large to validate the asymptotic expansion for terms in the second
group. Now, for q < −1, the J bracketed terms within the first summation are bounded.

Hence, if f
(Nx− jx+ ja

N

)
is also bounded for j within the first group, the presence of the

N q factor ensures that the first sum vanishes in the limit N → ∞. Examining the three factors

within the second summation, we note that
[j
N

]−2−q
is always less than unity if q ≤ −2, and

that the third factor tends to zero as N → ∞. Therefore, if f
(Nx− jx+ ja

N

)
is bounded for

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 18

j within the second group, each term in the second summation vanishes since
1

N
→ 0 when

N → ∞. The above demonstrates that if f is bounded on a < y ≤ x and if q ≤ −2, then

∆ =
dqf

[d(x− a)]q
(x)−

[
dqf

[d(x− a)]q
(x)

]
R−L

≡ 0, (2.47)

Thus, the two definitions, when applied to functions bounded in this manner, are indeed iden-
tical for q ≤ −2. This fact, along with property (2.42) and requirement (2.44) , demonstrates
that the two definitions are identical for any q. Indeed, for arbitrary q, we know that for any
positive integer n [

dqf

[d(x− a)]q

]
=

dn

dxn

{
dq−nf

[d(x− a)]q−n

}

and [
dqf

[d(x− a)]q

]
R−L

=
dn

dxn

{
dq−nf

[d(x− a)]q−n

}
.

One need only choose n sufficiently large that q − n ≤ −2 and make use of (2.47) to complete
the proof.

Fractional Calculus for Complex Numbers

A different avenue for motivating the definition of the differintegral stems from consideration
of Cauchy’s integral formula. The Cauchy’s integral formula is a powerful result in complex
analysis which provides a method for computing higher order derivatives of a complex valued
function within a simply connected domain using contour integration.

The formula states that if f(z) is an analytic function within a simply connected domain
D containing a closed contour C, and z is a point inside C, then the nth derivative of f(z) at
z is given by:

dnf(z)

dzn
=

n!

2πi

∮
C

f(ξ)

[ξ − z]n+1
dξ,

where:

•
∮
C denotes the counter-clockwise integral along the closed contour C. Contour integrals
involve integrating a complex valued function along a path in the complex plane, known
as a contour. Contour refers to a curve or a path in the complex plane. These curves are
typically defined by parametric equations or by specifying points along the curve.

• f(ξ) represents the value of the function f(z) at point ξ on the contour C.

• i denotes the imaginary unit and is defined as i =
√
−1.

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 19

• A region D in the complex plane is said to be simply connected if any two points in D
can be joined by a path lying entirely within D, and if every simple closed curve in D
can be continuously shrunk to a point without leaving D.

When the positive integer n is replaced by a non-integer q, the expression [ξ−z]−q−1 no longer
has a pole at ξ = z but a branch point. In this case, one cannot freely deform the contour C
surrounding z since the integral will depend on the location of the point at which C crosses
the branch line for [ξ − z]−q−1. A branch line is a line in the complex plane across which
a complex-valued function undergoes a discontinuity or a change in behavior. The point is
chosen to be 0 and the branch line to be the straight line joining 0 and z, in the quadrant
ℜ(ξ) ≤ 0, ℑ(ξ) ≤ 0 as shown in Figure 2.1. Then, for q not a negative integer, one simply
defines:

dqf(z)

dzq
=

Γ(q + 1)

2πi

∮
C

f(ξ)

[ξ − z]q+1
dξ, (2.48)

where the contour C begins and ends at ξ = 0 enclosing z once in a contour traversed counter-
clockwise. To uniquely specify the denominator of the integrand, one defines

[ξ − z]q+1 = exp ([q + 1] log (ξ − z)),

where log (ξ − z) is real if ξ and z are both real numbers and ξ > z. We can relate definition
(2.48) to that of Riemann-Liouville by first deforming the contour C into a contour C ′ lying
on both sides of the branch line. One finds that

Γ(q + 1)

2πi

∮
C′

f(ξ)

[ξ − z]q+1
dξ =

Γ(q + 1)

2πi

{∫
C1

f(ξ)

[ξ − z]q+1
dξ +

∫
C2

f(ξ)

[ξ − z]q+1
dξ +

∫
C3

f(ξ)

[ξ − z]q+1
dξ

}
,

(2.49)
where C1 denotes the segment below the branch line and joining the point 0 to a close neigh-
borhood of z, C2 the circular contour around z and C3 the segment above the branch line and
joining a close neighborhood of z to the point 0 as shown in Figure 2.1.

Parameterization:

• C1 : ξ = µ− iϵ, 0 ≤ µ ≤ z, ϵ→ 0+,

• C2 : ξ − z = r exp (iθ), −π ≤ θ ≤ π, and r → 0+,

• C3 : ξ = z − µ+ iϵ, 0 ≤ µ ≤ z ϵ→ 0+.

Thus,

I1 = lim
ϵ→0+

∫
C1

f(ξ)

[ξ − z]q+1
dξ = lim

ϵ→0+

∫ z

0

f(µ− iϵ)

[µ− iϵ− z]q+1
dµ.

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 20

Figure 2.1: The Cauchy contour C is deformed into C ′ for the purpose of implementing the
Cauchy’s integral formula.

Subsequently, ∫
C2

f(ξ)

[ξ − z]q+1
dξ =

∫ π

−π

f(z + r exp (iθ))

[r exp (iθ)]q+1
ri exp (iθ)dθ.

We have ∣∣∣∣∣
∫ π

−π

f(z + r exp (iθ))

[r exp (iθ)]q+1
ri exp (iθ)dθ

∣∣∣∣∣ ≤
∫ π

−π

∣∣∣∣∣f(z + r exp (iθ))

[r exp (iθ)]q+1
ri exp (iθ)

∣∣∣∣∣dθ
=

∫ π

−π

∣∣∣f(z + r exp (iθ))
∣∣∣

[r exp (iθ)]q+1

∣∣∣ri exp (iθ)∣∣∣dθ
=

∫ π

−π

∣∣∣f(z + r exp (iθ))
∣∣∣

|r|q+1
|r|dθ.

Since q < 0,

lim
r→0+

∣∣∣f(z + r exp (iθ))
∣∣∣

|r|q+1
|r| = 0 ⇒ lim

r→0+

∫ π

−π

f(z + r exp (iθ))

[r exp (iθ)]q+1
ri exp (iθ)dθ = 0.

Then, for r → 0+, ∫
C2

f(ξ)

[ξ − z]q+1
dξ → 0.

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 21

Moreover,

I3 =

∫
C3

f(ξ)

[ξ − z]q+1
dξ =

∫ z

0

f(z − µ+ iϵ)

[z − µ+ iϵ− z]q+1
(−dµ) = −

∫ z

0

f(z − µ+ iϵ)

[−µ+ iϵ]q+1
dµ.

Upon setting ζ = z − µ, this leads to

I3 = − lim
ϵ→0

∫ z

0

f(ζ + iϵ)

[ζ − z + iϵ]q+1
dζ. (2.50)

Let us compare I1 andI3. Since I1 and I3 have the same integration boundaries, we just
have to compare their integrands. Additionally, their integrands are both complex functions;
comparing them is equivalent to comparing their modulis and arguments. Let

A1 =
f(µ− iϵ)

[µ− iϵ− z]q+1
⇒ |A1| =

∣∣∣∣∣ f(µ− iϵ)

[µ− iϵ− z]q+1

∣∣∣∣∣.
Knowing that

[µ− iϵ− z]q+1 = exp
(
[q + 1] log (µ− iϵ− z)

)
,

with log (µ− iϵ− z) = ln |µ− iϵ− z|+ iArg (µ− iϵ− z), and Arg(θ) being the argument of θ
on the principal branch. We finally have

[µ− iϵ− z]q+1 = exp
(
[q + 1] ln |µ− iϵ− z|

)
exp

(
i[q + 1]Arg (µ− iϵ− z)

)
.

This leads to

arg (A1) = arg

(
f(µ− iϵ)

[µ− iϵ− z]q+1

)
= arg

(
f(µ− iϵ)

)
− arg

(
[µ− iϵ− z]q+1

)
= arg

(
f(µ− iϵ)

)
− arg

(
exp

(
[q + 1] ln |µ− iϵ− z|

)
exp

(
i[q + 1]Arg (µ− iϵ− z)

))
= arg

(
f(µ− iϵ)

)
− [q + 1]Arg

(
µ− iϵ− z

)
.

For µ = ζ, we finally have

|A1| =

∣∣∣∣∣ f(ζ − iϵ)

[ζ − iϵ− z]q+1

∣∣∣∣∣,
and

arg (A1) = arg
(
f(ζ − iϵ)

)
− [q + 1]Arg

(
ζ − iϵ− z

)
.

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 22

Similarly,

|A3| =

∣∣∣∣∣ f(ζ + iϵ)

[ζ + iϵ− z]q+1

∣∣∣∣∣,
and

arg (A3) = arg
(
f(ζ + iϵ)

)
− [q + 1]Arg

(
ζ + iϵ− z

)
.

Going from ζ − iϵ− z to ζ + iϵ− z requires a rotation of 2π, then

Arg
(
ζ + iϵ− z

)
= Arg

(
ζ − iϵ− z

)
+ 2π.

This leads to

arg (A3) = arg
(
f(ζ + iϵ)

)
− [q + 1]

(
Arg

(
ζ − iϵ− z

)
+ 2π

)
.

When ϵ→ 0+, we finally have

|A1| = |A3| and arg (A3) = arg (A1)− 2π[q + 1] ⇒ A3 = A1 exp
(
− 2πi[q + 1]

)
⇒ I3 = I1 exp

(
− 2πi[q + 1]

)
.

We finally obtain for ζ = ξ∮
C′

f(ξ)

[ξ − z]q+1
dξ =

∫ z

0

f(ξ)

[ξ − z]q+1
dξ − exp (−2πi[q + 1])

∫ z

0

f(ξ)

[ξ − z]q+1
dξ

=
(
1− exp (−2πi[q + 1])

)∫ z

0

f(ξ)

[ξ − z]q+1
dξ.

Substituting this result in (2.44) leads to

Γ(q + 1)

2πi

∮
C′

f(ξ)

[ξ − z]q+1
dξ =

Γ(q + 1)

2πi

(
1− exp (−2πi[q + 1])

)∫ z

0

f(ξ)

[ξ − z]q+1
dξ.

Let us compute
Γ(q + 1)

2πi

(
1− exp (−2πi[q + 1])

)
:

On one hand,

1− exp (−2πi[q + 1]) = 1−
{
cos (2π[q + 1])− i sin (2π[q + 1])

}
= 1− cos (2π[q + 1]) + i sin (2π[q + 1]).

(2.51)

On the other hand, using the reflection property of the Γ function, we have

Γ(q + 1)

2πi
=

π

2πi sin
(
π(q + 1)

)
Γ(−q)

=
1

2i sin
(
π(q + 1)

)
Γ(−q)

. (2.52)

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 23

Combining (2.51) and (2.52) gives

Γ(q + 1)

2πi

(
1− exp (−2πi[q + 1])

)
=

1− cos (2π[q + 1]) + i sin (2π[q + 1])

2i sin
(
π(q + 1)

)
Γ(−q)

=
2 sin2

(
π(q + 1)

)
+ 2i cos

(
π(q + 1)

)
sin
(
π(q + 1)

)
2i sin

(
π(q + 1)

)
Γ(−q)

=
sin
(
π(q + 1)

)
+ i cos

(
π(q + 1)

)
iΓ(−q)

=
−i sin

(
π(q + 1)

)
+ cos

(
π(q + 1)

)
Γ(−q)

=
exp (−πi[q + 1])

Γ(−q)
.

Then, ∮
C′

f(ξ)

[ξ − z]q+1
dξ =

Γ(q + 1)

2πi

(
1− exp (−2πi[q + 1])

)∫ z

0

f(ξ)

[ξ − z]q+1
dξ

=
exp (−πi[q + 1])

Γ(−q)

∫ z

0

f(ξ)

[ξ − z]q+1
dξ

=
1

Γ(−q)

∫ z

0

f(ξ)

exp (πi[q + 1])[ξ − z]q+1
dξ

=
1

Γ(−q)

∫ z

0

f(ξ)[
exp (πi)[ξ − z]

]q+1dξ

=
1

Γ(−q)

∫ z

0

f(ξ)[
(−1) · [ξ − z]

]q+1dξ

=
1

Γ(−q)

∫ z

0

f(ξ)

[z − ξ]q+1
dξ.

This is the Riemann-Liouville definition with a = 0. Definition (2.48) is attributed by Oster
(1970a) to Nekrassov (1808). Erdélyi (1964) defined a q-th-order differintegral of a function
f(z) with respect to the function zn by:

dqf(z)

[d(zn − an)]q
=

1

Γ(−q)

∫ z

a

f(ξ)nξn−1

[zn − ξn]q+1
dξ.

The types of derivatives reviewed above are considered classical fractional derivatives, since
they were posed shortly after the integer calculus became widely accepted. In the 20th century
numerous other types of derivatives were defined and some of the properties discussed above
were lost in favour of other more important ones. This will be discussed further in the following
section.

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 24

Other Formulas Applicable To Analytic Functions

The aim of this section is to explore alternative representations for
dq

[d(x− a)]q
concerning real

analytic functions. These functions, denoted as ϕ, possess convergent power series expansions
within the interval a ≤ y ≤ x. Such representations introduce computational flexibility for
evaluating q-th order differintegrals for specific ϕ choices. Initially, our focus is on q < 0,
allowing us to utilize the Riemann-Liouville definition. Thus,

dqϕ

[d(x− a)]q
=

1

Γ(−q)

∫ x

a

ϕ(y)

(x− y)q+1
dy =

1

Γ(−q)

∫ x−a

0

ϕ(x− v)

vq+1
dv, (2.53)

with v = x− y. Upon Taylor expansion of ϕ(x− v) about x, one has

ϕ(x− v) = ϕ− vϕ(1) +
v2

2!
ϕ(2) − · · · =

∞∑
k=0

(−v)kϕ(k)

k!
. (2.54)

The representation (2.54) involves no remainder since we have assumed that ϕ possesses a
convergent power series expansion, and since such an expansion is unique. When this expansion
is inserted into (2.53) and term-by-term integration is performed, the result is

dqϕ

[d(x− a)]q
=

∞∑
k=0

(−1)k(x− a)k−qϕ(k)

Γ(−q)(k − q)k!
. (2.55)

2.1.3 Differentiation of Simple Functions

The purpose of this chapter is to calculate the qth order differintegral of certain simple functions.
The simple functions considered are examples of power functions [x−a]p. Thus, we first examine
the instances where p = 0 and p = 1, with the general case being explored just after.

The Zero Function

When definition (2.13) is applied to the function defined by f ≡ c, c any constant including
zero, we see that

dq[c]

[d(x− a)]q
= c

dq[1]

[d(x− a)]q
= c lim

N→∞

{[N

x− a

]q N−1∑
j=0

Γ(j − q)

Γ(−q)Γ(j + 1)

}

= c
[x− a]−q

Γ(1− q)
.

(2.56)

The final expression is obtained upon applying first (2.91):

N−1∑
j=0

Γ(j − q)

Γ(−q)Γ(j + 1)
=

Γ(N − q)

Γ(1− q)Γ(N)
,

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 25

and (2.87):

lim
j→∞

[
jc+qΓ(j − q)

Γ(j)

]
=

∞, c > 0,

1, c = 0,

0, c < 0,

the proof of which can be found in subsection 2.1.5. Since
dq[1]

[d(x− a)]q
is never infinite for

x > a, we conclude by setting c = 0 that

dq[0]

[d(x− a)]q
= 0, for all q. (2.57)

Result (2.56) may appear obvious. However, as an example of its importance, observe that it
provides a powerful counterexample to the thesis that if

dqf

[d(x− a)]q
= g, then

d−qg

[d(x− a)]−q = f,

for if f yields zero upon differentiation to order q, f cannot be restored by q-order integration.
Here again, we encounter the so called composition rule, this time for non-integer orders. This
subject will be more thoroughly explored in section 2.1.4.

The Unit Function

We consider the differintegral to order q of the function f ≡ 1. A straightforward application
of (2.40) to the function f ≡ 1 gives

dq[1]

[d(x− a)]q
= lim

N→∞

{[N

x− a

]q N−1∑
j=0

Γ(j − q)

Γ(−q)Γ(j + 1)

}
.

Application first of (2.91) and (2.87) as for the zero function yields

dq[1]

[d(x− a)]q
= lim

N→∞

{[N

x− a

]q Γ(N − q)

Γ(1− q)Γ(N)

}
=

[x− a]−q

Γ(1− q)
, (2.58)

as a result. As an example of the application of the unit function and its differintegrals,
consider the combination of formulas (2.55) and (2.58) into

dqϕ

[d(x− a)]q
=

∞∑
k=0

[−1]k
Γ(1 + k − q)

Γ(−q)[k − q]k!

dq−k[1]

[d(x− a)]q−k
ϕ(k), (2.59)

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 26

valid for any analytic function ϕ. Application of the recurrence property of the Gamma function
as well as (2.89), the proof of which can be found in subsection 2.1.5 leads to the concise
representation

dqϕ

[d(x− a)]q
=

∞∑
k=0

(
q

k

)
dq−k[1]

[d(x− a)]q−k

dkϕ

[d(x− a)]k
, (2.60)

where (
q

k

)
=

Γ(q + 1)

k!Γ(q − k + 1)
.

The function x− a

For the function f(x) = x− a, definition (2.40) gives

dq[x− a]

[d(x− a)]q
= lim

N→∞

{[N

x− a

]q N−1∑
j=0

Γ(j − q)

Γ(−q)Γ(j + 1)

[Nx− jx+ ja

N
− a
]}

= [x− a]1−q

[
lim

N→∞

{
N q

N−1∑
j=0

Γ(j − q)

Γ(−q)Γ(j + 1)

}
− lim

N→∞

{
N q−1

N−1∑
j=0

j
Γ(j − q)

Γ(−q)Γ(j + 1)

}]

= [x− a]1−q

[
lim

N→∞
N q Γ(N − q)

Γ(1− q)Γ(N)
− lim

N→∞
N q−1

{
−qΓ(N − q)

Γ(2− q)Γ(N − 1)

}]
.

Similarly as we proved in (2.87), when N → ∞, we have

Γ(N − q)

Γ(N)
∼ N−q,

Γ(N − q)

Γ(N − 1)
∼ N−q+1.

Substituting this result into the equation leads to

dq[x− a]

[d(x− a)]q
= [x− a]1−q

[{
lim

N→∞

N q

N q
· 1

Γ(1− q)
+ lim

N→∞

N q−1

N q−1
· q

Γ(2− q)

}]

= [x− a]1−q

[{
1

Γ(1− q)
+

q

Γ(2− q)

}]

= [x− a]1−q

[
Γ(2− q) + qΓ(1− q)

Γ(1− q)Γ(2− q)

]
.

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 27

On application of the recurrence property of the Γ function, this leads to

dq[x− a]

[d(x− a)]q
= [x− a]1−q

[
(1− q)Γ(1− q) + qΓ(1− q)

Γ(1− q)Γ(2− q)

]

= [x− a]1−q

[
Γ(1− q)

Γ(1− q)Γ(2− q)

]

=
[x− a]1−q

Γ(2− q)
.

Alternatively, a similar result can be achieved using the Riemann-Liouville formula (2.41). On
substituting w = x− y,

dq[x− a]

[d(x− a)]q
=

1

Γ(−q)

∫ x

a

[y − a]

(x− y)q+1
dy

=
1

Γ(−q)

∫ x−a

0

[x− a− w]

wq+1
dw

=
1

Γ(−q)

[
[x− a]1−q

−q
− [x− a]1−q

1− q

]

=
[x− a]1−q

[−q][1− q]Γ(−q)
, q < 0.

The denominator of which equals Γ(2− q) by applying the recurrence formula

−qΓ(−q) = Γ(1− q) and (1− q)Γ(1− q) = Γ(2− q).

Use of equation (2.42) yields

dq−n[x− a]

[d(x− a)]q−n =
[x− a]1−q+n

Γ(2− q + n)
,

where
dq[x− a]

[d(x− a)]q
=

dn

[d(x− a)]q

{
dq−n[x− a]

[d(x− a)]q−n

}

=
Γ(2− q + n)

Γ(2− q)

[x− a]1−q

Γ(2− q + n)
=

[x− a]1−q

Γ(2− q)
,

(2.61)

follows by equation (2.36). We note, as expected, that formula (2.61) reduces to zero when

q = 2, 3, 4, · · · , to unity when q = 1, to x− a when q = 0, and to
[x− a]n+1

(n+ 1)!
when

q = −n = −1,−2,−3 · · · . Notice also, on comparison of formulas (2.61) and (2.58), that the
qth differintegral of x− a equals the (q − 1)th differintegral of unity.

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 28

The Function [x− a]p

In this section, we focus on the function f(x) = [x − a]p, where p is initially arbitrary. How-
ever, it becomes apparent that p must exceed −1 for differintegration to satisfy the required
properties. For integers q of any sign, we can use the classical calculus formula (2.34). Our
exploration of non-integer q will initially be limited to negative values, allowing us to leverage
the Riemann-Liouville definition.

dq[x− a]p

[d(x− a)]q
=

1

Γ(−q)

∫ x

a

[y − a]p

[x− y]q+1
dy =

1

Γ(−q)

∫ x−a

a

vp

[x− a− v]q+1
dv, q < 0,

where v has replaced y − a. By further replacement of v by [x− a]u, the integral may be cast
into the standard Beta integral form:

dq[x− a]p

[d(x− a)]q
=

[x− a]p−q

Γ(−q)

∫ 1

0
up[1− u]−q−1du, q < 0. (2.62)

The definite integral in (2.62) is the Beta function (2.2), which is defined as

B (p, q) =

∫ 1

0
yp−1[1− y]q−1dy, p > 0 < q.

Therefore,

dq[x− a]p

[d(x− a)]q
=

[x− a]p−q

Γ(−q)
B (p+ 1,−q) = Γ(p+ 1)[x− a]p−q

Γ(p− q + 1)
, q < 1, p > −1, (2.63)

where the Beta function has been replaced by its Gamma function equivalent using (2.3):

B (p, q) =
Γ(p)Γ(q)

Γ(p+ q)
.

Complex variable approach: For comparison of techniques, we verify (2.56) with a com-
pletely different approach, starting with the definition (2.48). We replace x − a by z such
that

dq[x− a]p

[d(x− a)]q
=
dqzp

dzp
=

Γ(q + 1)

2πi

∮
C

ξp

[ξ − z]q+1
dξ,

where the contour C in the complex ξ plane begins and ends at ξ = 0 enclosing z once in the
positive sense. If one sets ξ = zs, then

dqzp

dzp
=

Γ(q + 1)

2πi
zp−q

∮
C
sp[s− 1]−q−1ds,

where the integral is over a contour encircling the point s = 1 once in the positive sense and
beginning and ending at s = 0. When such a contour is deformed into the one shown in Figure

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 29

2.1, then

dqzp

dzp
=

Γ(q + 1)zp−q

2πi

[
1− exp (−2πi[q + 1])

]∫ 1

0
sp[s− 1]−q−1ds

=
Γ(q + 1)zp−q

2πi
exp (−iπ[q + 1])

[
exp (iπ[q + 1])− exp (−iπ[q + 1])

]∫ 1

0
sp[s− 1]−q−1ds

=
Γ(q + 1)zp−q

2πi
[−1][−q−1]

[
exp (iπ[q + 1])− exp (−iπ[q + 1])

]∫ 1

0
sp[s− 1]−q−1ds

=
Γ(q + 1)zp−q

2πi

[
exp (iπ[q + 1])− exp (−iπ[q + 1])

]∫ 1

0
sp[1− s]−q−1ds

=
Γ(q + 1)

2πi
zp−q2i sin (π[q + 1])

∫ 1

0
sp[1− s]−q−1ds

=
Γ(p+ 1)zp−q

Γ(p− q + 1)
, p > −1, q < 0,

where use has been made of the reflection property of Γ, Γ(z)Γ(1− z) =
π

sin(πz)
and property

(2.3) of the Beta integral. We may again use equation (2.42) together with the classical formula
(2.36) to extend our treatment to positive q. Following this technique,

dq[x− a]p

[d(x− a)]q
=

dn

dxn

[
dq−n[x− a]p

[d(x− a)]q−n

]

=
dn

dxn

[
[x− a]p−q+n

Γ(n− q)

∫ 1

0
up[1− u]n−q−1 du

]

=
dn

dxn

[
Γ(p+ 1)[x− a]p−q+n

Γ(p− q + n+ 1)

]

=
Γ(p+ 1)

Γ(p− q + n+ 1)

dn

dxn
[x− a]p−q+n

=
Γ(p+ 1)

Γ(p− q + n+ 1)

Γ(p− q + n+ 1)

Γ(p− q + 1)
[x− a]p−q

=
Γ(p+ 1)[x− a]p−q

Γ(p− q + 1)
, p > −1.

where, since we chose 0 ≤ q < n , we were able to use (2.58) to evaluate the [q − n]th

differintegral of [x− a]p. The classical formula (2.34) then leads to

dq[x− a]p

[d(x− a)]q
=

Γ(p+ 1)[x− a]p−q

Γ(p− q + 1)
, q ≥ 0, p > −1,

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 30

straightforwardly. Unification of this result with (2.63) yields the formula

dq[x− a]p

[d(x− a)]q
=

Γ(p+ 1)[x− a]p−q

Γ(p− q + 1)
, p > −1, (2.64)

valid for all q. As required for an acceptable formula in our generalized calculus, equation
(2.64) incorporates the classical formula (2.35). The formula

dqxp

dxq
=

Γ(p+ 1)

Γ(p− q + 1)
xp−q

was important in being the basis of the concept of fractional differentiation as developed by
Gemant (1936).

Thus far, this section has only considered instances where p > −1 for [x − a]p. We
now briefly consider the case where p ≤ −1. The generalized derivative (2.62) breaks down for
p ≤ −1, because the Beta integrals then diverge. A suggestion of the type

dq[x− a]p

[d(x− a)]q
= ∞, p ≤ −1, all q,

would, however, be unacceptable because it would fail to incorporate the classical result (2.34)
for positive integer q. Similarly, formula (2.64) cannot be extended to p ≤ −1, because
although it does not incorporate (2.34), it also does not reproduce (2.35) for negative integer
q. Moreover, we know of no generalization of formula (2.64) that incorporates both of the
requirements (2.34) and (2.35) for p ≤ −1. The breakdown of (2.64) for p ≤ −1 is associated
with the pole of order unity or greater which occurs at x = a for the functions [x−a]p, p ≤ −1.
Functions for which such a pole occurs anywhere on the open interval from a to x lead to
similar difficulties and for reasons such as this we have purposely excluded these functions
from the class of differintegrable series.

2.1.4 General Properties

This chapter delves into the properties of differintegral operators that we anticipate will extend
classical formulas for derivatives and integrals. These properties serve as our primary frame-
work for comprehending and employing fractional calculus. While some classical properties
generalize seamlessly, others require adjustments. Unless stated otherwise, we presume that
all encountered functions are differintegrable as outlined in Section 2.1.2. Throughout this
chapter, we often limit our focus to differintegrable series for practical reasons.

Linearity

The linearity of the differintegral operator, by which we mean

dq[f1 + f2]

[d(x− a)]q
=

dqf1
[d(x− a)]q

+
dqf2

[d(x− a)]q
, (2.65)

is an immediate consequence of any of the definitions of the differintegral.

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 31

Differintegration Term by Term

The linearity of the differintegral operators implies that they can be distributed through the
terms of a finite sum; i.e.,

dq

[d(x− a)]q

n∑
j=0

fj =

n∑
j=0

dqfj
[d(x− a)]q

. (2.66)

We aim to investigate the circumstances permitting term-by-term differintegration of an infinite
series of functions. Our primary objective in this section is to establish the term-by-term
differintegrability of general differintegrable series (see Section 2.1.2). We will frequently rely
on classical results concerning the differentiation and integration of infinite series term by term
(see Section 2.1.1). To utilize these results effectively, we must ensure that the terms fj of the
series are either continuous or continuously differentiable. If we focus on summands fj that are
differintegrable series, the structure of such series and its term-by-term derivative demonstrate
that the necessary continuity assumptions hold away from the lower limit x = a. Going forward,
we will examine infinite sums of differintegrable series and establish results regarding the term-
by-term differintegrability of such sums, which will generally hold in open intervals such as
a < x < a + X, where X represents the radius of convergence of the differintegrable series.
First, however, we need to establish some facts about the radius of convergence. Consider first
the ordinary power series

ϕ =
∞∑
j=0

cj [x− a]j , cj =
ϕ(j)(a)

j!
,

convergent for |x−a| ≤ X. One knows from classical results that ϕ, together with all of its term-
by-term derivatives and integrals, converges uniformly in the interval 0 ≤ |x− a| < X. What
can be said about the series obtained, more generally, from term-by-term differintegration of ϕ?

Making use of equation (2.64), the series obtained by applying
dq

[d(x− a)]q
to every summand

of ϕ is the series

∞∑
j=0

cjΓ(j + 1)

Γ(j − q + 1)
[x− a]j−q = [x− a]−q

∞∑
j=0

ϕ(j)(a)

Γ(j − q + 1)
[x− a]j .

We know that the series for ϕ converges for |x− a| < X, where, by the ratio test,

X = lim
j→∞

∣∣∣∣ cjcj+1

∣∣∣∣ = lim
j→∞

∣∣∣∣∣(j + 1)ϕ(j)(a)

ϕ(j+1)(a)

∣∣∣∣∣ ,

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 32

while the differintegral series will converge for

|x− a| < lim
j→∞

∣∣∣∣∣ ϕ(j)(a)Γ(j − q + 2)

ϕ(j+1)(a)Γ(j − q + 1)

∣∣∣∣∣
= lim

j→∞

∣∣∣∣∣(j − q + 1)ϕ(j)(a)

ϕ(j+1)(a)

∣∣∣∣∣
= lim

j→∞

∣∣∣∣∣(j + 1)ϕ(j)(a)

ϕ(j+1)(a)
− qϕ(j)(a)

ϕ(j+1)(a)

∣∣∣∣∣
≤ lim

j→∞

∣∣∣∣∣(j + 1)ϕ(j)(a)

ϕ(j+1)(a)

∣∣∣∣∣+ ∣∣∣−q∣∣∣ limj→∞

∣∣∣∣∣ ϕ(j)(a)ϕ(j+1)(a)

∣∣∣∣∣
= lim

j→∞

∣∣∣∣∣(j + 1)ϕ(j)(a)

ϕ(j+1)(a)

∣∣∣∣∣+ |q| lim
j→∞

∣∣∣∣∣ ϕ(j)(a)ϕ(j+1)(a)

∣∣∣∣∣
= X ± qA,

depending on the sign of q, where

A = lim
j→∞

∣∣∣∣∣ ϕ(j)(a)ϕ(j+1)(a)

∣∣∣∣∣ .
Since q is finite and j → ∞,

(j + 1) ≫ q ⇒ lim
j→∞

(j + 1)

∣∣∣∣∣ ϕ(j)(a)ϕ(j+1)(a)

∣∣∣∣∣≫ q lim
j→∞

∣∣∣∣∣ ϕ(j)(a)ϕ(j+1)(a)

∣∣∣∣∣
⇒ lim

j→∞

∣∣∣∣∣(j + 1)ϕ(j)(a)

ϕ(j+1)(a)

∣∣∣∣∣≫ q lim
j→∞

∣∣∣∣∣ ϕ(j)(a)ϕ(j+1)(a)

∣∣∣∣∣ .
For X = lim

j→∞

∣∣∣∣∣(j + 1)ϕ(j)(a)

ϕ(j+1)(a)

∣∣∣∣∣, we have X ≫ qA, which implies that qA is consistently neg-

ligible compared to X, indicating that the differintegrated series converges within the open
interval 0 < |x− a| < X. Moreover, the same conclusion applies to the differintegrable series,
where the jth term is cj [x − a]j+p (as this series shares the same radius of convergence as its

analytic component,
∑

cj [x−a]j , and thus extends to general differintegrable series). In other

words, if the differintegrable series f , which is a finite sum of functions, each representable as

[x−a]p
∞∑

j1=0

cj1 [x−a]j1 +[x−a][np+1]/n
∞∑

j2=0

cj2 [x−a]j2 + · · ·+[x−a][np+n−1]/n
∞∑

jn=0

cjn [x−a]jn ,

converges for |x − a| < X, then so does the series obtained by differintegrating each ”unit”
term by term, except possibly at the endpoint x = a. This fact will be important in what

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 33

follows. Let f be any differintegrable series. Since f may be decomposed as a finite sum of
differintegrable series units,

fv = [x− a]p
∞∑
j=0

cj [x− a]j ,

where p > −1 and c0 ̸= 0, the term-by-term differintegrability of f will follow from that of fv.
Accordingly, our objective is to establish that

dq

[d(x− a)]q

{
[x− a]p

∞∑
j=0

cj [x− a]j

}
=

∞∑
j=0

cj
dq[x− a]p+j

[d(x− a)]q
(2.67)

for all q. More specifically, the equality (2.67) will be proven valid inside the interval of

convergence of the differintegrable series
∞∑
j=0

cj [x − a]p+j . For q ≤ 0, a stronger result that

directly extends the classical theorem on term-by-term integration is easy to establish as fol-

lows. Suppose the infinite series of differintegrable functions
∑

fj converges uniformly in

0 < |x− a| < X; then

dq

[d(x− a)]q

∞∑
j=0

fj =

∞∑
j=0

dqfj
[d(x− a)]q

, q ≤ 0, (2.68)

and the right-hand series also converges uniformly in 0 < |x − a| < X. To demonstrate this
result, let

f =
∞∑
j=0

fj , SN =
N∑
j=0

fj .

Since q < 0, the Riemann-Liouville representations

dqf

[d(x− a)]q
=

1

Γ(−q)

∫ x

a

f(y)

[x− y]q+1
dy,

dqfj
[d(x− a)]q

=
1

Γ(−q)

∫ x

a

fj(y)

[x− y]q+1
dy

are valid, and
dqf

[d(x− a)]q
− dqSN

[d(x− a)]q
=

1

Γ(−q)

∫ x

a

[f(y)− SN]

[x− y]q+1
dy.

The property of uniform convergence means that, given ϵ > 0, there is an integer N = N(ϵ)
such that

|f(y)− Sn(y)| < ϵ,

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 34

for n > N and for all y in the interval a ≤ y ≤ x with |x− a| < X. Then∣∣∣∣∣ dqf

[d(x− a)]q
− dqfj

[d(x− a)]q

∣∣∣∣∣ = 1

Γ(−q)

∣∣∣∣∣
∫ x

a

[f(y)− SN]

[x− y]q+1
dy

∣∣∣∣∣
≤ 1

Γ(−q)

∫ x

a

|f(y)− SN (y)|dy
[x− y]q+1

<
ϵ

Γ(−q)

∫ x

a
[x− y]−q−1dy

=
ϵ[x− a]−q

qΓ(−q)

<
ϵX−q

qΓ(−q)
,

which can be made small, with ϵ → 0, independently of x, in the interval 0 < |x − a| < X.

This proves that
∑ dqfj

[d(x− a)]q
converges uniformly to

dqf

[d(x− a)]q
in 0 < |x − a| < X. The

result just established shows that equation (2.67) is valid for q ≤ 0, and thus, if f is any

differintegrable series, the operator
dq

[d(x− a)]q
may be distributed through the several infinite

series that define f as long as q ≤ 0.

Applying result (2.64) to equation (2.67) gives

dqfv
[d(x− a)]q

=
∞∑
j=0

cjΓ(p+ j + 1)

Γ(p− q + j + 1)
[x− a]p+j−q, q ≤ 0. (2.69)

Equations (2.67) and (2.69) are also valid for q > 0, as we now establish. First, we decompose
the series for fv into two expressions:

fv =

∞∑
j=0

cj [x− a]p+j =
∑
j∈J1

cj [x− a]p+j +
∑
j∈J2

cj [x− a]p+j ,

where J1 is the set of nonnegative integers j for which Γ(p− q + j + 1) is infinite, and J2
consists of all nonnegative integers not in J1. Γ(p − q + j + 1) being infinite implies that
p− q + j + 1 is either zero or a negative integer. However, as j increases, and since p− q + 1
is finite, p − q + 1 + j is guaranteed to become greater than zero for finite values of j. This
implies that the values of j for which p− q+1+ j can be either negative or zero are also finite.
Therefore, J1 is finite.

dqfv
[d(x− a)]q

=
dq

[d(x− a)]q

{∑
j∈J1

cj [x− a]p+j

}
+

dq

[d(x− a)]q

{∑
j∈J2

cj [x− a]p+j

}

=
∑
j∈J1

dq[x− a]p+j

[d(x− a)]q
+

dq

[d(x− a)]q

{∑
j∈J2

cj [x− a]p+j

}
,

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 35

making use only of the linearity of
dq

[d(x− a)]q
. Now we see that the proof of equation (2.69)

for q > 0 depends only upon establishing that

dq

[d(x− a)]q

{∑
j∈J2

cj [x−a]p+j

}
=
∑
j∈J2

cj
dq[x− a]p+j

[d(x− a)]q
=
∑
j∈J2

cjΓ(p+ j + 1)

Γ(p− q + j + 1)
[x−a]p+j−q, q > 0.

(2.70)
Given the uniform convergence of the series for fv in 0 < |x − a| < X, the series on the
right-hand side of equation (2.70) will also converge uniformly, as demonstrated earlier in this

section. Hence, the operator
d−1

[d(x− a)]−1 can be applied to the terms of this series to obtain

d−1

[d(x− a)]−1

{∑
j∈J2

cjΓ(p+ j + 1)

Γ(p− q + j + 1)
[x− a]p+j−q

}

=
∑
j∈J2

d−1

[d(x− a)]−1

{
cjΓ(p+ j + 1)

Γ(p− q + j + 1)
[x− a]p+j−q

}

=
∑
j∈J2

cjΓ(p+ j + 1)Γ(p− q + j + 1)

Γ(p− q + j + 1)Γ(p− q + j + 2)
[x− a]p+j−q+1

=
∑
j∈J2

cjΓ(p+ j + 1)

Γ(p− q + j + 2)
[x− a]p+j−q+1

=
∑
j∈J2

cj
dq−1

[d(x− a)]q−1 [x− a]p+j .

(2.71)

Moreover, the last series converges uniformly in 0 < |x − a| < X, as does the series obtained
by differentiating each term. The cancellation required to derive the penultimate expression
in equation (2.71) can be justified since the definition of set J2 ensures that Γ(p− q + j + 1)
is finite. Applying the classical theorem on term-by-term differentiation (see Section 2.1.1) to

the series
∑

cj
dq−1

[d(x− a)]q−1 [x− a]p+j yields

d

dx

{∑
j∈J2

cj
dq−1

[d(x− a)]q−1 [x− a]p+j

}
=
∑
j∈J2

cj
dq

[d(x− a)]q
[x− a]p+j .

Arguing similarly, we find that

dn

dxn

{∑
j∈J2

cj
dq−n

[d(x− a)]q−n [x− a]p+j

}
=
∑
j∈J2

cj
dq

[d(x− a)]q
[x− a]p+j , (2.72)

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 36

for every positive integer n. Choosing the smallest n to make q − n < 0 permits us to apply
equation (2.69) with the result that

∑
j∈J2

cj
dq−n

[d(x− a)]q−n [x− a]p+j =
dq−n

[d(x− a)]q−n

{∑
j∈J2

cj [x− a]p+j

}
.

Differentiating both sides of this equation n times, we see that

dn

dxn

{∑
j∈J2

cj
dq−n

[d(x− a)]q−n [x− a]p+j

}
=

dq

[d(x− a)]q

{∑
j∈J2

cj [x− a]p+j

}
.

Utilizing equation (2.72) gives, finally,

dq

[d(x− a)]q

{∑
j∈J2

cj [x− a]p+j

}
=
∑
j∈J2

cj
dq

[d(x− a)]q
[x− a]p+j , q > 0,

as we wanted to show. Thus the representation (2.70) is valid for q > 0 and, hence, for arbi-
trary q.

Scale Change

By a scale change of the function f with respect to a lower limit a, we mean its replacement
by f(β − β + a), where β is a constant termed the scaling factor. To clarify this definition,
consider a = 0; then the scale change converts f(x) to f(βx), in contrast to the homogeneity
operation to the previous section which converted f(x) to Cf(x).

In this section we seek a procedure by which the effect to the generalized
dq

[d(x− a)]q

operation upon f(βx−βa+a) can be found, if
dq

[d(x− a)]q
is known. We shall find it convenient

to use the abbreviation
X = x+ [a− aβ]/β,

and to adopt the Riemann-Liouville definition (2.41). Using Y as a replacement for βy−βa+a,
we proceed as follows:

dqf(βX)

[d(x− a)]q
=
dqf(βy − βa+ a)

[d(x− a)]q
=

1

Γ(−q)

∫ x

a

f(βy − βa+ a)

[x− y]q+1
dy

=
1

Γ(−q)

∫ βx

a

f(Y)[dY/β]

[βX − Y]/βq+1

=
βq

Γ(−q)

∫ βX

a

f(Y)

[βX − Y]q+1
dY

= βq
dqf(βX)

[d(βX − a)]q
.

(2.73)

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 37

The unity of the formula (2.73) is greatest when a = 0, for then X = x and the scale change
is simply a multiplication of the independent variable by a constant, the formula being

dqf(βX)

[dx]q
= βq

dqf(βX)

[dβx]q
. (2.74)

Leibniz’s Rule

The rule for differentiating a product of two functions is a well-known result in elementary
calculus. It states that

dn[fg]

dxn
=

n∑
j=0

(
n

j

)
dn−jf

dxn−j

djg

dxj
(2.75)

and is, of course, limited to non-negative integers n. In Section 2.1.1, we derived, employing
integration by parts, the subsequent product rule for multiple integrals:

d−n[fg]

[d(x− a)]−n =
∞∑
j=0

(
−n
j

)
d−n−jf

[d(x− a)]−n−j

djg

[d(x− a)]j
.

When we observe that the finite sum in (2.75) could equally well extend to infinity [since(
n
j

)
= 0 for j > n], we might expect the product rule to generalize to arbitrary order q as

dq[fg]

[d(x− a)]q
=

∞∑
j=0

(
q

j

)
dq−jf

[d(x− a)]−q−j

djg

[d(x− a)]j
. (2.76)

That such generalization is indeed valid for real analytic functions ϕ(x) and ψ(x) will now be
established.
Starting with equation (2.60) and substituting for ϕ the product ϕψ, we obtain

dq[ϕψ]

[d(x− a)]q
=

∞∑
k=0

(
q

k

)
dq−k[1]

[d(x− a)]q−k
[ϕψ](k)

=

∞∑
k=0

(
q

k

)
dq−k[1]

[d(x− a)]q−k

k∑
j=0

(
k

j

)
ϕ(k−j)ψ(j),

making use of (2.75). Note that, since j is an integer, the repeated derivative ψ(j) with respect
to x equals that with respect to x− a. The permutation (2.94)

∞∑
k=0

k∑
j=0

=
∞∑
j=0

∞∑
k=j

(2.77)

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 38

may be applied to give

dq[ϕψ]

[d(x− a)]q
=

∞∑
j=0

ψ(j)
∞∑
k=j

(
q

k

)(
k

j

)
dq−k[1]

[d(x− a)]q−k
ϕ(k−j)

=
∞∑
j=0

ψ(j)
∞∑
l=0

(
q

l + j

)(
l + j

j

)
dq−j−l[1]

[d(x− a)]−q−j−l
ϕ(l)

=

∞∑
j=0

(
q

j

)
ψ(j)

∞∑
l=0

(
q − j

l

)
dq−j−l[1]

[d(x− a)]−q−j−l
ϕ(l)

=

∞∑
j=0

ψ(j)

(
q

j

)
dq−j [1]

[d(x− a)]−q−j
ϕ,

where we have made use of the identity (2.95)(
q

l + j

)(
l + j

j

)
=

(
q

j

)(
q − j

l

)
,

the proof of which can be found in subsection 2.1.5, and the subsequent application of (2.60).
We established (2.55) under the assumption that ϕ is a real analytic function and utilized
(2.55) to demonstrate (2.60), which, in turn, was employed to establish (2.76). Therefore, the
latter is proven only if both ϕ and ψ are real analytic functions.

Composition Rule

In our quest for a comprehensive composition rule for the operator
dq

[d(x− a)]q
, we aim to

uncover the connection between

dq

[d(x− a)]q
· dQ

[d(x− a)]Q
, and

dq+Q

[d(x− a)]q+Q
,

which we temporarily abbreviate to dqdQf and dq+Q respectively. Naturally, for these symbols
to have general significance, we must assume not only that f is differintegrable but also that
dQf is differintegrable. In this section, we confine our focus to differintegrable series as defined
in Section 2.1.2. Thereby, the most general non-zero differintegrable series is a finite sum of
differintegrable ”units,” each taking the form

fv = [x− a]p
∞∑
j=0

cj [x− a]j , p > −1, c0 ̸= 0. (2.78)

We shall see that the composition rule may be valid for some units of f but possibly not for
others. It follows from the linearity of differintegral operators that

dqdQf = dq+Qf (2.79)

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 39

if
dqdQfv = dq+Qfv (2.80)

for every unit fv of f . Accordingly, we shall first assess the validity of the composition rule
(2.80) for differintegrable series unit functions fv. Obviously, if fv ≡ 0, then dQfv = 0 for
every Q by equation (2.57), and so

dqdQ[0] = dq+Q[0] = 0.

While the composition rule is trivially satisfied for the differintegrable function fv ≡ 0, we
shall see that the possibility

fv ̸= 0, but dQfv = 0,

is exactly the condition that prevents the composition rule (2.80), and therefore (2.79), from
being satisfied generally. Having dealt with the case fv ≡ 0, we now assume fv ̸= 0 and use
equation (2.69) to evaluate dQfv:

dQfv =
∞∑
j=0

cjd
Q[x− a]p+j =

∞∑
j=0

cjΓ(p+ j + 1)[x− a]p+j−Q

Γ(p+ j −Q+ 1)
. (2.81)

Furthermore, we observe that since p > −1, it implies that p + j > −1, ensuring that
Γ(p+ j + 1) is always finite but nonzero. Hence, individual terms in dQfv will only vanish
when the coefficient cj is zero or when the denominatorial Γ function Γ(p+ j + 1−Q) is
infinite. Consequently, we realize that a necessary and sufficient condition for dQfv ̸= 0 is

Γ(p+ j + 1−Q) is finite for each j for which cj ̸= 0. (2.82)

This awkward condition (2.82) may be shown to be equivalent to

fv − d−QdQfv = 0; (2.83)

that is, to the condition that the differintegrable unit fv be regenerated upon the application,
first of dQ, then d−Q. Assuming (2.83) temporarily, we find that dq may then be applied to
equation (2.81) to give

dqdQfv =

∞∑
j=0

cjΓ(p+ j + 1)Γ(p+ j −Q+ 1)[x− a]p+j−Q−q

Γ(p+ j −Q+ 1)Γ(p+ j −Q− q + 1)
.

On the other hand, the same technique shows that

dq+Qfv =
∞∑
j=0

cjd
q+Qfv =

∞∑
j=0

cjΓ(p+ j + 1)[x− a]p+j−Q−q

Γ(p+ j −Q− q + 1)
= dqdQfv.

Thus, the composition rule (2.80) is obeyed for the unit fv as long as condition (2.83) is
satisfied. However, when (2.83) is violated, dQfv = 0 so that dqdQfv = 0. On the other hand,

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 40

it is not necessarily the case that dq+Qfv = 0. For example, we may choose fv = x−1/2, a = 0,

Q =
1

2
, and q = −1

2
. Then

fv − d−QdQfv = x−1/2 − d−1/2d1/2x−1/2 = x−1/2 − d−1/2
Γ(

1

2
)

Γ(0)
x−1/2 = x−1/2 ̸= 0,

so that condition (2.83) is certainly violated. Therefore, dQfv = 0 and dqdQfv = 0 while
dq+Qfv = x−1/2 ̸= 0. Generalizing, we easily see the relationship between dqdQfv and dq+Qfv
in case fv − d−QdQfv ̸= 0 to be

0 = dqdQfv = dq+Qfv − dq+Q{fv − d−QdQfv}. (2.84)

The preceding discussion for differintegrable units fv is summarized in the Table 2.1.

fv ≡ 0 fv ̸= 0

dQfv = 0 fv − d−QdQfv = 0

dqdQfv = dq+Qfv = 0

fv − d−QdQfv ̸= 0

0 = dqdQfv = dq+Qfv

− dq+Q[fv − d−QdQfv]

dQfv ̸= 0 Not attainable
fv − d−QdQfv = 0

dqdQfv = dq+Qfv.

Table 2.1: Summary of the composition rule for differintegrable units fv

While equation (2.84) is a trivial identity for differintegrable units, its significance be-
comes more apparent and thus more useful for general differintegrable series. Because equation
(2.79) holds true for general differintegrable series f if and only if equation (2.80) is valid for
every differintegrable unit fv of f , applying the theory developed for units fv to derive the
composition rule for general f is straightforward. The only difference lies in the conditions

fv ̸= 0 and fv − d−QdQfv = 0 (2.85)

for units fv guaranteed that dQfv ̸= 0, this is no longer the case for arbitrary f . The reason,
of course, is that some units of f may satisfy (2.85) while others do not. This will make it
possible to violate the composition rule (2.79) even though

f ̸= 0 and dQf ̸= 0.

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 41

Then, in conjunction with the preceding requirement, it is imperative to include an additional
condition

fv − d−QdQfv = 0 (2.86)

for each differintegrable unit, as delineated in Table 2.2.

Note:

Section 2.1.5 provides proofs for certain results utilized in Chapter 2. If these have been
previously reviewed, the reader should then proceed to Chapter 3.

f ≡ 0 f ̸= 0

dQf ≡ 0 f − d−QdQf ≡ 0

dqdQf = dq+Qf = 0

f − d−QdQf ̸= 0

0 = dqdQf = dq+Qf

− dq+Q[f − d−QdQf]

dQf ̸= 0 Not attainable

if f − d−QdQf ≡ 0

then dqdQf = dq+Qf

if f − d−QdQf ̸= 0

then dqdQf = dq+Qf

− dq+Q[f − d−QdQf].

Table 2.2: Summary of the composition rule for arbitrary differintegrable functions, f .

2.1.5 Auxiliary Proofs

The following properties, along with their accompanying proofs, were frequently utilized to
derive important results in this chapter:

1. We aim to prove

lim
j→∞

[
jc+q+1Γ(j − q)

Γ(j + 1)

]
= lim

j→∞

[
jc+qΓ(j − q)

Γ(j)

]
=

∞, c > 0,

1, c = 0,

0, c < 0

(2.87)

Given that lim
j→∞

[
jc+q+1Γ(j − q)

Γ(j + 1)

]
= lim

j→∞

[
jc+qΓ(j − q)

Γ(j)

]
. Using the asymptotic expan-

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 42

sion of
Γ(j − q)

Γ(j + 1)
(2.1), we have

Γ(j − q)

Γ(j + 1)
∼ j−1−q

[
1 +

q[q + 1]

2j
+O(j−2)

]
, q ∈ R, j ∈ N, and j → ∞.

Subsequently,

Γ(j − q)

Γ(j + 1)
=

Γ(j − q)

jΓ(j)
⇒ Γ(j − q)

Γ(j)
∼ j−q

[
1 +

q[q + 1]

2j
+O(j−2)

]
.

Additionally,

j → ∞ ⇒ q[q + 1]

2j
→ 0 ⇒ Γ(j − q)

Γ(j)
∼ j−q.

Applying this result in (2.87) leads to

lim
j→∞

[
jc+qΓ(j − q)

Γ(j)

]
= lim

j→∞

jc+q

jq
= lim

j→∞
jc =

∞, c > 0,

1, c = 0,

0, c < 0.

(2.88)

2. We aim to prove that

[−1]j
(
n

j

)
=

(
j − n− 1

j

)
=

Γ(j − n)

Γ(−n)Γ(j + 1)
. (2.89)

Let Q1 be [−1]j
(
n

j

)
, Q2

(
j − n− 1

j

)
and Q3 be

Γ(j − n)

Γ(−n)Γ(j + 1)
. In order to derive that

proof, we show that both Q1 and Q2 are equal to Q3 .
Let us first show that Q2 are equal to Q3.

Q2 =

(
j − n− 1

j

)
=

Γ(j − n)

Γ(j + 1)Γ(−n)
.

Let us now show that Q1 are equal to Q3

Q1 = [−1]j
(
n

j

)
= [−1]j

Γ(n+ 1)

Γ(n− j + 1)Γ(j + 1)
.

From the previous result, we only need to show that

[−1]j
Γ(n+ 1)

Γ(n− j + 1)
=

Γ(j − n)

Γ(−n)
.

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 43

On one hand, using the reflection property of Γ, and the fact that cos (jπ) = [−1]j for
all positive integers j, we have

Γ(j − n) = Γ (−(n− j)) =
−π

sin((n− j)π)Γ(n− j + 1)

=
−π

Γ(n− j + 1) (sin(πn) cos(πj)− cos(πn) sin(πj))

=
−π

Γ(n− j + 1) sin(πn)[−1]j
.

On the other hand, taking advantage of the reflection property again, we have

Γ(−n) = −π
Γ(n+ 1) sin (πn)

.

Finally, using the former results, we have

Γ(j − n)

Γ(−n)
=

−π
Γ(n− j + 1) sin(πn)[−1]j

Γ(n+ 1) sin(πn)

−π

=
Γ(n+ 1)[−1]−j

Γ(j − j + 1)

= [−1]j
Γ(n+ 1)

Γ(n− j + 1)
.

3. Let us establish that
n∑

j=0

(
j − q − 1

j

)
=

(
n− q

n

)
. (2.90)

We aim to show using induction that ∀n ∈ N,

n∑
j=0

(
j − q − 1

j

)
=

(
n− q

n

)
.

Initial condition: n = 1. The left hand side of the equation gives

1∑
j=0

(
j − q − 1

j

)
=

(
0− 1− q

0

)
+

(
1− q − 1

1

)
=

(
−q − 1

0

)
+

(
−q
1

)
= 1− q.

The right hand side of the equation gives(
1− q

1

)
= 1− q.

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 44

Let us suppose now the equation is true for n = k and let us prove that it is also true
for n = k + 1. We need to show that

k+1∑
j=0

(
j − q − 1

j

)
=

(
k + 1− q

k + 1

)
.

k+1∑
j=0

(
j − q − 1

j

)
=

k∑
j=0

(
j − q − 1

j

)
+

(
k + 1− q − 1

k + 1

)

=

k∑
j=0

(
j − q − 1

j

)
+

(
k − q

k + 1

)

=

(
k − q

k

)
+

(
k − q

k + 1

)
.(

k − q

k

)
=

Γ(k − q + 1)

Γ(k + 1)Γ(−q + 1)
=

Γ(k − q + 1)

Γ(k + 1)(−q)Γ(−q)
.(

k − q

k + 1

)
=

Γ(k − q + 1)

Γ(k + 2)Γ(−q)
=

Γ(k − q + 1)

(k + 1)Γ(k + 1)Γ(−q)
.(

k − q

k

)
+

(
k − q

k + 1

)
=

Γ(k − q + 1)

Γ(k + 1)(−q)Γ(−q)
+

Γ(k − q + 1)

(k + 1)Γ(k + 1)Γ(−q)

=
1

Γ(k + 1)Γ(−q)

{
Γ(k − q + 1)

−q
+

Γ(k − q + 1)

k + 1

}

=
Γ(k − q + 1)(k + 1− q)

(−q)Γ(k + 1)Γ(−q)(k + 1)
=

Γ(k − q + 2)

Γ(−q + 1)Γ(k + 2)

=

(
k − q + 1

k + 1

)
.

4. Let us prove that
N−1∑
j=0

Γ(j − q)

Γ(−q)Γ(j + 1)
=

Γ(N − q)

Γ(1− q)Γ(N)
. (2.91)

This result is derived by setting N = n + 1 and expressing the binomial coefficients as
their equivalent Γ function combination in (2.90) as follows:

n∑
j=0

(
j − q − 1

j

)
=

(
n− q

n

)
⇔

n∑
j=0

Γ(j − q)

Γ(j + 1)Γ(−q)
=

Γ(n− q + 1)

Γ(n+ 1)Γ(−q + 1)
.

By setting N = n+ 1, we obtain

N−1∑
j=0

Γ(j − q)

Γ(j + 1)Γ(−q)
=

Γ(N − q)

Γ(N)Γ(1− q)
.

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 45

5. Our purpose is to demonstrate that

N−1∑
j=0

Γ(j − q)

Γ(−q)Γ(j)
=

−qΓ(N − q)

Γ(2− q)Γ(N − 1)
. (2.92)

For this proof, let us consider the following binomial coefficient identity which can also
be verified using induction as shown in (2.90).

n∑
j=1

(
j − q − 1

j − 1

)
=

(
n− q

n− 1

)
⇔

n∑
j=1

Γ(j − q)

Γ(j)Γ(−q + 1)
=

Γ(n− q + 1)

Γ(n)Γ(2− q)
.

By setting N = n+ 1, we obtain, this finally leads to

N−1∑
j=0

Γ(j − q)

Γ(j)Γ(−q + 1)
=

Γ(N − q)

Γ(N − 1)Γ(2− q)
.

Using the recurrence property of the Γ function leads to

N−1∑
j=0

Γ(j − q)

Γ(j)(−q)Γ(−q)
=

Γ(N − q)

Γ(N − 1)Γ(2− q)
⇔

N−1∑
j=0

Γ(j − q)

Γ(j)Γ(−q)
=

−qΓ(N − q)

Γ(N − 1)Γ(2− q)
.

6. Let us establish the binomial result

j∑
k=0

(
q

k

)(
Q

j − k

)
=

(
q +Q

j

)
. (2.93)

For q and Q intergers, this equality implies that choosing j elements out of q+Q elements,

i.e.,

(
q +Q

j

)
, is equivalent to choosing k elements out of q, i.e.,

(
q

k

)
, and j−k elements

out of Q, i.e.,

(
Q

j − k

)
. Finally, by considering all the possible values of k between 0 and

j, we obtain the desired result.

For q and Q reals numbers, we have

∞∑
j=0

(
q +Q

j

)
xj = (1 + x)q+Q = (1 + x)q(1 + x)Q =

(∞∑
k=0

(
q

k

)
xq
)(∞∑

l=0

(
Q

l

)
xQ
)
.

Upon applying the summation formula

∞∑
n=0

an

∞∑
n=0

bn =

∞∑
n=0

n∑
k=0

akbn−k,

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 46

we obtain

∞∑
j=0

(
q +Q

j

)
xj = (1 + x)q+Q =

∞∑
j=0

(
j∑

k=0

(
q

k

)(
Q

j − k

))
xj

⇔
(
q +Q

j

)
=

j∑
k=0

(
q

k

)(
Q

j − k

)
.

7. We aim to establish the binomial equality(
q

l + j

)(
l + j

j

)
=

(
q

j

)(
q − j

l

)
. (2.94)

A good way to understand this binomial equality is to consider the example of a box
containing q balls. Out of those q balls, such that we have l which are red and j which
are blue. This equality represents 2 identical ways to choose those l red balls and j blue
balls out of those q balls. The first way (the left-hand side) involves selecting l + j balls
then, assigning l to be red and j to be blue (a total of l + j) all at once out of the q

balls

(
q

l + j

)
. Subsequently, out of the (l + j) selected, we select either j blue balls or

l red balls since

(
l + j

j

)
=

(
l + j

l

)
. The second way (the right-hand side) consists of

selecting each color ball one after the other. We first choose the j red ones out of the q

total

(
q

j

)
. Then, out of the q − j balls remaining, we select the blue ones

(
q − j

l

)
.

8.
∞∑
k=0

k∑
j=0

=
∞∑
j=0

∞∑
k=j

. (2.95)

The summation equality is established graphically:

∞∑
k=0

k∑
j=0

is the discrete equivalent to the double integral

∫ ∞

0

∫ x

0
dy dx, which represents

the area of the lower region delimited by the x-axis, the y-axis, and the line y = x,

as shown in Figure 2.2 (red). Similarly,

∞∑
j=0

∞∑
k=j

is the discrete equivalent to the double

integral

∫ ∞

0

∫ ∞

y
dx dy, representing the area of the upper region delimited by the x-axis,

the y-axis, and the line y = x, as shown in Figure 2.2 (black). From Figure 2.2, these
areas are equal, and then, (g) follows.

BACKGROUND, PROPERTIES, SIMILARITIES AND DIFFERENCIES 47

Figure 2.2: Upper and lower regions of equal areas.

The discret version of this proof involves
∞∑
k=0

k∑
j=0

sums over all pairs (k, j) where j ≤ k,

and
∞∑
j=0

∞∑
k=j

sums over all pairs (k, j) where k ≥ j.

Chapter 3

Gierer-Meinhardt Model

3.1 Representation, Matched Asymptotic Expansion and
Solution

Our study will focus solely on sub-diffusion with Gierer-Meinhardt reaction kinetics. The
Gierer-Meinhardt model is a mathematical model that describes the formation of spatial
patterns in biological systems. Proposed by Hans Meinhardt and Leo Gierer in the late
1960s, the model studies the interaction between the activator and the inhibitor. The
original Gierer-Meinhardt model is represented by a system of two partial differential
equations characterizing the rate of change of the concentrations of both activator and
inhibitor species with respect to space and time:

∂ta = ϵ2axx − a+
ap

hq
, τ∂th = Dhxx − h+ ϵ−1a

m

hs
, (3.1)

where a(x, t) and h(x, t) are the activator and inhibitor concentrations at position x and
time t. Here ϵ2 and D denote the constant diffusivities, τ is the reaction time constant,
and the exponents (p, q,m, s) satisfy

p > 1, q > 0, m > 0, s ≥ 0,
p− 1

q
<

m

s+ 1
.

When integrating sub-diffusion into the system, involving some concepts of fractional
calculus, we obtain the following system

∂γt a = ϵ2γaxx − a+
ap

hq
, τ∂γt h = Dhxx − h+ ϵ−γ a

m

hs
, (3.2)

where the anomaly exponent γ is in the range 0 < γ < 1 . The original Gierer-Meinhardt
model can be recovered by substituting γ = 1 in the new system (3.2). Setting γ → 0+

48

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 49

is inappropriate since ϵγ becomes arbitrarily small as ϵ → 0 when 0 < γ < 1, whereas
ϵγ = 1 for arbitrarily small ϵ when γ = 0.

The Gierer-Meinhardt model, being a dynamic system, implies the existence of equi-
librium points. An equilibrium point in our context denotes a point where the partial
derivatives of a and h with respect to time and position vanish. However, upon closer
examination of the definition of the fractional derivative utilizing the Riemann-Liouville
integral (2.41), we observe it vanishes solely when the differentiated function is zero.
Consequently, we opt to employ a variant of the Riemann-Liouville integral expressed as

dγf(x)

[d(x− c)]γ
=

−1

Γ(−γ)

∫ x

c

f(x)− f(x− ξ)

ξγ+1
dξ, 0 < γ < 1.

For c = 0, and x = t we have

∂γt f(t) =
dγf(t)

dtγ
=

−1

Γ(−γ)

∫ t

0

f(t)− f(t− ξ)

ξγ+1
dξ, 0 < γ < 1. (3.3)

3.1.1 Neumann Boundaries Conditions

As previously discussed, the interaction between activator and inhibitor molecules gives
rise to distinctive spike patterns. Since our study revolves around a one-dimensional
domain, these spikes propagate in both directions along the line until equilibrium is
reached. For the purpose of our investigation, we have opted to focus on the symmetric
interval [−1, 1] as our chosen study domain. Neumann boundary conditions represent
a fundamental type of boundary condition extensively employed in mathematical and
physical models. They provide a framework for understanding how a given quantity
evolves or interacts with its surroundings at the boundaries of a specified domain. In
the context of the sub-diffusion reaction under examination, the Neumann boundary
conditions play a crucial role by articulating how the rate of change in concentration (or
flux) for both activators and inhibitors becomes null at x = ±1. This insight sheds light
on the stability of the reaction at these specific points, preventing the entrance of any
molecules into the study domain.

∂γt a = ϵ2γaxx − a+
ap

hq
− 1 < x < 1, t > 0. (3.4a)

τ∂γt h = Dhxx − h+ ϵ−γ a
m

hs
− 1 < x < 1, t > 0. (3.4b)

ax(±1, t) = hx(±1, t) = 0, a(x, 0) = a0(x), h(x, 0) = h0(x). (3.4c)

with t = 0 representing the beginning of the reaction.

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 50

3.1.2 Asymptotic Solution of the Gierer-Meinhardt Model

An earlier analysis of the system composed of equations (1.1), (1.2), and (1.3) from
[5] unveiled the existence of a solution (a, h) as ϵ approaches zero. This seminal study
showed that the concentration a nullifies across the entire range of the problem, except
at a finite set of points xi, where i ranges from 1 to n. A time scale σ = ϵαt allows to
establish a local region around each xi, where the concentration of the activator does not
vanish. As a result, the behaviour of the solution function a can be captured separately
within the inner and outer regions. A popular method for constructing these specific
types of solutions that differ in nature from one region to another is called the ”matched
asymptotic expansions”.

Matched asymptotic expansion

In mathematics, the technique known as matched asymptotic expansions is a common
approach for deriving an approximation to the solution of an equation or a system of
equations. This method involves the discovery of multiple distinct approximate solutions,
each valid for a specific segment within the range of the independent variable. In each
segment, the solution is approximated by an asymptotic series. Subsequently, these
distinct solutions are combined to formulate a unique approximated solution, applicable
across the entirety of the independent variable’s value range. In the case of the Gierer-
Meinhardt model the solution (a, h) is to be found separately in the outer and inner
regions and matched. Upon examination of equation (3.4a), the presence of the parameter

ϵ → 0 preceding the highest derivative axx and the reaction term
am

hs
in (3.4b) can be

noticed. This scenario presents us with what is commonly referred to as a ”singular
perturbation problem”. The application of the matched asymptotic expansions is still
possible and has been successfully done when the time derivatives in system (3.2) were
integer [5]. Hereinafter we will follow [6] in order to construct such a solution in the
fractional case.

Perturbation theory

This section aims to provide valuable information about perturbation theory and is based
on [9].

Perturbation methods: Perturbation methods are methods which rely on there
being a dimensionless parameter ϵ in the problem that is small: ∥ϵ∥ ≪ 1.

Regular perturbation expansions The Taylor formula is one of the most known
series expansions and is surely familiar to all of us: for an analytic function f(x), we can

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 51

expand close to a point x = a as:

f(a+ ϵ) = f(a) + ϵf ′(a) +
1

2
ϵ2f ′′(a) + · · ·

However, for general functions f(x) there are many ways this expansion can fail, including
lack of convergence of the series, or simply an inability of the series to capture the
behaviour of the function in a reasonable number of terms, after which the series is
truncated; but the paradigm of the expansion in which a small change to x entails a small
change to f(x) is a powerful one, and the basis of singular perturbation expansions.
The basic principle of perturbation expansions is as follows. Given a problem, algebraic
or differential, for a quantity f with independent variables (t, x1, x2, ...) and a parameter
ϵ, follow these steps.

(a) Set ϵ = 0 and solve the resulting system (solution f0 for definiteness).

(b) Perturb the system by allowing ϵ to be nonzero (but small in some sense).

(c) Formulate the solution to the new, perturbed system as a series.

f = f0 + ϵf1 + ϵ2f2 + · · ·

(d) Expand the governing equations as a series in ϵ, collecting terms with equal powers
of ϵ; solve them in turn as far as the solution is required.

Depending on where ϵ appears in the problem, it might be considered regular or singular.
An example of a singular problem is, for instance, where ϵmultiplies the highest derivative
of a differential equation or appears in the denominator in some expressions.

Dynamics of quasi-equilibrium patterns

As mentioned earlier, when we approach the limit ϵ→ 0 in equation (3.4a), a solution is
constructed. The activator’s concentration becomes negligible across most of the domain,
with notable increases occurring at specific points. However, upon closer examination,
we find that these seemingly sudden jumps are, in fact, gradual. By scaling both time,

from t to σ = ϵαt and x to yi =
x− xi(σ)

ϵγ
, we observe that the concentration gradually

rises until reaching its peak at x = xi. This phenomenon can be likened to someone
traveling from Vancouver to Kamloops. Initially, they use a map of the entire province
to navigate highways and cities. But upon arriving in Kamloops, they switch to a more
detailed map specific to the town’s neighborhoods and streets. The BC map corresponds
to the original space and time scale (x, t) while the Kamloops map represents the new
one (yi, σ).

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 52

Concentration of the activator and the inhibitor in the inner region

Let us define by A and H to be the concentrations of the activator and inhibitor in the
inner region. Applying singular perturbation expansions on A and H , we obtain for
each yi

A(yi, σ) = a(xi + ϵγyi, ϵ
−ασ) = A

(0)
i (yi, σ) + ϵγA

(1)
i (yi, σ) + ϵ2γA

(2)
i (yi, σ) + · · · (3.5a)

H(yi, σ) = h(xi + ϵγyi, ϵ
−ασ) = H

(0)
i (yi, σ) + ϵγH

(1)
i (yi, σ) + ϵ2γH

(2)
i (yi, σ) + · · · (3.5b)

Substituting (3.5a) in (3.4a) we obtain

ϵαγ∂γσ

(
A

(0)
i + ϵγA

(1)
i + · · ·

)
= ϵ2γ∂2x

(
A

(0)
i + ϵγA

(1)
i + · · ·

)
−
(
A

(0)
i + ϵγA

(1)
i + · · ·

)
+

(
A

(0)
i + ϵγA

(1)
i + · · ·

)p(
H

(0)
i + ϵγH

(1)
i + · · ·

)q . (3.6)

We have

∂2xAi = ∂2xAi(yi) = ∂x

{
ϵ−γ∂yi

(
Ai(yi)

)}
= ϵ−2γ∂2yiAi(yi).

Applying that result to equation (3.6) we obtain

ϵαγ∂γσ

(
A

(0)
i + ϵγA

(1)
i + · · ·

)
=

∂2yi

(
A

(0)
i + ϵγA

(1)
i + · · ·

)
−

(
A

(0)
i + ϵγA

(1)
i + · · ·

)
+

(
A

(0)
i + ϵγA

(1)
i + · · ·

)p(
H

(0)
i + ϵγH

(1)
i + · · ·

)q .
Subsequently,

(
A

(0)
i + ϵγA

(1)
i + · · ·

)p(
H

(0)
i + ϵγH

(1)
i + · · ·

)q =
A

(0)p

i

H
(0)q

i

(
1 + ϵγ

A
(1)
i

A
(0)
i

+ · · ·

)p

(
1 + ϵγ

H
(1)
i

H
(0)
i

+ · · ·

)q

=
A

(0)p

i

H
(0)q

i

(
1 + ϵγ

A
(1)
i

A
(0)
i

+ · · ·

)p(
1 + ϵγ

H
(1)
i

H
(0)
i

+ · · ·

)−q

.

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 53

Additionally,(
1 + ϵγ

A
(1)
i

A
(0)
i

+ · · ·

)p

= (1 + ξ1)
p ∼ (1 + pξ1) =

(
1 + p

(
ϵγ
A

(1)
i

A
(0)
i

+ · · ·
))

,

with ξ1 =
(
ϵγ
A

(1)
i

A
(0)
i

+ · · ·
)
.

Similarly, we have(
1 + ϵγ

H
(1)
i

H
(0)
i

+ · · ·

)−q

= (1 + ξ2)
−q ∼ (1− qξ2) =

(
1− q

(
ϵγ
H

(1)
i

H
(0)
i

+ · · ·
))

,

with ξ2 =
(
ϵγ
H

(1)
i

H
(0)
i

+ · · ·
)
. Thus,

(
A

(0)
i + ϵγA

(1)
i + · · ·

)p(
H

(0)
i + ϵγH

(1)
i + · · ·

)q =
A

(0)p

i

H
(0)q

i

(
1 + p

(
ϵγ
A

(1)
i

A
(0)
i

+ · · ·
))(

1− q
(
ϵγ
H

(1)
i

H
(0)
i

+ · · ·
))

=
A

(0)p

i

H
(0)q

i

(
1− qϵγ

H
(1)
i

H
(0)
i

+ · · ·+ pϵγ
A

(1)
i

A
(0)
i

− pqϵ2γ
A

(1)
i

A
(0)
i

H
(1)
i

H
(0)
i

+ · · ·

)
.

Upon truncating the equation at order O(ϵ2γ) we obtain

ϵαγ∂γσ

(
A

(0)
i + ϵγA

(1)
i

)
∼ ∂2yi

(
A

(0)
i + ϵγA

(1)
i

)
−

(
A

(0)
i + ϵγA

(1)
i

)

+
A

(0)p

i

H
(0)q

i

(
1− qϵγ

H
(1)
i

H
(0)
i

+ pϵγ
A

(1)
i

A
(0)
i

)
.

(3.7)

Following the same process, and upon substituting (3.5b) in (3.4b) we obtain

τϵαγ∂γσ

(
H

(0)
i + ϵγH

(1)
i

)
∼ ϵ−2γD∂2yi

(
H

(0)
i + ϵγH

(1)
i

)
−
(
H

(0)
i + ϵγH

(1)
i

)
+ ϵ−γA

(0)m

i

H
(0)s

i

{
1 + ϵγ

(
m
A

(1)
i

A
(0)
i

− s
H

(1)
i

H
(0)s

i

)}
.

(3.8)

Grouping terms of same magnitude in an asymptotic expansion

The method of truncation we recently employed in equations (3.7) and (3.8) is a technique
used in mathematics to simplify complex functions or equations by focusing on their

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 54

dominant behavior as variables approach certain limits. It involves breaking down a
complex mathematical expression into its constituent terms and organizing them based on
their relative orders of magnitude, as a variable approaches a certain limit, often denoted
as a small parameter ϵ. The goal is to identify which terms dominate as ϵ approaches the
limit and which terms become negligible. In our particular scenario, terms in equation
(3.7) are grouped by order O(1) and O(ϵγ) representing respectively the equilibrium
state and the drift. Similarly, terms in equation (3.8) are grouped by order O(ϵ−2γ) and
O(ϵ−γ). This allows for an accurate approximation of a and h and captures the essential
characteristics of the original equations while shedding unnecessary complexity. As we
mentioned previously, the main objective of using perturbation expansions is to group
terms of the same order into equations that are comparatively simpler and which satisfiy
specific conditions. Since equations (3.7) and (3.8) depend on the α and τ parameters,
a judicious choice of their magnitudes would greatly facilitate the resolution of these
equations.
On one hand, let us suppose α < γ+1, for example α = γ+1− k with k a real number.
We obtain

ϵγ
2−kγ+γ∂γσA

(0)
i + ϵγ

2−kγ+2γ∂γσA
(1)
i ∼ ∂2yi(A

(0)
i + ϵγA

(1)
i)− (A

(0)
i + ϵγA

(1)
i)

+
A

(0)p

i

H
(0)q

i

(
1− qϵγ

H
(1)
i

H
(0)
i

+ pϵγ
A

(1)
i

A
(0)
i

)
.

From equation (3.33) in section(3.1.3), ∂γσAi ∼ O(ϵ−γ2
). The previous expression is com-

posed of terms of order O(ϵ−kγ+γ), O(ϵ−kγ+2γ), O(1), O(ϵγ), and O(ϵ2γ). By collecting
terms of order O(ϵ−kγ+γ) we obtain

∂γσA
(0)
i (σ) = 0,

which is contradictory because A
(0)
i is not constant.

On the other hand, for α > γ + 1, such as α = γ + 1 + k we obtain

ϵγ
2+kγ+γ∂γσA

(0)
i + ϵγ

2+kγ+2γ∂γσA
(1)
i ∼ ∂2yi(A

(0)
i + ϵγA

(1)
i)− (A

(0)
i + ϵγA

(1)
i)

+
A

(0)p

i

H
(0)q

i

(
1− qϵγ

H
(1)
i

H
(0)
i

+ pϵγ
A

(1)
i

A
(0)
i

)
.

By collecting terms of order O(1) and O(ϵγ), we respectively obtain

∂2yiA
(0)
i −A

(0)
i +

A
(0)p

i

H
(0)q

i

= 0. (3.9)

∂2yiA
(1)
i −A

(1)
i +

A
(0)p

i

H
(0)q

i

(
p
A

(1)
i

A
(0)p

i

− q
H

(1)
i

H
(0)q

i

)
= 0. (3.10)

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 55

The system composed of equations (3.9) and (3.10) does not make sense because the
former equation represents the stationary state condition, while the latter one of next
order is intended to be time-dependent, illustrating the change in activator concentration
over time, often referred as ”drift”. Since neither α > γ+1 nor α < γ+1 work, α needs
to be γ + 1.

Solving order O(1) problem: For α = γ + 1, and upon collecting terms of order
O(1)and O(ϵ−2γ) in equations (3.7) and (3.8) respectively, we obtain

∂2yiA
(0)
i (yi)−A

(0)
i +

A
(0)p

i

H
(0)q

i

= 0, (3.11a)

∂2yiH
(0)
i = 0, −∞ < y <∞. (3.11b)

From (3.11b), we have

∂2yiH
(0)
i (yi, σ) = 0 ⇒ H

(0)
i (yi, σ) = c1(σ)yi + c2(σ),

with c1(σ), and c2(σ), functions to be determined. At infinity, H
(0)
i is finite which imposes

c1 to be zero and H
(0)
i (yi, σ) to be yi independent. H̄i(σ) will then be used in place of

H
(0)
i (yi, σ) throughout the rest of the document to express the independence from yi.

Finally, in order to simplify the denominator of the last term in equation (3.11a), we

scale A
(0)
i with a power of H̄i. We then set

A
(0)
i (σ) = H̄B

i (σ)u(yi),

with B and u to be determined.
By substituting A

(0)
i into (3.11a), we obtain

H̄B
i ∂

2
yiu− H̄B

i u+
H̄B p

i

H̄q
i

up = 0,

H̄B
i

(
∂2yiu− u+ H̄B p−q−B

i up
)
= 0.

Subsequently,

H̄B
i = 0 or ∂2yiu− u+ H̄B p−q−B

i up = 0.

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 56

Since H̄B
i ̸= 0, we get

∂2yiu− u+ H̄B p−q−B
i up = 0.

In order to get rid of the term H̄B p−q−B and remain with a second order nonlinear dif-
ferential equation, we set

H̄B p−q−B
i = 1 ⇒ B p− q − B = 0 ⇒ B =

q

p− 1
.

We finally obtain the equation

d2u

dy2i
− u+ up = 0. (3.12)

Homoclinic Solution: In mathematics and dynamics, a homoclinic solution is a curve
that connects different equilibrium states within a system. This path, often represented
as u, starts at one equilibrium state (in our case 0) and returns at the same equilibrium
state. It is essentially a self-referential route that shows how a system settles at the
same equilibrium state. To contrast, a ’heteroclinic solution’ would connect two different
equilibrium states in the system. The homoclinic solution is given by

u(y) =

(
p+ 1

2
sech2

(p− 1)y

2

) 1

p− 1 .

It is the unique solution of the following boundary value problem

u′′ − u+ up = 0, −∞ < y <∞, (3.13a)

u′(0) = 0, u(0) > 0, and lim
|y|→∞

u = 0. (3.13b)

Solving order O(ϵγ) problem: Upon collecting terms of order O(ϵγ) and O(ϵ−γ) in
equations (3.7) and (3.8), we have

ϵαγ−γ∂γσA
(0)
i = ∂2yiA

(1)
i −A

(1)
i +

A
(0)p

i

H̄q
i

(
p
A

(1)
i

A
(0)
i

− q
H

(1)
i

H̄i

)
, (3.14a)

D∂2yiH
(1)
i (yi(σ)) = −

A
(0)m

i

H̄s
i

. (3.14b)

Substituting A
(0)
i = H̄B

i (σ)u(yi) in both equations (3.14a) and (3.14b) leads to

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 57

ϵγ
2
∂γσ(H̄B

i u) = ∂2yiA
(1)
i −A

(1)
i +

A
(0)p

i

H̄q
i

p
A

(1)
i

A
(0)
i

−
A

(0)p

i

H̄q
i

q
H

(1)
i

H̄i
,

D∂2yiH
(1)
i = −HBm−sum.

Subsequently,

ϵγ
2
∂γσ(H̄B

i u) = ∂2yiA
(1)
i −A

(1)
i + pA

(1)
i H̄

B(p−1)−q
i up−1 − q

H
(1)
i

Hi

Hi
B p−q

up,

D∂2yiH
(1)
i = −HBm−s

i um.

Since B p− B−q = 0, ∂γσu ∼ −ϵ−γ2
sign

(
dxi
dσ

) ∣∣∣∣dxidσ

∣∣∣∣γ Dγ
yiu and L0 =

d2

dy2i
− 1 + pup−1 a

linear operator in lemma (2.2) from [6], we finally obtain

L0A
(1)
i =

(
q
H

(1)
i

Hi

up − sign

(
dxi
dσ

) ∣∣∣∣dxidσ

∣∣∣∣γ Dγ
yiu

)
Hi

B
, (3.15a)

D∂2yiH
(1)
i = −H̄Bm−s

i um. (3.15b)

Note:

Dγ
t u(t) = sign

(
dxi
dσ

)
1

Γ(−γ)

∫ ∞

0

{
u(t)− u

(
t+ sign

(
dxi
dσ

)
y

)}(
1

y

)γ+1

dy.

The fractional operator Dγ
yi can be regarded as the left or right propagating fractional

derivative according to whether
dxi
dσ

is positive or negative, and will be study in more

details in section 4.1.

Equation (3.15a) is of the form f(a) = b with f being a linear operator and a and b
common functions. In order to find a in the previous example, we have two options. In
the case where f is invertible, we have a = f−1(b), which is not possible in this case

because kerL0 =
du

dyi
̸= ∅. Otherwise, the Fredholm alternative stipulates that a can be

found if ker f is orthogonal to b with a and b integrable functions. This condition implies
that < ker f, b >= 0 which leads to〈

du

dyi
,

(
q
H

(1)
i

Hi

up − sign

(
dxi
dσ

) ∣∣∣∣dxidσ

∣∣∣∣γ Dγ
yiu

)
Hi

B

〉
= 0.

We then obtain the solvability condition

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 58

∫ ∞

−∞

du

dyi

(
q
H

(1)
i

Hi

up − sign

(
dxi
dσ

) ∣∣∣∣dxidσ

∣∣∣∣γ Dγ
yiu

)
Hi

B
dyi = 0.

Subsequently,∫ ∞

−∞

du

dyi
q
H

(1)
i

Hi

up dyi − sign

(
dxi
dσ

) ∣∣∣∣dxidσ

∣∣∣∣γ ∫ ∞

−∞

du

dyi
Dγ

yiu dyi = 0. (3.16)

By integrating by parts the first term of equation (3.16), we obtain

q

Hi(p+ 1)

(
H

(1)
i up+1

∣∣∣∣∞
−∞

−
∫ ∞

−∞
∂yiH

(1)
i up+1dyi

)
−

sign

(
dxi
dσ

) ∣∣∣∣dxidσ

∣∣∣∣γ ∫ ∞

−∞

du

dyi
Dγ

yiu dyi = 0.

Subsequently, since u decays exponentially at the boundaries we obtain

− q

Hi(p+ 1)

∫ ∞

−∞
∂yiH

(1)
i up+1dyi − sign

(
dxi
dσ

) ∣∣∣∣dxidσ

∣∣∣∣γ ∫ ∞

−∞

du

dyi
Dγ

yiu dyi = 0.

By performing a second integration by parts on the first term, we have

− q

Hi(p+ 1)

(
∂yiH

(1)
i

∫ yi

0
up+1(t)dt

∣∣∣∣∞
−∞

−
∫ ∞

−∞
∂2yiH

(1)
i

(∫ yi

0
up+1(t)dt

)
dyi

)
−

sign

(
dxi
dσ

) ∣∣∣∣dxidσ

∣∣∣∣γ ∫ ∞

−∞

du

dyi
Dγ

yiu dyi = 0.

Since u is even, it implies that up+1 is also even and

∫ yi

0
up+1(t)dt is odd. Also, from

(3.15b) we have ∂2yiH
(1)
i even, thus ∂2yiH

(1)
i

(∫ ∞

0
up+1(t)

)
dt is odd and finally∫ ∞

−∞
∂2yiH

(1)
i

(∫ ∞

0
up+1(t)dt

)
dyi = 0. We then obtain

− q

Hi(p+ 1)

(∫ ∞

0
up+1dyi lim

yi→∞
∂yiH

(1)
i −

∫ −∞

0
up+1dyi lim

yi→−∞
∂yiH

(1)
i

)
− sign

(
dxi
dσ

) ∣∣∣∣dxidσ

∣∣∣∣γ ∫ ∞

−∞

du

dyi
Dγ

yiu dyi = 0.

Subsequently,

− q

Hi(p+ 1)

(∫ ∞

0
up+1dyi lim

yi→∞
∂yiH

(1)
i +

∫ ∞

0
up+1dyi lim

yi→−∞
∂yiH

(1)
i

)
−

sign

(
dxi
dσ

) ∣∣∣∣dxidσ

∣∣∣∣γ ∫ ∞

−∞

du

dyi
Dγ

yiu dyi = 0.

Then,

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 59

− q

2Hi(p+ 1)

∫ ∞

−∞
up+1dyi

(
lim

yi→∞
∂yiH

(1)
i + lim

yi→−∞
∂yiH

(1)
i

)
−

sign

(
dxi
dσ

) ∣∣∣∣dxidσ

∣∣∣∣γ ∫ ∞

−∞

du

dyi
Dγ

yiu dyi = 0,

and finally

q

2Hi(p+ 1)

∫ ∞

−∞
up+1dyi

(
lim

yi→∞
∂yiH

(1)
i + lim

yi→−∞
∂yiH

(1)
i

)
= − sign

(
dxi
dσ

) ∣∣∣∣dxidσ

∣∣∣∣γ ∫ ∞

−∞

du

dyi
Dγ

yiu dyi

. (3.17)

Concentration of the activator and the inhibitor in the outer region

Let a and h denote respectively the concentrations of the activator and the inhibitor
in the outer region.The concentration of the activator is null in the outer region except
at the limits. Therefore, our focus is on studying the concentration of the inhibitor
in the outer region and the limits. Similar to the inner region, applying the singular
perturbation expansions on h leads to

h(x, t) = h(0)(x, σ) + ϵγh(1)(x, σ) +O(ϵ2γ). (3.18)

As previously mentioned, we have yi =
x− xi
ϵγ

with i = 1, · · ··, n. This implies that the

domain contains n positions xi where the concentration of the activator is not null. If

we returned to equation (3.4b) of the model, the nonlinear function or term ϵ−γ a
m(x, t)

hs(x, t)
has the following characteristics:

• ϵ−γ a
m(x, t)

hs(x, t)
is obtained by collecting and summing its values around each position

xi.

• ϵ−γ a
m(x, t)

hs(x, t)
vanishes on the entire outer domain as a also vanishes there.

• Since a vanishes everywhere except around x = xi, and h is independent of x in the
same region, we have

ϵ−γ a
m(x, t)

hs(x, t)
∼ ϵ−γA

(0)m

H(0)s
= ϵ−γH̄Bm−s

i um,

then ∫ x+
i

x−
i

ϵ−γ a
m(x, t)

hs(x, t)
dx ∼

∫ ∞

−∞

A
(0)m

i

H̄s
i

dyi = H̄Bm−s
i

∫ ∞

−∞
umdyi = constant.

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 60

Due to these localised behaviors, ϵ−γ a
m(x, t)

hs(x, t)
can be expressed as a linear combination

of the weighted Dirac δ functions:

ϵ−γ a
m(x, t)

hs(x, t)
∼ bm

n∑
i=1

H̄Bm−s
i δ(x− xi), (3.19)

with

bm =

∫ ∞

−∞
umdyi =

2

p− 1

(
p+ 1

2

) m

p− 1
Γ(

1

2
)Γ(

m

p− 1
)

Γ(
1

2
+

m

p− 1
)
,

as proved in section (3.1.3) and δ from [8, Page 64] defined as

δ(t) =

{
0 if t ̸= 0

∞ if t = 0
and

∫ ∞

−∞
δ(t)dt = 1.

For t = x− xi it can be rewritten as

δ(x− xi) =

{
0 if x ̸= xi

∞ if x = xi
, and

∫ x+
i

x−
i

δ(x− xi)dx = 1.

Substituting (3.19) in (3.4b) leads to

τϵαγ∂γσh(0)(σ) ∼ Dh
(0)
xx − h(0) + bm

n∑
i=1

H̄Bm−s
i δ(x− xi).

Upon collecting terms of order O(1), we obtain

Dh(0)xx − h(0) = −bm
n∑

i=1

H̄Bm−s
i δ(x− xi). (3.20)

The solution of (3.20) is expressed as

h(0)(x, t) = bm

n∑
i=1

H̄Bm−s
i G(x;xi),

where the Green’s function G(x;xi) satisfies the equation

DGxx −G = −δ(x− xi), −1 < x < 1, (3.21a)

Gx(±1;xi) = 0. (3.21b)

The perturbation expansions of h is expressed as

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 61

h(x, σ) ∼ h(0)(x, σ) + ϵγh(1)(x, σ) +O(ϵ2γ).

At infinity, we have

h(0) = H̄i and h(1) = H
(1)
i .

Upon matching the concentrations of the inhibitor in the inner and outer region, we
obtain

lim
yi→±∞

h = lim
yi→±∞

(
H̄i + ϵγH

(1)
i

)
,

and then

lim
yi→±∞

dH
(1)
i

dyi
= lim

yi→±∞
ϵ−γ ∂

∂yi

(
h(xi + ϵγyi, σ)− H̄i

)
= lim

x→x±
i

∂h(0)

∂x
.

We then have

lim
yi→−∞

∂yiH
(1)
i = lim

x→x−
i

h
(0)
x = lim

x→x−
i

bm

n∑
i=1

H̄Bm−s
i Gx(x;xi).

Subsequently,

lim
yi→−∞

∂yiH
(1)
i = bm

n∑
j=1
j ̸=i

H̄Bm−s
i Gx(x;xj) + bmH̄

Bm−sGx(x
−
i ;xi).

Similarly,

lim
yi→∞

∂yiH
(1)
i = bm

n∑
j=1
j ̸=i

H̄Bm−s
i Gx(x;xj) + bmH̄

Bm−sGx(x
+
i ;xi).

Therefore, we have

lim
yi→−∞

∂yiH
(1)
i + lim

yi→∞
∂yiH

(1)
i = 2bm

n∑
j=1
j ̸=i

H̄Bm−s
i Gx(x;xj)

+ bm
(
H̄Bm−sGx(x

−
i ;xi) + H̄Bm−sGx(x

+
i ;xi)

)
.

Then,

lim
yi→−∞

∂yiH
(1)
i + lim

yi→∞
∂yiH

(1)
i = 2bm

(
n∑

j=1
j ̸=i

H̄Bm−s
i Gx(x;xj) + H̄Bm−s ⟨Gx⟩i

)
, (3.22)

with

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 62

⟨Gx⟩i =
1

2

(
G−

x (x
−
i ;xi) +G+

x (x
+
i ;xi)

)
,

where G+ and G− are defined as

G−(x;xi) =
w0 cosh (w0xi − w0)

sinh (2w0)
cosh (w0x+ w0), −1 < x < xi,

G+(x;xi) =
w0 cosh (w0xi + w0)

sinh (2w0)
cosh (w0x− w0), xi < x < 1,

from section 3.1.3 with w0 = D
−
1

2 .

Upon substituting (3.22) in the solvability condition (3.17), we obtain

q

2(p+ 1)H̄i

∫ ∞

−∞
up+1dyi

(
2bm

 n∑
j=1
j ̸=i

H̄Bm−s
i Gx(x;xj) + H̄Bm−s ⟨Gx⟩i

)

= −
∣∣∣∣dxidσ

∣∣∣∣γ sign(dxidσ

)∫ ∞

−∞

du

dyi
Dγ

yiu dyi.

Subsequently,

−
∣∣∣∣dxidσ

∣∣∣∣γ sign(dxidσ

)
=

qbm
(p+ 1)H̄i

 n∑
j=1
j ̸=i

H̄Bm−s
i Gx(x;xj) + H̄Bm−s ⟨Gx⟩i

∫ ∞

−∞
up+1dyi∫ ∞

−∞

du

dyi
Dγ

yiu dyi

.

We finally obtain the differential algerbraic system

−
∣∣∣∣dxidσ

∣∣∣∣γ sign(dxidσ

)
=

qbm
(p+ 1)H̄i

 n∑
j=1
j ̸=i

H̄Bm−s
i Gx(x;xj) + H̄Bm−s ⟨Gx⟩i

 f(p; y),

(3.23a)

H̄i(σ) = h(0)(x, t) = bm

n∑
i=1

H̄Bm−s
i G(x;xi), bm =

∫ ∞

−∞
umdyi, (3.23b)

f(p; y) =

(∫ ∞

−∞
up+1dyi

)/(∫ ∞

−∞

du

dyi
Dγ

yiudyi

)
. (3.23c)

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 63

Note:

Section 3.1.3 provides proofs for certain results utilized in Chapter 3. If these have been
previously reviewed, the reader should then proceed to Chapter 4.

3.1.3 Auxiliary Proofs

The following properties, along with their accompanying proofs, were frequently utilized
to derive important results in this chapter:

A) We aim to show that ∂γσA ∼ ϵ−γ2
, with A being the concentration of the activator in the

inner region. Starting with the definition in equation (3.3), we have

∂γσA(yi(σ)) = − 1

Γ(−γ)

∫ σ

0

(
A(yi(σ))−A

(
yi(σ − ζ)

)) dζ

ζγ+1
. (3.24)

Next, let us introduce a new variable ξ defined as:

ξ = ϵ−γ
(
xi(σ − ζ)− xi(σ)

)
. (3.25)

To find ζ in terms of ξ, when ϵ≪ 1, we expand xi as (xi ∈ C∞):

xi(σ − ζ)− xi(σ) = −dxi
dσ

ζ +
1

2

d2xi
dσ2

ζ2 −+ · · · . (3.26)

Substituting equation (3.26) into (3.25), we obtain

ξ = ϵ−γ

(
−dxi
dσ

ζ +
1

2

d2xi
dσ2

ζ2 −+ · ··
)
. (3.27)

From Equation (3.27), we deduce

ζ = −
(
dxi
dσ

)−1(
ϵγξ − 1

2

d2xi
dσ2

ζ2 −+ · ··
)
. (3.28)

By a recursive substitution of ζ in (3.28), one obtains

ζ = −
(
dxi
dσ

)−1
ϵγξ − 1

2

d2xi
dσ2

(
−
(
dxi
dσ

)−1(
ϵγξ − 1

2

d2xi
dσ2

ζ2 + · · · − · · ·
))2

 .

(3.29)
Subsequently, we find

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 64

ζ ∼ −ϵγ
(
dxi
dσ

)−1

ξ +O(ϵ2γ). (3.30)

Additionally, we have

x− xi(σ − ξ)

ϵγ
=
x− xi(σ) + xi(σ)− xi(σ − ξ)

ϵγ
= yi − ξ. (3.31)

Upon substituting equations (3.30) and (3.29) into (3.24) and the value of ζ in equation
(3.28), we obtain

∂γσA(yi(σ)) = − ϵ−γ2

Γ(−γ)
−
(
dxi
dσ

)−1 ∫ −∞sign(
dxi
dσ

)

0

{
A(yi(σ))−A

(
yi(σ−ξ)

)}(
−dxi
dσ

1

ξ

)γ+1

dξ,

(3.32)
with the integrals boundaries obtained as follows.

We have ζ ∼ −ϵγ
(
dxi
dσ

)−1

ξ ⇒ dζ = ϵγ
(
−dxi
dσ

)−1

dξ.

Moreover,

ξ ∼ ϵ−γ

(
−dxi
dσ

)
ζ,

ζ → 0 ⇒ ξ → 0, ζ → σ ⇒ ξ → ϵ−γ

(
−dxi
dσ

)
σ,

ϵ→ 0 ⇒ ξ → − sign

(
dxi
dσ

)
∞.

Let us rewrite ∂γσA(yi(σ)) as

∂γσA(yi(σ)) ∼ −ϵ−γ2
sign

(
dxi
dσ

) ∣∣∣∣dxidσ

∣∣∣∣γ Dγ
yiA(yi), (3.33)

with

Dγ
yiA(yi) = sign

(
dxi
dσ

)
1

Γ(−γ)

∫ ∞

0

{
A(yi)−A

(
yi + sign

(
dxi
dσ

)
ξ1

)}(
1

ξ1

)γ+1

dξ1.

(3.34)
Dγ

yi can be regarded as the left or right propagating fractional derivative according to

whether
dxi
dσ

is positive or negative.

We have

∂γσA(yi(σ)) = − ϵ−γ2

Γ(−γ)

(
−dxi
dσ

)−1 ∫ −∞ sign(
dxi
dσ

)

0

{
A(yi(σ))−A

(
yi(σ−ξ)

)}(
−dxi
dσ

1

ξ

)γ+1

dξ.

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 65

Let us have ξ = − sign

(
dxi
dσ

)
ξ1.

Firstly let us suppose
dxi
dσ

< 0, then ξ = ξ1, and dξ = dξ1.

ξ → 0 ⇒ ξ1 → 0,
ξ → ∞ ⇒ ξ1 → ∞.

∂γσA(yi(σ)) = − ϵ−γ2

Γ(−γ)

(
−dxi
dσ

)−1 ∫ ∞

0

{
A(yi(σ))−A

(
yi(σ − ξ1)

)}(
−dxi
dσ

1

ξ1

)γ+1

dξ1

= − ϵ−γ2

Γ(−γ)

(
−dxi
dσ

)γ ∫ ∞

0

{
A(yi(σ))−A

(
yi(σ − ξ1)

)} dξ1

ξγ+1
1

.

We have

−dxi
dσ

=

∣∣∣∣−dxidσ

∣∣∣∣ sign(−dxidσ

)
=

∣∣∣∣dxidσ

∣∣∣∣ ,(
−dxi
dσ

)γ

=

∣∣∣∣dxidσ

∣∣∣∣γ .
Then,

∂γσA(yi(σ)) = − ϵ−γ2

Γ(−γ)

∣∣∣∣dxidσ

∣∣∣∣γ ∫ ∞

0

{
A(yi(σ))−A

(
yi(σ − ξ1)

)} dξ1

ξγ+1
1

. (3.35)

Secondly, let us use suppose
dxi
dσ

> 0, then ξ = −ξ1, and dξ = −dξ1.

ξ → 0 ⇒ ξ1 → 0,
ξ → −∞ ⇒ ξ1 → ∞.

Subsequently,

∂γσA(yi(σ)) = − ϵ−γ2

Γ(−γ)

(
dxi
dσ

)−1 ∫ ∞

0

{
A(yi(σ))−A

(
yi(σ + ξ1)

)}(dxi
dσ

1

ξ1

)γ+1

(−dξ1)

= − ϵ−γ2

Γ(−γ)

(
dxi
dσ

)γ ∫ ∞

0

{
A(yi(σ))−A

(
yi(σ + ξ1)

)}(1

ξ1

)γ+1

dξ1.

Then,

∂γσA(yi(σ)) = − ϵ−γ2

Γ(−γ)

∣∣∣∣dxidσ

∣∣∣∣γ ∫ ∞

0

{
A(yi(σ))−A

(
yi(σ + ξ1)

)}(1

ξ1

)γ+1

dξ1. (3.36)

Considering (3.35) and (3.36) , we obtain the general form (3.33).

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 66

B) Let us prove that
du

dy
is the only element of kerL0. Let us first prove that

du

dy
∈ kerL0

or L0
du

dy
= 0.

L0
du

dy
=

d2

dy2

(
du

dy

)
− du

dy
+ p

du

dy
up−1 =

d

dy

(
d2u

dy2
− u+ up

)
=

d

dy
(u′′ − u+ up) = 0.

Let’s now demonstrate that
du

dy
is the sole element of kerL0. As a consequence of the

Sturm-Liouville theory, it follows that for a specific eigenvalue problem L0ψ = νψ, there
exists a unique eigenfunction ψ associated with each eigenvalue ν. Furthermore, the num-
ber of zeros of the eigenfunction ψ is equal to the number of its corresponding eigenvalue
within the entire set of eigenvalues minus one. In our specific case, we find L0u1 = 0,
which can be expressed as L0u1 = 0 · u1, with u1 an eigenfunction associated with the
eigenvalue 0. Thus, u1 represents the unique eigenfunction associated with the eigenvalue

0. This conclusion implies that u1 =
du

dyi
is the only solution to the differential equation

L0
du

dyi
= 0 and, consequently, the sole element within kerL0.

C) Let us find bm =

∫ ∞

−∞
umdy, we have

bm =

∫ ∞

−∞
umdy =

∫ ∞

−∞

{(
p+ 1

2

)
sech2

(
(p− 1)

2
y

)} m

p− 1
dy

=

∫ ∞

−∞

(
p+ 1

2

) m

p− 1 sech

2m

p− 1
(
(p− 1)

2
y

)
dy.

For u =
(p− 1)

2
y, dy =

2

p− 1
du, and sech even,

bm =
4

p− 1

(
p+ 1

2

) m

p− 1
∫ ∞

0
sech

2m

p− 1 (u)du

=
4

p− 1

(
p+ 1

2

) m

p− 1
∫ ∞

0
cosh

−2m

p− 1 (u)du.

Let us express bm in terms of the Beta function using the steps described in Appendix
B from [1].

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 67

B(µ, ν) =

∫ 1

0
tµ−1(1− t)ν−1dt.

Using the fact that B(µ, ν) = B(ν, µ) and the change of variable

y =
1− t

t
⇒ t =

1

y + 1
⇒ dt = − 1

(y + 1)2
dy,

we obtain

B(µ, ν) =

∫ ∞

0

(
1

y + 1

)ν+1(y

y + 1

)µ−1

dy.

For y = t2, dy = 2tdt,

B(µ, ν) =

∫ ∞

0

(
1

t2 + 1

)ν+1(t2

t2 + 1

)µ−1

2tdt.

For t = sinh (y) dt = cosh (y)dy, we obtain

B(µ, ν) =

∫ ∞

0

(
1

sinh2 (y) + 1

)ν+1(sinh2 (y)

sinh2 (y) + 1

)µ−1

2 sinh (y) cosh (y)dy.

B(µ, ν) = 2

∫ ∞

0
cosh−2(µ+ν)+1(y) sinh2µ−1(y)dy.

For µ =
1

2
, and ν =

m

p− 1
, we have

bm =
2

p− 1

(
p+ 1

2

) m

p− 1 B (µ, ν) =
2

p− 1

(
p+ 1

2

) m

p− 1 B

(
1

2
,
m

p− 1

)
,

with the Beta function expressed in terms of the Γ function from definition 8.384 in [4]
and defined as

B (µ, ν) =
Γ(µ)Γ(ν)

Γ(µ+ ν)
.

Unlike its fellow, the Γ function is available in the C language, and this expression is
designed to calculate precise values for the Beta function.

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 68

D) Let us prove that L0 is self-adjoint. We need to show
〈
L0(u), v

〉
=
〈
u,L0(v)

〉
, for all

integrable functions u and v. Knowing that both u and ∂yu have exponential decay at
infinity, we have〈

L0(u), v
〉
=

∫ ∞

−∞

(
∂2yu− u+ pup−1u

)
vdy =

∫ ∞

−∞
v · ∂2yudy +

∫ ∞

−∞

(
pup−1u− u

)
vdy

=
[
∂yu · v

]∞
−∞

−
∫ ∞

−∞
∂yu · ∂yvdy +

∫ ∞

−∞

(
pup−1u− u

)
vdy

= −
[
u · ∂yv

]∞
−∞

+

∫ ∞

−∞
u · ∂2yvdy +

∫ ∞

−∞

(
pup−1u− u

)
vdy

=

∫ ∞

−∞

(
∂2yv − v + pup−1v

)
udy =

〈
u,L0(v)

〉
.

E) Expression of the Green’s functions.
If we denote by G− and G+ the values of the Green’s function in respectively]−1, xi[
and]xi, 1[. We can rewrite equations (3.21a) and (3.21b) as

DG+
xx −G+ = −δ(x− xi), G+(1;xi) = 0, −1 < x < xi, (3.37a)

DG−
xx −G− = −δ(x− xi), G−(−1;xi) = 0, 0 < x < xi, (3.37b)

with G−(x;xi) = G+(x;xi).
Homogeneous solutions:
The homogeneous equations of (3.37a) and (3.37b) are respectively

DG+
xx −G+ = 0, (3.38a)

DG−
xx −G− = 0. (3.38b)

Characteristic equations:
Both (3.38a) and (3.38b) have the same characteristic equation

r2 − w2
0 = 0, with w2

0 =
1

D
.

r2 − w2
0 = 0 ⇒ r = ±w0, then, the solutions of the homogeneous equations are in

span{ew0x, e−w0x}. In particular, we have

G+ = A+

(
ew0x + e−w0x

2

)
+B+

(
ew0x − e−w0x

2

)
= A+ sinh (w0x) +B+ cosh (w0x),

(3.39a)

G− = A−
(
ew0x + e−w0x

2

)
+B−

(
ew0x − e−w0x

2

)
= A− sinh (w0x) +B− cosh (w0x).

(3.39b)

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 69

with A−, A+, B−, B+ constants to be determined.
From (3.39a) and (3.39b), we have

G+(1;xi) = 0 ⇒ B+ = − tanh (w0)A
+, (3.40)

and
G−(−1;xi) = 0 ⇒ B− = tanh (w0)A

−. (3.41)

Substituting (3.40) and (3.41) in (3.39a) and (3.39b) leads to

G+ = A+ sech (w0) cosh(w0x− w0). (3.42)

G− = A− sech (w0) cosh(w0x+ w0). (3.43)

Particular solution:

DGxx −G = −δ(x− xi) ⇒ D

∫ xi+ξ

xi−ξ
Gxxdx−

∫ xi+ξ

xi−ξ
Gdx = −

∫ xi+ξ

xi−ξ
δ(x− xi)dx

⇒ D
[
Gx

]xi+ξ

xi−ξ
= −1.

Then,

G+
x (x;xi)−G−

x (x;xi) = − 1

D
⇒ G+

x (x;xi)−G−
x (x;xi) = −w2

0. (3.44)

Replacing (3.42) and (3.43) in (3.44) leads to

A+ sech (w0) sinh (w0xi − w0)−A− sech (w0) sinh (w0xi + w0) = −w0. (3.45)

Using (3.44), (3.45) and the fact that G−(x;xi) = G+(x;xi) leads to

A− = A+ cosh (w0xi − w0)

cosh (w0xi + w0)
. (3.46)

Substituting (3.46) in (3.47) gives

A+ =
w0 cosh(w0xi + w0)

sech (w0) sinh (2w0)
, (3.47)

and

A− =
w0 cosh(w0xi − w0)

sech (w0) sinh (2w0)
. (3.48)

Finally, (3.48) and (3.47) in (3.42) and (3.43) leads to

G− =
w0 cosh(w0xi − w0)

sinh (2w0)
cosh(w0x+ w0), (3.49)

and

G+ =
w0 cosh(w0xi + w0)

sinh (2w0)
cosh(w0x− w0). (3.50)

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 70

F) Expression of the homoclinic solution u:

u′′ − u+ up = 0 ⇒ u′′u′ − uu′ + u′up = 0 ⇒ 1

2
u′2 − 1

2
u2 − up+1

p+ 1
= c1.

Since lim
|y|→∞

u = lim
|y|→∞

u′ = 0, c1 = 0. This gives us

1

2
u′2 − 1

2
u2 − up+1

p+ 1
= 0. (3.51)

Subsequently,

u′2 = u2 − 2up+1

p+ 1
⇒ u′ = ±

√
u2 − 2up+1

p+ 1
.

u′ =

√
u2 − 2up+1

p+ 1
⇒ u′√

u2 − 2up+1

p+ 1

= 1 ⇒
∫

u′√
u2 − 2up+1

p+ 1

dy = y + c2.

Let A =

∫
u′√

u2 − 2up+1

p+ 1

dy , and B = y + c2.

Since

u′dy = du,

we have

A =

∫
du√

u2 − 2up+1

p+ 1

=

∫
du√

2

p+ 1
u

p+ 1

2

√
p+ 1

2
u1−p − 1

. (3.52)

Substituting
p+ 1

2
u1−p with cosh2 (t) leads to

u =

(
2

p+ 1

) 1

1− p cosh

2

1− p (t), t = arccosh

u1− p

2

(
p+ 1

2

)1

2

 ,

and

REPRESENTATION, MATCHED ASYMPTOTIC EXPANSION AND SOLUTION 71

du =
2

1− p

(
2

p+ 1

) 1

1− p sinh (t) cosh

p+ 1

1− p (t)dt.

Substituting the previous results in (3.53) leads to

A =

∫
2

1− p
dt =

2

1− p
t+ c2.

Equating A and B gives

t =
p− 1

2
y + c4. (3.53)

For y = 0, t = arccosh

u1− p

2 (0)

(
p+ 1

2

)1

2

. From (3.51), we have

1

2
u′2 − 1

2
u2 − up+1

p+ 1
= 0 ⇒ u2(0) =

2up+1(0)

p+ 1
⇒ u1−p(0) =

2

p+ 1

⇒ u

1− p

2 (0) =

(
p+ 1

2

)−
1

2 .

Substituting the result in the expression of t results in

t = arccosh (1) = 0 ⇒ c4 = 0.

Subsequently,

arccosh

u1− p

2

(
p+ 1

2

)1

2

 =
p− 1

2
y,

u

1− p

2

(
p+ 1

2

)1

2 = cosh

(
p− 1

2
y

)
,

u

p− 1

2 =

(
p+ 1

2

)1

2 sech

(
p− 1

2
y

)
,

and then

u(y) =

{(
p+ 1

2

)
sech2

(
p− 1

2
y

)} 1

p− 1
.

Chapter 4

Numerical Approximation of Dγ
t u

with a Controlled Precision

4.1 Introduction, Method and Verification

4.1.1 Introduction and Background

As previously stated, the primary objective of this study is to numerically solve the one-
dimensional Gierer-Meinhardt model with subdiffusion. By applying matched asymptotic ex-
pansion to the differential system (3.4), we have obtained an differential algebraic system (3.23).

Our goal in addressing this system is to compute the quantities
dxi
dσ

and Hi(σ), which represent

the rates of change of spike positions and their respective heights. Monitoring both spike posi-
tions and heights enables us to identify regions where the activator and inhibitor significantly
interact, as well as the differences in the magnitude of their concentrations. Our ability to
determine these quantities within the system is primarily constrained by the computation of
the fractional operator Dγ

t u, defined as

Dγ
t u(t) = sign

(
dxi
dσ

)
1

Γ(−γ)

∫ ∞

0

{
u(t)− u

(
t+ sign

(
dxi
dσ

)
y

)}(
1

y

)γ+1

dy,

a task discussed in this section. The fractional operator Dγ
t u from (3.34) is an inherent part

of this system. It is essential to compute it with consistent precision to prevent any form of
contamination, since this term is only one of many in the numerical computation of (3.23), but
the only one, whose accuracy is not immediately determined by a known numerical method.
Hereunder, we chose t instead of y as in [6] as the dependent variable of Dγ

t u to symbolize its
time dependency, as it is conceptually the case.

The fractional operator Dγ
t u depends on two parameters: p and γ, with p being a

parameter related to the function u (main kinetic exponent for the activator equation). As
shown in the next section, numerically computing Dγ

t u implies the integration of a spike-
type fractional power function whose shape varies significantly, as shown in Figure 4.1 of

72

INTRODUCTION, METHOD AND VERIFICATION 73

section 4.1.5. Since that function is bell-shaped with a very steep slope, computing its integral
requires a significant number of subdivisions. Moreover, since the spikes are defined in an
infinite domain, the number of subdivisions required increases even further. Even though
computing Dγ

t u requires a high number of subdivisions in all cases, their order of magnitude
varies significantly depending on the shape of the spikes. For example, a normal spike with a
bell width of order O(ϵ) requires a number of subdivisions of order O(1/ϵ). Moreover, the spike
tail decays exponentially, which makes it easy to be captured in a relatively small interval. For
instance, a spike of width 0.1 centered at the origin on a domain of (−1, 1) will need 1/0.1 = 10
subdivisions within (−0.05, 0.05) to be properly captured.

An important consideration arises: any standard method of numerical integration pro-
vides an error bound that depends on the number of subdivisions. It is logical to question why
we do not use such a formula to determine the number of subdivisions n based on the desired
error. Let us explore this using Simpson’s method as an example, which we will utilize further.
According to [3, page 203], considering f (4) as the continuous fourth derivative of a function
f , and M as any upper bound for the values of |f (4)| on [a, b], the error |Ef | in the Simpson’s
rule approximation of the integral of f from a to b satisfies the inequality:

|Ef | ≤
(b− a)5

180

M

n4
.

However, this approach faces two primary challenges. Firstly, it involves M , supposedly the
maximum for the fourth derivative of f . Yet, determining a maximum for a complicated
function like u(4) is unfeasible. Secondly, an issue also arises with the term b − a. Operating
within a theoretically infinite domain where a and b can tend to infinity, the term b−a becomes
an indeterminate form.

In summary, to efficiently compute Dγ
t u, it is essential to find a way to determine the

number of subdivisions required for controlled precision, depending on the shape of those spikes
and the domain in which they are defined. Answering this question will be the subject of our
study.

4.1.2 Procedure

1. We split Dγ
t u using two integrations by parts to simplify it and replace the original

improper integral by proper computable terms.

2. The result of these integrations is a sum of constants and a yet-to-be-evaluated inte-
gral. We evaluate the integral using the composite Simpson method. We selected the C
programming language due to its speed and efficiency, providing a significant advantage
when dealing with memory-intensive and power-demanding data.

3. We gradually increment the number of subdivisions used by our program to compute
these integrals until a precision of 10−10 is reached. These computations are performed
for a predefined set of values of the parameters p and γ.

INTRODUCTION, METHOD AND VERIFICATION 74

4. We attempted to plot the correspondence between the number of subdivisions n and
the value of the integral obtained, but the resulting functions were neither smooth nor
continuous. We then shifted our focus toward the residual function.

5. The shapes of the residual functions are similar to that of the hyperbolic arctangent
function, which is then used as the fitting function.

6. Finally, we use the inverse functions of the fitting curves to approximate the number of
subdivisions n given a residual value.

In summary, by implementing the above procedure, we expect to build a program capable of
computing Dγ

t u for all values of p and γ with a precision of 10−10.

4.1.3 Plan

1. Section 4.1.4 covers Step 1 in the procedure for regularizing Dγ
t u.

2. Steps 2 and 3, starting from section 4.1.4 up to section 4.1.5, involve determining the
number of subdivisions n needed to compute I (4.5). This calculation is for (t, p, γ)
values within the ranges: {0.1, 1, 5} × {1.5, 2, 2.5, . . . , 4.5} × {0.1, 0.2, 0.3, . . . , 0.9}.

3. Steps 4, 5, and 6, spanning from section 4.1.5 to 4.1.6, describe the fitting process and
can be visualized as follows:

We fit the correspondence
n(t,p,γ) → R(t,p,γ)(n),

using a variant of the hyperbolic-arctangent function, denoted as f . Consequently,

n(t,p,γ) → f(t,p,γ)(n) ∼ R(t,p,γ).

To find the number of subdivisions based on a specific residual (the inverse path), we
determine the inverse f−1 of f so that

f−1
(t,p,γ)(R) → n(t,p,γ),

where n(t,p,γ) and R(t,p,γ) represent the number of subdivisions and the corresponding
residual values for specific t, p, and γ values.

4. The process is now generalized for (t, p, γ) ∈ [0, 5]× [1.5, 4.5]× [0.1, 0.9] from section 4.1.7
to 4.1.8 using a series of linear and bi-linear interpolations.

5. Section 4.1.9 involves the verification process where the accuracy of our results is assessed.

INTRODUCTION, METHOD AND VERIFICATION 75

4.1.4 Regularization of Dγ
t u

This section serves as the first step of the plan outlined in section 4.1.3. It aims at removing
the singularity inherent in the operator’s Dγ

t u expression. From equation (3.34), we have

Dγ
t u(t) = sign

(
dxi
dσ

)
1

Γ(−γ)

∫ ∞

0

{
u(t)− u

(
t+ sign

(
dxi
dσ

)
y

)}(
1

y

)γ+1

dy, (4.1)

with

Dγ
(−t)u(−t)

∣∣∣ dxi
dσ

>0
= −Dγ

t u(t)
∣∣∣ dxi

dσ
<0
.

From (4.1), the expression of Dγ
t u is not directly computable because of the singularity present

in the expression. Hence, we perform a double integration by parts and employ a Taylor

expansion of u around a certain point to get rid of the singularity. For
dxi
dσ

< 0 and t > 0, we

have

Dγ
t u(t) = − 1

Γ(−γ)

∫ t∞

0

u(t)− u(t− y)

yγ+1
dy.

The first integration by parts

a(y) = u(t)− u(t− y),
db

dy
=

1

yγ+1
,

leads to

Dγ
t u(t) = − 1

Γ(−γ)

{
− u(t)− u(t− t∞)

γtγ∞
+ lim

y→0

1

γ

u(t)− u(t− y)

yγ
+

∫ t∞

0

u′(t− y)

γyγ
dy

}
,

with lim
y→0

u(t)− u(t− y)

yγ
= 0. The proof for this is straightforward since

u(t)− u(t− y)

yγ
∼
u(t)−

(
u(t) + u′(t)(−y) + u′′(t)y2

2!
+ · · ·+ · · ·

)
yγ

=

u′(t)y1−γ − u′′(t)y2−γ

2
+ · · ·,

with 0 < γ < 1. We obtain

Dγ
t u(t) = − 1

Γ(−γ)

{
− u(t)− u(t− t∞)

γtγ∞
+

∫ t∞

0

u′(t− y)

γyγ
dy

}
.

By applying a second integration by parts on the last terms in the brackets,

a(y) = u′(t− y),
db

dy
=

1

yγ
,

INTRODUCTION, METHOD AND VERIFICATION 76

we obtain∫ t∞

0

u′(t− y)

γyγ
dy = − t1−γ

∞
γ(γ − 1)

u′(t− t∞)− 1

γ(γ − 1)

∫ t∞

0
u′′(t− y)y1−γdy.

This finally leads to

Dγ
t u(t) = − 1

Γ(−γ)

{
− t

−γ
∞
γ

(u(t)− u(t− t∞)− t1−γ
∞

γ(γ − 1)
u′(t−t∞)− 1

γ(γ − 1)

∫ t∞

0
u′′(t−y)y1−γdy

}
.

(4.2)
We have

−γΓ(−γ) = Γ(1− γ) and γ(γ − 1)Γ(−γ) = Γ(2− γ).

Additionally, upon substituting t− y with x, and then x with y, this leads to∫ t∞

0
u′′(t− y)y1−γdy = −

∫ t−t∞

t
u′′(y)(t− y)1−γdy.

We finally obtain

Dγ
t u(t) =

t−γ
∞

Γ(1− γ)

(
u(t)−u(t−t∞)

)
+

t1−γ
∞

Γ(2− γ)
u′(t−t∞)− 1

Γ(2− γ)

∫ t−t∞

t
u′′(y)(t−y)1−γ dy.

(4.3)

Similarly, for
dxi
dσ

> 0, and

Dγ
(−t)u(−t)

∣∣∣ dxi
dσ

>0
= −Dγ

t u(t)
∣∣∣ dxi

dσ
<0
,

Dγ
(−t)u(−t) = − t−γ

∞
Γ(1− γ)

(
u(t)− u(t− t∞)

)
− t1−γ

∞
Γ(2− γ)

u′(t− t∞)

+
1

Γ(2− γ)

∫ t−t∞

t
u′′(y)(t− y)1−γ dy,

with 0 < γ < 1, and u defined as

u(t) =

(
p+ 1

2
sech2

(p− 1)t

2

) 1
p−1

,

and verifying the following differential equation

u′′ − u+ up = 0, −∞ < t <∞. (4.4a)

INTRODUCTION, METHOD AND VERIFICATION 77

u′(0) = 0, u(0) > 0, and lim
|t|→∞

u = 0. (4.4b)

Let us have

I1 =
t−γ
∞

Γ(1− γ)

(
u(t−t∞)−u(t)

)
, I2 =

t1−γ
∞

Γ(2− γ)
u′(t−t∞), I3 =

t1−γ
∞

Γ(2− γ)

∫ t−t∞

t
u′′(y)(t−y)1−γ dy.

In both cases, Dγ
t u is expressed as the sum of three terms, the first two being constants, and

the third being an integral. The first two terms are exact values, hence our approximation will
focus solely on the integral. Furthermore, it is important to note that the integrand as well

as the integration bounds remain the same for both
dxi
dσ

< 0 and
dxi
dσ

> 0 . Therefore, the

number of subdivisions required to compute the integral with the desired precision is the same
in both cases. Hence, we will concentrate solely on determining

I =

∫ t−t∞

t
u′′(y)(t− y)1−γ dy, (4.5)

for
dxi
dσ

< 0.

4.1.5 Numerical Approximation of I with a Controlled Precision

In this section, along with subsequent sections up to 4.1.6, and in alignment with Step 2 of our
plan, we determine the necessary number of subdivisions for the numerical computation of the
integral I. The integrand of I depends on three parameters: p, γ, and t∞. Based on extensive
numerical trials and as demonstrated in the results section, the value of t∞ = 5 has proved to
be sufficient to approach I with the desired precision. In the subsequent subsections of this
document, when referring to discrete values of p and γ, we respectively mean p ∈ {1.5, . . . , 4.5}
and γ ∈ {0.1, . . . , 0.9}. Conversely, when discussing continuous values of p and γ, we are
referring to p ∈ [1.5, 4.5] and γ ∈ [0.1, 0.9]. As mentioned earlier, the shape and gradient
exhibit significant variation based on these parameters, influencing the number of subdivisions
required for computation. To streamline the process and avoid redundant calculations of I,
we seek a method to predict the necessary number of subdivisions and assess precision as we
compute the integral. Below are the curves of the integrand for some values of the parameters.

INTRODUCTION, METHOD AND VERIFICATION 78

(a) u′′(y)(t− y)1−γ for t = 5 (b) u′′(y)(t− y)1−γ for t = 0.5

Figure 4.1: Plots of u′′(t)(t − y)1−γ for p = 2, γ = 0.1 for t = 5(right) and t = 0.5(left). The
horizontal axis represents range of y-values and the vertical axis the corresponding integrand
values.

Computing I using the composite Simpson’s method

In addition to being a well-established and widely used numerical integration method, we chose
the composite Simpson’s method for its adaptability. The composite Simpson’s method can
be applied to both evenly and unevenly spaced intervals, making it versatile for various types
of functions and integration domains. This adaptability allows for efficient integration over
complex domains or functions with irregular behavior. The following algorithm from [3, page
204] is used to compute the integral I:∫ b

a
f(x)dx ≈ h

3

n/2−1∑
i=0

[
f(x2i) + 4f(x2i+1) + f(x2i+2)

]
, with h =

b− a

n
.

Implementation of the Simpson’s method in C: The method computes the integral
of the function named integrand using the composite Simpson’s method. Here, integrand
represents the actual integrand of I. Parameter list:

• lower: lower bound of the integral.

• upper: upper bound of the integral.

• subInterval: number of sub-intervals.

• g: gamma parameter.

• A = pow((p+1.0)/2.0, 1.0/(p-1.0)).

• B = 2.0/(p-1.0).

• C = (p-1.0)/2.0.

Process:

INTRODUCTION, METHOD AND VERIFICATION 79

• Calculate the step size.

• Sum the image by integrand of the lower and upper bounds of the integral first.

• Add the images by integrand of the values between the lower and upper bounds de-
pending on whether the discretization index is odd or even.

• Multiply the result by one-third of the stepSize.

1

2

3

4 double simpson(double lower , double upper , long int subInterval , double

p, double g) {

5

6 double stepSize = (upper - lower) /(subInterval);

7

8 int i;

9 double integration = integrand(lower , p, g, y) + integrand(upper , p,

g, y);

10 for (i = 1; i <= subInterval - 1; i++) {

11 double k = lower + i * stepSize;

12 if (i % 2 == 0) {

13 integration = integration + 2 * integrand(k, p, g, y);

14 } else {

15 integration = integration + 4 * integrand(k, p, g, y);

16 }

17 }

18 integration = integration * stepSize / 3;

19 return integration;

20

21 }

22 // implementation of the integrand

23

24 double integrand(double y, double p, double g, double t) {

25

26 return (u(y, p) - pow(u(y, p), p)) * pow(t - y, 1 - g);

27

28 }

29

30 // implementation of u

31

32 double u (double t,double p)

33 {

34 double A = pow((p+1.0) /2.0, 1.0/(p -1.0));

35 double B = 2.0/(p -1.0);

36 double C = (p -1.0) /2.0;

INTRODUCTION, METHOD AND VERIFICATION 80

37

38 return (A*pow(sech(C*t), B));

39 }

Listing 4.1: Implementation of the composite Simpson method with its dependencies in C

Note: The number of subInterval used by the Simpson method must be even.
Lines 48 to 50 from Listing 4.10 always ensure it is the case.

Computing and printing the result of the Simpson method using the WriteFile

method: To enhance readability, we have opted to display the return values of the integral
I alongside the corresponding number of subdivisions needed for its calculation, as shown in
Table 4.4. This formatting enables us to gather and analyze the data more efficiently.

For each combination of t, p, and γ, the WriteFile method creates a file and prints,
side by side, the return values of the Simpson method with their corresponding number of
subdivisions until the desired precision is reached. Considering that we are handling very large
values of n, and only the last values of n are of interest, we double the increment value each
time we run the first loop until we reach a precision of 5 × 10−10. Once that precision is
achieved, new values of the increments are used until 1 × 10−10 is reached. The value of the
increments used in the second loop is returned by the getIncrement function and represents
5% of the number of subdivisions required to reach the 5 × 10−10 precision in the first loop.
This WriteFile function is used to print the returned value of the Simpson method for discrete
values of p ∈ {1.5, . . . , 4.5} and γ ∈ {0.1, . . . , 0.9}.

Parameter list:

• p: discrete values of p.

• g: discrete values of γ.

• t: ∈ {0.1, 1, 5}.

• n: max number of subdivisions allowed.

Process:

• Extract the integer and decimal part of p and g.

• Write or create a file for a specific combination of p and g where the returned value of
the Simpson method will be printed.

• Run the first loop and double the increment until 1× 10−10 < error < 5× 10−10.

• Run the second loop with a custom increment until error1 < 10−10.

• error and error1 are expresed as Simpson(lower, upper, n) - Simpson(lower, upper, 2n).

INTRODUCTION, METHOD AND VERIFICATION 81

Please note that ”Simpson(lower, upper, n)” represents the result of the Simpson method
with the given parameters lower, upper, and n.

1 void writeFile(double p, double g, double t, long int n) {

2

3 double A = pow((p + 1.0) / 2.0, 1.0 / (p - 1.0));

4 double B = 2.0 / (p - 1.0);

5 double C = (p - 1.0) / 2.0;

6 double upper = t;

7 double tmax = 5;

8 double lower = t-tmax;

9

10 int int_g = 10 * g;

11 double p1 = (int) p;

12 double p2 = 10 * (p - p1);

13 long int i = 0;

14

15 double g1 = (int) g;

16 double g2 = 10 * (g - g1);

17 long int increment = 1000;

18 long int next;

19 double precision1 = 5e-10;

20 double precision2 = 1e-10;

21

22 long int j;

23 char str_i [25];

24 FILE * diag;

25 FILE * diag1;

26

27 sprintf(str_i , "p%0.0fp%0.0 f_g %0.0fp%0.0f.txt", p1 , p2 , g1 , g2);

28

29 diag = fopen(str_i , "a");

30 if (!diag) {

31 printf("Failed to open diagonal dominance file.\n");

32

33 }

34

35 for (i = 1000; i < n; i += i) {

36

37 double value = simpson(lower , upper , i, g, A, B, C);

38

39 double value5 = simpson(lower , upper , 2 * i, g, A, B, C);

40

41 double error = fabs(value - value5);

42

INTRODUCTION, METHOD AND VERIFICATION 82

43 if (error > precision1) {

44

45 fprintf(diag , "%ld %0.15f\n", i, value5);

46 } else if (error <= precision1 && error > precision2) {

47 next = i;

48 break;

49 }

50

51 }

52

53 increment = getIncrement (t, p, g); // Find the increment depending on

t, p and gamma

54

55 for (j = next; j < n; j += increment) {

56

57 double value1 = simpson(lower , upper , j, g, A, B, C);

58

59 double value10 = simpson(lower , upper , 2 * j, g, A, B, C);

60

61 double error1 = fabs(value1 - value10);

62

63 if (error1 < precision2) {

64

65 break;

66 } else {

67

68 fprintf(diag , "%ld %0.15f\n", j, value10);

69

70 }

71

72 }

73

74 fclose(diag);

75 }

Listing 4.2: Implementation WriteFile method in C

Number of subdivisions returned by the WriteFile method for t = 0.1 , 1 and 5:
Once the desired precision is achieved, the final line printed by the WriteFile function

contains the return value of the Simpson method with the correct precision, along with the
corresponding number of subdivisions necessary to attain that precision. The tables below
present the maximum number of subdivisions for each t, p, and γ.

INTRODUCTION, METHOD AND VERIFICATION 83

p/g 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.1 35290 51740 61610 73870 80450 87030 93610

0.2 99900 135800 163900 199800 217750 235700 253650

0.3 216940 344940 433880 522820 567290 611760 689880

0.4 609778 865778 1101630 1377778 1495704 1731556 1849482

0.5 1693204 2362408 3386408 3721010 4390214 5059418 5394020

0.6 4718250 7300300 9970550 12464400 14066550 15668700 17270850

0.7 16113048 28265572 38166882 46087930 54550882 60491668 68412716

0.8 76333764 132864908 182371458 223956960 263749554 301374532 333058724

0.9 383072000 730144000 1018144000 1028288000 1028288000 1028288000 1028288000

Table 4.1: Number of subdivisions for t = 0.1

p/g 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.1 28000 26500 11000 22000 32500 39500 42500

0.2 71900 67550 23900 55700 83750 103500 111400

0.3 175500 166000 60500 130500 204000 251500 280000

0.4 444800 397600 134800 316800 515600 633600 700800

0.5 1141700 1078730 318970 826850 1393580 1716670 1905580

0.6 3547200 3172400 886800 2335800 4109400 5233800 5983400

0.7 11817400 10530500 2691450 7956700 14626500 18487200 21061000

0.8 52417200 46626150 12460850 34400600 63653600 83600550 95826100

0.9 260332000 232504000 44212000 162934000 325868000 451094000 506750000

Table 4.2: Number of subdivisions for t = 1

p/g 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.1 17100 11600 9100 8000 7300 6900 6600

0.2 42200 28000 21700 18800 17300 16100 15500

0.3 98200 63800 48800 41600 38200 35800 34000

0.4 234500 146500 110500 94000 84500 78500 75500

0.5 596400 364800 268600 227900 202000 187200 178700

0.6 1684000 992000 716000 596000 526000 486000 456000

0.7 5458000 3070000 2171000 1768000 1566000 1442000 1349000

0.8 21119000 11412000 7847000 6357000 5551000 5055000 4714000

0.9 101674000 51754000 34392000 27318000 23650000 21292000 19720000

Table 4.3: Number of subdivisions for t = 5

Fitting the residual R instead of the integral I

The fitting process begins from this paragraph and extends to the end of this section, aligning
with Stage 3 of our plan. In accordance with the plan, an initial attempt was made to directly
manipulate the integral values I; however, the resulting plots exhibited neither smoothness nor
continuity. Consequently, the decision was made to utilize the residual R instead.

Upon execution of the WriteFile method, output files are generated, containing two
columns: the first column denotes the number of subdivisions, while the second column displays

INTRODUCTION, METHOD AND VERIFICATION 84

the return values yielded by the Simpson method. Table 4.4 provides an illustration of a sample
file produced by the WriteFile function for t = 1, p = 4, and γ = 0.8.

Given our objective to determine the number of subdivisions required to achieve a
specific level of precision or error, it is logical to establish a relationship between N and the
error or residual (i.e., the difference between the last value printed by the WriteFile function
and the preceding values). Table 4.5 represents an updated version of Table 4.4, now featuring
residual values as the second column.

The fitting process spans across three files: test1.m, fit_curve.m, and fit_curvef.m,
which are described subsequently.

N I

75879150 −0.590274039200124
76522600 −0.590274039199605
77166050 −0.590274039198941
77809500 −0.590274039197867
78452950 −0.590274039197240
79096400 −0.590274039196180
79739850 −0.590274039195590
80383300 −0.590274039194982
81026750 −0.590274039194301
81670200 −0.590274039193123
82313650 −0.590274039192075
82957100 −0.590274039191671
83600550 −0.590274039191116

Table 4.4: Integral values

N R

75879150 1.2251e− 11
76522600 1.0456e− 11
77166050 9.9369e− 12
77809500 9.2729e− 12
78452950 8.1990e− 12
79096400 7.5719e− 12
79739850 6.5120e− 12
80383300 5.9219e− 12
81026750 5.3140e− 12
81670200 4.6330e− 12
82313650 3.4550e− 12
82957100 2.4070e− 12
83600550 2.0030e− 12

Table 4.5: Residual values

Inside the test1.m file: During the fitting process of the residual function, we opted for the
logarithm of the residual instead of the actual residual function. In fact, the residual function is
a power function, which implies that its values are either extremely small or large over most of
its domain. Attempting to gain insights from its plot has proven to be quite challenging. Also,
the fit would be highly non-uniform. For example, how do we ensure that the small values are
fit as well as the large values? How do we measure what is a good fit when the disparity in
magnitude is so great? The log is the answer: it turns a very strongly varying power function
into quasi-straight lines. Straight lines are simpler to handle in terms of quantifying their
properties. If the original function is not a single power (which is our case), the log would
not be a straight line, but the magnitude disparity issue is resolved nonetheless. The other
aspect of it all is that we are indeed interested in the error magnitude, not its absolute value.
We will always describe the residual as a magnitude. Thus, the log treatment also makes
sense conceptually, beyond being a technical convenience. In the subsequent sections of the
document, when we mention the residual function, we are actually referring to its logarithm.
Process:

• Extract the integer and decimal parts of p and g and convert them into strings.

INTRODUCTION, METHOD AND VERIFICATION 85

• Open the file printed by the WriteFile function for that specific combination of p and
g.

• Load this file into the vector U.

• Compute the residual function.

• Fit the residual function.

• Plot the results.

In the context of the test1.m file, the goal is to establish a functional relationship between
the number of subdivisions N and the error or residual R for a given combination of p and γ.
By fitting the plot of the residual against the number of subdivisions with a continuous and
easily invertible function, the program can determine the number of subdivisions required to
achieve a specific precision.

1

2 for p=1.5:0.5:4.5

3 for g = 0.1:0.1:0.9

4

5 %extract the integer and decimal part of p

6

7 p1=fix(p);

8 p2 =10*(p-p1);

9

10 %extract the integer and decimal part of g

11 g1=fix(g);

12 g2 =10*(g-g1);

13

14 %convert them into strings

15 sp1=num2str(p1);

16 sp2=num2str(p2);

17 sg1=num2str(g1);

18 sg2=num2str(g2);

19

20 %open the file containing the return value of the WriteFile

21 % method depending on a sepcific combination of p and g

22

23

24 file=[’C:/ Users/nguim/OneDrive/Documents/research_papers

25 /Code/newdata/P_G/t5/p’ sp1 ’p’ sp2 ’_g’ sg1 ’p’ sg2 ’.txt’];

26

27 % load the file as a 2 dimoentional vector

28 U=load(file);

29

30 N=U(:,1); % the vector N contains the subdivisions

INTRODUCTION, METHOD AND VERIFICATION 86

31 G=U(:,2); % the vector G contains the actual return value the

WriteFile method

32

33 % R is the residual vector containing the difference between the last

value of G and the other ones

34 %

35 R=log10(abs(G(1:end -1)-G(end)));

36 N=N(1:end -1);

37

38 % c is a parameter vector that will minimizes the euclidian distance

between

39 % the Residual functions and their fitted curves

40 c0=[-1 -6]; % initial parameter of the fminunc function

41 c=fminunc(@(c) fit_curve(c,R,N), c0);

42

43 [f,imin ,imax]= fit_curvef(c,N);

44 N1=N;

45 N1([imin imax])=[];

46 plot(N,R,N1 ,f,’--’);

47 hold on

48

49 endfor

50 endfor

Listing 4.3: Fitting the residual function.

Inside the fit curvef.m file: The function fit_curvef is tasked with fitting the residual
using the general form of the atanh function, c1 atanh (n1)+ c2, by determining optimal values
for the scaling factor c1, the slope n1, and the vertical shift c2.

Parameters list:

• c: a two-dimensional vector.

• n: the number of subdivisions.

Process:

• Get the minimum value of the vector n.

• Get the maximum value of the vector n.

• Remove these extreme values from the vector n.

• Determine the fitting curve using the parameter c.

INTRODUCTION, METHOD AND VERIFICATION 87

1

2 function [f,imin ,imax]= fit_curvef(c,n)

3

4 [minn ,imin]=min(n);

5 [maxn ,imax]=max(n);

6 n([imin imax])=[];

7 n1=2*(n-minn)/(maxn -minn) -1;

8 f=c(1)*atanh(n1)+c(2);

Listing 4.4: Implementation of the fit curvef method .

Inside the fit curve.m file: The fit_curve function returns the Euclidean distance be-
tween the residuals and their fitting curves. Specifically, the parameters c1 and c2 are selected
to minimize this Euclidean distance.
Parameters list:

• c: a two-dimensional vector returned by the fminunc function.

• u: the function being fitted; in our case, it represents the residual function.

• n: represents the number of subdivisions.

Process:

• Call the fit_curvef function and pass into it the vector c.

• fit_curvef returns the fitting curve f, as well as Imax and Imin, which respectively
represent the maximum and minimum values of n.

• Remove Imax and Imin from n.

• Determine the Euclidean distance between the fitting curve f and u.

1

2 function R=fit_curve(c,u,n)

3

4 [f,imin ,imax]= fit_curvef(c,n);

5 u([imin imax])=[];

6 R=sqrt(sum((f-u).^2));

Listing 4.5: Implementation of the fit curve method.

INTRODUCTION, METHOD AND VERIFICATION 88

Figure 4.2: specific case for t = 5, p = 4, and γ = 0.8. The x-axis represents the number
of subdivisions and the y-axis the logarithm of the corresponding residuals. The solid curve
represents the numerical results while the dashed one represents the fitting curve.

Interpolation of the number of subdivisions N using the fitting curve

Once completing the fitting with the atanh function , its inverse can now be utilised to de-
termine the corresponding R for every value of n. From the fit_curvef.m file, we have

n1 =
2× (n−minn)

(maxn−minn)
− 1 and R ≡ f = c1 × atanh(n1) + c2. The inverse process leads to

n1 =
tanh(f − c2)

c1
and n =

(n1 + 1)× (maxn−minn)

2
+minn. This expression is used in the

n_approx function to approximate the number of subdivisions n as subsequently explained.

Inside the n approx function: The function n approx iterates through the data files and

substitutes the variables R, c1, c2, maxn, and minn in the expressions n1 =
tanh(f − c2)

c1
and

n =
(n1 + 1)× (maxn−minn)

2
+minn with their corresponding values given the parameters t,

p, and γ. It calculates and returns the number of subdivisions n given t, p, g, and the residual
R.

Parameters list:

• t: upper bound of the integral.

• p: between 1.5 and 4.5 with an increment of 0.5.

• g: between 0.1 and 0.9 with an increment of 0.1.

• R: the residual value.

Process:

INTRODUCTION, METHOD AND VERIFICATION 89

• Load the c.txt containing the different values of the c vector for a given t.

• Load the Nmax_Nmin.txt file containing the maximum and minimum number of subdi-
visions for a given t.

• Compute n using the new formula.

1 double n_approx(double t, double p, double g) {

2

3 double n1 , n, pos_p , pos_g;

4 FILE * fp1;

5 FILE * fp2;

6 FILE * fp3;

7 char file_name1 [25];

8 char file_name2 [33];

9 char file_name3 [25];

10 float c1 = 0, c2 = 0, nMax = 0, nMin = 0, R;

11 char * param;

12 int i = 0, location = 0;

13

14 pos_p = 1 + (p - 1.5) / 0.5;

15 pos_g = g / 0.1;

16

17 // find the location of c1 and c2 in the C.txt file as well as the

location of Nmax and Nmin in the N.txt file knowing p and g

18

19 location = (int)((pos_p - 1) * 9 + pos_g);

20

21 // assign a value to param based on the value of t

22

23 if (t == 0.1) {

24 param = "0p1";

25 } else if (t == 1) {

26 param = "1";

27 } else {

28 param = "5";

29 }

30

31 // create a path to the C.txt , N.txt , and R.txt files using the param

variable

32

33 sprintf(file_name1 , "../../ Data/C/t%s/C.txt", param);

34 sprintf(file_name2 , "../../ Data/Nmax_Nmin/t%s/N.txt", param);

35 sprintf(file_name3 , "../../ Data/R/t%s/R.txt", param);

36

37 // open N.txt , C.txt , and R.txt

38

INTRODUCTION, METHOD AND VERIFICATION 90

39 fp1 = fopen(file_name1 , "r");

40 fp2 = fopen(file_name2 , "r");

41 fp3 = fopen(file_name3 , "r");

42

43 if (!fp2) {

44 printf("fail_2");

45 }

46

47 if (!fp1) {

48 printf("fail_1");

49 }

50 if (!fp3) {

51 printf("fail_3");

52 }

53

54 for (i = 0; i < location; i++) {

55 fscanf(fp1 , "%f %f ", & c1 , & c2); // find c1 and c2 using the

location variable

56 fscanf(fp2 , "%f %f ", & nMin , & nMax); // find nMin and nMax using

the location variable

57 fscanf(fp3 , "%f ", & R); // find R using the location variable

58

59 }

60

61

62 fclose(fp1);

63 fclose(fp2);

64

65 n1 = tanh((R - c2) / c1);

66 n = ((n1 + 1) * (nMax - nMin)) / 2 + nMin; // find n

67

68 return n;

69

70 }

Listing 4.6: Implementation of the n approx method.

Number of subdivisions obtained by executing n approx for t = 0.1, 1, and 5: Tables
4.6, 4.7, and 4.8 display the approximate number of subdivisions returned by the n approx

function for t = 0.1, t = 1, and t = 5. Having a program capable of predicting the number of
subdivisions n required to compute I for discrete values of t ∈ {0.1, 1, 5}, p ∈ {1.5, . . . , 4.5},
and γ ∈ {0.1, . . . , 0.9}, we intend to expand the program’s scope to encompass continuous
values of t ∈ [0, 5], p ∈ [1.5, 4.5], and γ ∈ [0.1, 0.9]. To achieve this, we will gradually transition
from discrete to continuous values, starting with t in the subsequent section.

INTRODUCTION, METHOD AND VERIFICATION 91

g/p 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.1 35065 51414 61242 73570 80108 86651 93201

0.2 99002 134710 162937 198630 216504 234382 252262

0.3 214565 342453 430919 519457 563799 608143 686814

0.4 602747 858551 1093366 1370345 1487766 1722571 1840192

0.5 1674913 2341552 3365120 3698389 4365537 5033725 5366720

0.6 1674913 7241978 9904136 12403810 13999256 15597980 17196034

0.7 4662043 28071526 37953058 45866233 54342976 60260601 68207443

0.8 15930379 132684487 182123946 223677191 263586831 301086078 332831576

0.9 76155108 727802772 1015373018 1025834015 1025841827 1025918580 1025859852

Table 4.6: Approximated number of subdivisions for t = 0.1

g/p 1.5 2 2.5 3.0 3.5 4.0 4.5

0.1 27873 26378 10927 21895 32362 39371 42358

0.2 71597 67150 23662 55344 83377 103044 110919

0.3 174554 165106 59775 129525 202917 250255 278688

0.4 442094 395096 132836 314216 512656 630341 697983

0.5 1134337 1071579 313754 820575 1385528 1708829 1897254

0.6 1134337 3153872 871089 2317025 4088223 5210846 5958598

0.7 3527550 10468585 2640180 7900759 14564452 18417018 20991875

0.8 11753526 46563914 12411139 34340174 63593768 83514848 95754535

0.9 52352342 231613175 43366292 162079821 324972385 449967670 505825475

Table 4.7: Approximated number of subdivisions for t = 1

g/p 1.5 2.0 2.5 3 3.5 4.0 4.5

0.1 17083 11585 9085 7986 7286 6886 6586

0.2 42163 27968 21670 18772 17273 16074 15474

0.3 98128 63737 48741 41544 38147 35748 33949

0.4 234320 146338 110344 93857 84362 78364 75366

0.5 595947 364389 268200 227526 201649 186865 178355

0.6 595947 990878 714928 595009 525021 485046 455084

0.7 1682968 3066607 2168010 1765265 1563165 1439166 1346239

0.8 5453895 11407642 7844868 6353968 5548342 5052182 4711303

0.9 21115912 51737121 34370523 27302158 23631082 21275601 19703359

Table 4.8: Approximated number of subdivisions for t = 5

4.1.6 Number of Subdivisions Required to Compute I for Continuous Val-
ues of t and Discrete Values of p and γ

This section up to section 4.1.8, corresponding to step 4 of the plan, signifies the transition
from discrete values of parameters p, t, and γ to continuous values, achieved through a series
of interpolations. We utilize linear interpolation to extend the scope of our program to handle
continuous values of t. For optimization purposes, we implement four different variants of

INTRODUCTION, METHOD AND VERIFICATION 92

linear interpolation formulas and select the most conservative one, which returns the highest
value of n. For t ∈ [t1, t2], their general formulas are:

1. nt = nt1 +
(t−t1)(nt2−nt1)

(t2−t1)
,

2. nt = nt1 +
(log (t)−log (t1))(nt2−nt1)

(log (t2)−log (t1))
,

3. log(nt) = log(nt1) +
(t−t1)(log(nt2)−log(nt1))

(t2−t1)
,

4. log(nt) = log(nt1) +
(log(t)−log(t1))(log(nt2)−log(nt1))

(log(t2)−log(t1))
,

with log referring to the log10 function.

Implementation of these variants in C

Below are their respective implementation in C.

1

2

3 int N_T(double t, double t1 , double t2 , int n1 , int n2)

4 {

5 int n = (int)(n1 + (t - t1)*(n2 - n1)/(t2 - t1));

6 return n;

7 }

8

9 int N_logT(double t, double t1 , double t2 , int n1 , int n2)

10 {

11 int n = (int)(n1 + (log10(t) - log10(t1))*(n2 - n1)/(log10(t2) -

log10(t1)));

12 return n;

13 }

14

15 int logN_T(double t, double t1 , double t2 , int n1 , int n2)

16 {

17 double logn = log10(n1) + (t - t1)*(log10(n2)-log10(n1))/(t2 - t1);

18 return (int)(pow(10, logn));

19 }

20

21 int logN_logT(double t, double t1 , double t2 , int n1 , int n2)

22 {

23 double logn = log10(n1) + (log10(t) - log10(t1))*(log10(n2)- log10(

n1))/

24 (log10(t2) - log10(t1));

25 return (int)(pow(10, logn));

26 }

Listing 4.7: Implementation of the previous interpolation functions in C.

INTRODUCTION, METHOD AND VERIFICATION 93

Determining the most conservative linear interpolation method using the linearN T

function

The purpose of linearN T is straightforward: it compares the values of the number of subdi-
visions returned by each method and returns the highest one.

1 int linearN_T(double t, double t1 , double t2 , int n1 , int n2)

2 {

3 int temp1 = N_T(t, t1 , t2 , n1 , n2);

4 int temp2 = N_logT(t,t1 , t2 , n1 , n2);

5 int temp3 = logN_T(t, t1 , t2 , n1 , n2);

6 int temp4 = logN_logT(t, t1 , t2 , n1 , n2);

7

8 int n = temp1;

9

10 if (n < temp2)

11 {

12 n = temp2;

13 }

14

15 if (n < temp3)

16 {

17 n = temp3;

18 }

19

20 if (n < temp4)

21 {

22 n = temp4;

23 }

24

25 return n;

26 }

Listing 4.8: Code used to compare the different interpolation methods.

4.1.7 Number of Subdivisions Required to Compute I with a Controlled
Precision for Continuous Values of t, p and γ

In contrast to t, the transition from discrete to continuous values for the pair of parameters
(p, γ) is accomplished using bi-linear interpolation. This is because (p, γ) constitute a pair of
parameters, unlike t, which is a single parameter. For a given (p, γ) such that p1 ≤ p ≤ p2 and
γ1 ≤ γ ≤ γ2, we aim to determine its corresponding number of subdivisions n. Below are the
bi-linear interpolation formula and its implementation in our code.

INTRODUCTION, METHOD AND VERIFICATION 94

Bi-linear interpolation formula

n = γ−γ2
γ1−γ2

(
np1,γ1 (p−p2)

p1−p2
+

np2,γ1 (p−p1)
p2−p1

)
+ γ−γ1

γ2−γ1

(
np1,γ2 (p−p2)

p1−p2
+

np2,γ2 (p−p1)
p2−p1

)
.

Implementation in C

1

2 int bilinearN_p_g(double p, double g, double t) {

3

4 int n;

5 double p1 , p2 , g1 , g2;

6 double n_p1g1 , n_p1g2 , n_p2g1 , n_p2g2;

7

8 findPosition_p(p, & p1 , & p2); // find p1

9 findPosition_g(g, & g1 , & g2); // find p2

10

11 n_p1g1 = n_approx(t, p1 , g1); // find n for p=p1 and g=g1

12 n_p1g2 = n_approx(t, p1 , g2); // find n for p=p1 and g=g2

13 n_p2g1 = n_approx(t, p2 , g1); // find n for p=p2 and g=g1

14 n_p2g2 = n_approx(t, p2 , g2); // find n for p=p2 and g=g2

15

16 // find n

17

18 n = (int)((g - g2) / (g1 - g2) * (n_p1g1 * (p - p2) / (p1 - p2) +

n_p2g1* (p - p1) / (p2 - p1))

19 + (g - g1) / (g2 - g1) * (n_p1g2 * (p - p2) / (p1 - p2) + n_p2g2 * (p

- p1) / (p2 - p1)));

20

21 return n;

22 }

Listing 4.9: Bi-linear interpolation of n in C.

4.1.8 Summary of the Interpolation Process

The previously encountered interpolation processes, either linear or bilinear, are part of a new
function called n approx general, which can be regarded as an extension of n approx to real
values of t, p, and γ.

On one hand, n approx allows us to predict the number of subdivisions required to
approximate I for discrete values of t, p, and γ. On the other hand, n approx general

performs the same task but over their continuous range.
The process to find the number of subdivisions required for an unknown triplet (t, p, γ)

involves finding two triplets (t1, p1, γ1) and (t2, p2, γ2) such that t1 ≤ t ≤ t2, p1 ≤ p ≤ p2, and
γ1 ≤ γ ≤ γ2. Moreover, it finds n1 required for (t1, p1, γ1) and n2 required for (t2, p2, γ2), and
then computes n required for (t, p, γ) using interpolation.

INTRODUCTION, METHOD AND VERIFICATION 95

This comprehensive approach allows us to efficiently estimate the number of subdi-
visions needed to achieve the desired precision for the integral over a wider range of input
values.

Algorithm of the n approx general function

Algorithm 1: n approx general Algorithm

Result: Find n for continuous values of t, p and γ
;
if t ∈ {0.1, 1, 5} then

n = bilinear(t, p, γ) ;
end
else

find (t1, t2) ∈ {0.1, 1, 5} × {0.1, 1, 5} such that t1 ≤ t ≤ t2;
n1 = bilinear(t1, p, γ) ;
n2 = bilinear(t2, p, γ) ;
n = linear(t, t1, n1, t2, n2) ;

end

Implementation in C of the n approx general function

1 int n_approx_general(double t, double p, double g) {

2

3 double t1 , t2;

4

5 double p1 = (int) p; // extract the integer part of p

6 double p2 = 10 * (p - p1); // extract the decimal part of p

7 long int i = 0;

8 double g1 = (int) g; // extract the integer part of g

9 double g2 = 10 * (g - g1); // extract the decimal part of p

10

11 int n, n1 , n2;

12

13 // if t is not in the set {0, 0.1, 1, 5}, find t1 and t2 such that t1

<= t<= t2

14

15 if (t != 0.1 && t != 5 && t != 1 && t != 0) {

16 t1 = 0.1;

17 t2 = 10;

18

19 if (t < 1) {

20 t1 = 0.1;

21 t2 = 1;

22 } else if (1 < t < 5) {

INTRODUCTION, METHOD AND VERIFICATION 96

23 t1 = 1;

24 t2 = 5;

25 } else {

26 t1 = 0.1;

27 t2 = 5;

28 }

29

30 n1 = bilinearN_p_g(p, g, t1); // find n for p, g and t1 using

bilinear interpolation

31 n2 = bilinearN_p_g(p, g, t2); // find n for p, g and t2 using

bilinear interpolation

32

33 n = linearN_T(t, t1, t2, n1, n2); // find n knowing n1 and n2 using

linear interpolation

34

35 } else if (t == 0) // find n for t=0

36 {

37 t = 0.1;

38 n = bilinearN_p_g(p, g, t) + 1;

39

40 } else {

41

42 // if t is in the set {0.1, 1, 5} use bilinear interpolation to

compute it directly

43 n = bilinearN_p_g(p, g, t);

44

45 }

46 // verify that n is even , because the composite Simpson method only

works with even values of n.

47

48 if (n % 2 != 0) {

49 n += 1;

50 }

51

52 return n;

53 }

Listing 4.10: Implementation of the n approx general function

4.1.9 Assessment of the Accuracy of the Results

This section corresponds to step 5 and is final phase of our plan, where we carefully examine
the accuracy of our methodology. As a primary test for the quality of the results, we aim to
reproduce the curve of Dγ

t u on [−t∞, t∞], and compare its shape with the original one from
[3, page 12]. The newly computed curve is at the left and the former one at the right.

INTRODUCTION, METHOD AND VERIFICATION 97

(a) Plot of the reconstructed Dγ
t u (b) Plot of the original Dγ

t u

Figure 4.3: Plot of Dγ
t u for 0 < γ < 1. As we ascend from the horizontal green line Dγ

t u
∣∣∣
γ=0

,

values of γ increase by 0.1 until we reach γ = 0.9, denoted by the pink curve. This is for

sign

(
dxi
dσ

)
< 0 and p = 2. The horizontal axis represents the range of t-values and the

vertical axis the associated Dγ
t u.

error t

-4.744730e-008 3.6
-5.048329e-009 3.7
6.482569e-008 3.8
-4.435881e-009 3.9
2.060108e-007 4.0
-3.872901e-009 4.1
3.676208e-007 4.2
-3.364300e-009 4.3
-3.129406e-009 4.4
6.138696e-007 4.5
-2.703101e-009 4.6
7.505957e-007 4.7
-2.328432e-009 4.8
8.405479e-007 4.9
-2.001432e-009 5.0

Table 4.9: Error file for γ = 0.7

error t

-1.784137e-010 3.6
-1.721758e-010 3.7
-1.664409e-010 3.8
-1.605218e-010 3.9
-1.547047e-010 4.0
-1.494032e-010 4.1
-1.443059e-010 4.2
-1.395319e-010 4.3
-1.351115e-010 4.4
-1.307046e-010 4.5
-1.269774e-010 4.6
-1.235263e-010 4.7
-1.206676e-010 4.8
-1.180839e-010 4.9
-1.161406e-010 5.0

Table 4.10: New error file for γ = 0.7

The reproduction of Dγ
t u was just the visual part of the assessment process. In fact,

we still need to verify the precision of Dγ
t u values. To achieve this, we compute the absolute

difference between Dγ
t u for N = n, N = 2n, and p = 2.

Initially, the error variable used in the stopping condition of the writeFile function
was error = abs(Simpson(lower, upper, n) - Simpson(lower, upper, n + 10)). How-
ever, due to the non-monotonic and uncontrolled character of the errors’ magnitude as depicted
in Table 4.9, we adjusted the error variable to

error = abs(Simpson(lower, upper, n) - Simpson(lower, upper, 2*n)),

as mentioned in section 4.1.5. This modification yielded satisfactory results, as illustrated in

INTRODUCTION, METHOD AND VERIFICATION 98

Table 4.10.

Implementation of Dγ
t u in C

Below is the implementation of the Dγ
t u function employed to reconstruct its curve .

Implementation of Dγ
t u: The function Du calculates the value of Dγ

t u for −5 ≤ t ≤ 5.
Parameters list:

• t: the function’s variable, between -5 and 5.

• nt: the number of subdivisions required to compute I3.

Process:

• Calculate the first operand of Dγ
t u and store its value in I1.

• Calculate the second operand of Dγ
t u and store its value in I2.

• Calculate the third operand of Dγ
t u, the one with the integral, and store its value in I3.

1 double Du(double t, long int nt , double tmax , double p, double g) {

2

3 double I1 = I_1(t, tmax , p, g);

4 double I2 = I_2(t, tmax , p, g);

5 double I3 = I_3(t, tmax , nt , p, g);

6

7 return I1 + I2 - I3;

8

9 }

Listing 4.11: Implementation of the Dγ
t u function in C

Implementation of I1, I2, and I3: I1, I2 and I3 are used to implement respectively the
first, second and third operands of Dγ

t u as defined in section 4.1.4.

1 // Implementation of I_1

2

3 double I_1(double t, double tmax , double p, double g) {

4

5 return (pow(tmax , -g) / (tgamma (1 - g))) * (u(t-tmax , p) - u(t, p));

6

7 }

8

9 // Implementation of I_2

10

INTRODUCTION, METHOD AND VERIFICATION 99

11 double I_2(double t, double tmax , double p, double g) {

12

13 return (pow(tmax , 1 - g) / tgamma (2 - g)) * (u1(t-tmax , p));

14

15 }

16

17 // Implementation of I_3

18

19 double I_3(double t, double tmax , long int nt , double p, double g) {

20

21 return (1 / tgamma (2 - g)) * simpson(t, t-tmax , nt , p, g);

22

23 }

Listing 4.12: Implementation of I1, I2 and I3 in C.

Chapter 5

Conclusion

Observations and Results

In this thesis, we have investigated the numerical approximation of the subdiffusive Gierer-
Meinhardt model with controlled precision. Our research has yielded several key findings that
contribute to our understanding of the model.

We began by defining and exploring the concepts of reaction-diffusion, elucidating the
main difference between normal and anomalous diffusion: the rate at which particles spread
across the reaction domain in each case. Specifically, during normal diffusion, the mean square
displacement of particles can be expressed as a linear function of time, while in anomalous
diffusion, this mean square displacement manifests as a fractional power of time.

Through our examination of integer and fractional calculus, we observed that certain
rules and properties extend to fractional calculus, albeit with some limitations. For instance,
the composition rule dqdQf = dq+Qf extends to fractional calculus except in cases where f ̸= 0
and dQf = 0. The term-by-term differentiation and integration of infinite series extend to
fractional calculus under similar convergence conditions as classical calculus. This requires both

the pointwise convergence of the series

∞∑
j=0

fj and the uniform convergence of

∞∑
j=0

dqfj for term-

by-term differentiation, and the uniform convergence of

∞∑
j=0

fj for term-by-term integration

over a specific interval. We found that while the scale change property, which proved to be
highly beneficial when transitioning from the (x, t) axis to the (yi, σ) axis, remains applicable
in fractional calculus without specific restrictions, the chain rule does not extend due to the
non-local nature of fractional derivatives or integrals.

Regarding the computation of the fractional operator of Dγ
t , we observed that the

lowest number of subdivisions required to achieve a controlled precision of 10−10 occurred for
p = 1.5, γ = 0.1, and t = 5, totaling 17083 subdivisions. Conversely, the highest number of
subdivisions exceeded 1 billion and occurred for p = 4.5, γ = 0.9, and t = 0.1. These results

100

101

align with expectations, as the curve of of Dγ
t for the former case exhibited a nearly horizontal

line around t = 5, while the latter showed a steep slope around t = 0.1.
Finally, in our verification process, a significant decision we made was to assess the

achieved integration precision against the number of subdivisions returned by our program
over a wider interval [n, 2n] instead of focusing solely on close values such as n and n + 10,
ensuring that of Dγ

t maintains consistent precision across a substantial range. The objective
of calculating of Dγ

t numerically, with controlled precision, has therefore been achieved. This

operator can therefore be used in system (3.23) to determine the values of
dxi
dσ

and H(σ) with

the desired precision.

Appendices

102

Appendix A

Structure of the Project

Repository Tree

Below is the repository tree of the project. At the root of the project, you have two main
repositories, Code and Data.

Figure A.1: Tree diagram of the project repository.

• Repository path: \Code.

• Repository description: Contains all the code for the project, either in C or in Octave.

• Repository content: C, Octave.

103

104

– Repository path: \Code\C.

– Repository description: Contains all the C code for the project.

– Repository content: Du, functions, WriteFile.

∗ Repository path: \Code\C\functions.

∗ Repository description: Contains all the functions and their prototypes used to
approximate the number of subdivisions.

∗ Repository content: functions.h, functions.c.

· File name: functions.h.

· Contains all the functions’ prototypes used to approximate the number of
subdivisions.

· File name: functions.c.

· File description: Contains the implementation of all the functions used in
the approximation process.

· File content: sech, u, u1, u2, integrand, I_1, I_2, I_3, Du, simpson,
findPosition_p, findPosition_g, linearN_T, bilinearN_p_g, n_approx,
n_approx_general, N_T, N_logT, logN_T, logN_logT, even, reverse_n,
join.

· File name: functions.h.

· File description: Contains the prototypes of all the functions used in the
approximation process.

∗ Repository path: \Code\C\Du.

∗ Repository description: Contains the C file used to reconstruct the curve of
Dγ

t u.

∗ Repository content: Du.c.

· File name: Du.c.

· File description: Contains the code used to reconstruct the curve of Dγ
t u.

∗ Repository path: \Code\C\WriteFile.

∗ Repository description: Contains the C file used to implement the composite
Simpson method and to print its returned value in text files.

∗ Repository content: WriteFile.c.

· File name: WriteFile.c.

· File description: Contains the C code used to implement the composite
Simpson method and to print its returned value in text files.

– Repository path: \Code\Octave.

– Repository description: contains all the Octave code of the project.

105

– Repository content: Fit_Curve.

∗ Repository path: \Code\Octave\Fit_Curve.

∗ Repository description: Contains all the Octave files used to fit the residuals.

∗ Repository content: test1.m, fit_curve.m, fit_curvef.m

· file name: test1.m.

· file description: Main file containing the overall logic of the fitting process.

· file name: fit_curve.m.

· file description: Contains the implementation of the fit_curve function
which use is explained later in this document.

· file name: fit_curvef.m.

· file description: Contains the implementation of the fit_curvef function
which use is explained later in this document.

• Repository path: \Data.

• Repository description: Contains all the data used in our project.

• Repository content: P_G, Nmax_Nmin, R, C.

– Repository path: \Data\P_G.

– Repository description: Holds the files containing the returned value of the Simpson
method for t = 0.1, 1, 5.

– Repository content: t0p1, t1, t5.

– Repository path: \Data\C.

– Repository description: Holds the files containing the c(c1, c2) parameters for t =
0.1, 1, 5.

– Repository content: t0p1, t1, t5.

– Repository path: \Data\Nmax_Nmin.

– Repository description: Holds the files containing the minimum and maximum num-
ber of subdivisions for t = 0.1, 1, 5.

– Repository content: t0p1, t1, t5.

– Repository path: \Data\R.

– Repository description: Holds the files containing the residuals for t = 0.1, 1, 5.

– Repository content: t0p1, t1, t5.

Bibliography

[1] K. Booker and Y. Nec. “On accuracy of numerical solution to boundary value problems
on infinite domains with slow decay”. In: Math. Model. Nat. Phenom. 14.5 (2019), p. 503.

[2] William L. Briggs et al. Calculus: Early Transcendentals. 3rd. Pearson, 2018. isbn: ISBN.

[3] Richard L Burden, Douglas J Faires, and Annette M Burden. Numerical Analysis. 10th ed.
Brooks Cole, 2015.

[4] I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series, and Products. Ed. by Alan
Jeffrey and Daniel Zwillinger. 7th. Academic Press, 2007.

[5] D. Iron, M. J. Ward, and J. Wei. “The stability of spike solutions to the one-dimensional
Gierer-Meinhardt model”. In: Physica D 150.1-2 (2001), pp. 25–62.

[6] Y. Nec and M. J. Ward. “Dynamics and stability of spike-type solutions to a one dimen-
sional Gierer-Meinhardt model with sub-diffusion”. In: Physica D 241 (2012), pp. 947–
963.

[7] Keith B. Oldman and Jerome Spanier. Theory and Applications of Differentiation and
Integration to Arbitrary Order. Academic Press, Inc, 1974.

[8] Ivar Stakgold. Green’s Functions and Boundary Value Problems. 2nd Edition. John Wiley
& Sons, Inc, 1998.

[9] Dr Helen J Wilson. Introduction to perturbation methods. University College London. 2014.
url: https://www.ucl.ac.uk/~ucahhwi/LTCC/section2-3-perturb-regular.pdf
(visited on 01/25/2024).

106

https://www.ucl.ac.uk/~ucahhwi/LTCC/section2-3-perturb-regular.pdf

	Abstract
	Acknowledgements
	Reaction-Diffusion
	Classical and Fractional Calculus
	Background, Properties, Similarities and Differencies
	Classical or Integer Calculus
	Fractional Derivatives and Integrals: Definitions and Equivalencies
	Differentiation of Simple Functions
	General Properties
	Auxiliary Proofs

	Gierer-Meinhardt Model
	Representation, Matched Asymptotic Expansion and Solution
	Neumann Boundaries Conditions
	Asymptotic Solution of the Gierer-Meinhardt Model
	Auxiliary Proofs

	Numerical Approximation of Dtu with a Controlled Precision
	Introduction, Method and Verification
	Introduction and Background
	Procedure
	Plan
	Regularization of Dtu
	Numerical Approximation of I with a Controlled Precision
	Number of Subdivisions Required to Compute I for Continuous Values of t and Discrete Values of p and
	Number of Subdivisions Required to Compute I with a Controlled Precision for Continuous Values of t, p and
	Summary of the Interpolation Process
	Assessment of the Accuracy of the Results

	Conclusion
	Appendix Structure of the Project
	References

