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Abstract

This thesis discusses an implementation of an algorithm for deciding if certain words are
additive k-power-free. We use the algorithm to prove new results and to reprove several old
results. In particular we construct an infinite additive 5-power-free binary rich word. We
reprove that certain infinite binary words found by others are additive 4-power-free.
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Chapter 1

Introduction

Long sequences over fixed alphabets appear in many different areas. Examples include:
DNA strings, lattice paths, and binary strings in computing. In a sequence, objects are ar-
ranged one after another in successive order. As such, sequences are easy to create. Simply
stacking varying coloured blocks on top of one another creates a particular sequence. A natural
question then arises about what properties this sequence has; does a certain pattern ever oc-
cur? If we added another coloured block, what would change? These are the types of questions
that combinatorics on words aims to answer.

Combinatorics on words is the study of words and their various properties. A word over
an alphabet A is a finite or infinite sequence of letters from A. In this thesis, we are interested
in long words over small alphabets. We place a primary interest in pattern avoidance in infinite
words, i.e, over some fixed alphabet, which patterns can be avoided by some infinite word, and
which patterns must inevitably occur?

Combinatorics on words as a field of research dates back to the start of the 20th century
with the work of Axel Thue [30], [31]. Some simple examples of patterns are squares and cubes.
A square (resp. cube) is a word of the form xx (resp. xxx), where x is a nonempty word. Words
that do not contain squares (resp. cubes) are called square-free (resp. cube-free). While it is
straightforward to check that there are only finitely many square-free words over the binary
alphabet, Thue showed that there exists an infinite square-free word over the ternary alphabet
and an infinite cube-free word over the binary alphabet [31] (see the translation of Thue’s work
by Berstel [2]). Both of Thue’s constructions can be obtained by starting with a letter and
repeatedly applying a special type of map called a morphism. This type of construction has
continued to be important in combinatorics on words, and is fundamental to this thesis.

A large portion of combinatorics on words is about proving results that are analogous
to the results of Thue described above. Here, we focus on a variation of the squares and cubes
studied by Thue. Over an alphabet where it makes sense to sum the letters, an additive square
is a nonempty word w = w0w1 where w0 and w1 have the same length and the same sum of
letters. It is unknown whether or not there is an infinite additive square-free word over a finite
subset of Z. An additive cube is a nonempty word w = w0w1w2 where all of w0, w1 and w2

have the same length and the sum of the letters of w0, w1, and w2 are all equal. A word w is
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called additive cube-free if it contains no additive cubes. Cassaigne et al. [5] showed that there
exists an infinite word over the alphabet {0, 1, 3, 4} that is additive cube-free. This was done
with a similar idea to Thue through the use of an iterated morphism. In general, an additive
k-power is a nonempty word w = w0w1 . . . wk−1 such that all of the wi’s have the same length
and the same sum of letters.

In this thesis, we implement an algorithm first described by Currie et al. [7] which
decides, under certain conditions, whether or not a word produced by iterating a morphism
is additive k-power free. This algorithm follows what is known as the template method. The
early version of the template method was first developed by Currie and Rampersad [10]. A
much more powerful version was developed by Rao and Rosenfeld when attempting to find a
construction of an infinite additive square-free words over a finite subset of Z [25].

Using the algorithm described in the previous paragraph along with the automatic
theorem-proving software Walnut, we reprove several old results and prove some new results.

• We reprove a result of Currie, Mol, Rampersad and Shallit [7], which says that a certain
infinite binary word is additive 4-power-free.

• We reprove a result of Dekking [12], which says that a certain infinite binary word is
additive 4-power-free.

• We construct an infinite binary word that is additive 5-power-free and rich.

• We construct an infinite ternary word that is additive 4-power-free and conjectured to
be rich.

In Chapter 2, we cover the necessary background on combinatorics on words. Chapter 3
begins with a discussion of the theory behind the algorithm. Next, a detailed description of
how the algorithm functions is given. In Chapter 4, we use the algorithm to prove the results
described above. In Chapter 5, we discuss some related open problems and conjectures in
combinatorics on words.



Chapter 2

Background

2.1 Words

An alphabet is a nonempty finite set of symbols, which we refer to as letters. Let X
be an alphabet. A word over X is a finite or infinite sequence of letters from X. We let X∗

denote the set of all finite words over the alphabet X. The length of a word w is the number
of letters that make up w, denoted by |w|. We let ε denote the unique word of length 0. We
call ε the empty word.

For words x and y, the concatenation of x and y, denoted by xy, is the word consisting
of all of the letters of x followed by all of the letters of y. For example, if x = book and
y = shelf, then xy = bookshelf. Let u,w ∈ X∗. We say that u is a factor of w if there exist
words x, z ∈ X∗ such that w = xuz. If w can be written in this form with x = ε (resp. z = ε),
then u is called a prefix (resp. suffix ) of w. If w can be written in this form with x ̸= ε and
z ̸= ε, then u is called an internal factor of w. For example, the English word interrelated

has late as a factor, inter as a prefix, related as a suffix and relate as an internal factor.

2.2 Morphisms

For alphabets X and Y , a morphism from X∗ to Y ∗ is a function h : X∗ → Y ∗ that
satisfies h(uv) = h(u)h(v) for all words u, v ∈ X∗. In particular, it follows that h(ε) = ε for
every morphism h. In fact, a morphism h : X∗ → Y ∗ can be described completely by its images
on the letters of X. For example, we can define the morphisms λ : {0, 1, 2}∗ → {0, 1, 2}∗ and
µ : {0, 1}∗ → {0, 1}∗ by

λ(0) = 012, µ(0) = 01,

λ(1) = 02, µ(1) = 10.

λ(2) = 1,

3



MORPHISMS 4

Then for example, we have

λ(012) = λ(01)λ(2) definition of morphism

= λ(0)λ(1)λ(2) definition of morphism

= 012021 definition of λ on letters.

Note that the morphism λ, and the famous Thue-Morse morphism µ, were studied by Thue [30].
We will be using λ and µ to illustrate the definitions in the remainder of this chapter.

Let h : X∗ → Y ∗ be a morphism and a ∈ X. For all words x ∈ X∗, we define h0(x) = x,
and hn(x) = h(hn−1(x)) for all integers n ≥ 1. We say that the morphism h is prolongable on
a if h(a) = ax for some nonempty x ∈ X∗. For example, the morphism λ is prolongable on
0 as λ(0) = 012, but it is not prolongable on 1 as λ(1) = 02. If h is prolongable on a, then
repeatedly applying the morphism h to a, we obtain the infinite fixed point of h around a:

hω(a) = lim
n→∞

hn(a) = axh(x)h2(x)h3(x) · · · .

For example, we can compute the infinite fixed point of λ around 0 as follows:

λ(0) = 012

λ2(0) = 012021

λ3(0) = 012021012102

...

λω(0) = 012021012102012021020121 · · · .

In fact, the infinite word λω(0) is square-free. This was first proven by Thue [31]. Similarly,
we can compute the fixed point of µ around 0 as follows:

µ(0) = 01

µ2(0) = 0110

µ3(0) = 01101001

...

µω(0) = 011010011001 · · · .

The word µω(0) is known as the Thue-Morse word. A morphism h : X∗ → Y ∗ is called strictly
growing if |h(a)| ≥ 2 for all a ∈ X. For instance, the morphism µ is strictly growing as we have
|µ(a)| = 2 for all a ∈ {0, 1}. The morphism λ is not strictly growing because |λ(2)| = 1 ≱ 2.
For an integer k ≥ 1, we say that a morphism h : X∗ → Y ∗ is k-uniform if |h(a)| = k for all
a ∈ X. Note that the morphism µ is a 2-uniform morphism as |µ(0)| = |µ(1)| = 2. Meanwhile,
the morphism λ is non-uniform, i.e., it is not k-uniform for any integer k.
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2.3 Ordinary Powers

The work done in this thesis revolves mainly around the idea of what we call powers
in words. A square is a word of the form xx, where x is a nonempty word. An example of
a square in the English language is murmur with x = mur. We call a word w square-free if
w contains no squares as factors. For example, the word 1021 is square-free, while the words
00123012301 and 01210121012 are not square-free. A backtracking algorithm shows that the
longest square-free word over 2 letters is of length 3. Over alphabets of size at least 3, it is
possible to construct arbitrarily long square-free words [30].

A cube is a nonempty word of the form xxx. An example of a cube in the English
Language is the word shshsh (an admonition to be quiet) [29]. More generally, for every
integer k ≥ 2, a k-power is a nonempty word of the form xk = xx · · ·x where x is a word
concatenated with itself k times. Note that a 2-power is a square, and a 3-power is a cube.

There is no reason to restrict ourselves to integer powers of words. Dejean [11] was the
first to generalize to fractional powers. Let p ∈ Z such that 1 ≤ p ≤ n, and let w = w1w2 · · ·wn,
where the wi’s are letters. We say that p is a period of w if wi = wi+p for i = 1, ..., n− p. For
example, the word alfalfa has periods 3, 6, and 7. The exponent of w is its length divided
by its minimum period. For example, alfalfa has length 7 and minimum period 3, so it has
exponent 7/3. A word of exponent α is also called an α-power. Words that do not contain
a factor with exponent greater than or equal to α are known as α-power-free. For example,
alfalfa is 3-power-free as it contains no cube, but it is not 2-power-free, because it contains
the square alfalf. For a finite or infinite word w, we define the critical exponent of w as

sup{α ∈ Q | there is a factor of w with exponent α}.

For example, the Thue-Morse sequence has critical exponent 2, because it contains factors of
exponent 2, but no factors of exponent greater than 2 [31]. Let α ≥ 1. A word that has
exponent greater than α is known as an α+-power. A word w is α+-power-free if it contains no
α+-power as a factor. For example, the Thue-Morse word is 2+-power-free, but not 2-power-
free. The word sausage contains a 5

3 -power, but is
5
3

+
-power-free. The repetition threshold for

k letters, denoted RT(k), is defined as:

inf{α ∈ R | there exists an infinite α-power free word over k letters}.

Dejean’s theorem describes the repetition threshold for k letters for all k ≥ 2:

RT(k) =


2, if k = 2;
7
4 , if k = 3;
7
5 , if k = 4;
k

k−1 , if k ≥ 5.

Note that we have RT(2) = 2 since every binary word of length greater than 3 contains a
square, but the Thue-Morse word has critical exponent 2, i,.e., it is 2+-power-free. Similarly,
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we have RT(3) = 7
4 since every sufficiently long ternary word contains a 7

4 -power, but the word

δω(0) is 7
4

+
-power-free, where δ : {0, 1, 2}∗ → {0, 1, 2}∗ is defined by

δ(0) = 0120212012102120210,

δ(1) = 1201020120210201021,

δ(2) = 2012101201021012102.

The morphism δ was found by Dejean [11], who proved that δω(0) has critical exponent 7/4.
The proof of Dejean’s theorem for larger alphabets relies on more complicated constructions,
and took the work of many different authors [8], [9], [20], [23]. Carpi [4] made a major
contribution in proving Dejean’s theorem by providing a proof for k ≥ 33.

2.4 Abelian Powers

We will now explore another type of power known as an abelian power. Two words
x and y are called abelian equivalent if they are anagrams of each other. For example, the
English words dog and god are abelian equivalent, as are the words add and dad. An abelian
square is a nonempty word w = xy such that x and y are abelian equivalent. Some examples
of abelian squares in the English language include mesosome, reappear, and intestines [29].
An abelian cube is a nonempty word w = xyz such that x, y, and z are abelian equivalent. An
example in the English language is deeded [29]. In general, for an integer k ≥ 2, an abelian
k-power is a nonempty word of the form w = w0w1 . . . wk−1 where wi and wj are abelian
equivalent for all i, j ∈ {0, 1, . . . , k − 1}. A word w is abelian k-power-free if it contains no
abelian k-powers as factors. For example, the word w = 010 is abelian square-free and the
word w = 0012102 is abelian cube-free. Meanwhile, the words w = 011200 and w = 21302121

are not abelian 2-power-free.
Dekking [12] showed the existence of an infinite binary word that is abelian 4-power-

free. In particular, Dekking showed that the infinite fixed point around 0 of the morphism
h : {0, 1}∗ → {0, 1}∗ defined by

h(0) = 011,

h(1) = 0001,

is abelian 4-power free. This result is best possible in the sense that there are only finitely many
abelian cube-free binary words; a backtracking algorithm shows that the longest abelian cube-
free binary word has length 9. Dekking also constructed an infinite abelian cube-free ternary
word. He showed that the infinite fixed point around 0 of the morphism h : {0, 1, 2}∗ →
{0, 1, 2}∗ defined by

h(0) = 0012,

h(1) = 112,

h(2) = 022,
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is abelian cube-free. Note that this result is best possible in the sense that there are only
finitely many abelian square-free ternary words; a backtracking search shows that the longest
abelian square-free ternary word has length 537.

Erdős [14] asked if there exists an infinite abelian square-free word over some finite
alphabet. Evdokimov [15] answered this question in the positive by constructing an infinite
abelian square-free word over an alphabet of size 25. The size of the alphabet was improved
upon by Pleasants [22], who was able to reduce it down to size 5. This was even further reduced
down to an alphabet of size 4 by Keränen [17]. The result by Keränen is the best possible
since backtracking shows that over three letters, there is no abelian square-free word of length
greater than 7. Keränen used the 85-uniform morphism g : {0, 1, 2, 3}∗ → {0, 1, 2, 3}∗ defined
by:

g(0) = 0120232123203231301020103101213121021232021013010203212320231210212320232132303132120,

g(1) = 1231303230310302012131210212320232132303132120121310323031302321323031303203010203231,

g(2) = 2302010301021013123202321323031303203010203231232021030102013032030102010310121310302,

g(3) = 3013121012132120230313032030102010310121310302303132101213120103101213121021232021013.

2.5 Additive Powers

We now introduce one more variation on powers in words, namely additive powers.
Note that we restrict to words over alphabets where there is some notion of sum, so that we
can sum all of the letters in a word. The sum of w, denoted by S(w), is the sum of all the
letters that make up w. An additive square is a nonempty word w = w0w1, where both w0 and
w1 have the same length and the same sum, i.e., |w0| = |w1| and S(w0) = S(w1). A word w is
said to be additive square-free if it contains no additive squares as factors. For example, the
word w = 0120 is additive square-free, and the word w = 013121 contains an additive square.

Additive square-free words were studied by Rao and Rosenfeld [25], who were able to
show that there exists an infinite additive square-free word over a finite subset of Z2. It is still
unknown whether or not there exists such a word over some finite subset of Z.

An additive cube is a nonempty word w = w0w1w2 where all of w0, w1, and w2, have the
same length and the same sum. A word w is called additive cube-free if it contains no additive
cubes as factors. For example, the word w = 020312 is additive cube-free, but it contains
the additive square u = 0312. Cassaigne et al. [5] showed that there exists an infinite word
over the alphabet {0, 1, 3, 4} that is additive cube-free. Lietard and Rosenfeld [18] showed that
there exists an infinite additive cube-free word over all subsets of Z of size 4 except possibly
subsets equivalent to {0, 1, 2, 3}, i.e., any arithmetic progression of length 4. Rao [24] was able
to show that there exist infinite additive cube-free words over several integer alphabets of size
3 including {0, 1, 5}, {0, 3, 7}, and {0, 2, 9}. Note that it is still unknown if such words exist
over the alphabets {0, 1, 2}, {0, 1, 3}, {0, 1, 4}, and {0, 2, 5}.

In general, an additive k-power is a nonempty word w = w0w1 . . . wk−1 such that all
of the wi’s have the same length and the same sum. Recall from Section 2.4 that Dekking
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produced an infinite abelian 4-power-free binary word. Over the binary alphabet {0, 1}, it is
straightforward to show that a word w is an abelian k-power if and only if it is an additive
k-power. Thus, we can extend Dekking’s earlier conclusion and see that there exists an infinite
additive 4-power-free word over the binary alphabet. A backtracking search shows that this
result is best possible as over the binary alphabet, there is no additive 3-power-free word of
length greater than 9.

2.6 Rich Words

A palindrome is a word w that reads the same backward as forward. Some examples
in the English language include racecar, level, and kayak. It is known that every word
of length n contains at most n + 1 palindromic factors, including the empty word [13]. This
fact led to the study of words that are “rich” in palindromes. We say that a finite word w
is rich if it contains |w| + 1 distinct palindromic factors. In other words, a word w is rich if
it contains the maximum number of palindromic factors among all words of length |w|. An
example of a rich word is 1001 since it has 5 palindromic factors, namely ε, 0, 1, 00 and 1001.
Note that 012120 is not rich as it has only 6 palindromic factors: ε, 0, 1, 2, 121, 212. An
infinite word w is rich if all of its finite factors are rich. For example, the Fibonacci word
F = 01001010 . . . where F is the infinite fixed point of the morphism ϕ : {0, 1}∗ → {0, 1}∗
defined by ϕ(0) = 01 and ϕ(1) = 0 is known to be an infinite rich word [16]. The Thue-Morse
word µω(0) = 0110100110010110 · · · is an example of an infinite non-rich word. For example,
the factor 11010011 of µω(0) is non-rich as it has length 8 and 8 palindromic factors: ε, 0, 1,
00, 11, 101, 010, and 1001.

A factor u of a word w is said to be unioccurrent in w if u occurs exactly once in w. For
example, in the word 01, the factors 0, 1 and 01 are all unioccurrent. In the word 011001, the
factor 01 is not unioccurrent, but 001 is. The following theorem gives a useful characterization
of finite rich words in terms of unioccurrent factors.

Theorem 2.6.1 (Glen et al. [16]). A finite word w is rich if and only if every prefix of w has
a unioccurrent palindromic suffix.

The result of Theorem 2.6.1 can be extended to a well-known result about infinite rich
words. We provide a proof below.

Theorem 2.6.2. An infinite word w is rich if and only if every finite prefix of w has a
unioccurrent palindromic suffix.

Proof.

⇒ Suppose the infinite word w is rich. Then by definition, all of its finite factors are rich.
This implies by Theorem 2.6.1 that every one of the finite factors of w has a unioccurrent
palindromic suffix. Thus, every finite prefix of w has a unioccurrent palindromic suffix.

⇐ Suppose that every finite prefix of the infinite word w has a unioccurrent palindromic
suffix. Let x be a finite factor of w. Then there is some finite prefix p of w that contains
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x. Since every finite prefix of w has a unioccurrent palindromic suffix, we see by Theorem
2.6.1 that p must be rich. By [16, Corollary 2.5], since p is rich, every one of its factors
must also be rich. Since x is contained in p, this implies that x is rich. Therefore, we
conclude that w is rich.

After being introduced implicitly by Droubay, Justin, and Pirillo [13], rich words have
been well-studied, sometimes under the name full words (see [3]). We will now briefly summa-
rize the known results about repetitions in rich words. Pelantová and Starosta [21] proved that
every infinite rich word, over any finite alphabet, contains a square. Shallit and Baranwal [1]
proved that the infinite binary word g(fω(0)) is rich and has critical exponent 2+

√
2/2, where

f : {0, 1, 2}∗ → {0, 1, 2}∗ and g : {0, 1, 2}∗ → {0, 1}∗ are defined by

f(0) = 01, g(0) = 0,

f(1) = 02, g(1) = 01,

f(2) = 022, g(2) = 011.

Further, they conjectured that this word has the least critical exponent among all infinite
binary rich words, i.e., that the repetition threshold for binary rich words is 2+

√
2/2. Currie,

Mol and Rampersad [6] proved this conjecture of Shallit and Baranawal by giving a structure
theorem for infinite binary rich words that are 14

5 -power-free. In Section 4, we will show that
there is an infinite additive 5-power-free binary rich word, and that this is best possible in the
sense that there are only finitely many additive 4-power-free binary rich words. One can think
of this result as an additive-power analogue of the result of Currie, Mol, and Rampersad.

2.7 Walnut

Walnut is a free Java software that was originally developed by Hamoon Mousavi [19]
and has been added to by Aseem Raj Baranwal, Laindon C. Burnett, Kai Hsiang Yang, and
Anatoly Zavyalov. To download Walnut for free, visit

https://cs.uwaterloo.ca/~shallit/walnut.html

Walnut is an implementation of the algorithm described in chapter 6 of the Walnut

book [28, Theorem 6.4.1]. Roughly speaking, this theorem says that there is an algorithm
which can determine the truth value of all statements about automatic sequences that can be
written in a certain first-order logic. The internal representation of natural numbers in Walnut

by default is base-2 representation with the most significant digit coming first. Walnut is quite
flexible and supports k-automatic sequences for integers k ≥ 2, Fibonacci and Tribonacci-
automatic sequences, Pell-automatic sequences, and Ostrowski-automatic sequences based on
arbitrary quadratic irrationals.

https://cs.uwaterloo.ca/~shallit/walnut.html
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2.7.1 Walnut Syntax

Walnut provides a user interface that accepts input in the form of first-order logical
formulas. An automaton is created to represent these various inputs. Automata are one of
the simplest forms of a computer. An automaton starts in an initial state and after reading
the input provided, transitions to one of a finite number of states. An automaton takes as
input strings and based on the symbols in the strings, moves from state to state. Each Walnut

automaton accepts tuples of integers in a user specified numeration system. These automata
are stored in .txt files with easy to read and understand syntax. All automata created by
Walnut are deterministic and minimal.

One can express first-order logical formulas in Walnut with a relatively simple syntax.
First of all, words made up of capital letters (apart from the reserved letters A and E) are
used to refer to sequences stored in the directory Word Automata Library. For example,
some hard-coded sequences, namely the Thue-Morse and Fibonnaci sequences, have respective
symbols T and F.

Indexing sequences in Walnut is fairly easy. Note that all variables in Walnut have
domain N = {0, 1, 2, . . .} and thus do not accept negative values. For i ∈ N, we write W[i] for
the symbol at position i in W. For example, since

T = 01101001 · · · ,

the input T[0] would return the symbol 0, and T[2] would give the symbol 1. Algebraic
expressions may also be used to index sequences. For example, to access the symbol at position
x+y in W we write W[x+y]. Note that Walnut supports addition, subtraction, multiplication by
a natural number constant, and integer division, where x/y represents the floor of the quotient
of x and y.

The letter E is the Walnut symbol for the existential quantifier ∃. The letter A is the
Walnut symbol for the universal quantifier ∀. The symbol => represents logical implication, &
represents AND, | represents OR, and <=> represents the biconditional (if and only if).

There is an extra command that is used to designate the numeration system for the
automata involved in evaluating the command. The command ?msd n preceding a first-order
logical formula specifies that it should be evaluated in base-n, where n ≥ 2 is some integer.

Example 2.7.1. We will use Walnut to show that the Thue-Morse word T = 0110100110 · · ·
is cube-free and 2+-power-free. In order to do this, we write a first-order logical formula that
asserts the existence of a cube and 2+-power in Thue-Morse. We give the construction for the
cube. Recall that a cube is a word w of the form xxx for some nonempty word x (see Section
2.1).

We define T [a . . . b] to represent the word starting at position a and ending at position
b inclusive. The idea is that if the word T contains xxx starting at position i, we must have
|x| = n for some n ≥ 1 (see Figure 2.1). So there is a cube in T if and only if there are natural
numbers i and n with n ≥ 1 such that

T[i . . . i+ n− 1] = T[i+ n . . . i+ 2n− 1] = T[i+ 2n . . . i+ 3n− 1]
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x x x

T[0 . . . i − 1] T[i . . . i + n − 1] T[i + n . . . i + 2n − 1] T[i + 2n . . . i + 3n − 1] T[i + 3n . . .]

T

Figure 2.1: An instance of a cube occurring in T.

or equivalently,

∃i, n, (n ≥ 1) ∧ ∀s(0 ≤ s < 2n) =⇒ T[i+ s] = T[i+ n+ s].

We can translate this into Walnut as:

Ei, n(n>=1) & As (s<2*n) => T[i+s] = T[i+n+s]:

Now that we have the Walnut syntax for checking T for cubes, all we need to do is simply
evaluate it using Walnut. To do so we use the eval command followed by the statement name,
and we include ?msd 2 immediately before the formula to indicate that we are using the base-2
numeration system with most significant digit first:

eval containscubes "?msd_2 Ei, n(n>=1) & As (s<2*n) => T[i+s] = T[i+n+s]":

Walnut returns FALSE, thus proving that the Thue-Morse word is cube-free. We can prove that
the Thue-Morse word is 2+-power-free using a similar command:

eval containstwoplus "?msd_2 Ei, n(n>=1) & As (s<=n) => T[i+s] = T[i+n+s]":

Walnut returns FALSE, thus proving that the Thue-Morse word is 2+-power-free.

It is possible to add your own automatic sequences to Walnut. For example, consider
the morphism h : {0, 1}∗ → {0, 1}∗ defined by h(0) = 001 and h(1) = 100. To define h in
Walnut, we use the following command:

h "0->001 1->100":

If the morphism is uniform, it can be “promoted” to an automaton through the use of the
promote command. For example, using our morphism h as defined above, we can write

promote H h:

which creates an automaton H that generates hω(0). For words that are of the form g(hω(0)),
we use the image command. For example, if g and h are uniform morphisms, then we can
write:
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promote H h:

# promotes h to an automaton H that generates the fixed point of h around 0

image GH g H:

# creates the automaton GH which generates the word g(h^{w}(0))

The resulting automaton GH is defined over the same numeration system as the original au-
tomaton H.



Chapter 3

Decision Algorithm

In this chapter we discuss a decision algorithm that checks if certain types of morphic
sequences are additive k-power-free. Currie et al. [7] devised this method, and described it
for additive k-powers. They demonstrated that the words fω(0) and g(fω(0)) are additive
4-power-free, where f : {0, 1, 2}∗ → {0, 1, 2}∗ is the morphism defined by

f(0) = 001,

f(1) = 012,

f(2) = 212,

and g : {0, 1, 2}∗ → {0, 1}∗ is the morphism defined by

g(0) = 0001001110010001100011,

g(1) = 0001001110011101100011,

g(2) = 0111001110011101100011.

The algorithm is based on the template method. An early version of this method was de-
scribed by Currie and Rampersad [10]. A more powerful version was described by Rao and
Rosenfeld [25]. This chapter is an overview of the decision algorithm used in this thesis. In
Section 3.1, we describe the theory behind the algorithm. In Section 3.2, we describe the
algorithm in detail, and explain why it works.

3.1 Theory of the Algorithm

The results and proofs given in this section were given by Currie et al. [7] for k = 4,
and have been generalized to all k ≥ 2 below.

We first introduce additive k-templates, which describe structures that are not “too far”
from an additive k-power. Given an integer alphabet X, an additive k-template (for additive
k-powers) is a 2k-tuple

t = [a0, a1, . . . , ak, d0, d1, . . . , dk−2] (3.1)

13
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where ai ∈ X∗, |ai| ≤ 1, and each of the di are in Z2. For example, an additive 3-template is a
6-tuple t = [a0, a1, a2, a3, d0, d1]. Recall that for a finite word w over an integer alphabet, the
length of w is denoted |w|, and the sum of the letters of w is denoted S(w). We define σ(w)
to be the vector [|w|, S(w)]T . For example, if w = 01210, then σ(w) = [5, 4]T . A word x is
an instance of t if there exist x0, x1, . . . , xk−1 ∈ X∗ such that x = a0x0a1x1 · · ·xk−1ak and for
each i, we have di = σ(xi+1) − σ(xi). Observe that an additive k-power is an instance of the
additive k-template

t0 = [ε, ε, . . . , ε, [0, 0]T , [0, 0]T , . . . , [0, 0]T ].

The word v = 102122 is an instance of the template

[1, ε, 2, [0, 1]T ]

where x0 = 02, and x1 = 12. The word w = 1110202011 is an instance of the template

[1, ε, ε, ε, 1, [0, 0]T , [0, 0]T , [0,−1]T ]

where x0 = 11, x1 = 02, x2 = 02 and x3 = 01. Note that the word v is not “too far” from an
additive 2-power and w is not “too far” from an additive 4-power.

Let h : X∗ → Y ∗ be a morphism. For A ∈ X∗ with |A| ≤ 1, an h-split of A is a 3-tuple
[p, a, s], where h(A) = pas, a ∈ Y ∗, and |a| ≤ 1. One can think of an h-split of A as a way in
which the word h(A) can be factored into three pieces, with the empty word or a single letter
in the center. For example, let β : {0, 1, 2}∗ → {0, 1, 2}∗ be the morphism defined by

β(0) = 001,

β(1) = 012,

β(2) = 212,

and γ : {0, 1, 2}∗ → {0, 1}∗ be the morphism defined by

γ(0) = 00001,

γ(1) = 000111,

γ(2) = 0111011.

Then the β-splits of 0, 1, 2, and ε respectively are:

• [ε, 0, 01], [0, 0, 1], [00, 1, ε], [ε, ε, 001], [0, ε, 01], [00, ε, 1], [001, ε, ε],

• [ε, 0, 12], [0, 1, 2], [01, 2, ε], [ε, ε, 012], [0, ε, 12], [01, ε, 2], [012, ε, ε],

• [ε, 2, 12], [2, 1, 2], [21, 2, ε], [ε, ε, 212], [2, ε, 12], [21, ε, 2], [212, ε, ε],

• [ε, ε, ε],

. The γ-splits of 0, 1, 2, and ε respectively are:

• [ε, 0, 0001], [0, 0, 001], [00, 0, 01], [000, 0, 1], [0000, 1, ε], [ε, ε, 00001], [0, ε, 0001], [00, ε, 001], [000, ε, 01], [0000, ε, 1], [00001, ε, ε],
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• [ε, 0, 00111], [0, 0, 0111], [00, 0, 111], [000, 1, 11], [0001, 1, 1], [00011, 1, ε],
[ε, ε, 000111], [0, ε, 00111], [00, ε, 0111], [000, ε, 111], [0001, ε, 11], [00011, ε, 1], [000111, ε, ε],

• [ε, 0, 111011], [0, 1, 11011], [01, 1, 1011], [011, 1, 011], [0111, 0, 11][01110, 1, 1], [011101, 1, ε], [ε, ε, 0111011],
[0, ε, 111011], [01, ε, 11011], [011, ε, 1011], [0111, ε, 011], [01110, ε, 11], [011101, ε, 1], [0111011, ε, ε],

• [ε, ε, ε],

A morphism h : X∗ → Y ∗ where X,Y ⊆ Z is called an affine morphism if there exist
a, b, c, d ∈ Z such that for all x ∈ X, we have |h(x)| = a + bx and S(h(x)) = c + dx. For an
affine morphism h, we define the matrix

Mh =

[
a b
c d

]
.

For example, let β be the morphism defined previously. Then for all x ∈ {0, 1, 2}, we have
|β(x)| = 3 + 0x and S(β(x)) = 1 + 2x, so β is affine, and we have

Mβ =

[
3 0
1 2

]
.

Similarly for the morphism γ, we have |γ(x)| = 5 + x and S(γ(x)) = 1 + 2x for all x ∈ {0, 1}.
Therefore, γ is affine, and we have

Mγ =

[
5 1
1 2

]
.

Lemma 3.1.1. Let X and Y be finite subsets of Z and h : X∗ → Y ∗ be an affine morphism
with

Mh =

[
a b
c d

]
.

Then for any word w ∈ X∗ we have σ(h(w)) = Mhσ(w). Thus, if M−1
h exists, then σ(w) =

M−1
h σ(h(w)).

Proof. Let w be a word in X∗. We proceed by induction on |w|. If |w| = 0, then w is empty,
so we have σ(h(w)) = σ(h(ε)) = σ(ε) = [0, 0]T and Mhσ(w) = Mh[0, 0]

T = [0, 0]T . Therefore
the result holds when |w| = 0. Now suppose that |w| > 0, and that the statement holds for all
words of length |w| − 1. Then we write w = w′x, where x is the final letter in w, and we have

Mhσ(w) = Mh(σ(w
′) + σ(x)) property of σ

= Mhσ(w
′) +Mhσ(x) distributive property

= σ(h(w′)) +Mhσ(x) inductive hypothesis

= σ(h(w′)) +

[
a b
c d

] [
1
x

]
definition of Mh and σ

= σ(h(w′)) +

[
a+ bx
c+ dx

]
matrix multiplication

= σ(h(w′)) + σ(h(x)) definition of affine

= σ(h(w)) property of σ



THEORY OF THE ALGORITHM 16

difference D0

A0 X0 A1 X1 A2

h

h(A0) h(X0) h(A1) h(X1) h(A2)

a0 x0 a1 x1 a2

difference d0

Figure 3.1: An instance of a template t = [a0, a1, a2, d0] arising from an instance of its h-parent
T = [A0, A1, A2, D0].

Therefore, the result follows by induction.

Let
t = [a0, a1, . . . , ak, d0, d1, . . . , dk−2],

and
T = [A0, A1, . . . , Ak, D0, D1, . . . , Dk−2],

be templates. We call T an h-parent of t if the Ai have h-splits [pi, ai, si] such that di =
MhDi + bi, where bi = σ(si+1pi+2) − σ(sipi+1). Roughly speaking, the next lemma says that
an instance of t arises when we apply h to an instance of T (see Figure 3.1).

Lemma 3.1.2. Let h : X∗ → Y ∗ be an affine morphism and W ∈ X∗. Let

t = [a0, a1, . . . , ak, d0, d1, . . . , dk−2] and T = [A0, A1, . . . , Ak, D0, D1, . . . , Dk−2]

be additive k-templates such that T is an h-parent of t. If W contains an instance of T , then
h(W ) contains an instance of t.

Proof. Suppose that W contains an instance V = A0X0A1X1 · · ·Xk−1Ak of T . Since T is an h-
parent of t, there are h-splits [p0, a0, s0], [p1, a1, s1], . . . , [pk, ak, sk] of A0, A1, . . . , Ak respectively
such that for all i ∈ {0, 1, . . . , k−2}, we have di = MhDi+bi, where bi = σ(si+1pi+2)−σ(sipi+1).
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Thus w = h(W ) contains the factor v = a0x0a1x1 · · ·xk−1ak, where xi = sih(Xi)pi+1. We have

σ(xi+1)− σ(xi) = σ(si+1h(Xi+1)pi+2)− σ(sih(Xi)pi+1) substituting in for xi and xi+1

= σ(h(Xi+1)) + σ(si+1pi+2)− σ(h(Xi))− σ(sipi+1) property of σ

= Mhσ(Xi+1) + σ(si+1pi+2)−Mhσ(Xi)− σ(sipi+1) h is affine so σ(h(Xi)) = Mhσ(Xi)

= Mh(σ(Xi+1)− σ(Xi)) + σ(si+1pi+2)− σ(sipi+1) factor out Mh

= MhDi + bi V is an instance of T , definition of bi

= di definition of parent

Hence, the word v is an instance of t.

For a morphism h : X∗ → Y ∗, we define

Wh = max
a∈X

|h(a)|.

So for example if γ and β are the morphisms defined previously, then we have Wγ = 7 and
Wβ = 3. Let h : X∗ → Y ∗ be a morphism and

t = [a0, a1, . . . , ak, d0, d1, . . . , dk−2]

be an additive k-template. Then we write di =
[
d
(0)
i , d

(1)
i

]T
. Furthermore, we define the values

∆(t) = max{|d(0)i | : i = 0, . . . , k − 2}

and

Bh(t) = k + 2 + k(Wh − 2) +
(k − 1)k

2
∆(t).

For example, if we look at the morphism γ and the additive 4-template

t = [ε, ε, ε, ε, ε, [1, 0]T , [2, 1]T , [0, 1]T ],

then
d0 = [1, 0]T , d1 = [2, 1]T , and d2 = [0, 1]T .

Hence
∆(t) = max{1, 2, 0} = 2.

Therefore, we have

Bγ(t) = 4 + 2 + 4 · (7− 2) +
(4− 1) · 4

2
· 2 = 38.

In an additive k-power, the k “blocks” must have the same length and sum. Here ∆(t) is a
bound on the difference in length between successive “blocks” of an instance of t, and the quan-
tity Bh(t) bounds the length of instances of t that will be relevant to our algorithm. Roughly
speaking, the next lemma says that if h satisfies certain conditions, then every sufficiently long
instance of a template in a word of the form h(W ) must have come from a shorter instance of
a parent template in W .
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Lemma 3.1.3. Let h : X∗ → Y ∗ be a strictly growing affine morphism such that Mh is
invertible. Let W ∈ X∗ and t = [a0, a1, . . . , ak, d0, d1, . . . , dk−2] be an additive k-template. If
h(W ) contains an instance v of t where |v| ≥ Bh(t), then there is an h-parent T of t such that
W contains an instance V of T and |V | < |v|.

Proof. Let v = a0x0a1x1 . . . ak−1xk−1ak be a factor of the word w = h(W ) and be an instance
of

t = [a0, a1, . . . , ak, d0, d1, . . . , dk−2].

Suppose that |xi| ≥ Wh − 1 for all 0 ≤ i ≤ k − 1. Then xi is not an internal factor of the
h-image of any letter in X. Therefore, we can write each xi in the form xi = sih(Xi)pi+1 for
some Xi ∈ X∗, where si is a suffix of h(Ai), and pi+1 is a prefix of h(Ai+1) for some words
A0, A1, . . . , Ak ∈ X∗ with |Ai| ≤ 1. Therefore, the analysis in the proof of Lemma 3.1.2 may
be reversed. This means that W contains an instance V = A0X0A1X1 · · ·Ak−1XkAk of the
template

T = [A0, A1, . . . , Ak, D0, D1, . . . , Dk−2]

where the Ai have h-splits [pi, ai, si] for all 0 ≤ i ≤ k and

Di = M−1
h (di − bi)

for all 0 ≤ i ≤ k − 2. Note that since h is strictly growing, the instance V of T satisfies
|V | < |v|.

It now suffices to show that if |v| ≥ Bh(t), then for every i we have |xi| ≥ Wh − 1. We
proceed by contradiction. Suppose that for some i we have |xi| ≤ Wh − 2. Let ζ0, ζ1, . . . , ζk−1

be the lengths of the xi’s arranged in non-decreasing order, and so that ζ0 ≤ ζ1 ≤ · · · ≤ ζk−1.
Since |xi| ≤ Wh − 2, it follows that ζ0 ≤ Wh − 2. Using the definition of ∆(t), we see that
ζi ≤ ζ0 + i∆(t) for 0 ≤ i ≤ k − 1. Hence,

k−1∑
i=0

|xi| =
k−1∑
i=0

ζi ≤
k−1∑
i=0

(ζ0 + i∆(t)) =
k−1∑
i=0

ζ0 +
k−1∑
i=0

i∆(t)

= kζ0 +∆(t)
k−1∑
i=0

i

= kζ0 +
k(k − 1)

2
∆(t)

≤ k(Wh − 2) +
k(k − 1)

2
∆(t).

Therefore, this implies that

|v| ≤ (k + 1) +
k−1∑
i=0

|xi| ≤ (k + 1) + k(Wh − 2) +
k(k − 1)

2
∆(t) < Bh(t)

which contradicts our assumption that |v| ≥ Bh(t).
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Theorem 3.1.4. Let h : X∗ → X∗ be an affine morphism such that every eigenvalue λ of Mh

has modulus |λ| > 1 and let t be an additive k-template. Then the set of h-ancestors of t is
finite.

Proof. Since the eigenvalues of Mh have modulus greater than 1, it follows that Mh is invertible
(otherwise λ = 0 is an eigenvalue), and the eigenvalues of M−1

h are smaller than 1 in absolute
value. Let λ1 and λ2 be the eigenvalues of M−1

h and let M−1
h = P−1JP , where J is the Jordan

form of M−1
h . Then we have

J =

[
λ1 0
0 λ2

]
when λ1 ̸= λ2, or J =

[
λ1 1
0 λ1

]
when λ1 = λ2.

Hence,

M−n
h = P−1

[
λn
1 0
0 λn

2

]
P or M−n

h = P−1

[
λn
1 nλn−1

1

0 λn
1

]
P,

and so
∑
i≥0

M−i
h converges. Let

t = [a0, a1, . . . , ak, d0, . . . , dk−2]

be an additive k-template and

T = [A0, A1, . . . , Ak, D0, . . . , Dk−2]

be an h-ancestor of t obtained by applying the h-parent relation ℓ times. When ℓ = 1, then
we have Di = M−1

h (di− bi), where bi can be a finite number of values as there are only finitely
many choices for the h-splits. For ℓ ≥ 1, we find by iteration that Di has the form

Di = cℓM
−ℓ
h + cℓ−1M

−(ℓ−1)
h + · · ·+ c1M

−1
h + c0,

where all of the cj are chosen from a finite set of vectors. We know that
∑
i≥0

M−i
h converges

and that Di ∈ Z2, so there are only finitely many possible vectors Di. Thus, we conclude that
there are only finitely many h-ancestors T of t.

3.2 Description of the Algorithm

In this section, we use the theory from the previous section to prove the following
theorem, which describes an algorithm to decide if the words h(gω(a)) and gω(a) are additive
k-power-free. This algorithm was described briefly by Currie et al. [7], but we provide a more
detailed description in this section.

Theorem 3.2.1. Let g : X∗ → X∗ and h : X∗ → Y ∗ be affine morphisms over the integer
alphabets X and Y such that g is prolongable on a. If
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• h and g are strictly growing,

• Mg and Mh are invertible, and

• the eigenvalues λg of Mg satisfy |λg| > 1.

then it is possible to decide whether or not gω(a) (and h(gω(a))) are additive k-power-free.

The algorithm of Theorem 3.2.1 relies on two main sub-algorithms, which are described
separately in the lemmas below.

Lemma 3.2.2 (Finding parents). Let f : X∗ → Y ∗ be an affine morphism such that Mf is
invertible, and let t be an additive k-template. Then the set of all f -parents of t is effectively
computable.

Proof. Suppose that
t = [a0, a1, . . . , ak, d0, d1, . . . , dk−2],

and
T = [A0, A1, . . . , Ak, D0, D1, . . . , Dk−2]

is an f -parent of t. By the definition of f -parent, the Ai have f -splits [pi, ai, si] such that
di = MhDi + bi, where bi = σ(si+1pi+2)− σ(sipi+1).

To enumerate all f -parents of t, we first note that there are finitely many choices for
the Ai’s since X is finite. Once the Ai’s are chosen, there are only finitely many f -splits of Ai

(with ai at the centre). We find all such f -splits. Once the f -splits are chosen, the Di’s are
completely determined, since we can calculate them as follows:

Di = M−1
h (di − bi).

If all Di have integer entries, then we have a valid h-parent template

T = [A0, A1, . . . , Ak, D0, D1, . . . , Dk−2].

Lemma 3.2.3 (Enumerating Factors). Let g be a strictly growing morphism prolongable on a,
and n be a non-negative integer. Then the set of all factors of gω(a) of length n is effectively
computable.

Proof. Let w = gω(a) and F denote the set of factors of length n of w. We know that every
finite factor of w arises by applying g to a a finite number of times. Further, since g is strictly
growing, every factor u of length n in w must be contained in g(v) for some other factor v of
gω(a) of length n.

We start with a and apply g repeatedly until we obtain a prefix gk(a) of gω(a) of length
at least n. We add all factors of length n of gk(a) to F . We go through each element u in F
and again apply the morphism g to u. Then, we look at these words g(u) and add any new
factors of length n in g(u) to F . We repeat this process, each time checking for any new factors
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of length n and adding them to F . When no new factors are available to add to F (i.e., they
are already present in F ), the process terminates. Note that there are only a finite number of
words of length n over a finite alphabet, therefore the process will terminate.

We claim that F contains all factors of gω(a) of length n. Suppose otherwise that there
is some factor of gω(a) of length n that is not contained in F and let w be such a factor that
appears earliest in gω(a), i.e., starting at the smallest index. Let ℓ be the smallest integer such
that w appears in gℓ(a). Note that ℓ > k since all factors of length n of gk(a) were already
added to F in the first step. Then w appears in the g-image of some factor v of length n which
appears in gℓ−1(a). Note that if v were in F , then w would also be in F . Therefore, v is not
in F . This however, contradicts the assumption that w is a factor of length n of gω(a) that is
not in F and appears earliest in gω(a). Therefore, the list F now contains all factors of the
word gω(a) of length n.

Proof of Theorem 3.2.1. We begin by proving that it is possible to decide whether gω(a) is
additive k-power-free. We will do this by showing that if gω(a) contains an additive k-power,
then we can find it after a finite amount of computation. So suppose that gω(a) contains an
additive k-power v. We know by Definition 3.1 that v is an instance of the template

t0 = [ε, ε, . . . , ε, [0, 0]T , [0, 0]T , . . . , [0, 0]T ].

Initial Check: We begin by applying Lemma 3.1.3 with g and t = t0. We have ∆(t0) = 0
and

Bg(t0) = k + 2 + k · (Wg − 2) +
k · (k − 1)∆(t0)

2
= k + 2 + k · (Wg − 2).

Hence if |v| ≥ Bg(t0), then there is a g-parent T of t0 such that gω(a) contains an instance V
of T and |V | < |v|. We deal with this case in the Calculating Ancestors step. On the other
hand, if |v| < Bg(t0), then v can be found by enumerating all factors of gω(a) of length less
than Bg(t0), as described in the proof of Lemma 3.2.3. If gω(a) contains no additive k-power of
length less than Bg(t0), then we proceed onto calculating ancestors. Otherwise, the algorithm
terminates with gω(a) containing an additive k-power.

Calculating Ancestors: We begin by building a list A of all possible g-parents of t0 as
described in the proof of Lemma 3.2.2. This is the end of the first generation. Now we run
through all templates in A, and find all of their g-parents. Any new templates that we find
are added to A. This is the end of the second generation. Now we repeat the process. By
Theorem 3.1.4, the set of g-ancestors of t0 is finite and thus the process will terminate with A
containing all of the g-ancestors of t0. Let j be the number of generations required to find all
of the templates in A. It follows by Lemma 3.1.2 that v is a factor of gi(V ) for some instance
V of a template T in A and some i ∈ {0, 1, 2, . . . , j}.
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Final Check: Let M = max{∆(t) | t ∈ A}. We note that for every template t in A, we
have ∆(t) ≤ M . Let

BM = k + 2 + k · (Wg − 2) +
k · (k − 1)M

2
.

We now repeatedly apply Lemma 3.1.3 with g and Bg(t) ≤ BM and notice that if gω(a) con-
tains an instance of some template in A, then it contains an instance V of some template in
A where |V | < BM . Lemma 3.1.2 assures us that gj(V ) contains an additive k-power. We
now enumerate all factors V of gω(a) of length less than BM , as described in the proof of
Lemma 3.2.3. Lastly, we examine the words gj(V ) for each V and check to see if any of them
contains an additive k-power.

We now consider words of the form h(gω(a)). We want to decide if the word h(gω(a)) is
additive k-power-free. We show that if h(gω(a)) contains an additive k-power, then we can find
it with a finite amount of computation. Suppose that h(gω(a)) contains an additive k-power
v. We know by definition that v is an instance of the template

t0 = [ε, ε, . . . , ε, [0, 0]T , [0, 0]T , . . . , [0, 0]T ].

Initial Check: We begin by applying Lemma 3.1.3 with h and t = t0. We have ∆(t0) = 0
and

Bh(t0) = k + 2 + k · (Wh − 2) +
k · (k − 1)∆(t0)

2
= k + 2 + k · (Wh − 2).

Hence if |v| ≥ Bh(t0), then there is an h-parent T of t0 such that gω(a) contains an instance V
of T and |V | < |v|. We deal with this case in the Calculating Ancestors step. On the other
hand, if |v| < Bh(t0), then v can be found by enumerating all factors of h(gω(a)) of length
less than Bg(t0), as described in the proof of Lemma 3.2.3. If h(gω(a)) contains no additive
k-power of length less than Bh(t0), then we proceed onto calculating ancestors. Otherwise, the
algorithm terminates with h(gω(a)) containing an additive k-power.

Calculating Ancestors: We begin by building a list A of all possible h-parents of t0 as
described in the proof of Lemma 3.2.2. This is the end of the zeroth generation. Now we run
through all templates in A, and find all of their g-parents. Any new templates that we find are
added to A. This is the end of the first generation. Now we repeat the process. By Theorem
3.1.4, the set of g-ancestors of any template is finite, and thus the process will terminate with
A containing all of the g-ancestors of all h-parents of t0. Let j be the number of generations
required to find all of the templates in A. It follows by Lemma 3.1.2 that v is a factor of
h(gi(V )) for some instance V of a template T in A and some i ∈ {0, 1, 2, . . . , j}.

Final Check: Let M = max{∆(t) | t ∈ A}. We note that for every template t in A, we
have ∆(t) ≤ M . Let

BM = k + 2 + k · (Wg − 2) +
k · (k − 1)M

2
.
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Applying Lemma 3.1.3 repeatedly, we see that if gω(a) contains an instance V of some template
in A, then it contains one where |V | < BM . Lemma 3.1.2 assures us that h(gj(V )) contains an
additive k-power v. We now calculate every factor V of gω(a) of length less than BM . Lastly,
we examine the words h(gj(V )) for each V and check to see if any of them contains an additive
k-power.



Chapter 4

Applications

In this section, the algorithm described in Chapter 3 is used to prove some new results,
and to reprove some previously known results. The new constructions were found using a
backtracking algorithm, i.e., a depth-first search through the tree of all words satisfying a
given property.

Theorem 4.0.1 (Currie, Mol, Rampersad, Shallit [7]). Let f : {0, 1, 2}∗ → {0, 1, 2}∗ be the
morphism defined by f(0) = 001, f(1) = 012, f(2) = 212. The word fω(0) is additive
4-power-free.

Proof. We verify that fω(0) is additive 4-power-free, by running the algorithm described in
Section 3.2. By definition, an additive 4-power v in fω(0) is an instance of the template

t0 = [ε, ε, ε, ε, ε, [0, 0]T , [0, 0]T , [0, 0]T ].

For the initial check, we enumerate all factors of fω(0) of length Bf (t0) = 10, and verify that
none of them contains an additive 4-power. Next, we find the set A of all f -ancestors of t0.
We find a total of 17056 ancestors after 3 generations. Proceeding onto the final check, we find
that for every template t in A, we have ∆(t) ≤ 2. Therefore, we have

BM = k + 2 + k · (Wf − 2) +
k(k − 1)

2
·M = 4 + 2 + 4 · 1 + 4 · 3

2
· 2 = 22.

We now enumerate all factors V of fω(0) of length 21. We examine the word f3(V ) for each
such factor V and check that none of them contain an additive 4-power. Therefore, we conclude
that fω(0) is additive 4-power-free.

Theorem 4.0.2 (Currie, Mol, Rampersad, Shallit [7]). Let f : {0, 1, 2}∗ → {0, 1, 2}∗ be the
morphism defined by f(0) = 001, f(1) = 012, f(2) = 212 and g : {0, 1, 2}∗ → {0, 1}∗ be the
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morphism defined by

g(0) = 0001001110010001100011,

g(1) = 0001001110011101100011,

g(2) = 0111001110011101100011.

The word g(fω(0)) is additive 4-power-free and 3+-power-free. This is best possible in the sense
that there are only finitely many additive 4-power-free and ordinary 3-power-free binary words
with the longest being length 39.

Proof. First, we show that g(fω(0)) is additive 4-power-free. By definition, an additive 4-power
v in g(fω(0)) is an instance of the template

t0 = [ε, ε, ε, ε, ε, [0, 0]T , [0, 0]T , [0, 0]T ].

For the initial check, we enumerate all factors of g(fω(0)) of length Bg(t0) = 85, and verify
that none of them contains an additive 4-power. Next, we find the set A of all f -ancestors of
all g-parents of t0. We find a total of 17104 ancestors after 1 generation. Proceeding onto the
final check, we find M = max{∆(t) | t ∈ A} = 2. Therefore, we have

BM = k + 2 + k · (Wf − 2) +
k(k − 1)

2
·M = 4 + 2 + 4 · 1 + 4 · 3

2
· 2 = 22.

We now enumerate all factors V of fω(0) of length 21. We examine the words g(f1(V )) for each
factor V and check that none of them contain an additive 4-power. Therefore, we conclude
that g(fω(0)) is additive 4-power-free.

To check that the word g(fω(0)) is 3+-power-free, we enter the following commands
into Walnut:

morphism g "0->0001001110010001100011 1->0001001110011101100011 2->0111001110011101100011":

morphism f "0->001 1-> 012 2->212":

promote aut f:

image SA g aut:

eval containsthreeplus "?msd_3 Ei, n (n>=1) & At (t<=2*n) => SA[i+t]=SA[i+n+t]":

The predicate containsthreeplus checks to see if the word contains a 3+-power , and
Walnut returns FALSE.

Theorem 4.0.3. The word hω(0) produced by the morphism h : {0, 1}∗ → {0, 1}∗ where

h(0) = 00001,

h(1) = 01101,

is additive 5-power-free and rich. This is best possible in the sense that there are only finitely
many additive 4-power-free binary rich words.
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Proof. First we verify that hω(0) is additive 5-power-free, by running the algorithm described
in Section 3.2. By definition, an additive 5-power v in hω(0) is an instance of the template

t0 = [ε, ε, ε, ε, ε, ε, [0, 0]T , [0, 0]T , [0, 0]T , [0, 0]T ].

For the initial check, we enumerate all factors of hω(0) of length Bh(t0) = 22, and verify that
none of them contains an additive 5-power. Next, we find the set A of all h-ancestors of t0.
We find a total of 15625 ancestors after 1 generation. Proceeding onto the final check, we find
that for every template t in A, we have ∆(t) ≤ 2. Therefore, we have

BM = k + 2 + k · (Wh − 2) +
k(k − 1)

2
·M = 5 + 2 + 5 · 3 + 5 · 4

2
· 2 = 42.

We now enumerate all factors V of hω(0) of length 41. We examine the word h1(V ) for each
such factor V and check that none of them contain an additive 5-power. Therefore, we conclude
that hω(0) is additive 5-power-free.

We will now prove that this word is rich. By Theorem 2.6.2, it suffices to show that
every finite prefix of hω(0) has a unioccurrent palindromic suffix. We show this using Walnut.
We adapt the Walnut commands used by Baranwal and Shallit [1] and Schaeffer and Shallit [27]
in proving that similar infinite words are rich.

morphism h "0->00001 1->01101":

# creates the desired morphism h.

promote H h:

# creates an automaton based on the morphism h.

def FactorEq "?msd_5 Ak (k<n)=>(H[i+k]=H[j+k])":

def Occurs "?msd_5 (m<= n) & ( Ek (k+m<=n) & $FactorEq(i,j+k,m))":

def Palindrome "?msd_5 Aj,k ((k<n) & (j+k+1=n)) => (H[i+k]=H[i+j])":

def HisRich "?msd_5 An Ej $Palindrome(j,n-j) & ~$Occurs(j,0,n-j,n-1)":

The predicate FactorEq takes 3 parameters i, j, n and returns true if the length-n
factors of hω(0) starting at indices i and j are equal. The predicate Occurs takes 4 parameters
i, j,m, n and returns true if the length-m factor of the word hω(0) starting at index i occurs in
the length-n factor starting at index j. The predicate Palindrome takes 2 parameters i, n and
returns true if the length-n factor of hω(0) starting at index i is a palindrome. The predicate
HisRich returns true if all the finite prefixes of hω(0) have a unioccurrent palindromic suffix.
When we run all of these commands, Walnut returns TRUE.

Finally, to see that this is best possible, we use a backtracking algorithm to find that the
longest additive 4-power-free binary rich word has length 2411. This was a long backtracking
search, made possible by the use of the data structure eerTree of Rubinchik and Shur [26].
This data structure greatly increased the efficiency of searching through the tree of binary rich
words.
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Theorem 4.0.4 (Dekking [12]). The word hω(0) produced by the morphism h : {0, 1}∗ →
{0, 1}∗ where

h(0) = 0001,

h(1) = 011,

is additive 4-power-free.

Proof. By definition, an additive 4-power v in hω(0) is an instance of the template

t0 = [ε, ε, ε, ε, ε, [0, 0]T , [0, 0]T , [0, 0]T ].

For the initial check, we enumerate all factors of hω(0) of length Bh(t0) = 14, and verify that
none of them contains an additive 4-power. Next, we find the set A of all h-ancestors of t0.
We find a total of 3123 ancestors after 1 generation. Proceeding onto the final check, we find
that for every template t in A, we have ∆(t) ≤ 2. Therefore, we have

BM = k + 2 + k · (Wh − 2) +
k(k − 1)

2
·M = 4 + 2 + 4 · 2 + 4 · 3

2
· 2 = 26.

We now enumerate all factors V of hω(0) of length 25. We examine the word h1(V ) for each
such factor V and check that none of them contain an additive 4-power. Therefore, we conclude
that hω(0) is additive 4-power-free.

Theorem 4.0.5. The word gω(0) produced by the morphism g : {0, 1, 2}∗ → {0, 1, 2}∗ defined
by

g(0) = 01100,

g(1) = 0110121,

g(2) = 011012221,

is additive 4-power-free.

Proof. By definition, an additive 4-power v in gω(0) is an instance of the template

t0 = [ε, ε, ε, ε, ε, [0, 0]T , [0, 0]T , [0, 0]T ].

For the initial check, we enumerate all factors of gω(0) of length Bg(t0) = 34, and verify that
none of them contains an additive 4-power. Next, we find the set A of all g-ancestors of t0.
We find a total of 17404 ancestors after 1 generation. Proceeding onto the final check, we find
that for every template t in A, we have ∆(t) ≤ 2. Therefore, we have

BM = k + 2 + k · (Wh − 2) +
k(k − 1)

2
·M = 4 + 2 + 4 · 2 + 4 · 3

2
· 2 = 46.

We now enumerate all factors V of gω(0) of length 45. We examine the word g1(V ) for each
such factor V and check that none of them contain an additive 4-power. Therefore, we conclude
that gω(0) is additive 4-power-free.



Chapter 5

Open Problems

This thesis was focused on an algorithm for deciding if a word is additive k-power-free.
We now discuss several open problems related to additive k-power-free words.

Problem 1: In Theorem 4.0.4, we reprove that the infinite binary word discovered by
Dekking is additive 4-power-free. The frequency of zeros in this word converges to ≈ 55%.
We attempted to find a construction of an infinite additive 4-power-free binary word with a
higher frequency of 0’s, but were unsuccessful. The open problem is stated as follows: What
is the maximum possible frequency of 0’s in an infinite additive 4-power-free binary word?

Problem 2: It is known that over many alphabets of size 3 such as {0, 3, 8}, {0, 2, 7}, and
{0, 1, 8} there exist infinite additive cube-free words [24]. There are various alphabets of size 3
where it is unknown if such words exists. It is conjectured that for every alphabet A = {0, i, j}
such that i and j are co-prime and j ≥ 6, there exists an infinite additive-cube-free word on
the alphabet A [24]. The cases {0, 1, 2}, {0, 1, 3}, {0, 1, 4}, and {0, 2, 5} remain open. It is
also unknown if an infinite additive cube-free word exists over the 4 letter alphabet {0, 1, 2, 3}.
Rao constructed a word over {0, 1, 2, 3} of length 140000 that is additive cube-free.

Problem 3: In Theorem 4.0.3, we proved that the infinite binary word gω(0) is additive
5-power-free. Using Walnut, we also proved it was rich. Through backtracking, we found a
morphism g : {0, 1, 2}∗ → {0, 1, 2}∗ defined by

g(0) = 01100,

g(1) = 0110121,

g(2) = 011012221.

We proved the word gω(0) is additive 4-power-free in Theorem 4.0.5. We conjecture that this
word is also rich. If our conjecture is correct, then this would be considered best possible in
the sense that there are only finitely many additive cube-free ternary rich words.
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Problem 4: Over the course of writing this thesis, the word hω(0) produced by the morphism
h : {0, 1, 2, 3}∗ → {0, 1, 2, 3}∗ where

h(0) = 01210,

h(1) = 20103,

h(2) = 20123,

h(3) = 13231,

was discovered through backtracking, and we conjecture that it is additive 5-power-free and
square-free. We attempted to run our algorithm to prove the additive 5-power-freeness, but at
the calculating ancestors step, we found 957318 ancestors of t0, and it took 36 generations. This
large number of generations required meant that completing the final check was not feasible.
We were able to prove that hω(0) is square-free using Walnut. Here is the Walnut code for
proving square-freeness:

morphism h "0->01210 1->20103 2->20123 3->13231":

promote H h:

eval HContainsSquares "?msd_5 Ei,n n>=1 & As s<n => H[i+s]=H[i+s+n]":

# returns FALSE.
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