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ABSTRACT

The process of identifying the most important and informative features

from a data set for a particular task is known as feature selection. Feature

selection is a critical problem for statistical modeling and machine learning

since employing all features might result in over-fitting. In high-dimensional

data, where the number of features can be significantly greater than the

number of samples, feature selection is even more difficult. One such appli-

cation where the high-dimensional challenge is common is in Genome-Wide

Association Studies (GWAS). GWAS aims to identify the relationship be-

tween genetic variations, such as Single Nucleotide Polymorphisms (SNPs),

and physical traits. Feature selection algorithms based on statistical and

machine learning methods are often used to tackle the high-dimensionality

problem. This research aims to tackle this challenge by proposing two work-

flows to identify several potentially important SNPs. The first workflow,

PentaPen, combines five penalized models - Ridge, LASSO, and Elastic net

using all SNPs and Group LASSO and Sparse Group Lasso (SGL) using fil-

tered SNPs (union of SNPs selected by Ridge, LASSO, and Elastic net). The

second workflow, BayesDL, combines Bayesian methods with deep learning

using preliminary filtered SNPs found by Chi-square and ANOVA as input.

PentaPen, a machine learning model, aims to provide reduced numbers of

SNPs by leveraging the beneficial properties of five penalized models. The

union of SNPs selected by Group LASSO and SGL are the output SNPs of

PentaPen. BayesDL, a cascaded deep learning model, along with identifying

important SNPs, aims to provide high prediction performance. BayesDL also

mitigates the issue of over-fitting while handling data sets with fewer sample

sizes, a limitation in various traditional neural networks.
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The performances of the proposed workflows are compared with the ex-

isting methodologies based on the quality metrics, Precision, Recall, F1 score,

AUC, R-squared, RMSE, and Accuracy. The systematic comparison of sin-

gle penalized models provides a guideline for researchers to make informed

decisions to choose a penalized model. BayesDL’s performance is compared

with the Convolutional neural network (CNN). In addition, the important

SNPs from both workflows are validated to locate genes; these are compared

with the output SNPs or genes between each other and from GWAS software

(GAPIT and TASSEL).

Findings of the continuous and categorical phenotype of Arabidopsis

thaliana plant data indicate that PentaPen performs similarly to LASSO

and Elastic Net while better than Ridge, Group LASSO, and SGL by reduc-

ing over-fitting. Reduced over-fitting was evident with a 10% decrease in the

testing metrics compared to the training metrics. PentaPen performs simi-

larly to Ridge, LASSO, and Elastic Net for the binary phenotype. BayesDL

performs better than CNN for all the phenotypes. The findings from the

proposed workflows complement with GWAS, using different models (gen-

eralized linear models in GAPIT and TASSEL versus penalized models and

probabilistic models in two proposed workflows respectively).

My study provides a classifier and regressor - PentaPen - for researchers

finding reduced numbers of important SNPs for further analysis; the study

also provides a rigorous comparison of penalized models to gain insights

into the strengths and predictive performance of each model. Furthermore,

the study also gives the bioinformatics community a cascaded classifier and

regressor, BayesDL or Bayesian Neural Network (BNN), useful for the pre-

diction and identification of important SNPs in the whole-genome SNP data.
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Chapter 1

Introduction

Feature selection is a process of identifying and selecting the most informative

and relevant features in a data set. It is an important issue in statistical mod-

eling and machine learning since using all features might result in over-fitting

and poor model performance. In high-dimensional data sets, this problem

becomes particularly challenging, where the number of features or variables

is much larger than the number of samples. Due to the high dimensionality,

the data matrix is sparse and has a lot of noise or irrelevant features, which

might lead to the models’ poor performance. Genome-wide association stud-

ies (GWAS) is a popular bioinformatics application of a high-dimensional

data set where feature selection is challenging. GWAS discovers associations

between specific DNA variants (Single Nucleotide Polymorphism (SNP)) and

phenotype. SNP is the key to understanding the genetic causes of an organ-

ism’s physical traits (Allen et al. [2014]). The substitution of a C for a G in

the nucleotide sequence AACGAT to produce the sequence AACCAT is an

example of an SNP (Britannica [2019]).
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There are a few limitations while performing association tests using

whole-genome SNP data. On extensive complex data, GWAS methods fre-

quently have constraints on the SNP scale and may fail to detect associated

SNPs (Korte and Farlow [2013]). In addition, the sparsity of data in high-

dimensional domains leads to the “curse of dimensionality” (Bellman and

Kalaba [1959]). In other words, it occurs for whole-genome SNP data when

the number of SNPs (p) is much larger than the number of samples (n) which

could be one of the possible challenges for researchers to perform the analy-

sis.

1.1 Motivation

Although several studies have been conducted in the past using machine

learning and deep learning algorithms on human whole-genome SNP data,

there is limited research focused on plant data. This limitation is noteworthy

because plant genomes exhibit distinct genetic characteristics when compared

to human genomes. Plant genomes are more complex and large in dimension;

they have a higher degree of homozygosity. Moreover, the extended growth

period of plants, such as wheat requiring 120 days, necessitates longer re-

search timelines. The constrained research budget also plays a role, with

researchers often prioritizing the study of animal species over plants (Xu

et al. [2014]). As a result, plant genomics research faces challenges related to

genetic complexity and computational time to perform classification and re-

gression. These differences lead to looking for different statistical approaches

and tuning parameters. This research aims to address the challenge to iden-

tify important SNPs from plant whole-genome SNP data. This study uses

2



the model organism, Arabidopsis thaliana due to its faster growth rate, high

genetic diversity, fully sequenced genome, and well-characterized SNP data

sets available. It is a small flowering plant that is a member of the mustard

(Brassicaceae) family, which includes cultivated species such as cabbage and

radish.

1.2 Scope

One possible way to solve the dimensionality problem and reduce the num-

ber of loci associated with the trait (increases the detection power) is to use

feature selection. Supervised feature selection is typically used for classifica-

tion or regression applications on whole-genome SNP data to find potentially

important SNPs (or features). It attempts to choose a subset of features that

can classify data into separate groups or measure up to the regression tar-

gets (Li et al. [2017]). A previous study from our group (Puliparambil et al.

[2022]) investigated the curse of dimensionality issue on high-dimensional

scRNA-seq data.

Wrapper methods (forward, backward, and step-wise selection), filter

methods (Analysis of variance (ANOVA), Pearson correlation, variance thresh-

olding), and embedded methods (Least absolute shrinkage and selection op-

erator (LASSO), Ridge, decision tree) are the three main categories of feature

selection (McCombe [2019]). Various studies have been published using the

methods described above as filtering (Tsamardinos et al. [2019]), wrapper

(Kavakiotis et al. [2017]), and embedding (Li and Huang [2018]) for whole-

genome SNP data. In addition, there have been several existing studies

conducted using various algorithms including Recursive Feature Elimination

3



(Jeon and Oh [2020]), Genetic Algorithm (Mirjalili and Mirjalili [2019]), and

Particle Swarm Optimization (Kennedy and Eberhart [1995]) to identify im-

portant features in high-dimensional data; but they are time-consuming, re-

quire high computational resources, and have an exhaustive iterative process.

To tackle the high-dimensionality challenge using plant whole-genome

data, this study is narrowed down to utilize five advanced penalized method-

ologies (such as Ridge, LASSO, Elastic Net, Group LASSO, and SGL) and a

deep learning method (BNN). The penalized models used in this study can

effectively handle a large number of predictors, resulting in more accurate

and efficient results. Furthermore, BNN can capture complex non-linear re-

lationships between genetic markers and phenotypes and reduce over-fitting.

The following section provides a brief introduction to the machine and deep

learning models used to develop two classifiers or regressors.

1.3 Research Models: An Overview

1.3.1 Penalized Models

The penalized models (Ridge, LASSO, and their variants) generate sparse

solutions which aid in feature selection. These are predictive models based

on the expression of a small number of SNPs, enabling feature selection for

high dimensional data (Ma and Huang [2008]). The magnitude of the penalty

in penalized models can be tuned to choose the most important SNPs and

other predictors. Hard thresholding reduces the dimensionality of a model by

excluding variables whose coefficients are close to zero (Liu and Foygel Barber
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[2020]). Ridge (Hoerl and Kennard [1970]), one of the penalized machine

learning techniques, can force the least important coefficient weights close

to 0 in the regularization paths. It is possible to choose a small subset of

predictors from a large set of predictors, that is, reduce coefficient values

exactly to 0 known as soft thresholding (Liu and Foygel Barber [2020]).

LASSO (Tibshirani [1996]), Group LASSO (Yuan and Lin [2006]), Sparse

group lasso (SGL) (Simon et al. [2013]), and Elastic net (Zou and Hastie

[2005]) are some of those soft thresholding regularization algorithms with

a varied penalty term. For instance, LASSO has l1 penalty which is the

absolute value of the magnitude of coefficients.

This study aims to combine five penalized models in two phases to de-

velop a penalized-based workflow- PentaPen. PentaPen is a classifier and

regressor developed for SNP identification to minimize the variance in the

data. Additionally, there are some studies on penalized techniques for high-

dimensional data been conducted recently (Gao et al. [2014], Liu et al.

[2013]). For instance, various studies (Van Wieringen et al. [2009], Bøvelstad

et al. [2007]) find that Ridge outperforms LASSO for prediction performance.

Whereas using a simulation study (Ogutu et al. [2012]), it was found that

LASSO outperforms Ridge. However, to our knowledge, no detailed analysis

has been done of how the penalized models compare favorably against one

another for whole-genome SNP data. Our research intends to bridge this

knowledge gap, offer a thorough pathway for comparing these models’ per-

formance, report the computational time, and report the model complexity

by the penalized models and PentaPen.
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1.3.2 Deep Learning

1.3.2.1 Hypothesis test for preliminary screening

Hypothesis testing is a widely used statistical method in genetics research for

feature selection (Huynh-Thu et al. [2012]). Researchers often use chi-square

hypothesis testing to select categorical/binary variables and ANOVA (Fisher

[1954]) to select continuous variables to identify genetic variants that are

associated with specific diseases or traits (Galesloot et al. [2014], Zhuang et al.

[2012]). In this procedure, a subset of genetic markers, such as SNPs, that

are most strongly associated with the phenotype is chosen. Feature selection

is important because it can help reduce the dimensionality of the data and

make it easier to find the most useful genetic markers (Wu et al. [2019]). In

this study, we use chi-square and ANOVA tests to select preliminary features

of the binary/categorical and continuous phenotype respectively from the

original data to train deep learning models. Performing preliminary feature

selection is essential to reduce the number of features as this allows neural

networks to provide more accurate predictions.

1.3.2.2 Models

Researchers used different deep-learning techniques for prediction and fea-

ture selection. For instance, various studies on high-dimensional data were

conducted using Bayesian Neural Networks (BNNs). Neal and Zhang [2006]

proposed a new method for high-dimensional classification that combines

BNNs and Dirichlet diffusion trees. The authors aimed to improve classifi-

cation accuracy in high-dimensional data sets by using these two techniques
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together. The BNN provided a flexible and powerful model for classifica-

tion, while the Dirichlet diffusion tree provided a way to handle the curse of

dimensionality in high-dimensional data sets. Results showed that BNN ap-

plied with Dirichlet diffusion trees outperformed other deep learning models.

The purpose of Gianola et al. [2011]’s study was to investigate the potential

of some Bayesian Artificial Neural Network (ANN) architecture in predict-

ing complex quantitative traits in two different data sets, Jersey cows and

wheat. The results indicated that adding non-linearity from ANN along with

Bayesian uncertainties improved the predictive ability in both data sets.

Due to the strengths of Bayesian combined with deep learning models,

the objective of this research is to develop a BNN-based workflow- BayesDL -

which makes predictions on selected SNPs using Chi-square/ ANOVA. BayesDL

is a cascaded classifier and regressor of ANNs followed by Bayesian inference.

BayesDL is developed using Stan (Carpenter et al. [2017]), a probabilistic

programming language. Stan provides full Bayesian inference for various

models, including linear and non-linear regression, time-series analysis, gen-

eral linear models, generalized mixed models, hierarchical models, and more.

The goal of Stan is to provide a simple platform for specifying complex models

and doing inference using methods like variational inference (VI) and Markov

Chain Monte Carlo (MCMC) algorithms. Additionally, we aim to use Stan to

perform MCMC diagnostic and compare BayesDL’s prediction performance

with the Convolutional Neural Network (CNN). Further, BayesDL aims to

output important SNPs used for follow-up biological analysis.
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1.4 GWAS Software: A brief overview

GWAS is a study design used in genetics and genomics research to identify

genetic variants (here SNPs) associated with physical traits. GWAS involves

analyzing the entire genome of individuals to identify SNPs that are sta-

tistically associated with a particular phenotype. GWAS software refers to

the computational tools and algorithms used to conduct association studies.

The most popular GWAS software are PLINK (Purcell et al. [2007]), BOLT-

LMM (Loh et al. [2015]), FaST-LMM (Lippert et al. [2011]), GCTA (Yang

et al. [2011]), TASSEL (Bradbury et al. [2007]), and GAPIT (Lipka et al.

[2012], Tang et al. [2016]). Some researchers (Fu et al. [2021], Sardos et al.

[2016]) worked on comparing important SNPs output from various GWAS

software. One such study (Lipka et al. [2012]) evaluated the performance of

several GWAS software tools, including GAPIT, on a maize dataset. The

study found that GAPIT produced highly precise and computationally ef-

ficient results compared to other tools, such as TASSEL and PLINK. But

there has not been enough work to find the shared SNPs from penalized or

deep learning methods compared with GWAS software. The GWAS software

is designed to handle large-scale genetic data, provides a comprehensive set

of algorithms, incorporates statistical models, and includes functionalities for

data preprocessing. The limitations of GWAS may lead to false-positive or

false-negative results.
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1.5 Research Objectives, Questions, and Con-

tributions

Given the limitations of previous research using penalized and deep learning

methodologies, I aim to address the challenges and achieve the following goals

displayed in Figure 1.1. The figure represents a block diagram for mapping

the research objectives, questions, and expected thesis contributions.

1.6 Hypotheses

There are three main hypotheses for this study, which are mentioned below:

1. PentaPen will outperform individual penalized models in terms of eval-

uation metrics.

2. BayesDL will outperform the deep learning model, CNN in terms of

performance metrics for prediction.

3. The identified SNPs from PentaPen and BayesDL will demonstrate

limited overlap with each other and with those obtained from existing

GWAS software, due to the different models used.
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Figure 1.1: Mapping research objectives, questions, and contributions. This

diagram illustrates the formulation of research objectives, and research ques-

tions, and identifying contributions to a study.
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1.7 Experimental Data

To evaluate the performance of the developed workflows, two data from the

model plant Arabidopsis thaliana, AtPolyDB and F1, are used for this study.

Using the Arabidopsis data set for performance evaluation of the SNP anal-

ysis algorithm is justifiable as it is a widely studied model organism with a

fully sequenced genome, high genetic diversity, and well-characterized SNP

data sets. Developing an algorithm specific to the Arabidopsis genome can

lead to more accurate and efficient SNP analysis. They are obtained from

easyGwas website 1. The easyGwas website is a repository of whole-genome

SNP data that has been systematically processed is ready to be analyzed and

is thoroughly documented. On the easyGwas website, there are presently 12

data sets including estimates for SNP counts as well as related publications

for their exploratory analysis.

The AtPolyDB dataset has 1307 samples with 214051 SNPs (or features)

and the F1 data set has 372 samples with 204753 SNPs. Atwell et al. [2010]

used the AtPolyDB dataset for the application of GWAS to study 107 pheno-

types. Seymour et al. [2016] utilized the F1 data set to study the inheritance

in Arabidopsis thaliana hybrids. Both data sets contain three files: (a) the

PED file stores genotypic data with 1307 and 372 samples followed by total

fields as 6 + 2× p (p is the number of SNPs), (b) the PHENO file stores the

phenotypic data having 1307 and 372 instances with 109 and 3 columns, and

(c) MAP file has 214051 and 204753 rows, which contains the information

about every single SNP, with four fields each row. Each row corresponds to

1https://easygwas.ethz.ch/data/public/dataset/view/1/ and https://easygw

as.ethz.ch/data/public/dataset/view/42/

11

https://easygwas.ethz.ch/data/public/dataset/view/1/
https://easygwas.ethz.ch/data/public/dataset/view/42/
https://easygwas.ethz.ch/data/public/dataset/view/42/


one SNP in the PED file. These are the Chromosome code, SNP(Variant)

identifier, position in morgans or centimorgans, and base-pair coordinate.

Table 1.1 represents the phenotypes selected for this study. The pheno-

types from the AtPolyDB data set were chosen at 220 Celsius to consider all

the phenotypic properties of the species during the summer season. These

phenotypes are commonly used in genetic studies of A. thaliana because

of their easily observable and measurable characteristics of seed development

and flowering time. These properties can affect the yield and quality of crops.

Three different variable types of phenotypes are selected for this study to in-

crease the reliability of the developed workflows.

Table 1.1: Phenotype data used in this study. Overview of Phenotype Data

from AtPolyDB and F1-hybrids data sets, categorized by Variable Type.

Variable

Type

Dataset Phenotype Number

of sam-

ples

Phenotype Descrip-

tion

Binary
AtPolyDB Anthocyanin 22

(AT P 172)

177 Visual anthocyanin

presence

Continuous

AtPolyDB Width 22

(AT P 166)

175 Plant diameter

F1-

hybrids

DTF

(AT1P6701)

372 Plants were subse-

quently phenotyped

for days to first open

flower

Categorical AtPolyDB Germ 22

(AT P 163)

177 Days to germination
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1.8 Performance Metrics

Various quality metrics are used as there are three types of phenotypes used

in this study as described in Section 3.1.2.7. Classification metrics such as

Precision, Recall, F1 score, and AUC are used to evaluate the performance

of classification models for the binary phenotype. Regression metrics like

R-squared and RMSE are utilized to assess the goodness-of-fit of regression

models for continuous phenotypes. For categorical phenotype, Accuracy is

the multi-class classification metric used in this study.

1.9 Thesis Outline

The remainder of this thesis is structured as follows. The literature review is

presented in Chapter 2. Chapter 3 outlines the research based on penalized

and deep learning research methodologies. The findings are presented in

Chapter 4. The biological interpretations, conclusion, and potential future

work for this research are presented in Chapter 5. The Appendix contains

several Tables of results used for the comparison and interpretation of two

methodologies.

13



Chapter 2

Literature Review

The methodologies for GWAS, some common machine learning, deep learn-

ing, statistical approaches for SNP data, and related studies are briefly ex-

plained in this chapter. The methodology and data sets used in the published

studies vary, as do the issues with whole-genome SNP data that the methods

attempt to solve.

2.1 From DNA to SNP

Deoxyribonucleic acid (DNA) comprises an extremely long chain of connected

single units called nucleotides: Adenine, Thymine, Guanine, and Cytosine.

Species share 99% of their make-up and only 1% is responsible for the diver-

sity observed in the individuals (Lewontin [2003]). For example, it is evident

from Figure 2.1 that in a particular location says one of the 95% of indi-

viduals has A nucleotide while one of the 5% species’ individuals has a T
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nucleotide, each of these is called a variant. Given this location has multiple

forms it is called the SNP. These are the key to understanding the genetic

causes of an organism’s traits (Bush and Moore [2012]). SNPs can have

functional changes such as amino acid changes that cause the alteration to

the mRNA transcript stability and changes to transcription factor binding

affinity (Robert and Pelletier [2018]).

Figure 2.1: A graphical explanation of Single Nucleotide Polymorphism

(SNP). The diagram illustrates the concept of SNP, a common genetic vari-

ation characterized by a single base pair change in the DNA sequence.

2.1.1 GWAS Analysis

Figure 2.2 displays the steps to be followed for GWAS analysis (Uffelmann

et al. [2021]) which are described below:

(a) Data is collected to find an appropriate number of samples of individ-

uals who differ in the trait of interest and the genotypic information is
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obtained,

Figure 2.2: Steps for GWAS Analysis. This diagram outlines the sequential

steps involved in conducting a GWAS analysis, starting from data collection

(a) to obtaining final SNP results (g) for further statistical analysis.

(b) for genotyping, microarrays can be used to detect common variations or

next-generation sequencing techniques can be used for whole-genome

sequencing (WGS) or whole-exome sequencing (WES),

(c) the wet-laboratory procedure, such as genotype calling and DNA switches

include the isolation of DNA from all the subjects using a DNA chip

(a molecular kit) to identify the SNP alleles (a variant form of a gene)

they have at each SNP genome position,

(d) to maximize detection sensitivity for variant calling, pipelines should

include various tools (FreeBayes, GATK, Platypus, Samtools/mpileup)

for each kind of variation (Koboldt [2020]); pipelines for SNP calling
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rely on a reference genome. The most popular approach for this is to

select one genome assembly as the standard against which all others

will be measured (Leggett and MacLean [2014]),

(e) the dry-laboratory procedures on called genotypes, such as eliminating

undesirable SNPs and individuals, identifying population strata in the

sample, and calculating principal components involves quality control,

(f) look through all the SNPs that are examined to find SNPs where the

population has different allele frequencies and SNPs with genetic dif-

ferences will be marked, and

(g) the final SNP results will then be used as input data to carry out GWAS

with traditional statistical methods.

Anonymized individual ID numbers, kinship relationships between in-

dividuals, sex information, phenotype data, covariates, genotype data for

variants, and batch genotyping information are all included in the input files

for a GWAS.

2.2 GWAS Program

Association tests can be carried out in multiple ways using statistical models.

The simplest is the generalized linear model (GLM) usually used for quan-

titative traits and genotype classes. For control traits, logistic regression is

generally preferred to predict the probability of having case status given a

genotype class. This method is preferred as it allows adjustment of covariates

and odds ratio as a measure of effect size (Bush and Moore [2012]).
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Regression analysis is performed for every SNP in the dataset, taking

each subject as a data point. The regression model of the GWAS (Cantor

et al. [2010]) can be represented as:

Z = Xθ + ϵ (2.1)

where X is a n× (p+ 1) matrix of predictors, a (p+ 1)× 1 vector θ consists

of their coefficients, and matrix Z is the n× 1 matrix of a phenotype. Here,

n denotes an individual and p denotes a predictor (SNP). In ordinary linear

regression, the variation in a trait can be fully described by two parameters

- a common variance σ2 and a mean vector in the design matrix Z that is

unique to each individual in the sample (n). The residuals, or deviations (ϵ)

from predicted trait values, are assumed to be normally distributed.

A regression line is fitted to the data that best predicts the relationship

between several alleles or SNPs and a phenotype. The p-value is a statistical

measure used to assess the significance of the association between the SNPs

and phenotype. It measures the likelihood that the association found in the

distribution of data points was due to random chance, given that there is no

true association. The stronger the data points cluster around the regression

line, the less likely the association is due to random chance (Uffelmann et al.

[2021]). A smaller p-value indicates that the observed association is less

likely to be due to random chance. For each SNP, the p-value and the

slope (effect) of the regression line are recorded. However, working with

millions of SNPs can be computationally expensive. After recording the p-

values, a significance test is performed to determine whether the association

is statistically significant. The null hypothesis is that there is no significant

association between the SNPs and phenotype. A p-value threshold of 0.05

is commonly used to determine whether the association is significant or not.
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If the p-value is less than 0.05, it is concluded that the association is not

due to random chance and is considered to be present. Visualization is

done using the Manhattan Plot (which resembles the Manhattan skyline)

where each SNP position on a chromosome is represented on the x-axis and

its associated p-value on the y-axis is precisely negative of the log of a p-

value. Each dot represents each SNP position in each chromosome and the

dot’s height indicates a significant difference. Hence, dots above a certain

horizontal line (threshold) represents SNPs that are significantly associated

with the chosen physical trait (Ikram et al. [2010]).

2.2.1 Advantages and Limitations of GWAS

The GWAS program is advantageous as it allows for adding covariates (other

effects that may affect the parameter of interest) along with genotypes. The

GWAS has limitations due to genetic confounding and complex genetic ar-

chitectures (Korte and Farlow [2013]). The heterogeneity of genetic origins

among the individuals in association studies may lead to false-positive or

false-negative results (Hu and Ziv [2008]). This can be due to the lack of

replication of the association study. Since many of the phenotypes of interest

in living beings may be complex (combination of genetic and environmen-

tal factors), GWAS may be unable to find the causative loci we seek. One

possible solution is to reduce the number of loci associated with the trait

improving the detection power. This can be done using the LASSO (Korte

and Farlow [2013]).

However, with p = 0.05, there is still a chance of producing a false pos-

itive result, that 5% of significant results are still due to random chance.

19



Working with millions of SNPs leads us to produce thousands of false posi-

tives, muddling the results and diminishing the study’s statistical power.

Furthermore, the high dimensionality of current whole-genome SNP data

presents significant hurdles for computationally intensive GWAS techniques

like permutation testing (Li et al. [2018a]). Some of the approaches that can

be used to correct the multiple testing (more false positives over the entire

GWAS analysis) are the Bonferroni correction and Permutation testing (Bush

and Moore [2012]).

2.2.2 GWAS Software

PLINK (Purcell et al. [2007]), BOLT-LMM (Loh et al. [2015]), FaST-LMM

(Lippert et al. [2011]), GCTA (Yang et al. [2011]), TASSEL (Bradbury et al.

[2007]), GAPIT (Lipka et al. [2012], Tang et al. [2016]), and others are some

of the most extensively utilized GWAS software. They are all based on

standard statistical models, and many of them can be used to choose LMM,

GLM, or other models.

PLINK is a free, open-source toolkit for population-based linkage analysis

and GWAS. It provides a range of fundamental yet fast computations for huge

biological data sets. It was one of the first GWAS software and was created

for human genomes. PLINK is now regarded as a standard GWAS approach

in several research disciplines.

BOLT-LMM uses a Bayesian mixed model that is said to improve sta-

tistical power and processing speed for larger data sets. Loh et al. [2015]

applied BOLT-LMM to the Women’s Genome Health Study (WGHS) and
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collected data on nine phenotypes in 23,294 samples.

FaST-LMM proposes to scale linearly with data size in both runtime and

memory by using a factorized log-likelihood function in the LMM. It may be

a potential software for achieving satisfactory results with enormous data.

GCTA is a technique for analyzing complicated traits across the genome.

It solves the “missing heritability” problem of human genomes by using LMM

to fit the contribution of all SNPs as random effects.

Trait analysis by aSSociation, Evolution, and Linkage (TASSEL) and

Genome association and prediction integrated tool (GAPIT) were created

with GWAS of agricultural plants in consideration. TASSEL was originally

designed and tested for maize to handle various insertions and deletions.

Many other programs did not take these polymorphisms into account previ-

ously. GAPIT was created after TASSEL used comparable statistical meth-

ods to TASSEL. It can do both GWAS and Genomic Selection (GS) analyses

(Goddard and Hayes [2007]). GS is a marker-assisted selection method in

which breeding values are anticipated using genetic markers found through-

out the genome (usually SNPs). GAPIT is regularly updated to provide the

most recent techniques. As a result, it is said to produce the most precise

and computationally efficient outputs.

Multiple loci mixed model (MLMM), fixed and random model circulating

probability unification (FarmCPU), and Bayesian-information and linkage-

disequilibrium iteratively nested keyway (BLINK) were the three multi-locus

test techniques that were implemented by version 3 of GAPIT (Wang and

Zhang [2021]). Additionally, two GS techniques built on CMLM—compressed

BLUP (cBLUP) and SUPER BLUP (sBLUP) were implemented. These new
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solutions increase GWAS statistical strength and GS prediction accuracy,

processing speed, and the ability to evaluate large amounts of genomic data.

2.2.2.1 Bonferroni Correction

A multiple-comparison method known as the Bonferroni correction is used

when several statistical tests are run together (Chen et al. [2021], Kaler and

Purcell [2019]). It is a common approach to setting the local significance level

as the global significance level (α) divided by the number of SNP variables

(p). This was used in GWAS to reduce the chances of obtaining false-positive

rates and to identify the important SNPs from the outputs. In this study,

the GWAS software output was adjusted using the Bonferroni correction to

identify the important SNPs from the experimental data sets. This correc-

tion was needed because the software output contained a different number of

SNPs, making it an incompatible comparison with the output of the devel-

oped workflows.

2.2.3 Genotypes

There are mainly three common SNP data formats for the genotypes. They

are categorized as PLINK, Hapmap, and VCF.

PLINK contains two types of files ped and map files. The samples are

stored in rows while SNPs are stored in columns for the ped file. Table 2.1

represents the general structure of the ped file. It has a family ID, individual

ID, paternal ID, maternal ID, and gender(1=male; 2=female; 0=unknown)

as the first five columns. The sixth column in the ped file is generally re-
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served for the phenotype data. The rest of the columns are SNPs for each

chromosome2.

Table 2.1: Data structure for ped file. Overview of PED File Structure:

Family ID, Individual ID, Parental IDs, Gender, Phenotype, and SNP Infor-

mation

famid iid fid mid sex pheno SNP1.1 SNP1.2 . . .

9381 9381 0 0 0 0 T T . . .

9380 9380 0 0 0 0 C C . . .

9378 9378 0 0 0 0 T T . . .
...

...
...

...
...

...
...

...
...

The map file has rows as SNPs and columns as SNPs’ locations. Table

2.2 displays the widely used map file format. The first two columns are

chromosomes and the SNP identifier of respective chromosomes, while the

other two columns give the genetic distance (morgans) and base-pair position

(bp units).

Table 2.2: Data structure for the map file. Overview of MAP File Structure:

Chromosomes, SNP Identifiers, Genetic Distance, and Base-Pair Positions

Chr SNP GD BP

1 rs6681049 0 6681049

1 rs4074137 0 4074137

1 rs6704013 0 6704013
...

...
...

...

The other format is Hapmap text-based file. The Hapmap file format is

2https://zzz.bwh.harvard.edu/plink/data.shtml
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a table with 11 columns and one column for each genotyped sample. Each

further row has all of the information associated with a specific SNP, with

the first row containing the header labels of the samples (Chang [2020]). A

chromosome-specific or generic Hapmap file or a generic file can be acquired

to get the HapMap data format (Richard et al. [2003]). The attributes stored

in any HapMap file are displayed in Table 2.3.

Table 2.3: Overview of the attributes of HapMap- a genotype file.

Attributes Meaning

rs# SNP identifier

alleles SNP alleles

chrom the chromosome of each SNP

pos position of SNP on that particular chromosome

strand SNP’s orientation(forward (+) or backward (-))

within the DNA strand

assembly# NCBI reference sequence assembly

center genotyping facility that generated the genotypes

protLSID HapMap protocol identifier

assayLSID HapMap assay identifier used for genotyping

panelLSID panel of individuals genotyped identifier

QCcode quality control for all entries;

Parental#/ID# subsequently, the list of sample names

Originally the 1000 Genomes Project created the VCF (Variant Call For-

mat), a standardized format. Meta-information, header, and data lines com-

prise the VCF format. The meta-information is organized into rows, with the

first one being required and containing the VCF format version. More, but

not essential, lines indicating the file’s origin can be added after the first row,

24



such as the file’s creation date, source, reference, phasing, etc. The following

entries are found in the information lines (##INFO) as ID, Number, Type,

and Description. The header line comes after the meta-information lines,

which contain all of the information and format data. The header line must

include a minimum of eight fixed columns that are tab restricted. It also has

a column named FORMAT, followed by the sample IDs if it has genotypic

data. The following is the syntax of the information line:

##INFO = <ID=ID,Number="number",Type="type",Description="description">

After the information lines, a few lines indicate the format of each variable

of the data. The syntax for the ##FORMAT line is as follows:

##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">

The header line after the meta-information lines contains the following

columns and their respective data information as displayed in Table 2.4.

The data lines tab is limited after the header line, with ’.’ representing

missing data (Lyon et al. [2021]).

2.3 Common Statistical and Machine Learn-

ing Algorithms

The popular Machine Learning (ML) and statistical algorithms (aside from

penalized models used in this study) that have been discussed in the academic

literature concerning whole-genome SNP data are covered in this section.
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Table 2.4: Columns of VCF (Variant Call Format)- a genotype file

.

Columns Meaning

#CHROM an alphanumeric string of chromosome

POS an integer displaying the position in the chromosome

ID an alphanumeric string of the identification

REF reference base(s)

ALT alternate non-reference base(s)

QUAL the quality score for the assertion made in ALT

FILTER PASS passed in all filters otherwise should contain the reason

INFO all about INFO described earlier separated by a semicolon

FORMAT all the format IDs separated by a colon

IDs a tab-separated list with sample identification

We have already seen that the high dimensionality of data sets like whole-

genome SNP data presents a challenge. There are several dimensionality re-

duction methods available. There are various dimensionality reduction tech-

niques such as principal component analysis (PCA), t-distributed stochastic

neighbor embedding (t-SNE), linear discriminant analysis (LDA), Indepen-

dent Component Analysis (ICA), and uniform manifold approximation and

projection (UMAP) used by researchers. Nahlawi [2010] proposes a com-

parison of various dimensionality reduction algorithms for genetic feature

selection, which identifies the most informative subset of genetic features

from a large and complex set of genetic data. The algorithms compared

in the study included popular dimensionality reduction techniques such as

PCA, ICA, and Fast Orthogonal Search. Yan and Wang [2022] used popular

dimension reduction methods such as PCA, LDA, t-SNE, UMAP, and ICA

to reduce the dimensionality of large and complex omics data, such as genetic
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and genomic data while preserving the most relevant information. However,

these methods are not employed in this thesis because of their computational

complexity.

Various ML models such as Random Forest (RF), Gradient Boosting

Machine (GBM), Support Vector Machine (SVM), and Gradient Boosting

Tree (GBT) are useful for searching SNPs in high-dimensional SNP data.

Szymczak et al. [2009] applied RF and GBM to find important SNPs for

GWAS. Mieth et al. [2016] proposed a two-step novel algorithm whose first

step was to use SVM for training for determining a subset of SNPs. Behravan

et al. [2018] utilized GBT followed by SVM to identify important SNPs.

2.4 Penalized Methodologies in the existing

literature: A Brief Overview

In this section, we discuss the evidence that the penalized approaches for

whole-genome SNP data have been used in the literature. It is included for

discussion here if a published study analyses at least one penalized model.

Penalized models are increasingly common for dealing with high-dimensional

data. The basic concept of any penalized technique is to add a penalty term

to the loss function of the model that shrinks the coefficients toward zero.

This helps to select important variables and avoid over-fitting.

Several types of penalized models have been implemented in this study,

such as LASSO, Ridge, Elastic Net, and Group LASSO, and their variations.

LASSO and Ridge are two of the most popular methods that have been

widely used in genomics research. LASSO imposes an l1 penalty that sets
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some coefficients to exactly zero, thereby performing the variable selection.

Ridge imposes an l2 penalty that shrinks the coefficients towards zero but

does not set any of them exactly to zero. Elastic Net is a combination of

both LASSO and Ridge. Group LASSO is another method that performs

variable selection at the group level, meaning that it selects entire sets of

variables together.

Guo et al. [2019] aims to improve the power to detect genetic variants

associated with quantitative traits by combining the SGL and the linear

mixed model (LMM). This is because the SGL can identify a small set of

relevant variables, while the LMM can account for the effects of fixed and

random factors on the outcome variable. SGL-LMM creates a fixed zero

effect to learn the parameters of random effects using LMM and then uses

SGL regularisation to estimate fixed effects.

Li et al. [2015] proposed a Bayesian Group LASSO approach for variable

selections in non-parametric varying-coefficient models. Group LASSO re-

sults can be viewed as posterior mode estimates from a Bayesian perspective.

However, this thesis neither focuses on applying variations of Group

LASSO (except SGL) nor combining any method with LMM. In the next

section, there is a discussion of a comparison study of the existing penalized

methodologies.

2.4.1 Comparative Studies of penalized methodologies

Waldmann et al. [2013] used the LASSO and the Elastic net to perform

GWAS on two simulated data sets. They compare the performance of the
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LASSO and the Elastic net using various performance metrics, such as the

prediction accuracy, and the false positive rate, concluding that both methods

should be used for analysis.

In their study, Okser et al. [2014] illustrated the similarity and differ-

ences in the behavior of various common regularized models such as LASSO,

Elastic Net, and regularized-least squares (RLS) wrappers on two data sets.

The findings of their study concluded that LASSO and Elastic Net showed

similar prediction behavior but they suggest using a large number of variants

for better performance when compared with the greedy RLS wrappers. They

also found that these methods are well-suited for important SNP identifica-

tion.

Srivastava and Chen [2010] compare Stochastic Search Variable Selection

(SSVS), LASSO, and Elastic Net using genotype data of 60 unrelated individ-

uals from the CEU population in the Hapmap project. Their study provides

that all three methods handle data with more features and fewer samples.

The results of their study demonstrate that SSVS outperforms LASSO and

Elastic Net based on the quality metrics used.

To ascertain the efficiency in identifying actual causative SNPs, Zuber

et al. [2012] undertake a thorough comparison research involving five ad-

vanced regression approaches to determine the effectiveness among them in

finding causal SNPs. These approaches include boosting, LASSO regression,

regression with NEG prior, regression with MCP penalty, variable shrinkage

by CAR (correlation-adjusted marginal correlation) scores, and a univariate

strategy (marginal correlation). They found that the CAR-based algorithm

outperforms all competing algorithms in terms of correctly recovered causal

SNPs and SNP ranking.
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2.4.2 Algorithms developed based on penalized method-

ologies

Several alternative algorithms have been created by combining the various

statistical and machine-learning methodologies, some of which are covered in

the previous section. A few of these techniques are discussed below.

Hoffman et al. [2013] develop and evaluate a combined algorithm and

heuristics framework incorporating penalized maximum likelihood penalty.

PUMA (Penalized Unified Multiple Analysis) is a unified framework that

aims in solving problems of proposed penalized multiple regression (PMR)

algorithms. The challenges include computational speed, poor performance

on genome-scale simulated data, and identification of too many associations

for real data to be biologically plausible. This framework incorporates the

penalized maximum likelihood penalties for GWAS analysis (i.e., LASSO,

Adaptive LASSO, NEG, and MCP) and a penalty that has not been used for

GWAS analysis before (i.e. LOG). They found that the developed framework

has high performance than existing PMR methods. It also shows reliable

results to increase the detection power of associations between SNPs and

phenotypes.

Zuber et al. [2012] developed a novel multivariate algorithm for large-

scale SNP selection utilizing CAR score regression, a promising new method

for ranking biomarkers. The algorithm is likely based on statistical methods,

such as penalized regression, or machine learning. The results depicted the

CAR-based algorithm’s superiority over existing models for finding casual

SNPs.
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Motivated by the researchers’ development of algorithms like PUMA to

detect association, this thesis aims to develop a well-established workflow

combining penalized models to identify important SNPs.

2.5 Neural Networks in the Existing Litera-

ture: A Brief Overview

Various deep-learning methods like Artificial Neural Networks (ANNs), Deep

Neural Networks (DNNs), and Convolutional Neural Networks (CNNs), and

their variations have been applied to whole-genome SNP data to identify

genetic variants such as SNPs, predict the phenotypic outcomes of SNP pat-

terns, and understand the underlying biological mechanisms of diseases and

traits. The evidence of the neural networks published in the previous studies

using the whole-genome SNP data is discussed in this section. Though the

use of deep learning in the current research is scarce, we include the possible

studies involving neural networks.

Badré et al. [2021] compared various computational models such as Best

Linear Unbiased Prediction (BLUP), DNNs, and other statistical models

to estimate breast cancer polygenic risk scores (PRS). Their study findings

concluded that DNNs outperformed various machine learning and statistical

algorithms such as BLUP. Further interpretation of DNNs identifies impor-

tant features for DNN predictions. These variants were also found to be

associated with phenotype through non-linear relationships.

Liu et al. [2019] proposed a deep-learning framework using CNNs to pre-

dict quantitative traits from genetic variants such as SNPs. Additionally,
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they investigated genetic contributions to traits using saliency maps. They

also found that this deep learning model achieved more accurate results by

bypassing the imputation of missing values and treating them as new geno-

types.

In this thesis, the existing deep learning models like DNN and CNN,

and their variations are not used for SNP identification. The next section

provides a further comparison of various deep learning models with existing

linear and non-linear models.

2.5.1 Comparison studies involving neural networks

Romagnoni et al. [2019] utilized various GBT models such as XGBoost,

LightGBM, and CatBoost, together with ANNs using one or more hidden

layers to identify and classify genetic markers such as SNPs. Their study

found that the non-linear methods such as GBT or ANNs are complemen-

tary to each other for identifying genetic markers and have similar prediction

performance.

To predict phenotypic information from SNP data, Liu et al. [2019] sug-

gested an independent deep CNN model. They were the first to choose

significant biomarkers (SNPs) from their training model using a saliency

map deep learning visualization technique. The proposed framework was

compared with various traditional statistical techniques, including Bayesian

ridge regression (BRR), Bayesian Lasso, and BLUP. They found that their

deep-learning framework outperformed these traditional models in detecting

biomarkers and their interactions.
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2.5.2 Algorithms developed based on neural network

Although research on neural networks is scarce, some studies focus on com-

bining statistical and deep learning algorithms to form an algorithm to in-

crease model performance or perform feature selection. This section discusses

different algorithms applied together to improve the performance or perform

comparative studies.

Waldmann [2018] aims in solving the high-dimensionality problem us-

ing Approximate Bayesian Neural Networks (ABNNs) to identify important

SNPs. They evaluate the performance of ABNNs in the context of genomic

prediction. The ABNN model was implemented in MXNET; it was demon-

strated that the model produce greater prediction accuracy than Bayesian

LASSO and genomic BLUP. This model could be used for providing infor-

mation on important SNPs.

The performance of a non-parametric Bayesian approach in the form

of a Bayesian neural network (BNN) for detecting causal SNPs in genetic

association studies was evaluated by Beam et al. [2014]. BNNs are a type

of machine learning model that incorporate Bayesian statistical methods to

make predictions based on large and complex data sets. Using real and

synthetic data, they found that BNNs outperform commonly used approaches

for finding SNP interactions across a wide range of potential genetic links.

An algorithm for creating a single hidden layer feed-forward neural net-

work was described in the study by Setiono and Hui [1995]. Using the quasi-

Newton method, this algorithm stands out because it minimizes the series of

error functions connected to the expanding network. The algorithm is quite
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effective and reliable, according to experimental data.

Motivated by the algorithms developed by Waldmann [2018], Beam et al.

[2014], Setiono and Hui [1995] a cascaded workflow of an ANN followed by

Bayesian inference, is developed in this thesis using RStan for important SNP

detection. The prediction performance of BNN-based workflow is compared

with CNN’s performance. The quasi-Newton method is used for optimization

while predicting the genotypes in the developed workflow.
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Chapter 3

Research Methodology

The chapter revolves around the two major workflows proposed in this re-

search using Machine Learning and Deep Learning methodologies. This chap-

ter is divided into two main sections: Machine Learning and Deep Learning

for GWAS. The corresponding subsections describe the experimental research

design, theory of the models, and proposed workflow.

3.1 Machine Learning for GWAS

In this section, the focus is on research that employs penalized methodologies.

The section covers a range of topics, including the design of the research

study, the underlying theory behind penalized classification and regression

models, K-fold cross-validation, and a workflow based on penalized models

(PentaPen).
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3.1.1 Experimental Research Design

In this study, we develop an improved penalized-method-based workflow-

PentaPen- to find important SNPs combined with different penalized mod-

els. “Penta” and “Pen” are abbreviated for “five” and “penalized models”

respectively. PentaPen is a classifier and regressor which is developed for SNP

identification. It aims to minimize the value of the loss function while simul-

taneously optimizing performance metrics. Firstly, all the SNPs of whole-

genome SNP data are utilized for training Ridge, LASSO, and Elastic Net.

The union of the output SNPs from these three models is taken as the se-

lected SNPs known as SNP Pooling. Secondly, the selected SNPs are sent

to train Group LASSO and SGL, and the union of the output SNPs from

the two is the final output of the PentaPen. Finally, an aggregated model

is developed by combining the predictions of all five penalized models; this

model is used to calculate the performance metrics of PentaPen.

Since R is the programming language used in this study, pre-processing

is needed to make the data compatible with penalized method packages in

R. After loading genotype (.ped) and phenotype (.pheno) files obtained from

the easyGwas website in R and the data is pre-processed by converting the

chromosomal nucleotide to numeric values and creating a design matrix of

dimension p × n. The matrix is transposed to form a matrix of the same

dimensions as the genotype data. Null values in the phenotype data are

removed; they are imputed with the mean across all columns for the SNPs

in the genotype data. The process above results in the pre-processed data.

In pre-processing SNP data, we choose not to remove SNPs in Linkage

disequilibrium (LD) (Korte and Farlow [2013]) and rare variants. Excluding

36



LD and rare variants can lead to losing important genetic information in cer-

tain populations, so keeping them helps provide a complete picture of genetic

architecture. Although we do not check for the potential interaction effects

(LD) between SNPs, keeping SNPs as is can improve model performance.

Rare variants of SNPs were not checked for in our data set, but including

them is beneficial as they can have a larger effect size than common variants

and contribute to phenotypic traits. Although haplotype information could

provide better results for imputing SNPs, it can be complex and requires

more computational resources and time. According to Shi et al. [2018], IM-

PUTE2, a haplotype imputation software, was the most time-consuming.

Additionally, haplotype information is not always available or accurate for

plant genome data. Imputing with the mean is preferred for efficiency and

good results when the missing proportion is low. Although, there were no

missing values in the data used in this study, imputing by mean would be

better for missing at random (MAR) data, and generally, the whole-genome

SNP data is MAR data.

After pre-processing, the resulting clean data are split into training and

testing folds. Further, for 5-fold cross-validation (CV), the models are fitted

using R-packages- glmnet (Friedman et al. [2010]) for Ridge/ LASSO/ Elastic

net, gglasso (Yang and Zou [2015]) for Group LASSO, and SGL (Simon

et al. [2018]) for SGL. The data type for chosen phenotypes was binary,

categorical, and continuous; hence, this study carries out both regression

and classification using the stated methodologies. All the feature selection

methodologies are utilized using the same R packages for regression and

classification. The family argument is used as a binomial in the glmnet

package for classification whereas the default Gaussian family is used for

regression. The loss function for Group LASSO and SGL is considered as
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logit for classification. However, the default least squares loss function is used

for regression. These steps are followed to train the models in PentaPen.

PentaPen is implemented in-parallel across 5-folds using the fitted model

to get output as follows from each penalized method: (a) the SNPs’ coef-

ficients higher than the mean absolute values are recorded to output the

important SNPs based on their coefficients and (b) the prediction for the

phenotype is carried out on both training and testing sets using the best λ

reported using CV. The steps to choosing the best λ are explained in Sec-

tion 3.1.2.6.1. Further, to compare the performance of different models, we

use different metrics which are introduced in sections 3.1.2.7.1, 3.1.2.7.3, and

3.1.2.7.2 with the help of an optimal cutoff. The workflow allows the compar-

ison of single penalized models among each other to gain insights into which

model is most effective in reducing over-fitting and improving the model per-

formance. The purpose of comparing the performance of each model among

themselves is to give a deeper understanding of the strengths and weaknesses

of each penalized model and to identify a more reasonable number of SNPs.

Additionally, to evaluate the performance of PentaPen, the following

results are interpreted: the comparison is made between (a) the performance

of the workflow against all the five penalized models using all SNPs, (b)

the computational time with every single model (Ridge, LASSO, and Elastic

net), and (c) the number of SNPs selected by each penalized model. Finally,

the important SNPs from PentaPen are validated to locate genes. They are

also compared with the SNPs output set of GAPIT and TASSEL.

The proposed workflow aims to enhance the confidence of the selected

SNPs by leveraging the beneficial properties of five penalized methodologies.

As a result, combining multiple penalized models can improve performance
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by reducing over-fitting as compared to using one model. The workflow

for SNP identification can also increase the confidence in choosing an SNP

set as it is more probable to select informative SNPs than using a single

penalized model. Hence, the union of SNPs from Group LASSO and SGL

allows for further analysis and selection of a reduced number of SNPs since

SGL’s sparsity group-wise and within-group results in too few or no SNPs.

The schematic diagram in Figure 3.1 illustrates the steps in this study.

3.1.2 Methods

In this section, I introduce the five penalized models that are combined to

develop PentaPen. The models that are used for detecting potentially im-

portant features (SNPs) are Ridge, LASSO, Elastic Net, Group LASSO, and

SGL. The loss function of models (Ridge, LASSO, and Elastic Net) used

before SNP Pooling was the same while their penalties changed from l1, l2,

and both respectively. After SNP Pooling, the models (Group LASSO and

SGL) chose features based on distinct groups. This study uses K-fold CV to

find an optimal λ throughout.

3.1.2.1 Ridge

Whittaker et al. [2000] created the first proposal for using Ridge regression

for prediction in quantitative genetics. The Ridge has an l2 penalty (||θ||)

calculated by Euclidean distance metric as follows:

l2-norm = ||θ|| =
p∑

i=1

θ2. (3.1)
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Figure 3.1: Study Design for penalized models flowchart. This flowchart

illustrates the study design for penalized models starting from Pre-processing

to important SNP identification and validation. The dashed box indicates

the parallel computing across 5-fold.

For p predictors, matrices Xn×(p+1) and Zn×1 are represented for SNPs and

phenotype respectively. The objective function of Ridge (Hoerl and Kennard

[1970]) with p predictors consists of the loss function ( 1
n
||Z − Xθ||2) and
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penalty term (λ||θ||). Mathematically, it is represented as:

argmin
θ

(
1

n
||Z −Xθ||2 + λ||θ||) (3.2)

where 1
n
||Z −Xθ||2 is the loss function, λ||θ|| is the penalty term, and λ ≥ 0

is the tuning parameter to be estimated using cross-validation.

3.1.2.2 LASSO

The Least Absolute Selection and Shrinkage Operator (LASSO) has an l1

penalty (|θ|) calculated by the Manhattan distance metric represented as:

l1-norm = |θ| =
p∑

i=1

|θ|. (3.3)

Suppose the p predictors (SNPs) are arranged in the design matrix Xn×(p+1)

and phenotype is arranged as matrix Zn×1, then the objective function of the

LASSO model (Tibshirani [1996]) for p predictors is:

argmin
θ

(
1

n
||Z −Xθ||2 + λ|θ|), (3.4)

where 1
n
||Z −Xθ||2 is the loss function, λ|θ| is the penalty term, and λ ≥ 0

is the tuning parameter to be optimized using CV. Unlike Ridge, LASSO

can produce more decipherable models by making certain coefficients exactly

equal to zero.

3.1.2.3 Elastic Net

The Elastic net, proposed by Zou and Hastie [2005], combines l1 and l2

penalties. As a result, the Elastic net benefits from both the Ridge and
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LASSO model’s characteristics. The objective function of Elastic net for p

predictors is:

argmin
θ

(
1

n
||Z −Xθ||2 + λ[α|θ|+ (1− α)||θ||]), (3.5)

where parameter α determines the mix of penalties and is chosen on quali-

tative grounds. A sparse model is produced by the l1 norm portion of the

penalty, while very large coefficients are shrunk by the l2 norm portion of the

penalty (Mahdi et al. [2021]).

3.1.2.4 Group LASSO

The Group LASSO model separates the predictor variables into g distinct

groups. This can be useful for handling categorical data, where the groups

may represent factor-level indicators. Vector θ should be approximated so

that it only needs a few of those groups as opposed to just sparsity. Yuan

and Lin [2006] proposed the objective function of the Group LASSO model

for a symmetric and positive definite kernel matrix to estimate θ̂ as:

argmin
θ

(||Z −
g∑

i=1

(Xiθi)||2 + λ

g∑
i=1

(||θTi Kiθi||1/2)), (3.6)

where Xi is a n× (pi + 1) sub-matrix of X (columns corresponding to SNPs

in group i) and θi is a sub-vector of coefficients of length pi + 1; Ki = piIpi

denotes the kernel matrix; the regularisation parameter is denoted as λ ≥ 0.
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3.1.2.5 Sparse Group Lasso (SGL)

A sparse set of groups is produced by Group LASSO where including a group

in Group LASSO keeps all coefficients in the group as non-zero. For instance,

when predictors are SNPs and the important SNPs have to be discovered then

both sparsity of groups and within each group should be considered. Simon

et al. [2013] proposed the SGL estimator model as:

argmin
θ

(||Z −
g∑

i=1

(Xiθi)||2 + (1− α)λ

g∑
i=1

||θTi Kiθi||1/2 + αλ|θ|). (3.7)

where λ ≥ 0 is the tuning parameter and α ∈ [0, 1] is a convex combination

and α = 0 gives Group LASSO model and α = 1 gives a LASSO model.

Similar to Group LASSO, SGL chooses features on a group basis, and specific

features group-wise and within each selected group.

3.1.2.6 K-Fold Cross-Validation

The study employs K-fold CV to determine an optimal value of λ, which is

used to evaluate the performance of the penalized models during validation

and training. The purpose of it is to find a best-fit model for the database

of the study and flag problems like over-fitting (Berrar [2019]). A method to

train the model using a subset of the data and employing the complementary

subset of the data for the model validation is known as cross-validation (CV).

K-Fold CV (k-fold CV) is one of the methods of CV. In k-fold CV (Jung

and Hu [2015]), all observations are randomly divided into k parts/folds

of approximately equal size. At every iteration, there is a different subset

reserved for testing.
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3.1.2.6.1 Best λ To tune the hyper-parameter (λ) in k-fold CV, a grid of

values for λ is used. The validation performance metric is calculated for each

λ within each fold. Further, the overall CV performance metric is calculated

for each λ. The λ with the optimized metric is located and is said to be

the minimum CV λ or best λ. Model performance in this study is assessed

using a 5-fold CV. The best λ considered is the λ within 1 standard deviation

above the minimum λ.

3.1.2.7 Performance Metrics

This section covers the various performance metrics used for evaluating the

models’ performance. It can be noticed from Section 1.7 that three types

of phenotypes are used in this study: binary, continuous, and categorical.

Hence, there will be three types of evaluation metrics as described below to

perform classification, regression, and multi-class classification.

3.1.2.7.1 Classification The binary phenotype, Anthocyanin, in our

study, is imbalanced where the probability of class 1 is 36% and the probabil-

ity of class 0 is 64%. To predict the presence of anthocyanin, we need to weigh

the positive class or class 1 more than class 0. Hence, the cost-efficient eval-

uation metrics, F1 score, Precision, and Recall are used (Brownlee [2020]).

Further, AUC is used to measure the classifier’s ability to distinguish be-

tween both classes.

Precision measures the accuracy of positive predictions. It is the pro-

portion of positive predicted cases that are truly positive. Mathematically,
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the precision can be expressed as follows:

Precision =
TP

TP + FP
, (3.8)

where TP and FP are True Positive and False Positive respectively.

Recall measures the completeness of positive predictions. It is the pro-

portion of all positive cases that are correctly predicted positive. It calculates

the number of Actual Positives that the model detects by labeling it as Posi-

tive (True Positive). When there is a high cost associated with False Negative

(FN), Recall is the model metric used to select the better model compared

to other models. This metric can be mathematically written as:

Recall =
TP

TP + FN
. (3.9)

The F1 score is the weighted average of precision and recall. The F1 score

have the following formula (Goutte and Gaussier [2005]):

F1 score = 2 ∗ Precision * Recall

Precision + Recall
. (3.10)

Sensitivity (or true positive rate or Recall) is the probability that a test

will result in a true positive outcome. The likelihood of a negative test

provided itact negative is referred to as specificity (or true negative rate).

The true negative rate (TNR) and the false positive rate (FPR) are calculated

as follows:

Specificity (TNR) =
TN

TN + FP
, and (3.11)

FPR = 1− Specificity =
FP

TN + FP
. (3.12)

A graphical representation of the trade-off between sensitivity and specificity

at each “cut-off” for any diagnostic test is provided by the receiver operating

characteristic (ROC) curve (Park et al. [2004]).
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The optimum “cutoff” value with the highest sensitivity and specificity is

generally accepted as the one that maximizes the area under the ROC curve

(AUC), providing the best balance between sensitivity and specificity. AUC

represents the discriminatory power of a diagnostic test (Faraggi and Reiser

[2002]). AUC’s computing cost, however, is greater than that of Accuracy

and F1 score (Hossin and Sulaiman [2015]).

3.1.2.7.2 Regression The performance metrics R-squared and Root Mean

Square Error (RMSE) were averaged across 5-folds for the continuous phe-

notype in this study to evaluate regression model performance.

R-squared measures how much of the variation in the dependent vari-

able the model can account for. Mathematically, R-squared is represented

as:

R2 = 1− SSError

SSTotal

. (3.13)

where SSError

SSTotal
is the proportion of total variation that cannot be explained

by the model.

Mean Squared Error (MSE) denotes an absolute measure of the fit’s good-

ness. MSE is a measure of the average of the squares of the errors between

the predicted and actual values in a regression analysis. It is determined by

adding together the squares of the differences between the real output and

the predicted output and dividing the result by the total number of data

points. The square root of MSE is called Root Mean Square Error which

is abbreviated as RMSE. It can be defined in terms of the sum of the square

of errors as:

RMSE =

√
SSError

N − p− 1
(3.14)
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where SSError is the unexplained variability of the dependent variable.

3.1.2.7.3 Multi-class classification This study uses Accuracy aver-

aged across 5 folds to evaluate the multi-class classification model’s perfor-

mance for the categorical phenotype.

Accuracy measures the true positive and true negative outcomes ratio

for the entire data. It estimates the number of correct predictions over the

total number of predictions. The mathematical way of representing accuracy

is (Goutte and Gaussier [2005]):

Accuracy =
TP + TN

TP + TN + FP + FN
. (3.15)

3.1.3 PentaPen: A Comprehensive Workflow

Workflow 1 summarizes the steps to develop PentaPen, using five penalized

models to detect potentially important SNPs. The data are fitted to train

and validate the models as explained in Section 3.1.1. Note that the groups

of SNPs that are used in Group LASSO and SGL are created using hierar-

chical clustering (Nielsen and Nielsen [2016]). As described in Section 3.1.1,

the evaluation metrics, predictions, and selected SNPs from the models are

recorded across the 5-fold.

The reasons for using SNP Pooling are as follows: the results of SGL and

Group LASSO exhibit potential over-fitting and poor model performance

when using all SNPs. Training Group LASSO and SGL using all the SNPs

require extensive computational resources (the system runs out of memory)

for some phenotypes (preliminary results not achievable and not shown here).
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Workflow 1 PentaPen: Proposed Workflow

1: Input: Genotype .ped file and Phenotype .pheno file

2: Pre-process the data

3: for phenotype in phenotypes do

4: Initialize the folds to 1

5: while folds <= 5 do

6: Split the data into training (80%) and testing (20%) folds.

7: Train and validate Ridge, LASSO, and Elastic Net models using

glmnet.

8: for each model do

9: Predict the phenotype value for both training and testing folds.

Find λ within 1 standard error of the minimum obtained by an

inner 5-fold CV.

10: Record the appropriate performance metric using the optimal cut-

off.

11: Record the potentially important SNPs from the model.

12: end for

13: Filter SNPs by taking the union of SNPs from the Ridge, LASSO,

and Elastic net. Create groups of SNPs using Hierarchical Cluster-

ing.

14: Utilize filtered SNPs and formed groups to train and validate Group

LASSO and SGL using R functions grplasso and SGL. Repeat steps

9 and 10.

15: Take the union of the potentially important SNPs from both Group

LASSO and SGL. Increment the fold number.

16: end while

17: end for

18: Output: The top 10 important SNPs for each phenotype.
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A few improvements of PentaPen over the existing literature based on

the results are stated as follows: Combining multiple penalized models leads

to more reliable results by mitigating the limitations and biases of individual

penalized models. It also identifies a potentially reasonable number of SNPs

as the same SNPs are likely to be identified by multiple methods, thereby

reducing the risk of false negatives. It improves the model’s performance by

addressing issues like over-fitting (Hawkins [2004]). It also improves SNP

identification (due to SGL’s sparsity).

3.2 Deep Learning for GWAS

This section is centered around the use of deep learning models. The various

topics covered in this section include the study’s design, which is based on

utilizing neural networks. Additionally, the theory behind hypothesis testing

and neural networks is discussed. The chapter also proposes a workflow based

on a Bayesian neural network (BNN).

3.2.1 Experimental Research Design

In this study, we propose BayesDL (a BNN-based workflow) to identify im-

portant SNPs. BayesDL is a cascaded classifier and regressor of an Artificial

neural network using Bayesian inference. The model is fitted using R and

Stan. Firstly, the whole-genome SNP data undergoes preliminary feature

(SNP) selection using hypothesis testing procedures to reduce the size of the

data. It is needed to make the data compatible with neural network (NN)

architectures (especially BNN which also includes probabilistic distributions)

49



as they require extensive computational resources (more than 32GB RAM

when using all SNPs as input layer). Secondly, the BNN model is defined

using Stan; the defined model is further used for SNP identification and test

performance evaluation. Finally, the existing CNN model is utilized for com-

parison based on test performance metrics which aids in determining the

superiority of BayesDL. The final output (important SNPs) from BayesDL is

used for further biological analysis. The following paragraphs provide steps

followed to perform preliminary feature selection and define the research work

required to train and validate the NN-based models.

Before conducting analysis, it is necessary to pre-process the SNP data

to ensure compatibility with the NNs used in this study. To achieve this,

several steps are taken which are similar to the steps mentioned in Section

3.1.1. After completing the pre-processing of the data, preliminary feature

selection is carried out using hypothesis tests (see Section 3.2.2.1). Although

the independent variables (SNPs) are categorical, the dependent variable

(phenotype) can be either categorical/binary or continuous. Due to this, two

hypothesis tests are utilized to select the SNPs that are highly associated

with the phenotype. The chi-squared test (explained in Section 3.2.2.1.1)

is utilized for categorical phenotypes (with two or more categories), while

ANOVA (see Section 3.2.2.1.2) is used for continuous phenotypes. The sub-

section below describes the stages in which preliminary feature selection is

performed.
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3.2.1.1 Preliminary feature selection

The preliminary feature selection from the original data is done in the fol-

lowing steps using an R-package, stats (Team et al. [2020]):

1. Perform Chi-square and ANOVA tests to evaluate the association be-

tween the response variable (phenotype) and each predictor variable

(SNP) under the null hypothesis.

2. Use the test statistic of Chi-square (Eq. 3.16) and ANOVA (Eq. 3.17)

to find the p-value of each association. In R, the summary() function

and chisq.test()$p.value are used for ANOVA and Chi-squared respec-

tively.

3. Find the p-th quantile (using quantile() function in R) and use the

significance threshold appearing within the range of 0.5−2.5% quantile.

4. Record the number of SNPs for various thresholds of the significance

level (ranging from 0.1 to 1e − 17). The number of selected features

for each phenotype, based on six different thresholds, can be found in

Table 3.1.

The preliminary feature screening is preferred due to the heavy computa-

tional requirements (RAM of at least 32GB) of NNs, especially BNNs. Ad-

ditionally, this is preferred as NNs perform well when the number of samples

(n) is larger than the number of predictors or SNPs (p).
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Table 3.1: The number of SNPs selected for the corresponding significance

level threshold. The chi-square test and ANOVA are used to record these

thresholds. The marked number of SNPs are finally used as input of Neural

networks.

Tests Phenotype Significance level

0.10 0.05 0.01 1e−3 1e−4 1e−17

Chi- square
Anthocyanin 26503 15590 4580 729 118 −

Germ 27930 16246 5007 991 238 −

ANOVA
Width 26225 13857 3182 408 96 −

DTF 83074 69127 47280 29423 19154 96

Further, the filtered data obtained from preliminary feature selection is

split into 50% training and 50% testing folds which are swapped later. Since

using a 5-fold CV approach is computationally expensive for NNs specially

BNNs, hence, performing a 5-fold CV is out of the scope of this study. In

addition, splitting the data in half avoids the model from memorizing the

training data, hence, reducing the risk of over-fitting. This splitting also

ensures the model’s consistency. Both the NNs are trained and validated

on a train-test split and vice-versa for further analysis. The proposed BNN-

based model is created using the RStan library by defining various blocks

like data, model, and parameter blocks in the Stan file. These blocks are

described in detail in Section 3.2.3.1. This model is first trained using the

training set and the appropriate performance metrics (see Section 3.1.2.7)

of the model are recorded using the testing set in R. Further, the role of

the training and testing set is swapped and the BNN model is trained and

validated again. Finally, BayesDL output the important SNPs by following
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the steps described in Section 3.2.3.3. The top 10 SNPs are validated to

identify genes and compared with the output of GAPIT and TASSEL.

The superiority of BayesDL is confirmed by comparing the performance

of the BNN model with an existing NN model. We choose the CNN model for

comparison; it is employed using the Keras library to perform a classification

or regression task. In the training process of CNN, Convolutional 1D layers

are utilized and the performance metrics are generated using a testing set.

Similar to the BNN model, the train and test sets are swapped, and the

performance metrics based on the test set are recorded. The recorded metrics

from the two test sets of the BNN model and CNN model are used for

comparison.

To make comparisons compatible this study uses the same architecture

and activation functions for both the NN models: (a) The architecture of

the NN models contains an input layer with p predictors, 2 hidden layers

with 50 neurons in each layer, and an output layer. For CNN, an additional

parameter is added in the input layer to specify the shape of the input as

a p − dimensional vector. To choose the optimal number of hidden layers

and neurons, a common approach was employed. Initially, a relatively simple

architecture with a small number of hidden layers and neurons was used, and

the complexity was gradually increased based on the test performance. The

selected architecture provides a good balance between efficiency and com-

plexity as the input data is not too large. (b) The hyperbolic tangent is used

in hidden layers for both classification and regression. The softmax activa-

tion function is used in the output layer for classification. For regression, the

identity or linear function is used as the activation function of the output

layer as this function aids to output continuous (or real) values. (c) While
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the model compilation of CNN, the Adam optimizer is used for all the phe-

notypes while binary cross-entropy, MSE, and categorical cross-entropy are

the loss functions used for the binary, continuous, and categorical phenotype.

BayesDL, used for SNP identification, increases confidence in the selected

SNPs by leveraging Bayesian methods and deep learning advantages. Also,

by providing evidence against the hypothesis that apriori SNPs are insignifi-

cant, the proposed workflow aids in increasing confidence in the selected set

of SNPs. Unlike a CNN model, which uses a single value for the weights,

BayesDL accounts for the uncertainty of those weights by using probabilistic

distribution, thereby improving the confidence in the chosen SNP set. Addi-

tionally, using BayesDL is beneficial when working with small sample sizes,

as it helps to reduce over-fitting, a common issue evident in CNN. Using the

BNN model also results in less number of False negatives as compared to

that when using CNN.

The steps in this study are depicted in the Figure 3.2 schematic diagram.

3.2.2 Methods

In this section, the focus is on the theory behind the methods used for NN-

based research. The discussion covers several topics, starting with the theory

of hypothesis tests that are utilized for preliminary feature selection. This is

followed by an exploration of the different types of neural networks, including

feed-forward and Bayesian neural networks. The section also delves into the

theory behind Monte Carlo Markov Chain (MCMC) and Stan, which are

important tools for Bayesian inference. Finally, the use of the Coefficient of

Variation (CoV) for post-feature selection using the BNN model is explained
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in detail.

Figure 3.2: Study Design for Deep Learning flowchart. This flowchart depicts

the experiment design for deep learning, outlining the key steps involved

in building and training neural networks. The flowchart follows the pre-

processing till important SNP identification and validation.
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3.2.2.1 Leveraging Hypothesis Testing for Preliminary Screening

A statistical technique called hypothesis testing is used to assess the rela-

tionship between genetic variations (SNPs) and a certain disease or trait. It

is a key technique for feature selection in genetic research because it enables

researchers to identify a subset of genetic markers that are most useful in

predicting the desired outcome. Several statistical methods, including ma-

chine learning algorithms, logistic regression, and linear regression, can be

used to evaluate hypotheses for feature selection (Jin et al. [2018]). The goal

of hypothesis testing for feature selection is to identify the most important

SNPs that are associated with the phenotype of interest and can be used

for further analysis or prediction. To find the genetic variants most likely to

be associated with the characteristic of interest, genetic association studies

sometimes employ hypothesis testing such as a t-test for feature selection

(Zhou and Wang [2007]). Due to the significant computational resources

(32GB RAM) required by NN models, in this research, preliminary SNPs

from whole-genome SNP data are chosen using the Chi-square and ANOVA

tests for binary/categorical and continuous phenotypes, respectively, to con-

struct the input set for these models. The NN models work best with small-

p-large-n data, and doing preliminary feature selection solves the problem of

high-dimensional data.

3.2.2.1.1 Chi-square Test In 1900, Karl Pearson initially developed a

chi-square test for testing the goodness of fit and later worked on the family

of chi-square tests. The Chi-square method is a commonly used approach

for selecting features when both independent and dependent variables are

categorical (two or more than two). It involves evaluating SNPs on an in-
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dividual basis with respect to specific classes. However, in order to apply

this method to continuous-valued features, the range of values must first be

divided into intervals. The Chi-square method for categorical features works

by comparing the observed frequency of a class to the expected frequency

of that same class, allowing for meaningful feature selection. Let Oi be the

number of observed frequencies from the Ci class among the N samples. Oi

should occur with expected frequency Ei =
|Ci|
N

. Mathematically, the Chi-

squared test statistic of an SNP is represented as (Jin et al. [2006]):

χ2 =
C∑
i=1

(Oi − Ei)
2

Ei

(3.16)

The null hypothesis of a chi-square test is that the observed frequencies are

close to the expected frequencies in a given data set. In other words, the

test is used to determine if there is a significant association between two

categorical variables. The larger the χ2 value, the more informative the

corresponding SNP.

3.2.2.1.2 ANOVA Fisher [1954] developed ANOVA which is a statis-

tical technique used to determine how a quantitative dependent variable

changes based on one or more independent variables that are categorical

in nature. The null hypothesis of an ANOVA test is that there is no signif-

icant difference between the means of three or more groups with respect to

response in a given data set. In other words, the test is used to determine if

there is a significant association between the independent variable (group or

category) and the dependent variable (continuous variable). The F-statistic

is used to measure the significance of each predictor variable (or feature) in

explaining the variation in the response variable. Mathematically, the F-
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statistic is represented as (Shakeela et al. [2021]):

F =
SSB/(p− 1)

SSE/(n− p)
(3.17)

where SSB is the sum of squares between groups, SSE is the sum of squares

within groups, p is the number of predictors (or features), and n is the sample

size. A larger F-value indicates a stronger association between the predictor

variables (or features) and the response variable.

3.2.2.2 Neural Networks

The neural networks (NNs) that are used for predictions are CNN and BNN.

Both networks are fully connected however weights in Bayesian are assigned

as probability distributions instead of a single value. To calculate the degree

of uncertainty in weights and predictions, probability distributions of weights

are utilized. Unlike BNN, CNN uses optimization algorithms to find the

optimal set of weights and biases to optimize the loss. Instead, BNN aims to

find the posterior distribution that best fits the data which is accomplished by

MCMC or variational inference (VI) explained following subsections. BNN

is further used for the identification of important SNPs.

3.2.2.2.1 Convolutional neural network The deep learning technique

is also known as “multilayer perceptrons” (MLPs) and consists of several

layers connected by neurons (Arora et al. [2015]). Figure 3.3 is a visual

depiction of a fully connected feed-forward NN, CNN, consisting of several

layers (an input layer, m hidden layers, and an output layer). The lines in the

figure display the linked neuron which combines the weighted combinations of

the inputs to generate the output parametric function. These are nonlinear
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activation functions that combine linear transformations with a bias that

symbolizes the activation threshold of the neuron.

Figure 3.3: Fully Connected Feed-forward Neural Network Architecture.

This diagram illustrates a neural network with an input layer, m hidden

layers, and one output layer. The input, hidden layer, and output weights

can be represented as θI , θHi
, and θo respectively. bI , bHi

, and bo can repre-

sent the biases of input, hidden, and output layers respectively.

All the layers in this architecture, except the output layer (only when the

response variable is standardized), contain bias. The width of the model is

the number of neurons in each layer, and the depth of the model is the number

of layers in the network. The output of the entire network is determined

by the weights and biases connecting the neurons, but it also depends on

the network’s width and depth (Uppu et al. [2016]). A group of neurons,
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xj(j = 1, · · · , p), representing the input features (SNPs) make up the first

layer, also referred to as the input layer. For the first layer and i− th neuron,

each hidden layer neuron transforms the values from the preceding layer

using a weighted linear summation ci =
∑p

j∈input θjixj + b0, where θji are

corresponding weights of the particular SNP node and b0 is the bias or the

intercept of the regression equation; it is followed by the activation function

g(ci) resulting in the output zi (LeCun et al. [2015]). In matrix notation, it

can be represented as:

Zi = g(θiX) (3.18)

where X is a design matrix and θi consists of all the weights and biases. The

data set D = {xi, zi} is divided into training and testing sets for implemen-

tation.

The disadvantage of neural networks’ extreme flexibility is that they are

particularly prone to over-fitting. Over-fitting occurs when the learning al-

gorithm performs a good enough job of optimizing the objective function

to tune the model parameters for performance on the training set that the

performance on new cases declines. When we select network weights that

perform well on training data but badly on test data, over-fitting occurs.

The issue gets worse as the network’s layers are increased. Over-fitting is

mitigated by Bayesian NNs as it can provide estimates of the posterior un-

certainty of the model, which can be used to identify when the model is

uncertain about its predictions and when it may be over-fitting to the train-

ing data (Hernández-Lobato and Adams [2015]).

3.2.2.2.2 Bayesian neural network In Bayesian inference, the objec-

tive is to determine the conditional distribution of the weights given the
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training data. The conditional distribution is represented as p(θi|Dtrain)

which is also known as posterior distribution. Figure 3.4 describes the BNN

consisting of an input layer with p predictors, 2 hidden layers with 50 neurons

each, and an output layer that predicts a continuous, binary, or categorical

phenotype. The optimal number of hidden layers and neurons is chosen by

following a common strategy to start with a relatively simple architecture,

with a small number of hidden layers and neurons. Gradually the number of

hidden layers and neurons is increased, based on the performance of the test

data until the metrics’ value except RMSE starts to lie within the range of

0.80 to 1. In this study, architectures with 2 hidden layers and 50 neurons

in each layer provide a good balance between efficiency and complexity as

the input data is not too large or complex. The input, hidden, and output

layers’ weights and biases have posterior distributions that depend on the

prior distributions as well.

Given the training data Dtr, Bayes’ rule provides the posterior distribu-

tion as follows: p(θi|Dtr) ∝ p(Dtr|θi)p(θi), where p(Dtr|θi) is the likelihood

of training data provided by the model with parameters θi and p(θi) is the

prior distribution over the parameters (weights and biases). The Bayesian

model average (BMA) is then used to provide predictions for a new test

example (xnew) given by:

p(znew|xnew,Dtr) =

∫
θi

p(znew|xnew, θi)p(θi|Dtr)dθi (3.19)

where the predictive distribution for given values of parameters θi is p(z|xnew, θi).

The parameters from many models are averaged together to provide the

BMA estimate for thetas (or unknown parameters) (Hoff [2009]). Unfor-

tunately, for neural networks, the BMA integral in equation 3.19 cannot

be evaluated in closed form; hence, the approximate inference (for instance
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MCMC; see Section 3.2.2.3) must be used. Furthermore, a complex posterior

p(θi|Dtr) with high dimensions makes approximation in equation 3.19 diffi-

cult. Wilson and Izmailov [2020] gives a thorough explanation of Bayesian

deep learning. BNNs use BMA to average the predictions of multiple models,

each with different values of the model parameters. This can help to reduce

the variance of the model and improve its generalization performance, hence,

reducing over-fitting (Lakshminarayanan et al. [2017], Neal et al. [2011]).

Figure 3.4: Bayesian neural network with an input layer, 2 hidden layers with

50 units each layer, and one output layer. The neural network’s neurons

are interconnected by lines, and each line has a weighted distribution in

each layer. Additionally, the biases associated with each layer also have

distributions.
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3.2.2.2.3 Activation functions Hyperbolic tan (tanh) is used as the

activation function for all the hidden layers. Tanh is symmetric around 0,

hence scales the output values in the range [−1, 1]. The non-linear property

of tanh captures the non-linear patterns in the data. For classification, the

softmax function is used as the activation function for the output layer as

it normalizes the output, ensuring that the sum of the probabilities for all

classes is equal to 1. This can prevent the NN from biasing towards certain

classes and help to improve its generalization performance. For regression,

the linear or identity function is used as the activation function. The prior

distribution for output weights is a normal distribution that is used to sample

from the posterior distribution of the weights during the sampling procedure.

Therefore, the output of the BNN for regression would then be computed as

a linear combination of the input features and the sampled weights.

3.2.2.2.4 Priors The architecture of BNN used in this study is described

in Figure 3.4. Since the weights and biases have distributions in the BNN

model, hence the prior distribution for these parameters is the standard nor-

mal distribution (mean = 0, SD = 1). The standard normal distribution is

one of the most widely used uninformative and conjugate prior. Moreover,

the use of a standard normal prior can also help to regularize the model,

since the prior effectively adds a penalty term to the likelihood function that

encourages smaller weights and biases (also known as weight decay), thereby

reducing the risk of over-fitting (Bishop and Nasrabadi [2006]).

The BNN model is fitted using the programming language, Stan as ex-

plained in Section 3.2.2.3.1. A similar architecture as described above is used

for CNN to fit the data with weights and biases being specific values instead
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of having prior distributions.

3.2.2.3 Posterior Sampling

Sampling can be used to approximate the integral in equation 3.19 by tak-

ing an average over N samples as: p(znew|xnew, Dtr) ≈ 1
N

∑N
i=1 p(y|xnew, θi),

where θi ∼ p(θi|Dtr) are samples taken from the posterior. If simulated

over a large number of times, a Markov chain created by Markov Chain

Monte Carlo (MCMC) algorithms will produce approximations of samples

from the posterior. However, in this study, we focus on the no-U-turn sam-

pler (NUTS) (Hoffman et al. [2014]), an adaptive variant of Hamiltonian

Monte Carlo (HMC) (Neal et al. [2011]), which is a generalization of the

Metropolis algorithm(MA). HMC is a technique that generates samples that

are asymptotically exact provided that the unnormalized posterior density

p(Dtr|θi)p(θi) and its gradient is available (Betancourt [2017]). The MA ba-

sic steps are to start somewhere, then propose a value nearby the current

value of the iteration from the (symmetric) distribution called the proposal

distribution, and then compute the acceptance ratio (or the posterior likeli-

hood ratio = r).

3.2.2.3.1 Software Used A probabilistic programming language called

Stan provides full Bayesian inference for a variety of models (Carpenter et al.

[2017]). It works by allowing users to construct a probabilistic model using a

high-level syntax, and then perform Bayesian inference on that model using

MCMC or Variational Inference (VI) (Blei et al. [2017]).

MCMC is a simulation-based approach for roughly approximating a model’s
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posterior distribution. The goal of MCMC is to produce a series of samples

from the posterior distribution where each sample depends on the sample

before it. The NUTS, an effective and automatically tuned variant of the

HMC method, is used in Stan to perform MCMC. HMC is a gradient-based

MCMC technique that effectively explores the posterior distribution without

getting stuck in local modes by using gradient information. A self-tuning

variation of HMC called NUTS dynamically modifies the step size and direc-

tion while sampling actually occurs (Hoffman et al. [2014]).

Conversely, VI uses a simpler distribution, like a Gaussian, to approxi-

mate the posterior distribution and then optimizes its parameters to reduce

the Kullback-Leibler divergence from the true posterior (Blei et al. [2017]).

Additionally, Stan offers powerful tools for model verification, diagnos-

tics, and visualization, enabling users to comprehend the outcomes of their

investigation on a deeper level.

3.2.2.4 SNP Identification using Post-Feature Selection

In this study, the coefficient of variation (CoV) is used for SNP identification

using the corresponding input weights of the BNN model. It is a useful

tool for feature selection in machine learning and statistics. The CoV is a

statistical measure that expresses the ratio of the standard deviation (SD) to

the mean of a data set. Mathematically, it is represented as (Brown [1998]):

CoV =
SD

mean
(3.20)

It is commonly used in fields such as biology, engineering, and finance to

measure the variability or dispersion of a data set relative to its mean value
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(Bedeian and Mossholder [2000]). A low CoV indicates that the data points

are clustered tightly around the mean, while a high CoV indicates that the

data points are spread out widely around the mean.

The basic idea is that it can be used to measure the variability of a feature

across different samples or observations. If a feature has high variability, it

may not be informative for the prediction task and can be safely removed

from the feature set. Conversely, if a feature has low variability, it may

be informative and should be kept in the feature set (Ertuğrul and Tağluk

[2017]). Hence, the minimum CoV is used to define the best feature.

One of the advantages of using CoV is that it is a relative measure that

is independent of the scale of the data set. One of the disadvantages of using

CoV is that it is misleading in cases of negative values and zero. To address

the limitations of using CoV, we have implemented a solution in this study.

Specifically, we have excluded weights with a mean of zero and calculated

the absolute mean to mitigate any misleading results that could arise from

negative values or zero. So, mathematically, the CoV of input weights can

be represented as:

CoV =
SD

|mean|
(3.21)

where mean ̸= 0.

3.2.2.5 Performance Metrics

As discussed in Section 3.1.2.7 various evaluation metrics are used as there

are three types of phenotypes used in this study. For binary phenotypes, clas-

sification metrics such as Precision, Recall, F1 score, and AUC are commonly

used to evaluate the performance of classification models. On the other hand,
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for continuous phenotypes, regression metrics like R-squared and RMSE are

utilized to assess the goodness-of-fit of regression models. Accuracy is the

multi-class classification metric used for the categorical phenotype.

3.2.3 BayesDL: A Comprehensive Workflow

Workflow 2 summarizes the steps to develop a Bayesian neural network or

the proposed workflow. Load .ped and .pheno data files in R and pre-process

both loaded data following the steps from Section 3.1.1. The pre-processed

data is used for preliminary feature (SNP) selection which is performed using

Chi-square and ANOVA tests as explained in 3.2.1.1. The data that has been

filtered is divided equally into two sets - the training set and the testing set.

These sets are then interchanged so that the set that was originally used

for testing is now used for training and vice versa. This data set is used to

train and validate the developed model. To develop the BNN model, two

separate .stan files are created for classification and regression because the

study includes binary, continuous, and categorical phenotypes. This BNN

model is developed in Stan while R is used for prediction/ classification,

sampling, and SNP identification. The following subsections describe the

tasks carried out in Stan and R to develop BayesDL, and the steps followed

for SNP identification.
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Workflow 2 BayesDL: Proposed Workflow

1: Input: Genotype .ped file and Phenotype .pheno file

2: Pre-process the data

3: if categorical then

4: feature selection using Chi-square test

5: else

6: feature selection using ANOVA

7: end if

8: Split the data into training (50%) and testing (50%) folds.

9: Devolop Stan model using various blocks.

10: if categorical then

11: stan class = stan model(“nn class.stan”)

12: Define a function to compile stan class.

13: else

14: stan reg = stan model(“nn reg.stan”)

15: Define a function to compile stan reg.

16: end if

17: Call Stan’s optimizing and NUTs sampler to obtain point estimates and

posterior samples from the compiled model.

18: for phenotype in phenotypes do

19: Fit train and test sets in the compiled model using 2 hidden layers

with 50 neurons in each layer.

20: Compute and record test performance metrics.

21: Repeat the above process by reversing the roles of train and test sets.

22: end for

23: Rank the input SNPs by generating the samples of weights (weights

ranked in increasing value of CoV) corresponding to predictors using

the sampling function.

24: Output: The top 10 important SNPs for each phenotype.
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3.2.3.1 Stan: Model Specification

Since Stan consists of separate blocks for defining the model, to develop

BayesDL, we use seven blocks for classification and six blocks for regression.

The regression model has data, parameters, function, transformed parame-

ters, model, and generated quantities block except for the transformed data

block.

The data block defines the parameters as the number of training and

testing samples and predictors, feature matrix, outcome integer labels for

classification/ vector for regression, the number of hidden layers, and the

number of nodes in each hidden layer.

The transformed data block for classification consists of an integer value

of the number of output labels. All the weights and biases of each layer

along with the row vector of the number of labels for classification and a real

number σ for regression are defined in the parameter block.

The function block comprises m hidden layers, each of which has the

hyperbolic tangent (tanh) activation function. The last output layer is output

by this prediction function block. For the final output of the output layer’s

vector, use the function from the function block to fit the necessary data and

parameter values in the transformed parameter block.

The model block is used to define the prior distributions and the distri-

bution for the output phenotype. All the weights and biases have a standard

normal distribution for both regression and classification. For classification,

the distribution of the outcome labels is modeled using a GLM with a categor-

ical likelihood and a logit link function. This function is a softmax function

69



supported by Stan. For regression, the outcome is distributed normally with

the mean of predicted output values and standard deviation as σ. Hence,

this function is the identity/ linear activation function supported by Stan.

Finally, the generated quantities block contains all the test outputs gen-

erated using the function model. The softmax and normal variate are used

to generate the output for classification and regression respectively.

The two files are saved as nn reg.stan and nn class.stan which are further

read in R using the RStan library.

3.2.3.2 R: From Sampling to Inference

Now the output files from the above section are used in R to specify the Stan

BNN model using the stan model object (Gelman et al. [2015]). The steps

described below are followed to deploy the defined model.

Create a function that builds the appropriate model and produces the de-

sired result. This is done by defining the stan data in the function and calling

the optimization and sampling methods. The optimization helps to obtain

Precision, Recall, F1-score, AUC for classification, Accuracy for multi-class

classification, and R-squared, RMSE for regression. The sampling method

aids in drawing posterior samples from the model and selecting important

features or SNPs using the corresponding weights of each predictor.

After developing BayesDL, the model was trained on the train and test

sets using two hidden layers, each consisting of 50 neurons, to make predic-

tions. Record the two test performance metrics from the optimizing method

for each phenotype. The sampled weights corresponding to each node be-
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tween all the layers are recorded from the sampling method and are further

utilized for important SNP selection using the steps in the following section.

3.2.3.3 SNP Identification

The following steps are followed to rank the SNPs according to their signifi-

cance for both regression and classification:

1. Extract all the sampled weights from NUTs sampling corresponding to

the predictor.

2. Compute the posterior SD and posterior mean of the weights corre-

sponding to each predictor across all samples or observations.

3. Remove all the weights whose posterior mean value is equal to zero.

4. Calculate the CoV for each sampled weight using equation 3.21.

5. Rank the weights based on their CoV values. Weights with lower CoV

values are ranked higher and considered more informative.

6. Extract the top 10 SNPs corresponding to the weights ranked based on

the lowest CoV.

Based on this analysis, the top 10 SNPs are selected from the BNN

model and are used for further analysis. The pairs plot, trace plot, and

auto-correlation function plot are used for MCMC diagnosis to assess the

significance of the top 2 output SNPs using the shinystan R package (Gabry

[2020]). The selected top 10 SNPs are used to identify genes and are com-

pared with the output of GWAS software to draw biological interpretations.
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This chapter provided a detailed description of penalized-based and NN-

based research, including the research design for implementing penalized and

NN models, the theory of different penalized and NN models used, and a

detailed description of the workflow with improvements.
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Chapter 4

Results

This chapter presents detailed results divided according to two major re-

search methodologies: Machine and Deep Learning for GWAS. The following

subsections within the two sections provide results based on three types of

phenotypes: binary, continuous, and categorical.

4.1 Machine Learning for GWAS

This study evaluates the performance of five penalized models and PentaPen

by assessing their metrics displayed in Figures 4.1, 4.2, and 4.3. These figures

are formed using Tables A.1, A.2, and A.3 which show the exact values of

performance metrics in the Appendix A. Further, the findings from these

figures are explained in subsections 4.1.1, 4.1.2, 4.1.3, and 4.1.4.

73



(a) Ridge, LASSO, Elastic Net, and PentaPen using

all SNPs as input.

(b) Group LASSO and SGL using all SNPs as input.

(c) Group LASSO and SGL using pooled SNPs as

input.

Figure 4.1: Comparison of five penalized models among themselves and with

PentaPen using all SNPs as predictors for the binary phenotype, Antho-

cyanin. Comparison of Group LASSO and SGL among themselves using

pooled SNPs. The performance metrics are recorded for both training and

testing sets.
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(a) LASSO, Elastic Net, and PentaPen using all

SNPs as input.

(b) Ridge, Group LASSO, and SGL using all

SNPs as input.

(c) Group LASSO and SGL using pooled SNPs

as input.

Figure 4.2: Comparison of five penalized models among themselves and with

PentaPen using all SNPs as predictors for the continuous phenotypes, Width

and DTF. Comparison of Group LASSO and SGL among themselves using

pooled SNPs. The performance metric, R-squared, displayed in this figure is

recorded for both training and testing sets. The evaluation using RMSE can

be done using Tables A.1, A.2, and A.3 in Appendix.
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(a) LASSO, Elastic Net, and PentaPen using all

SNPs as input.

(b) Ridge, Group LASSO, and SGL using all

SNPs as input.

(c) Group LASSO and SGL using pooled SNPs

as input.

Figure 4.3: Comparison of five penalized models among themselves and with

PentaPen using all SNPs as predictors for the categorical phenotype, Ger-

mination Days. Comparison of Group LASSO and SGL among themselves

using pooled SNPs. Accuracy is recorded for both training and testing sets.

One of the objectives of this research is to systematically compare each

penalized model based on input SNPs to gain insights into their strengths

and limitations before including them in the proposed workflow.

Further, after forming PentaPen, the superiority of that workflow is eval-
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uated using (a) the performance of the workflow against all five penalized

models using all SNPs, (b) the number of SNPs selected by each penalized

method, and (c) the computational time with every single model (Ridge,

LASSO, and Elastic net). The important SNPs and computational time for

each physical trait observed in A. Thaliana by the penalized models and

PentaPen are displayed in Tables 4.1 and 4.2. The subsections are organized

by phenotype type to explain the results in detail.

Table 4.1: Number of important SNPs selected by penalized models, SNP

Pooling, and PentaPen (the proposed workflow). The SNP Pool was used

as the input for Group LASSO and SGL in the proposed workflow using

penalized models.

Phenotypes Ridge LASSO Elastic

Net

SNP

Pooling

PentaPen

Anthocyanin 77690 77267 77387 90565 58

Width 74660 2 12 74660 4

DTF 77665 80 102 77671 77

Germ 74606 2 16 74606 5

77



Table 4.2: Computation time (in seconds) of penalized methods and the

workflow using penalized methodologies

Phenotypes Ridge LASSO Elastic

Net

PentaPen

Anthocyanin 130 25 26 161

Width 109 29 28 142

DTF 104 79 51 169

Germ 113 27 24 144

When comparing the results of PentaPen, with GWAS software, GAPIT,

and TASSEL were used. The Bonferroni correction was utilized in GWAS

software output to find the important SNPs for AtPolyDB and F1-hybrids

data. With the Bonferroni correction, SNPs were selected ranging from

13 − 97. To make the comparison feasible and consistent among all the

phenotypes, the top 10 SNPs are compared with the results of the proposed

workflow. Tables 4.3 and 4.4 consist of the top 10 SNPs selected from GAPIT

and TASSEL analysis for all the phenotypes for this research. The results

for comparison are discussed in the subsections 4.1.1, 4.1.2, and 4.1.3.
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Table 4.3: Top 10 SNPs for all the phenotypes using GAPIT. The highlighted

SNPs are shared SNPs with TASSEL except DTF and Germ having no shared

SNPs.

Anthocyanin Width DTF Germ

Chr1 16930622 Chr4 17569323 Chr4 7749720 Chr3 11018956

Chr1 14007403 Chr3 15742125 Chr4 7749144 Chr4 567760

Chr4 1503923 Chr4 17569775 Chr4 7748780 Chr3 11018472

Chr1 14051264 Chr4 17570680 Chr4 5208011 Chr2 8448286

Chr1 14142053 Chr3 11052540 Chr4 5208139 Chr2 8466240

Chr1 14053491 Chr3 3504771 Chr3 7164713 Chr1 17371303

Chr1 14028301 Chr4 17572283 Chr3 7164675 Chr5 7147445

Chr1 14015352 Chr4 17571262 Chr3 17869230 Chr4 6786088

Chr2 18811115 Chr3 3687421 Chr3 5693257 Chr1 6868571

Chr3 2602503 Chr3 16092490 Chr1 1327977 Chr5 6100537

Table 4.4: Top 10 SNPs for all the phenotypes using TASSEL. The high-

lighted SNPs are shared SNPs with GAPIT with the exception of DTF and

Germ having no shared SNPs.

Anthocyanin Width DTF Germ

Chr1 12663142 Chr1 4636782 Chr4 10151382 Chr3 11018956

Chr1 16930622 Chr1 4637778 Chr4 12166531 Chr5 18308060

Chr1 14028301 Chr3 15742125 Chr4 12166556 Chr5 24425444

Chr1 14053491 Chr4 17569323 Chr3 2176300 Chr3 11018472

Chr1 14142053 Chr1 7431064 Chr3 2176302 Chr1 17371303

Chr1 8722354 Chr4 17570680 Chr1 22979953 Chr5 9414526

Chr1 14007403 Chr1 9804463 Chr2 526009 Chr4 8590325

Chr2 18677631 Chr4 17569775 Chr2 526254 Chr1 21874586

Chr1 13378174 Chr3 11052540 Chr1 23692187 Chr5 24431218

Chr1 19430888 Chr4 17572283 Chr1 5552218 Chr5 24432490
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We further validate the results of PentaPen to locate genes from the

SNPs. This was carried out by locating the corresponding chromosome and

its base pair position of the particular SNP. The corresponding gene was then

recorded using the Gene Model from the TAIR website. One instance of the

identified SNP and its corresponding gene can be represented from the TAIR

website 3. The Tables 4.5, 4.6, 4.7, and 4.8 show the top 10 SNPs selected

from the proposed workflow for each phenotype with their Chromosome base

pair positions, corresponding gene, and gene function. The findings from

these Tables are discussed in the following subsections organized based on

phenotypes.

4.1.1 Binary Phenotype

The performance metrics of Anthocyanin to perform classification for train

and test sets are Precision, Recall, F1-score, and AUC. The performance of

the model enhances with the increase in the value of performance metrics.

However, the wider gap between the values in the train and the test sets

suggests over-fitting in the model. Although there is no generally acceptable

gap that shows over-fitting in the model, in this study anything above 10%

difference is considered as potential over-fitting due to the lesser samples

of the data set (Park et al. [2021]). From Figure 4.1, the observations are

discussed while the exact numbers are listed from the Tables A.1, A.2, and

A.3 in the Appendix.

From Figures 4.1a and 4.1b (Tables A.1 and A.2 in the Appendix), it can

3https://jbrowse.arabidopsis.org/index.html?data=Araport11&loc=Chr1%3A1

217530..1221059&tracks=TAIR10_genome%2CA11-GL-Oct22%2CA11-PC-Oct22%2CSAL

K_tDNAs&highlight=.
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be observed that among the five penalized models, Ridge, Group LASSO, and

SGL have larger Precision, Recall, and F1-score values (0.88 to 0.99 for train

and 0.77 to 0.85 for the test). However, the larger gap (0.11 to 0.23) between

the train and test set shows potential over-fitting in Group LASSO and SGL.

For Ridge, the gap (0.07 to 0.10) does not show much evidence of over-fitting.

For LASSO and Elastic net, the Precision, Recall, and F1-score values (0.74

to 0.77 for both train and test) and gap (0.006 to 0.019) between them for

train and test set are almost similar. Therefore, we think that both models

perform similarly based on the evaluation metrics and no evidence of over-

fitting. The AUC values were larger (1 for train and 0.895 for test) for Ridge

as compared with that for LASSO and Elastic net (having values as 0.942

& 0.977 for train and 0.897 & 0.959 for the test) but the difference was also

more (0.10) for Ridge than LASSO and Elastic net (0.018 and 0.045). The

test AUC values for Group LASSO (0.499) and SGL (0.516) show that the

models are unsatisfied classifiers whereas Ridge’s AUC score depicts that it

is a good classifier.

Finally, PentaPen has similar Precision (0.849 for the train and 0.75

for the test), Recall (0.806 and 0.701 for the train and test), and F1-score

(0.827 and 0.725 for the train and test) to LASSO and Elastic net using all

SNPs. It also shows a similar gap (0.09 to 0.10) to Ridge using all SNPs

between train and test sets while a smaller gap than Group LASSO and SGL

using all SNPs. The proposed workflow with a high AUC score for both its

training and testing phases indicates its capability to classify data accurately.

Further, the PentaPen reduces potential over-fitting by decreasing the gap

when compared with Group LASSO and SGL using all SNPs.

From Table 4.1, for instance, for Anthocyanin, Ridge accounts for 77690
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SNPs out of all the SNPs before SNP pooling. This might be because the

Ridge evaluates each SNP individually. For binary phenotype (Anthocyanin),

LASSO and Elastic Net record a similar number of SNPs as Ridge because

the SNPs may be more correlated to the phenotype. PentaPen produces 58

SNPs for Anthocyanin. Ridge, LASSO, and Elastic Net identifies SNPs in

the range of 77000 to 77700. However, due to the sparsity in SGL, PentaPen

identifies a reduced number of important SNPs.

According to the results from Tables 4.3 and 4.5, the binary phenotype

did not show any shared SNPs but had a shared gene between GAPIT and

PentaPen’s output. PentaPen (Table 4.5) had one shared gene,AT3G08970,

with GAPIT. Tables 4.4 and 4.5 find that the binary phenotype had no

shared SNPs or genes when TASSEL and PentaPen’s outputs are compared.

This could be due to PentaPen using five different penalized models to find

reasonable numbers of important SNPs whereas GAPIT and TASSEL use

GLM (Nelder and Wedderburn [1972]). When looking at the two GWAS

programs, it showed that TASSEL had 4 shared SNPs (Chr1 16930622,

Chr1 14007403, Chr1 14142053, Chr1 14053491) and a shared gene

(AT1G36990) with GAPIT. PentaPen selected an SNP through the classi-

fication model with a gene, AT1G56650, which could be potentially related

to Anthocyanin ( presence of color in plants (Chen et al. [2022])).

4.1.2 Continuous Phenotype

The performance metrics used for the continuous phenotypes to perform

regression are R-squared and RMSE. The model’s performance is considered

better when the difference between the train and test data is minimal, and
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the values of R-squared and RMSE are higher and lower, respectively. From

Figure 4.2, the observations are discussed while the exact numbers are listed

from the Tables A.1, A.2, and A.3 in the Appendix.

It was observed from Figures 4.2a and 4.2b (Tables A.1 and A.2 in Ap-

pendix) that for Width, although Ridge and SGL have higher R-squared

train values (0.944 & 0.948) and with low test values (0.694 & 0.081) the

difference between their values (0.25 & 0.87) is large. This shows poten-

tial over-fitting, leaving Ridge and SGL out of comparison. Although Ridge

shows over-fitting, the gap of SGL is larger than Ridge; hence, Ridge over-

fits less than SGL. Comparing the other three models, Group LASSO has

a low R-squared value (0.455 for train and 0.052 for testing), also showing

over-fitting. Hence, comparing rest two models, both have approximately the

same R-squared values of (0.82 & 0.808 for the train and 0.801 & 0.778 for

the test), with a smaller difference (0.019 & 0.03). Using the RMSE values

for analysis, it is evident from Figures 4.2a and 4.2b (Tables A.1 and A.2

in Appendix) that although Ridge has smaller values of RMSE but shows

potential over-fitting due to a higher difference in train and test values with

an exception of DTF from the F1-hybrids data set. Both LASSO and Elastic

Net have smaller values for train and testing with a smaller gap between

them. Using these results it can be concluded that LASSO and Elastic Net

perform similarly.

Similarly, for DTF, the superiority of PentaPen is evident from Figures

4.2a and 4.2b (Tables A.1 and A.2 in Appendix) that the R-squared values

(0.866 and 0.753 for train and test sets) are higher than that of LASSO and

Elastic net using all SNPs with the smaller gap (0.113) as compared with

the models (Ridge (0.23), Group LASSO (0.503), and SGL (0.436) using all
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SNPs) that posses potential over-fitting. Similarly, when compared with each

penalized model using all SNPs, RMSE values for PentaPen were lower and

the workflow showed reduced signs of over-fitting. Hence, PentaPen tends to

perform better for both phenotypes than models possessing over-fitting and

inhibits the beneficial properties of all the five penalized models.

It is evident from Table 4.1 that for Width and DTF, Ridge accounts

74660 and 77665 SNPs out of all the SNPs before SNP pooling. For Width,

LASSO records too few SNPs (2), whereas for DTF, 80 SNPs were recorded.

Elastic net records 12 & 102 unique SNPs. Since different phenotypes may

be influenced by different sets of key genetic variants leading to a smaller

subset of SNPs for Width when compared with DTF. Unlike binary pheno-

type, the SNPs associated with continuous phenotypes may exhibit weaker

correlations, allowing LASSO and Elastic Net to identify a smaller subset

of relevant SNPs. Finally, PentaPen produces 4 SNPs, the union of SNPs

selected by Group LASSO (3) and SGL (1).

For the continuous phenotype (Width), PentaPen showed neither shared

SNPs nor shared genes with GAPIT from Tables 4.3 and 4.6. A simi-

lar result was noted between TASSEL and PentaPen from Tables 4.4 and

4.6. From Tables 4.3 and 4.4, there were 2 shared SNPs (Chr4 17569323,

Chr3 15742125) and 4 shared genes (AT3G43890, AT4G37370, AT3G29075,

AT4G37380) when TASSEL and GAPIT are compared for Width while

none for DTF. Only one SNP was selected by PentaPen for the width phe-

notype whose corresponding gene, AT1G65300, could potentially be re-

sponsible for plant growth and development (Waqas et al. [2020]). For the

remaining continuous phenotype (Table 4.7) of the F1 hybrids data set, Pen-

taPen had one shared SNP (Chr1 1327977) with GAPIT but none with
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TASSEL. The gene AT2G28305 could potentially promote flowering which

represents the function of phenotype DTF (Xiang et al. [2022]).

4.1.3 Categorical Phenotype

The accuracy was used as the performance metric for Germination Days.

The accuracy values are analyzed first to study the larger value and then

look for the smaller gap in train and test values to avoid over-fitting. From

Figure 4.3, the observations are discussed while the exact numbers are listed

from the Tables A.1, A.2, and A.3 in the Appendix.

It was observed from Tables A.1 and A.2 in Appendix or Figures 4.3a and

4.3b that Elastic net and LASSO have less over-fitting than Ridge, Group

LASSO, and SGL as the gap between train and test sets using these three

is wider (ranging from 0.17 to 0.27). However, Ridge has a smaller gap than

Group LASSO and SGL. The accuracy of PentaPen for the test and train

set is higher (0.772 and 0.741 respectively). Although the values are less

than Ridge, LASSO, and Elastic net using all SNPs, the smaller gap (0.031)

shows reduced over-fitting. These accuracy values of the workflow are higher

than Group LASSO and SGL’s values, with a smaller gap between the train

and test set. Hence, PentaPen utilized the strengths of the five methods and

showed high accuracy values while a smaller gap, reducing over-fitting.

Ridge accounts for 74606 SNPs out of all the SNPs before SNP pooling.

LASSO, Elastic net, and PentaPen record similar SNPs (2, 16, & 5) as

continuous phenotype, Width.

For the categorical phenotype, germination days (Table 4.8), PentaPen
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had no shared SNPs and shared genes with GAPIT and TASSEL (Tables 4.3

and 4.4). It showed no shared SNPs or genes when TASSEL and GAPIT are

compared. Although the transcription factor of gene AT1G65300 identified

by PentaPen could potentially mediate seed germination.

4.1.4 Evaluation of Group LASSO and SGL

For binary phenotype (Anthocyanin), similar to the analysis in Figures 4.1a

and 4.1b (Tables A.1 and A.2 in the Appendix), among Group LASSO and

SGL (from Figure 4.1c or Table A.3 in the Appendix), Group LASSO is

preferred for the classification of predictors with higher Precision, Recall, F1-

score, and AUC values, and the smaller gap in their train and test set. Using

the test AUC values, it was noted that Group LASSO and SGL using filtered

SNPs were better classifiers than those using all SNPs. Hence, including

these two models using filtered SNPs in the proposed workflow, improves

the classification accuracy of PentaPen and identifies a reasonable number of

SNPs due to a reduced number of false negatives. Even when Group LASSO

and SGL use a lesser number of inputs (or SNPs), still Group LASSO is

noted to perform similarly to LASSO and Elastic net whereas SGL performs

similarly to Ridge.

For continuous phenotypes (Width and DTF), similar to the analysis

in Figures 4.2a and 4.2b (Tables A.1 and A.2 in Appendix) among Group

LASSO and SGL (from Figure 4.2c or Table A.3 in Appendix), Group LASSO

is preferred over SGL because of its higher and smaller R-squared and RMSE

values, respectively, and a small gap between the train and test set for both

the phenotypes. It is evident that Group LASSO and SGL using filtered
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SNPs (0.403 & 0.867) reduces the gap between the train and test R-squared

values more than those using all SNPs (0.058 & 0.155). Including these

models reduces the chances of over-fitting by PentaPen.

For categorical phenotype (Germination days), from Table A.3 in Ap-

pendix or Figure 4.3c Group LASSO outperforms SGL with higher values

(0.88 and 0.87 for train and test respectively) of Accuracy with a smaller

difference (0.011). The gap is reduced for Group LASSO and SGL using fil-

tered SNPs than those using all SNPs. Even using lesser features (or SNPs),

Group LASSO and SGL still perform similarly to Ridge, LASSO, and Elastic

Net.

4.2 Deep Learning for GWAS

The results of the deep learning research work are presented in the following

subsections, which are organized by different types of phenotypes.

The study compares the predictive performance of CNN with BayesDL

and assess their test metrics presented in Figure 4.4 (refer to Table B.1 in

Appendix B for exact values). In this study, both NNs are trained using a

50% train set, and a 50% test set is used for prediction to record performance

metrics. Later, the role of the train and test sets is swapped and new test

performance metrics are recorded. This results in two test splits- Split 1 and

Split 2 - while reporting the findings. The above results aid in assessing the

superiority of BayesDL over the existing model. A few more findings of the

proposed workflow are noted to gain insights into the advantages of BayesDL.
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(a) Anthocyanin

(b) Width and DTF

(c) Germ

Figure 4.4: Comparison of BayesDL with a deep learning model, CNN, for

all the phenotypes. The two-split test performance metrics are recorded for

comparison.
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Table 4.9 displays the computation time of BayesDL, for each physical

trait, observed in A. Thaliana which aids in noting that in spite of the

extensive computational time required by Bayesian when combined with deep

learning, the workflow has advantages over existing deep learning models.

Table 4.9: Computation time (in seconds) of proposed workflow based on

BNN across all phenotypes

Anthocyanin Width DTF Germ

2843 3097 3540 3384

The preliminary posterior samples check was aimed to make comparisons

between the observed prior and the posterior draws from BayesDL. The null

hypothesis is that apriori the SNPs (or features) are insignificant with their

corresponding weights. The result for Anthocyanin, Width, DTF, and Ger-

mination Days is displayed in Figure 4.5. These findings aid in concluding

that the SNPs are identified with more confidence as the prior resulted in an

important posterior of the SNP.

The top 10 SNPs output from BayesDL is validated to locate corre-

sponding genes. Similar to the validation done in the penalized-based study,

it was done by locating the chromosome base pair position of the particular

SNP and then its corresponding gene using the Gene Model from the TAIR

website. Tables 4.10, 4.11, 4.12, and 4.13 display top 10 SNPs for each phe-

notype and their Chromosome base pair positions, corresponding gene, and

gene function. These are used to find shared SNPs and genes with GAPIT

and TASSEL (Tables 4.3 and 4.4).
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(a) 1st SNP for Anthocyanin (b) 2nd SNP for Anthocyanin

(c) 1st SNP for Germ (d) 2nd SNP for Germ

(e) 1st SNP for Width (f) 2nd SNP for Width

(g) 1st SNP for DTF (h) 2nd SNP for DTF

Figure 4.5: Plots for prior and posterior samples. The green line indicates the

prior distribution while the purple line refers to the distribution of posterior

samples.
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4.2.1 MCMC Diagnostics

To determine the proposal values, the NUTS (an adaptive form of Metropolis-

Hastings) algorithm was run for a total of 2000 iterations where the first 1000

iterations were used as burn-in. Four different chains were generated for the

2000 iterations where values from the first 1000 iterations were thrown away.

Three plots were plotted for all the selected phenotypes using the weights as

functions corresponding to the top 2 selected predictors (SNPs). Figures 4.6,

4.7, and 4.8 display the output of all the selected phenotypes.

Using RStan, the auto-correlation function (ACF) plots for each pheno-

type for all chains separately and each chain 35-lags apart can be observed

in Figure 4.6. It can be observed that the generated MCMC iterations are

reasonably correlated for Anthocyanin, Germination days, and Width with

certain small dips few lags apart when considering each chain separately.

This indicates that all four chains are highly convergent for these three phe-

notypes displaying the SNPs as significant features to be included for further

analysis. While from Figure 4.6d it is evident that all the chains are posi-

tively convergent and all chains reached stationarity for SNP42751. However,

for SNP31600, chains 1, 2,&4 reach stationarity within 10-lags apart whereas

chain 3 reaches stationarity towards the end of the lags after some gradual

geometrical decline.

The trace plots of the generated parameters were recorded to check

whether the Markov Chains reached stationarity to show the parameters’

convergence to an optimal value. The convergence of the chains for the top

2 SNPs of all phenotypes was verified using RStan. The trace plots after the

1000 iterations or after the burn-in was documented. Figure 4.7 shows that
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(a) Anthocyanin (b) Germination Days

(c) Width (d) DTF

Figure 4.6: Auto-correlation functions using RStan against MCMC itera-

tions. Functions of weights corresponding to the top 2 predictors (or SNPs)

for all the phenotypes. The x-axis and y-axis represent Lags and Auto-

correlation values respectively.

the stationarity for MCMC iterations was achieved for both the parameters

(or SNPs) in Anthocyanin, Width, DTF, and Germination days. For all

the phenotypes, all the chains are mixed well and contribute to stationarity.

However, for DTF (see Figure 4.7d), the chain gets stuck at the 200 and 900

iterations. It is suggested to introduce more iterations and thinning in the

MCMC model to improve the convergence.
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(a) Anthocyanin (b) Germination Days

(c) Width (d) DTF

Figure 4.7: Trace plots using RStan against post-warmup MCMC iterations.

Here are the functions for the top 2 predictors (or SNPs) across all phenotypes

and the y-axis represents the value of weights corresponding to each SNP. The

trace plots assess the convergence, stability, and distribution of the weights

throughout the MCMC sampling process.

This study was dealing with RStan hence, histograms in Figure 4.8 dis-

play the distributions for the features (or SNPs) using hyper-parameter val-

ues. This aids in making a reasonable comparison of whether the model gives

the approximate posterior distributions. The parameters for Anthocyanin,

Germination days, Width, and DTF have close enough symmetrical distri-

butions. If the SNPs have a weight value of 0 and they lie in the low-density
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region, then those SNPs are more important. In fact, the scatter plots in

Figure 4.8 show that these parameters are not correlated and were randomly

chosen for all the phenotypes.

(a) Anthocyanin (b) Germination Days

(c) Width (d) DTF

Figure 4.8: Posterior uni-variate distributions along the diagonal and bi-

variate distributions along the off-diagonal using RStan against MCMC it-

erations. These functions represent the top 2 predictors (or SNPs) for each

phenotype. The x-axis for each posterior distribution is the value of weights

corresponding to the input. Whereas the scatter plot helps to check the cor-

relation between the SNPs.

The potential scale reduction factor (PSRF) is computed by a popular

statistic, Rhat. This compares between and within-chain estimates to con-
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firm the convergence. The R-hat values less than 1.05 indicate that the chains

mix well (Luo and Jiao [2018]). The R-hat values for the selected SNPs of

Anthocyanin, Germination days, Width, and DTF are 1, 1, 1.01, and 1.01

respectively. Looking at these values, it can be concluded that the model

convergence was reached for all the phenotypes.

Finally, the MCMC diagnosis indicates that important SNPs were iden-

tified for all phenotypes.

4.2.2 Binary Phenotype

Figure 4.4a or Table B.1 in Appendix shows the two test evaluation metrics

for making comparisons of deep learning methodologies (NNs). The larger

the value of the metric, the better the model performs for the phenotype.

Reducing the difference between testing values indicates that the model is

avoiding over-fitting. For Anthocyanin, it is clearly evident that BNN outper-

forms CNN with high values of Precision (0.87 and 0.8708), Recall (0.8656

and 0.8531), F1-score (0.8677 and 0.8607), and AUC (0.8749); BNN has

a lesser gap in both splits. A high recall score indicates less number of False

negatives which is an advantage of using BayesDL over CNN.

It can be noted from Figures 4.5a and 4.5b that both SNPs from An-

thocyanin’s BayesDL results form analogous symmetric distributions with

a large shift from the standard normal distribution (the prior), depicting

that both the SNPs (or features) are important. This concludes that data

provided evidence against the null hypothesis and aposteriori the SNPs (or

features) are important for binary phenotypes.
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Table 4.10 shows the selected SNPs output from BayesDL for Antho-

cyanin. This binary phenotype showed Chr4 1503923 and AT4G03415

as a shared SNP and gene respectively with GAPIT which is evident from

Tables 4.3 and 4.5. However, there were no shared SNPs or genes with TAS-

SEL (see Tables 4.4 and 4.10). The genes AT5G57670 (Luo et al. [2017]),

AT4G03415, and AT4G04920 (Iorizzo et al. [2019]) regulate the produc-

tion of Anthocyanin in Arabidopsis thaliana.

4.2.3 Continuous Phenotype

R-squared and RMSE are used for comparing the performance of the regres-

sion NNs; their values are recorded in Figure 4.4b or Table B.1 in Appendix.

The higher and lower values of R-squared and RMSE respectively, the better

the performance of the NN model. A wider gap between split values increases

the risk of over-fitting. For both phenotypes, it is noticed that BayesDL out-

performs CNN. For instance, looking at Width values, R-squared is higher

for BayesDL (0.8313 and 0.836) than for CNN (0.5503 and 0.6305) with a

lesser gap (0.0047) in both the splits. The RMSE values are lower in BNN

(1.4254 and 1.5794) than those recorded for CNN (1.9195 and 2.0317) with

CNN RMSE values’ gap (0.1127) larger than that for BayesDL (0.154).

Figures 4.5e, 4.5f, 4.5g, and 4.5h demonstrate that BayesDL results for

Width and DTF have symmetric distributions that deviate significantly from

the standard normal distribution, indicating that both SNPs (features) are

important. These findings provide evidence against the null hypothesis and

support the significance of the SNPs (features) for all continuous phenotypes.

Tables 4.3, 4.11, and 4.12 display no shared SNPs or genes for any of
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the two continuous phenotypes. A similar result was noted from Tables 4.4,

4.11, and 4.12 when compared with TASSEL. This is a possibility as GAPIT

and TASSEL use GLM whereas BayesDL uses probabilistic models having

various distributions for SNP identification. The results of the BNN model

for Width and DTF are displayed in Tables 4.11 and 4.12 respectively. The

genes AT1G51120 and AT4G09350 are responsible for the continuous

development of leaf width (Franco-Zorrilla et al. [2014]). The most relevant

gene for DTF isAT1G59940 which is responsible for flowering in the species

(Hwang et al. [2002]).

4.2.4 Categorical Phenotype

Figure 4.4c or Table B.1 in Appendix records the two test accuracy scores

to make comparisons of NN methods for germination days. The higher the

accuracy, the better the performance of the model. For the categorical phe-

notype, the BayesDL exhibits superior performance compared to the CNN,

achieving two split accuracy scores of 0.9241 and 0.9334.

Figures 4.5c and 4.5d display that both SNPs from Germination days’

BayesDL results have symmetric distributions with a large shift from the

standard normal distribution. This finding provides evidence against the

null hypothesis, concluding that the SNPs are important features.

Table 4.13 displays the results of categorical phenotype. It neither showed

a shared SNP nor a shared gene with GAPIT and TASSEL (see Tables 4.3

and 4.4). However, this phenotype contributes to the germination of the

plant and a few genes (AT1G03890, AT3G31950, and AT4G35950)

were found responsible for it (Nagano et al. [2001], Maruta et al. [2021]).
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Table 4.5: SNP Validation for Anthocyanin. The table displays the top 10

SNPs reported by PentaPen. Bold values of genes and SNPs have the true

function of the phenotype.

SNPs Chr bp Gene Gene Function

SNP41810 Chr1 24362213 AT1G65540 LETM1-like protein. No

function found. TAIR.

SNP18139 Chr1 10547614 AT1G30070 SGS domain-containing pro-

tein. No function found.

TAIR.

SNP25069 Chr1 14026469 AT1G36980 transmembrane 50A-like pro-

tein. No function found.

NCBI.

SNP81693 Chr3 725078 AT3G03140 histone binding, protein

binding. NCBI.

SNP34101 Chr1 21234054 AT1G56650 Production of Anthocyanin

Pigment. TAIR.

SNP35159 Chr1 21692775 AT1G58390 Disease resistance protein

(CC-NBS-LRR class) family.

ADP binding. TAIR.

SNP36875 Chr1 22492447 AT1G61070 Predicted to encode a PR

(pathogenesis-related) pro-

tein. TAIR.

SNP26674 Chr1 16547538 No gene −

SNP85074 Chr3 2738646 AT3G08970 Can compensate for the

growth defect. Also shows

similarity to HSP40 proteins

and is induced by heat stress.

NCBI.

SNP45199 Chr1 26199451 No gene −
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Table 4.6: SNP Validation for Width. The table displays the top 10 SNPs

reported by PentaPen. The SNPs and genes which are bold, show the true

function of Width.

SNPs Chr bp Gene Gene Function

SNP51671 Chr1 30250888 No gene −

SNP41509 Chr1 24255390 AT1G65300 DNA-binding transcription

factor activity. Gene Ontol-

ogy.

SNP18948 Chr1 11016927 No gene −

SNP98767 Chr3 9842540 No gene −
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Table 4.7: SNP Validation for DTF. The table displays the top 10 SNPs re-

ported by PentaPen. The highlighted genes and SNPs show the true function

of DTF.

SNPs Chr bp Gene Gene Function

SNP47857 Chr1 25311984 AT1G67540 Protein Associated with

Lipid Droplets. Gene Ontol-

ogy.

SNP11327 Chr1 7300804 AT1G20950 Phosphofructokinase family

protein. ATP binding.

NCBI.

SNP10090 Chr1 6608183 AT1G19120 mRNA. No function found.

TAIR.

SNP76193 Chr2 12721604 AT2G29790 Encodes a Maternally ex-

pressed gene (MEG) family

protein. NCBI.

SNP30293 Chr1 19149817 AT1G51640 enables phosphatidylinositol-

4,5-bisphosphate binding.

TAIR.

SNP58484 Chr2 835205 No gene −

SNP74899 Chr2 12082004 AT2G28305 enables hydrolase activity.

TAIR.

SNP2195 Chr1 1219863 AT1G04490 hypothetical protein. No

function found. TAIR.

SNP102004 Chr3 9590645 AT3G26200 mRNA. iron ion binding.

NCBI.

SNP130361 Chr4 5198089 AT4G08250 DNA-binding transcription

factor activity. TAIR.
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Table 4.8: SNP Validation for Germination Days. The table displays the

potentially important SNPs reported by PentaPen. The gene and SNPs

showing the true function of the phenotype are highlighted.

SNPs Chr bp Gene Gene Function

SNP51671 Chr1 30250888 No gene −

SNP41509 Chr1 24255390 AT1G65300 DNA-binding transcription

factor activity. Gene Ontol-

ogy.

SNP13281 Chr1 7797023 AT1G22090 Protein of unknown func-

tion. Gene Ontology.

SNP34187 Chr1 21325557 AT1G57580 F-box family protein of un-

known function. NCBI.

SNP62673 Chr2 7129923 AT2G16440 Protein binding and DNA

replication. NCBI.
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Table 4.10: SNP Validation for Anthocyanin. The table displays the top 10

SNPs reported by BayesDL. The highlighted genes and SNPs are found to

show characteristics of Anthocyanin.

SNPs Chr bp Gene Gene Function

SNP89113 Chr3 5158241 No gene −

SNP207626 Chr5 23362168 AT5G57670 Enables protein ser-

ine/threonine kinase activity.

TAIR.

SNP27368 Chr1 16970522 AT1G44900 A protein essential to embryo

development. Overexpres-

sion results in altered root

meristem function. NCBI.

SNP129572 Chr4 2500993 AT4G04920 Enables transcription coreg-

ulator activity. TAIR.

SNP161227 Chr5 205246 AT5G01510 Protein of unknown function.

NCBI.

SNP25224 Chr1 14138318 AT1G37113 Hypothetical protein. No

function found. NCBI.

SNP197173 Chr5 18231342 AT5G45110 NPR1-like protein 3. En-

ables identical protein bind-

ing, protein binding, and sal-

icylic acid binding. TAIR.

SNP89096 Chr3 5144422 AT3G15280 No function found. NCBI.

SNP27389 Chr1 16980256 AT1G44910 Enables RNA binding, RNA

polymerase binding. NCBI.

SNP127389 Chr4 1503923 AT4G03415 Protein phosphatase inter-

acts with AGB1 and is lo-

calized to the plasma mem-

brane. TAIR.
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Table 4.11: SNP Validation for Width. The table displays the top 10 SNPs

reported by BayesDL. The bold values of SNPs and genes are responsible for

the observed trait.

SNPs Chr bp Gene Gene Function

SNP210343 Chr5 24959340 No gene −

SNP56046 Chr2 2309063 AT2G05970 F-box family protein with a

domain of the unknown func-

tion (DUF295). TAIR.

SNP52086 Chr2 100349 No gene −

SNP30943 Chr1 18938157 AT1G51120 Enables DNA-binding tran-

scription factor activity.

TAIR.

SNP134906 Chr4 5931715 AT4G09350 Chaperone DnaJ-domain su-

perfamily protein. No func-

tion found. NCBI.

SNP57073 Chr2 2994278 AT2G07212 Transposable element gene.

No function found. NCBI.

SNP51689 Chr1 30259387 AT1G80480 Plastid transcriptionally ac-

tive 17. No function found.

TAIR.

SNP178757 Chr5 9128487 AT5G26130 CAP (Cysteine-rich secre-

tory proteins). No function

found. NCBI.

SNP144027 Chr4 9309784 No gene −

SNP100922 Chr3 10838525 AT3G28840 Hypothetical protein

(DUF1216). No func-

tion found. TAIR.
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Table 4.12: SNP Validation for DTF. The table displays the top 10 SNPs

reported by BayesDL. There is only one gene or SNP that is associated with

DTF, which is highlighted in the table.

SNPs Chr bp Gene Gene Function

SNP42751 Chr1 23756683 No gene −

SNP31600 Chr1 19709266 AT1G52910 No function found. TAIR.

SNP96314 Chr3 6498906 No gene −

SNP198764 Chr5 22834746 No gene −

SNP51715 Chr1 27340888 No gene −

SNP57031 Chr2 317144 AT2G01720 Ribophorin I. enables protein

binding. NCBI.

SNP50026 Chr1 26410107 AT1G70130 Enables kinase activity, pro-

tein serine/threonine kinase

activity. TAIR.

SNP194264 Chr5 20105999 AT5G49540 Rab5-interacting family pro-

tein. No function found.

NCBI.

SNP38498 Chr1 22602399 No gene −

SNP36437 Chr1 22066825 AT1G59940 phosphorelay response regu-

lator activity, protein bind-

ing. TAIR.
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Table 4.13: SNP Validation for Germination Days. The table displays the

top 10 SNPs reported by BayesDL. The highlighted genes and SNPs are

found to be associated with the phenotype.

SNPs Chr bp Gene Gene Function

SNP80296 Chr2 19554169 AT2G47700 Enables protein binding,

ubiquitin-protein transferase

activity. TAIR.

SNP77096 Chr2 17432976 AT2G41790 Enables metalloendopepti-

dase activity. NCBI.

SNP152576 Chr4 13295619 No gene −

SNP6672 Chr1 3990189 AT1G03890 Enables nutrient reservoir ac-

tivity. TAIR.

SNP189759 Chr5 15364726 AT5G38386 F-box/RNI-like superfamily

protein. No function found.

NCBI.

SNP7494 Chr1 4392379 AT1G12890 Enables DNA-binding tran-

scription factor activity, pro-

tein binding. TAIR.

SNP76252 Chr2 16915416 No gene −

SNP105241 Chr3 12951052 AT3G31950 Nucleic acid-binding/zinc

ion-binding protein. TAIR.

SNP158329 Chr4 17025614 AT4G35950 GTP binding, GTPase activ-

ity, protein binding, protein

kinase binding. NCBI.

SNP80122 Chr2 19469107 No gene −
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Chapter 5

Discussion and Conclusion

Two workflows are proposed to find the important SNPs. Users can identify

reduced numbers of SNPs using the PentaPen (a penalized-based workflow).

By using the optimal number of hidden layers and units without changing

their activation functions for each run, researchers can employ BayesDL (a

BNN-based workflow) to identify important SNPs. The SNPs output from

both the workflows were utilized to find the shared SNPs with each other and

GWAS software (GAPIT and TASSEL). Using the final top 10 SNPs from

both the workflows, the SNP validation was carried out. The superiority of

PentaPen and BayesDL was confirmed by comparing the performance of the

proposed workflows with some of the existing models based on performance

metrics. The study provides a guideline for the researchers to choose an

appropriate workflow for their research with proposed workflows in terms of

identified SNPs, data dimensionality, model complexity, and prior distribu-

tions (in BayesDL).
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5.1 Identified SNPs

This section covers the biological interpretations and conclusions of the iden-

tified SNPs from individual penalized models, PentaPen, and BayesDL.

As reported in Table 4.1, penalized models using all SNPs report a larger

number of SNPs for the binary, continuous, and categorical phenotype than

PentaPen. This can be a relevant observation since Ridge and LASSO mod-

els, hence, Elastic net, are dependent on trait architecture (Seymour et al.

[2016]). Ridge shrinks the features’ coefficient to 0 but does not reduce the

features. Due to the sparsity in SGL, the union of SNPs selected from Group

LASSO and SGL gave a reduced number of important SNPs; this is more

promising because PentaPen identifies SNPs by combining the essential prop-

erties of feature selection from all the five models. PentaPen helps to reduce

the impact of noise and variability in the data, making PentaPen less suscep-

tible to over-fitting. It can be concluded that PentaPen selects reasonable

numbers of SNPs compared to single penalized models as they either give too

many (like in Ridge) or too few (as in SGL) SNPs which can not be useful

for biological interpretation. Hence, PentaPen was able to leverage the ben-

eficial properties of the five penalized models by choosing SNPs and showing

similar prediction performance when compared with the five models.

According to the results, the final set of outputs from both the pro-

posed workflows had neither shared SNPs nor shared genes when compared

with each other. This is possible due to various reasons: different statistical

models, different numbers of input predictors, and model complexity. Pen-

taPen’s output did not show shared SNPs or genes with GAPIT or TASSEL
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for Width (continuous phenotype) and Germination days (categorical pheno-

type); whereas, there was a shared gene and SNP with GAPIT but not with

TASSEL for Anthocyanin (binary phenotype) and DTF (continuous pheno-

type) respectively. BayesDL’s output for Anthocyanin (binary phenotype)

showed a shared SNP and gene with GAPIT but not with TASSEL while

other phenotypes did not have shared SNPs or genes with both GWAS soft-

ware. However, there were SNPs and genes shared between GAPIT and TAS-

SEL for Anthocyanin (binary phenotype) and Width (continuous phenotype)

except for DTF (continuous phenotype) and Germination days (categorical

phenotype). This is possible because GAPIT and TASSEL employ GLM,

whereas PentaPen uses five distinct penalized approaches, and BayesDL uti-

lizes various probabilistic models and distributions to identify the potentially

important SNPs.

Hence, it is advised to locate the potentially important SNPs using both

the GWAS software and our study workflows because they use different sta-

tistical methods, pre-processing steps, hyper-parameter choices, and the in-

clusion of prior knowledge. PentaPen, BayesDL, and both GWAS software

possessed some of the genes necessary for the phenotypic traits found in Ara-

bidopsis thailana species. These techniques can be applied to a phenotype of

this species and are thought to be complementary to one another. Further,

it is also recommended to analyze multiple instances of the same phenotype

(binary, continuous, or categorical) from the workflows to increase the relia-

bility of results for identifying shared SNPs or genes with GWAS software.

The SNP validation proved that PentaPen and BayesDL were able to find

a few promising SNPs which showed the function of that phenotype; this

concludes that both the workflows perform similarly in terms of identified

SNPs.
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5.1.1 Linkage Disequilibrium

The non-random association of alleles at two or more loci is called Linkage

disequilibrium (LD). The LD was not removed while pre-processing the data

due to the removal of SNPs with high LD during the SNP calling step. A

few identified SNPs from PentaPen and BayesDL resulted in LD with each

other. For example, in DTF (continuous phenotype) Chr4 5198089 is highly

correlated with Chr1 26410107. Since LD is measured as squared correlation,

this leads to redundant information from the cluster of highly correlated

SNPs. These SNPs may not contribute independently to the workflow’s

performance which further impacts the interpretability of the results. Despite

the mentioned limitations, LD patterns reflect the genetic architecture of the

studied population and inform about the genetic regions with high LD which

further aids in identifying rare variants. However, it was found that among

the SNPs identified by PentaPen for Anthocyanin (binary phenotype), there

were only two highly correlated SNPs (Chr1 22492447 and Chr3 2738646).

Similarly, for Anthocyanin, BayesDL identify two highly correlated SNPs

(Chr3 5158241 and Chr5 205246). For other phenotypes, both PentaPen

and BayesDL do not identify any highly correlated SNPs.

5.2 Models’ Performance

This section covers the interpretation and conclusion of each penalized model,

PentaPen, and BayesDL.

The rigorous comparison of penalized models using all SNPs depicts that
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Ridge outperforms Group LASSO and SGL whereas LASSO and Elastic

net should be preferred over Ridge, Group LASSO, and SGL for classify-

ing/predicting the groups/responses accurately. LASSO and Elastic Net

demonstrate the efficacy of a good classification/regression model evident

from the findings across all the phenotypes. Okser et al. [2014] also showed

that LASSO and Elastic Net have similar prediction behavior for two whole-

genome SNP data. However, Romagnoni et al. [2019] found that Ridge,

LASSO, and Elastic Net provide similar results with optimized evaluation

metrics on the Immunochip data set. For all the phenotypes, the test scores

of Group LASSO and SGL using all SNPs indicate that they perform worse

than Ridge. Including Ridge in the union for the input set of Group LASSO

and SGL using filtered SNPs provides a larger set of input variables which

helps reduce the risk of over-fitting and improve the model’s performance.

Between the results of Group LASSO and SGL using filtered SNPs, the

former generally perform better, as shown in Table A.3 in Appendix or Fig-

ure 4.3. But SGL using filtered SNPs has group-wise and within-the-group

sparsity (Simon et al. [2013]) and can potentially benefit PentaPen. SGL was

discovered to provide comparatively lower testing metrics value than Group

LASSO. Instead, Group LASSO using filtered SNPs offered less variance be-

tween the values of the training and testing parameters. It was also noticed

that even if Group LASSO and SGL use a lesser number of inputs (or SNPs)

when trained to get the final output of PentaPen than other penalized meth-

ods using all SNPs, they perform equally well as Ridge, LASSO, and Elastic

net & even better than Group LASSO and SGL using all SNPs. This finding

leads us to the conclusion that PentaPen uses models that reduce the bias

and variance of their models, and obtain more stable estimates of the coeffi-

cients.

110



It was found that PentaPen performs similarly to Ridge, LASSO, and

Elastic Net based on its evaluation metrics while producing reduced num-

bers of SNPs for the binary phenotype. For continuous and categorical pheno-

types, PentaPen still performs similarly to LASSO and Elastic Net. However,

for binary phenotype, PentaPen outperforms Group LASSO and SGL using

all SNPs while reducing over-fitting evident in Group LASSO and SGL. For

continuous and categorical phenotypes, PentaPen outperforms Ridge along

with Group LASSO and SGL using all SNPs. This further guarantees that

PentaPen could combine the strengths of five models to make better predic-

tions and identify SNPs with confidence. Hence, based on the performance

metrics calculated in this study, it can be concluded that PentaPen is supe-

rior to some of the existing methodologies with the advantages of combined

strengths of the models used.

A thorough comparison of deep learning approaches depicts that the

BNN model should be chosen above CNN, for both classification and regres-

sion. Similar superiority of BNNs over traditional models was noted by Beam

et al. [2014]. Bayesian combined with deep learning is advantageous in var-

ious scenarios because they provide a framework for probabilistic modeling

that allows for uncertainty quantification. BayesDL’s averaging of samples

from the posterior distribution reduces variability and over-fitting, unlike

traditional deep learning models that output a single prediction. This prop-

erty enhances generalization to new data, making BayesDL more reliable

than traditional models in limited sample size instances (Gal and Ghahra-

mani [2016], Blundell et al. [2015]). It can also be concluded that with fewer

samples in phenotypes, the BNN model was advantageous over CNN. The

possible reasons for the better performance of BayesDL are that it is flexible

in handling sparse data with a small sample size; in contrast, CNN requires
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complete data (based on the data used in this study, the rows need to be

replicated to make it a full data) to handle such data (Deist et al. [2018]).

Additionally, BNNs incorporate prior knowledge or constraints, which can

be helpful in biological applications where some knowledge about the data is

available (Liu et al. [2019]). The use of prior information about the distribu-

tion of the parameters help to regularize the model, which can help prevent

over-fitting and improve the performance of the model (Ghahramani [2015]).

Hence, in conclusion, based on the performance metrics calculated in this

study, the BayesDL is superior to CNN with advantages of the properties of

Bayesian.

5.2.1 Controlling R-squared Errors: Impact on Per-

formance

Controlling R-squared errors during evaluation helps in gaining more reli-

able estimates of workflows’ performance. There are various ways to control

R-squared errors in PentaPen and BayesDL. This can be done through cross-

validation by assessing the average performance of the workflows and mit-

igating the influence of over-fitting. Although cross-validation was utilized

in PentaPen, this technique can be used in BayesDL to assess the impact.

Regularization methods are also effective in controlling over-fitting and R-

squared errors. In PentaPen, the penalty terms can be tuned in individual

models while in BayesDL, optimized prior variance can be used. This will

result in finding a balance between model performance and generalizability.

Further, controlling R-squared errors might enable unbiased comparison of

different models, prevents over-fitting, and generalize better to unseen data.
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5.3 Data Dimensionality and Model Complex-

ity

Table 5.1 displays the data dimensionality and model complexity of PentaPen

and BayesDL (Li et al. [2018b]).

Table 5.1: Comparison of two developed workflows based on the data di-

mensionality and model complexity. Here, n, p, and o denote the number of

samples, predictors, and output dimensions or classes of the data set respec-

tively. The number of folds, iterations, chains, hidden layers, and nodes in

each layer is represented by k, i, c, m, and N respectively. ppool are the num-

ber of SNPs from SNP Pooling. The number of SNPs preliminary selected

from the hypothesis test are given by pfilter. Lastly, P is the total number

of parameters of the workflow.

Workflows Data’s

dimen-

sion

Model’s

dimen-

sion

Total pa-

rameters

# of

itera-

tions

Time com-

plexity

PentaPen n× p n× p 3∗p+2∗ppool 5 O(k∗p2∗n∗i+

n2)

BayesDL n×

pfilter

m× N p+100∗ p+

50 ∗ o

1000

(post

warmup)

O(i ∗ c ∗P ∗n ∗

pfilter)

Based on the data dimensionality, the study findings suggest various op-

tions for researchers who are dealing with whole-genome SNP data. Table
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5.1 displays that the workflows have different data dimensionality and inter-

ested researchers can choose a workflow based on the data they are using.

Researchers using all SNPs (or features) as the input may prefer using Pen-

taPen. By simply inputting their data and pre-processing it according to

the variability in the nucleotide notations in the data, researchers can obtain

the final set of SNPs using PentaPen. However, BayesDL requires signifi-

cant computational resources (32GB computation RAM) even after prelim-

inary feature selection. Therefore, if researchers have SNPs in the range of

90 to 250, the suggested approach for SNP identification would be to use

BayesDL. However, if they have a smaller sample size than 175, then after

selecting SNPs less than the number of samples (p<n), using BayesDL would

be recommended due to its advantage of having prior knowledge about the

parameters, reducing over-fitting, and increasing the prediction performance.

Based on the model complexity, the research has different suggestions for

choosing the workflow for SNP identification. It can be noticed from Table 5.1

that comparison based on the time complexity of the workflows is challenging

as they depend on different parameters. However, it is evident that BayesDL

has model dimensions based on the number of hidden layers and nodes in each

layer, which makes the model more complex than PentaPen. Additionally,

the number of parameters and iterations of BayesDL are more than those used

in PentaPen. This leads to the conclusion that BayesDL is more complex

than PentaPen and it may take more computational time.

Additionally, the time complexity of PentaPen was compared with the

penalized models. The time complexity of Ridge, LASSO, and Elastic Net is

O(k∗p2∗n∗i). The time complexity for PentaPen is O(k∗p2∗n∗i+n2). Here,

k represents the number of folds, p denotes the number of input predictors or
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SNPs, n is the number of input samples, and i gives the number of iterations

used to train and validate the workflow. It is noticed that the time complexity

of PentaPen is greater than that of individual penalized models due to the

Hierarchical clustering involved in group formation.

Furthermore, the computation time of PentaPen with each penalized

model was compared. Ridge, LASSO, and Elastic net used all SNPs as

input, and the computation was more complex in Ridge than in the other

two models as seen from Table 4.2. This is because the tuning parameter λ

in Ridge takes a long time when dealing with small-p(SNP)-large-n(sample)

data. Despite taking longer to compute than the Elastic net and LASSO,

PentaPen has the advantage of combining properties of five penalized models

to identify more important SNPs than any of these five models. PentaPen

utilizes parallel computing to speed up the computation of multiple penalized

models. This workflow takes the union of selected SNPs from Ridge, LASSO,

and Elastic net as input for Group LASSO and SGL; Group LASSO and

SGL further output the important SNPs utilizing their strongly group-sparse

property (Huang and Zhang [2010]). This can be noticed from Table 4.1 that

PentaPen finally produces reduced numbers of the most important SNPs.

These SNPs were further validated to find corresponding genes’ properties

with the phenotype.

The utilization of probabilistic models that are integrated with the data

has been observed to enhance the prediction power while using BNN for

prediction (Neal and Zhang [2006]). Despite the high computational time

(displayed in Table 4.9) and computational memory requirements (a server

of at least 32GB RAM) of BayesDL, it offers several advantages. It results in

high prediction power, mitigates the issue of over-fitting, and can effectively
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handle data sets with fewer sample sizes.

5.4 Prior Distributions

The researchers who are choosing to use BayesDL may find it challenging

to obtain prior distributions or beliefs of the genome data or parameters.

However, they may refer to the existing literature or the Bayesian statisticians

to gain some insight into the expected ranges of values for the parameters. In

some cases, domain-specific knowledge can also provide valuable information

for setting priors. Researchers may also choose to use non-informative priors

or priors that are not affected by the choice of hyperparameters to reduce

the impact of prior specifications on the final results. Overall, while it may

not always be feasible to obtain prior distribution for all parameters, using

uninformative priors can still improve the chances of reliability on BayesDL.

5.5 Limitations and Guidelines for BayesDL

Based on the experimental results and discussion in the above sections, there

are several challenges to running BayesDL on whole-genome data. BayesDL

involves sampling from posterior distributions that require storing multiple

weight samples. It is computationally expensive and consumes more memory,

especially for high-dimensional data and complex models. The large number

of weight samples also leads to slow convergence to the true posterior. In

conclusion, scaling BayesDL to large datasets can be challenging due to the

increased computational and memory requirements.
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Although BayesDL is recommended for smaller sets of SNPs (90-250

SNPs) and poses several challenges, the advantages of Bayesian methods

in handling uncertainty, regularization, prior knowledge, and reducing over-

fitting make it a promising approach. BayesDL can be used for whole-genome

SNP data with hundreds of thousands of SNPs by addressing the challenges

in several ways. Instead of running BayesDL on the entire dataset at once,

use mini-batch sampling to process smaller subsets of data (Kuhn et al.

[2020]). BayesDL can be parallelized to leverage multiple processors or GPU

resources. The traditional MCMC methods for Bayesian inference may be

computationally intensive, but advanced techniques like Stochastic Gradi-

ent Langevin Dynamics (Welling and Teh [2011]) can be employed to scale

to whole-genome data. Further, BayesDL can be trained in a progressive

learning technique, starting with a small subset of the data, and gradually

incorporating more data in subsequent iterations. These methods help re-

duce memory requirements and enable the handling of larger datasets.

5.6 Contributions

The thesis has made significant contributions that can be summarized as

follows:

• The thesis provided a rigorous comparison of penalized models for inter-

ested researchers about the best available methods for feature selection.

• The thesis also provided a guideline for the bioinformatics research

community by comparing the performance of deep learning models.

• In the thesis, two new workflows have been proposed. PentaPen com-
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bines various penalized methodologies, while BayesDL combines the

Bayesian methods with deep learning. Both of these workflows have

demonstrated superior performance metrics compared to some of the

top-performing models. Additionally, these workflows have identified

SNPs with greater confidence by reducing false negatives, highlighting

their potential as powerful tools in SNP identification.

• BayesDL is user-friendly as it utilizes only one model whose hyper-

parameters can be easily tuned in Stan. BayesDL does not require

extensive knowledge in preliminary feature selection and training the

model in whole-genome SNP data, yet it has identified a highly relevant

set of differentially expressed SNPs.

5.7 Future work

This research has several potential works for the future, which are listed

below:

• To expand the current research, a study of how the model differences

between GWAS, penalized, and deep learning models influence the var-

ied SNPs identified from them could be included.

• Another potential work is to combine PentaPen with different GWAS

software to get the important SNPs with high confidence.

• More work can be done for selecting input SNPs of deep learning mod-

els using additional algorithms and related R packages, such as MXM

developed by Tsagris and Tsamardinos [2019], which also implements
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statistical and conditional independence tests (like Fisher and Spear-

man correlation).

• An expanded approach for BayesDL is to run the model for 5 iterations

to compute averaged performance metrics. This may be done in parallel

which results in decreased computation time and RAM and also has

the potential to enhance the model’s performance. It would be essential

to investigate the impact of this approach on relevant SNP selection

further.

• Researchers could focus on optimizing PentaPen and BayesDL for plant-

specific characteristics (such as genomic variations and polyploidy) by

developing specific pre-processing techniques like array customization

of samples (Sun et al. [2020]). They may integrate domain-specific

knowledge to enhance SNP identification and interpretation in diverse

plant genomes. Collaboration with plant geneticists can help in general-

izing the workflows for diverse plant genomes and foster advancements

in plant genomics research.

• The issue being investigated has the potential to be rephrased as a

multi-task prediction challenge, which could then be tackled with the

MTPS R package developed by Xing et al. [2020]. This package can

execute various methods, including GLM, k-nearest neighbor classifica-

tion, and Support Vector Machine. The researchers have claimed that

MTPS offers better prediction performance than neural networks. It is

also possible to combine SNP identification with MTPS, which could

lead to even more promising outcomes.

• Analyzing more instances of the phenotypes of the same data type

(binary, continuous, or categorical) may increase the reliability of the
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results in identifying the shared SNPs or genes with the GWAS soft-

ware. The researchers may use the same or varied genotype data for

this potential future work.

• The research can be expanded to address the issue of LD and reduce

correlated SNPs by performing LD pruning or LD clumping or LD

adjustment during pre-processing.
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Recio, Inke R König, Heping Zhang, and Yan V Sun. Machine learning in

130



genome-wide association studies. Genetic epidemiology, 33(S1):S51–S57,

2009. doi: https://doi.org/10.1002/gepi.20473.

Bettina Mieth, Marius Kloft, Juan Antonio Rodŕıguez, Sören Sonnenburg,
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Table A.1: Comparison of Ridge, LASSO, and Elastic Net without SNP

Pooling for all the phenotypes. The performance metrics are recorded for

both training and testing sets.

Phenotype Metrics Data

Split

All SNPs

Ridge LASSO Elastic

Net

Anthocyanin

Precision
Train 0.95 0.765 0.751

Test 0.851 0.756 0.742

Recall
Train 0.911 0.764 0.754

Test 0.826 0.745 0.748

F1-score
Train 0.975 0.766 0.759

Test 0.907 0.755 0.742

AUC
Train 1 0.942 0.977

Test 0.895 0.897 0.959

Width

R-squared
Train 0.944 0.82 0.808

Test 0.694 0.801 0.778

RMSE
Train 0.255 0.241 0.253

Test 0.453 0.263 0.263

DTF

R-squared
Train 0.909 0.758 0.755

Test 0.679 0.604 0.625

RMSE
Train 0.008 0.013 0.013

Test 0.679 0.604 0.625

Germ Accuracy
Train 1 0.942 0.977

Test 0.789 0.879 0.903
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Table A.2: Comparison of Group LASSO, SGL using all SNPs, and Pen-

taPez for all the phenotypes. The performance metrics are recorded for both

training and testing sets.

Phenotype Metrics Data

Split

All SNPs

Group

LASSO

SGL PentaPen

Anthocyanin

Precision
Train 0.925 0.951 0.8494

Test 0.77 0.769 0.75

Recall
Train 0.884 0.933 0.806

Test 0.793 0.788 0.7014

F1-score
Train 0.931 0.998 0.827

Test 0.773 0.772 0.7249

AUC
Train 0.576 0.998 0.958

Test 0.499 0.516 0.879

Width

R-squared
Train 0.455 0.948 0.8323

Test 0.052 0.081 0.724

RMSE
Train 1.586 0.275 1.224

Test 4.665 5.002 1.45

DTF

R-squared
Train 0.738 0.735 0.866

Test 0.235 0.299 0.753

RMSE
Train 0.397 1.098 0.0157

Test 3.996 4.334 0.0175

Germ Accuracy
Train 0.528 0.947 0.772

Test 0.359 0.679 0.741
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Table A.3: Comparison of penalized methodologies using filtered SNPs as

predictors for all the phenotypes. The performance metrics are recorded for

both training and testing sets.

Phenotype Metrics Data

Split

Filtered SNPs

Group

LASSO

SGL

Anthocyanin

Precision
Train 0.796 0.977

Test 0.769 0.789

Recall
Train 0.801 0.981

Test 0.771 0.792

F1-score
Train 0.809 0.989

Test 0.773 0.796

AUC
Train 0.983 0.963

Test 0.952 0.826

Width

R-squared
Train 0.759 0.941

Test 0.701 0.786

RMSE
Train 0.451 0.095

Test 0.496 0.465

DTF

R-squared
Train 0.626 0.818

Test 0.557 0.724

RMSE
Train 0.017 0.009

Test 0.061 0.184

Germ Accuracy
Train 0.882 0.711

Test 0.871 0.609

147



Appendix B

Deep Learning Results

148



Table B.1: Comparison of BayesDL with a deep learning model, CNN. The

two-split test performance metrics are recorded for comparison.

Phenotype Metrics Data Split Neural Networks

CNN BNN

Anthocyanin

Precision
Split 1 0.9545 0.87

Split 2 0.7334 0.87084

Recall
Split 1 0.6363 0.8656

Split 2 0.7097 0.8531

F1-score
Split 1 0.7636 0.8677

Split 2 0.7213 0.8607

AUC
Split 1 0.9372 0.87492

Split 2 0.8415 0.87492

Width

R-squared
Split 1 0.5503 0.8313

Split 2 0.6305 0.8386

RMSE
Split 1 1.9195 1.4254

Split 2 2.0317 1.5794

DTF

R-squared
Split 1 0.2693 0.9308

Split 2 0.9609 0.9422

RMSE
Split 1 0.0029 0.0005

Split 2 0.0073 0.0004

Germ Accuracy
Split 1 0.8077 0.9241

Split 2 0.7258 0.9334
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