
Numerical approximation of Dγ
t u with a controlled precision

Nehemie Nguimbous

May 2023

1 Introduction and Background

As indicated in the title of [2], the primary goal of this study is to numerically solve a one-dimensional
Gierer-Meinhardt model with sub-diffusion. The fractional operator Dγ

t u from lemma (2.1) in [2] is an
inherent part of this system. It is essential to compute it with consistent precision to prevent any form of
contamination. Additionally, we chose t instead of y as in [2] as the dependent variable of Dγ

t u to symbolize
its time dependency, as it is conceptually the case.

The fractional operator Dγ
t u depends on two parameters: p and γ, with p being a parameter related to

the function u. As shown in the next section, numerically computing Dγ
t u implies the integration of a spike-

type fractional power function whose shape varies significantly, as shown in Figure (2) of Section (6). Since
that function is bell-shaped with a very steep slope, computing its integral requires a significant number
of subdivisions. Moreover, since the spikes are defined in an infinite domain, the number of subdivisions
required increases even further. Even though computing Dγ

t u requires a high number of subdivisions in all
cases, their order of magnitude varies significantly depending on the shape of the spikes. For example, a
normal spike with a bell width of order O(ϵ) requires a number of subdivisions of order O(1/ϵ). Moreover,
the spike tail decays exponentially, which makes it easy to be captured in a relatively small interval. For
instance, a spike of width 0.1 centered at the origin on a domain of (-1, 1) will need 1/0.1 = 10 subdivisions
within (-0.05, 0.05) to be properly captured.

By contrast, an anomalous spike’s tail decays algebraically (i.e., considerably more slowly). It will then
need a very large and finely meshed interval to be properly captured. For example, an anomalous spike’s
tail could decay to 10−5 over a domain (-100, 100). The situation can worsen when dealing with interactions
between several spikes, where the domain increases even further, or in the case of chaotic behavior where
extremely fine time resolution is required. Furthermore, the number of subdivisions also increases with the
precision being required.

An important consideration arises: while employing numerical methods to approximate subdivisions,
these methods often provide error-bounded formulas based on subdivisions. It is logical to question why we
do not use such a formula to determine n based on the desired error. Let us explore this using Simpson’s
method as an example, which we will utilize further. According to [1, page 203], considering |f (4)| as the
continuous fourth derivative of a function f , and M as any upper bound for the values of |f (4)| on [a, b], then
the error |Ef | in the Simpson’s rule approximation of the integral of f from a to b satisfies the inequality:

|Ef | ≤
(b− a)5

180
· M
n4

.

However, this approach faces two primary challenges. Firstly, it involvesM , supposedly the maximum for the
fourth derivative of f . Yet, determining a maximum for a complex function like u(4) is unfeasible. Secondly,

1

Nehemie Nguimbous

an issue also arises with the term b− a. Operating within a theoretically infinite domain where a and b can
tend to infinity, the term b− a becomes an indeterminate form.

In summary, to make the best possible use of computer resources, it is essential to find a way to determine
the number of subdivisions required for controlling precision, depending on the shape of those spikes and
the domain in which they are defined. Answering this question will be the subject of our study.

2 Procedure

1. We split the main term of Dγ
t u using two integrations by parts to simplify it and replace the original

improper integral by proper computable terms.

2. The results of these integrations is a sum of constants and a yet to be evaluated integral. We evaluate
the integral using the composite Simpson method. We selected the C programming language due to
its speed and efficiency, providing a significant advantage when dealing with memory-intensive and
power-demanding data.

3. We gradually increment the number of subdivisions used by our program to compute these integrals
until a precision of 10−10 is reached. These computations are performed for a predefined set of values
of the parameters p and γ.

4. We attempted to plot the correspondence between the number of subdivisions n and the value of the
integral obtained , but the resulting functions were neither smooth nor continuous. We then shifted
our focus toward the residual function.

5. The shapes of the residual functions are similar to that of the hyperbolic arctangent function, which
is then used as the fitting function.

6. Finally, we use the inverse functions of the fitting curves to approximate the number of subdivisions n
given a residual value r.

In summary, by implementing the above procedure, we expect to build a program capable of computing Dγ
t u

for all values of p and γ with a precision of 10−10.

3 Plan

1. Section 4 covers Step 1 in the procedure for regularizing Dγ
t u.

2. Steps 2 and 3, starting from Section 6 up to Subsection 6.1.4, involve determining the number
of subdivisions n needed to compute I. This calculation is for (t, p, γ) values within the ranges:
{0.1, 1, 5} × {1.5, 2, 2.5, . . . , 4.5} × {0.1, 0.2, 0.3, . . . , 0.9}.

3. Steps 4, 5, and 6, spanning from Subsection 5.2 to 5.3.2, describe the fitting process and can be
visualized as follows:

We fit the correspondence
n(t,p,γ) → R(t,p,γ)(n),

using a variant of the hyperbolic-arctangent function, denoted as f . Consequently,

n(t,p,γ) → f(t,p,γ)(n) ∼ R(t,p,γ).

Nehemie Nguimbous

To find the number of subdivisions based on a specific residual (the inverse path), we determine the
inverse f−1 of f so that

f−1
(t,p,γ)(R) → n(t,p,γ),

where n(t,p,γ) and R(t,p,γ) represent the number of subdivisions and the corresponding residual values
for specific t, p, and γ values.

4. The process is now generalized for (t, p, γ) ∈ [0, 5] × [1.5, 4.5] × [0.1, 0.9] from Section 7 to 9 using a
series of linear and bilinear interpolations.

5. Section 10 involves the verification process where the accuracy of our results is assessed.

4 Regularization of Dγ
t u

From section (2.1) in [2], we have

Dγ
t u(t) = sign

(
dxi

dσ

)
1

Γ(−γ)

∫ ∞

0

{
u(t)− u

(
t+ sign

(
dxi

dσ

)
y

)}(
−dxi

dσ

1

y

)γ+1

dy, (1)

with

Dγ
(−t)u(−t)

∣∣∣
x′
i>0

= Dγ
t u(t)

∣∣∣
x′
i<0

.

From (1), the expression of Dγ
t u is not directly computable because of the singularity present in the expres-

sion. Hence, we perform a double integration by parts and employ a Taylor expansion of u around a certain
point to get rid of the singularity.
For x′

i < 0 and t > 0, we have

Dγ
t u(t) = − 1

Γ(−γ)

∫ t∞

0

u(t)− u(t− y)

yγ+1
dy.

The first integration by parts

a(y) = u(t)− u(t− y),
db

dy
=

1

yγ+1
,

leads to

Dγ
t u(t) = − 1

Γ(−γ)

{
u(t)− u(t− t∞)

γtγ∞
− lim

t→0

1

γ

u(t)− u(t− t∞)

tγ
+

∫ t∞

0

u′(t− y)

γyγ
dy

}
,

with lim
t→0

u(t)− u(t− y)

tγ
= 0. The proof for this is straightforward since

u(t)− u(t− y)

tγ
∼

u(t)−
(
u(t) + u′(t)(−t) +

u′′(t)t2

2!
+ · · ·+ · · ·

)
tγ

= u′(t)t1−γ − u′′(t)t2−γ

2
+ · · ·

with 0 < γ < 1. We obtain

Nehemie Nguimbous

Dγ
t u(t) = − 1

Γ(−γ)

{
u(t)− u(t− t∞)

γtγ∞
+

∫ t∞

0

u′(t− y)

γyγ
dy

}
.

By applying a second integration by parts on the last terms in the brackets,

a(y) = u′(t− y),
db

dy
=

1

yγ
,

we obtain ∫ t∞

0

u′(t− y)

γyγ
dy = − t1−γ

∞
γ − 1

u′(t− t∞)− 1

γ(γ − 1)

∫ t∞

0

u′′(t− y)t1−γdy.

This finally leads to

Dγ
t u(t) = − 1

Γ(−γ)

{
t−γ
∞
γ

(u(t)− u(t− t∞)− t1−γ
∞

γ(γ − 1)
u′(t− t∞)− 1

γ(γ − 1)

∫ t∞

0

u′′(t− y)t1−γdy

}
. (2)

We have

γΓ(−γ) = Γ(1− γ) and γ(γ − 1)Γ(−γ) = Γ(2− γ).

Additionally, from lemma (2.2) in [2],

u′′(t− y) = u(t− y)− up(t− y),

which leads to ∫ t∞

0

u′′(t− y)t1−γdy = −
∫ t−t∞

0

u′′(t)(t− y)1−γdy.

We finally obtain

Dγ
t u(t) = − t−γ

∞
Γ(1− γ)

(
u(t) − u(t − t∞)

)
+

t1−γ
∞

Γ(2− γ)
u′(t − t∞) − 1

Γ(2− γ)

∫ t−t∞

y

u′′(y)(t − y)1−γ dy. (3)

Similarly, for x′
i > 0, t < 0 and since u is even, we have

Dγ
(−t)u(−t) =

t−γ
∞

Γ(1− γ)

(
u(−t)− u(−t+ t∞)

)
+

t1−γ
∞

Γ(2− γ)
u′(t∞ − t)− 1

Γ(2− γ)

∫ −t+t∞

−t

u′′(y)(t+ y)1−γ dy

=
t−γ
∞

Γ(1− γ)

(
u(t)− u(t− t∞)

)
− t1−γ

∞
Γ(2− γ)

u′(t− t∞)− 1

Γ(2− γ)

∫ −t+t∞

−t

u′′(−y)
(
t− (−y)

)1−γ

dy

=
t−γ
∞

Γ(1− γ)

(
u(t)− u(t− t∞)

)
− t1−γ

∞
Γ(2− γ)

u′(t− t∞) +
1

Γ(2− γ)

∫ t−t∞

t

u′′(y)(t− y)1−γ dy

with 0 < γ < 1, and u defined as

u(t) =

(
p+ 1

2
sech2

(p− 1)t

2

) 1
p−1

,

Nehemie Nguimbous

and verifying the following differential equation

u′′ − u+ up = 0, −∞ < t < ∞. (4a)

u′(0) = 0, u(0) > 0, and lim
|t|→∞

u = 0. (4b)

Let us have

I1 =
t−γ
∞

Γ(1− γ)

(
u(t− t∞)− u(t)

)
, I 2 =

t1−γ
∞

Γ(2− γ)
u′(t− t∞), and I 3 =

t1−γ
∞

Γ(2− γ)

∫ t−t∞

t

u′′(y)(t− y)1−γ dy.

In both cases, Dγ
t u is expressed as the sum of three terms, the first two being constants, and the third being

an integral. The first two terms are exact values, hence our approximation will focus solely on the integral.
Furthermore, it’s important to note that for both t > 0 and t < 0, the integrand as well as the integration
bounds remain the same. Therefore, the number of subdivisions required to compute the integral with the
desired precision will be the same for both signs of t. Hence, we will concentrate solely on determining

I =

∫ t−t∞

t

u′′(y)(t− y)1−γ dy for a specific sign of t, in our case, t > 0.

5 Numerical approximation of I with a controlled precision

5.1 Structure of the project

Below is the repository tree of the project. At the root of the project, you have two main repositories, Code
and Data.

Figure 1: Tree diagram of the project repository.

Nehemie Nguimbous

• Repository path: \Code.

• Repository description: Contains all the code for the project, either in C or in Octave.

• Repository content: C, Octave.

– Repository path: \Code\C.

– Repository description: Contains all the C code for the project.

– Repository content: Du, functions, WriteFile.

∗ Repository path: \Code\C\functions.

∗ Repository description: Contains all the functions and their prototypes used to approximate
the number of subdivisions.

∗ Repository content: functions.h, functions.c.

· File name: functions.h.

· Contains all the functions’ prototypes used to approximate the number of subdivisions.

· File name: functions.c.

· File description: Contains the implementation of all the functions used in the approxi-
mation process.

· File content: sech, u, u1, u2, integrand, I_1, I_2, I_3, Du, simpson, findPosition_p,
findPosition_g, linearN_T, bilinearN_p_g, n_approx, n_approx_general, N_T, N_logT,
logN_T, logN_logT, even, reverse_n, join.

· File name: functions.h.

· File description: Contains the prototypes of all the functions used in the approximation
process.

∗ Repository path: \Code\C\Du.

∗ Repository description: Contains the C file used to reconstruct the curve of Dγ
t u.

∗ Repository content: Du.c.

· File name: Du.c.

· File description: Contains the code used to reconstruct the curve of Dγ
t u.

∗ Repository path: \Code\C\WriteFile.

∗ Repository description: Contains the C file used to implement the composite Simpson method
and to print its returned value in text files.

∗ Repository content: WriteFile.c.

· File name: WriteFile.c.

· File description: Contains the C code used to implement the composite Simpson method
and to print its returned value in text files.

– Repository path: \Code\Octave.

– Repository description: contains all the Octave code of the project.

– Repository content: Fit_Curve.

∗ Repository path: \Code\Octave\Fit_Curve.

Nehemie Nguimbous

∗ Repository description: Contains all the Octave files used to fit the residuals.

∗ Repository content: test1.m, fit_curve.m, fit_curvef.m

· file name: test1.m.

· file description: Main file containing the overall logic of the fitting process.

· file name: fit_curve.m.

· file description: Contains the implementation of the fit_curve function which use is
explained later in this document.

· file name: fit_curvef.m.

· file description: Contains the implementation of the fit_curvef function which use is
explained later in this document.

• Repository path: \Data.

• Repository description: Contains all the data used in our project.

• Repository content: P_G, Nmax_Nmin, R, C.

– Repository path: \Data\P_G.

– Repository description: Holds the files containing the returned value of the Simpson method for
t = 0.1, 1, 5.

– Repository content: t0p1, t1, t5.

– Repository path: \Data\C.

– Repository description: Holds the files containing the c(c1, c2) parameters for t = 0.1, 1, 5.

– Repository content: t0p1, t1, t5.

– Repository path: \Data\Nmax_Nmin.

– Repository description: Holds the files containing the minimum and maximum number of subdi-
visions for t = 0.1, 1, 5.

– Repository content: t0p1, t1, t5.

– Repository path: \Data\R.

– Repository description: Holds the files containing the residuals for t = 0.1, 1, 5.

– Repository content: t0p1, t1, t5.

6 Finding the number of subdivisions required to approximate I
with a controlled precision

The integrand of I depends on three parameters: p, γ, and t∞. Based on extensive numerical trials and as
demonstrated in the results section, the value of t∞ = 5 has proved to be sufficient to approach I with the
desired precision. In the subsequent sections of this document, when referring to discrete values of p and
γ, we respectively mean p ∈ {1.5, . . . , 4.5} and γ ∈ {0.1, . . . , 0.9}. Conversely, when discussing continuous

Nehemie Nguimbous

values of p and γ, we are referring to p ∈ [1.5, 4.5] and γ ∈ [0.1, 0.9]. As mentioned earlier, the shape
and gradient exhibit significant variation based on these parameters, influencing the number of subdivisions
required for computation. To streamline the process and avoid redundant calculations of I, we seek a method
to predict the necessary number of subdivisions and assess precision as we compute the integral. Below are
the curves of the integrand for some values of the parameters.

(a) u′′(y)(t− y)1−γ for t = 5 (b) u′′(y)(t− y)1−γ for t = 0.5

Figure 2: Plots of u′′(t)(t− y)1−γ for p = 2, γ = 0.1 for t = 5(right) and t = 0.5(left). The x-axis represents
range of y-values and the y-axis the corresponding integrand values.

6.1 Computing I using the composite Simpson method

The following composite Simpson algorithm from [1, page 204] is used to compute the value I.∫ b

a

f(x)dx ≈ h

3

n/2−1∑
i=0

[
f(x2i) + 4f(x2i+1) + f(x2i+2)

]
with h =

b− a

n
.

6.1.1 Implementation of the Simpson method in C: located in functions.c

This function computes the integral of the function integrand using the composite Simpson method.
Parameter list:

• lower: lower bound of the integral.

• upper: upper bound of the integral.

• subInterval: number of sub-intervals.

• g: gamma parameter.

• A = pow((p+1.0)/2.0, 1.0/(p-1.0)).

• B = 2.0/(p-1.0).

• C = (p-1.0)/2.0.

Process:

• Calculate the step size.

Nehemie Nguimbous

• Sum the image by integrand of the lower and upper bounds of the integral first.

• Add the images by integrand of the values between the lower and upper bounds depending on whether
the discretization index is odd or even.

• Multiply the result by one-third of the stepSize.

1

2

3

4 double simpson(double lower , double upper , long int subInterval , double p, double

g) {

5

6 double stepSize = (upper - lower / subInterval);

7

8 int i;

9 double integration = integrand(lower , p, g, y) + integrand(upper , p, g, y);

10 for (i = 1; i <= subInterval - 1; i++) {

11 double k = lower + i * stepSize;

12 if (i % 2 == 0) {

13 integration = integration + 2 * integrand(k, p, g, y);

14 } else {

15 integration = integration + 4 * integrand(k, p, g, y);

16 }

17 }

18 integration = integration * stepSize / 3;

19 return integration;

20

21 }

22 // implementation of the integrand

23

24 double integrand(double y, double p, double g, double t) {

25

26 return (u(y, p) - pow(u(y, p), p)) * pow(t - y, 1 - g);

27

28 }

29

30 // implementation of u

31

32 double u (double t,double p)

33 {

34 double A = pow((p+1.0) /2.0, 1.0/(p-1.0));

35 double B = 2.0/(p-1.0);

36 double C = (p-1.0) /2.0;

37

38 return (A*pow(sech(C*t), B));

39 }

Listing 1: Implementation of the composite Simpson method with its dependencies in C

Note: The number of subInterval used by the Simpson method must be even. Lines 48 to 50
from Listing 11 always ensure it is the case.

Nehemie Nguimbous

6.1.2 Printing the result of the Simpson method using the WriteF ile function: located in
WriteF ile.c

For each combination of t, p, and γ, the WriteFile function creates a file and prints, side by side, the return
values of the Simpson method with their corresponding number of subdivisions until the desired precision
is reached. Considering that we are dealing with very large values of n, and only the last values of n are of
interest, we double the increment value each time we run the first loop until we reach a precision of 5×10−10.
Once that precision is achieved, new values of the increments are used until 1× 10−10 is reached. The value
of the increments used in the second loop is returned by the getIncrement function and represents 5% of the
number of subdivisions required to reach the 5× 10−10 precision in the first loop. This WriteFile function
is used to print the returned value of the Simpson method for discrete values of p and γ.

Parameter list:

• p: discrete values of p.

• g: discrete values of γ.

• t: ∈ {0.1, 1, 5}.

• n: max number of subdivisions allowed.

Process:

• Extract the integer and decimal part of p and g.

• Write or create a file for a specific combination of p and g where the returned value of the Simpson
method will be printed.

• Run the first loop and double the increment until 1× 10−10 < error < 5× 10−10.

• Run the second loop with a custom increment until error1 < 10−10.

• error and error1 have the same expression as Simpson(lower, upper, n) - Simpson(lower, upper, 2n).

Please note that ”Simpson(lower, upper, n)” represents the result of the Simpson method with the given
parameters lower, upper, and n.

1 void writeFile(double p, double g, double t, long int n) {

2

3 double A = pow((p + 1.0) / 2.0, 1.0 / (p - 1.0));

4 double B = 2.0 / (p - 1.0);

5 double C = (p - 1.0) / 2.0;

6 double upper = t;

7 double tmax = 5;

8 double lower = t-tmax;

9

10 int int_g = 10 * g;

11 double p1 = (int) p;

12 double p2 = 10 * (p - p1);

13 long int i = 0;

Nehemie Nguimbous

14

15 double g1 = (int) g;

16 double g2 = 10 * (g - g1);

17 long int increment = 1000;

18 long int next;

19 double precision1 = 5e-10;

20 double precision2 = 1e-10;

21

22 long int j;

23 char str_i [25];

24 FILE * diag;

25 FILE * diag1;

26

27 sprintf(str_i , "p%0.0fp%0.0 f_g %0.0fp%0.0f.txt", p1, p2, g1, g2);

28

29 diag = fopen(str_i , "a");

30 if (!diag) {

31 printf("Failed to open diagonal dominance file.\n");

32

33 }

34

35 for (i = 1000; i < n; i += i) {

36

37 double value = simpson(lower , upper , i, g, A, B, C);

38

39 double value5 = simpson(lower , upper , 2 * i, g, A, B, C);

40

41 double error = fabs(value - value5);

42

43 if (error > precision1) {

44

45 fprintf(diag , "%ld %0.15f\n", i, value5);

46 } else if (error <= precision1 && error > precision2) {

47 next = i;

48 break;

49 }

50

51 }

52

53 increment = getIncrement (t, p, g); // Find the increment depending on t, p and

gamma

54

55 for (j = next; j < n; j += increment) {

56

57 double value1 = simpson(lower , upper , j, g, A, B, C);

58

59 double value10 = simpson(lower , upper , 2 * j, g, A, B, C);

60

61 double error1 = fabs(value1 - value10);

62

Nehemie Nguimbous

63 if (error1 < precision2) {

64

65 break;

66 } else {

67

68 fprintf(diag , "%ld %0.15f\n", j, value10);

69

70 }

71

72 }

73

74 fclose(diag);

75 }

Listing 2: Implementation WriteF ile method in C

6.1.3 Calling the WriteF ile inside the main function: located in WriteF ile.c

This section shows how the WriteFile function is called in the main function for every values of p and γ.
We fixed the maximum number of subdivisions allowed to 7 billions.

1 int main() {

2

3 double p = 1.5;

4 double g = 0.1;

5 long int n = 7e9;

6

7 for (p = 1.5; p <= 4.5; p += 0.5) {

8

9 for (g = 0.1; g < 0.9; g += 0.1) {

10

11 writeFile(p, g, t, n);

12

13 }

14

15 }

16 return 0;

17 }

Listing 3: Calling the WriteFile method.

6.1.4 Maximum number of subdivisions required for t = 0.1 , 1 and 5

When the desired precision is reached, the last line printed by the WriteFile function holds the returned
value of the Simpson method with the right precision as well as the number of subdivisions required to reach
that precision. Below are tables displaying the maximum number of subdivisions for every t, p, and γ.

Nehemie Nguimbous

p/g 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.1 35290 51740 61610 73870 80450 87030 93610

0.2 99900 135800 163900 199800 217750 235700 253650

0.3 216940 344940 433880 522820 567290 611760 689880

0.4 609778 865778 1101630 1377778 1495704 1731556 1849482

0.5 1693204 2362408 3386408 3721010 4390214 5059418 5394020

0.6 4718250 7300300 9970550 12464400 14066550 15668700 17270850

0.7 16113048 28265572 38166882 46087930 54550882 60491668 68412716

0.8 76333764 132864908 182371458 223956960 263749554 301374532 333058724

0.9 383072000 730144000 1018144000 1028288000 1028288000 1028288000 1028288000

Table 1: Number of subdivisions for t = 0.1

p/g 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.1 28000 26500 11000 22000 32500 39500 42500

0.2 71900 67550 23900 55700 83750 103500 111400

0.3 175500 166000 60500 130500 204000 251500 280000

0.4 444800 397600 134800 316800 515600 633600 700800

0.5 1141700 1078730 318970 826850 1393580 1716670 1905580

0.6 3547200 3172400 886800 2335800 4109400 5233800 5983400

0.7 11817400 10530500 2691450 7956700 14626500 18487200 21061000

0.8 52417200 46626150 12460850 34400600 63653600 83600550 95826100

0.9 260332000 232504000 44212000 162934000 325868000 451094000 506750000

Table 2: Number of subdivisions for t = 1

p/g 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.1 17100 11600 9100 8000 7300 6900 6600

0.2 42200 28000 21700 18800 17300 16100 15500

0.3 98200 63800 48800 41600 38200 35800 34000

0.4 234500 146500 110500 94000 84500 78500 75500

0.5 596400 364800 268600 227900 202000 187200 178700

0.6 1684000 992000 716000 596000 526000 486000 456000

0.7 5458000 3070000 2171000 1768000 1566000 1442000 1349000

0.8 21119000 11412000 7847000 6357000 5551000 5055000 4714000

0.9 101674000 51754000 34392000 27318000 23650000 21292000 19720000

Table 3: Number of subdivisions for t = 5

6.2 Fitting the residual function

Once the WriteFile function is executed, we are left with files containing two columns: the first representing
the number of subdivisions, and the other displaying the returned values of the Simpson method. Table 4
shows a sample file printed by the WriteFile function for t = 1, p = 4, and γ = 0.8. Since our objective is to
find the number of subdivisions required to reach a specific precision or error, it makes sense to establish a
relationship or correspondence between N and the error or residual (difference between the last value printed
by the WriteFile function and the other ones). Table 5 is an update of Table 4, now with residual values
as the second column.

Nehemie Nguimbous

N I

75879150 -0.590274039200124
76522600 -0.590274039199605
77166050 -0.590274039198941
77809500 -0.590274039197867
78452950 -0.590274039197240
79096400 -0.590274039196180
79739850 -0.590274039195590
80383300 -0.590274039194982
81026750 -0.590274039194301
81670200 -0.590274039193123
82313650 -0.590274039192075
82957100 -0.590274039191671
83600550 -0.590274039191116
84244000 -0.590274039189668

Table 4: table4

N R

75879150 1.2251e-11
76522600 1.0456e-11
77166050 9.9369e-12
77809500 9.2729e-12
78452950 8.1990e-12
79096400 7.5719e-12
79739850 6.5120e-12
80383300 5.9219e-12
81026750 5.3140e-12
81670200 4.6330e-12
82313650 3.4550e-12
82957100 2.4070e-12
83600550 2.0030e-12
84244000 1.4480e-12

Table 5: table5

6.2.1 Inside the test1.m file

The next step is to fit this correspondence with a usual function such that given any value of R, we could
find its corresponding N . During the fitting process of the residual function, we opted for the logarithm of
the residual instead of the actual residual function. In fact, the residual function is a power function, which
implies that its values are either extremely small or large over most of its domain. Then, attempting to get
insights from its plot has shown to be quite challenging. Also, the fit would be highly non-uniform. For
example, how do we ensure that the small values are fit as well as the large values? How do we measure what
is a good fit when the disparity in magnitude is so great? The log is the answer: it turns a very strongly
varying power function into quasi-straight lines. Straight lines are simpler to handle in terms of quantifying
their properties. If the original function is not a single power (which is our case), the log would not be a
straight line, but the magnitude disparity issue is resolved nonetheless. The other aspect of it all is that we
are indeed interested in the error magnitude, not its absolute value. We will always describe the residual as
a magnitude. Thus, the log treatment also makes sense conceptually, beyond being a technical convenience.
In the subsequent sections of the document, when we mention the residual function, we are actually referring
to its logarithm. Process:

• Extract the integer and decimal parts of p and g and convert them into strings.

• Open the file printed by the writeFile function for that specific combination of p and g.

• Load this file into the vector U .

• Compute the residual function.

• Fit the residual function.

• Plot the results.

In the context of the test1.m file, the goal is to establish a functional relationship between the number of
subdivisions N and the error or residual R for a given combination of p and γ. By fitting the plot of the

Nehemie Nguimbous

residual against the number of subdivisions with a continuous and easily invertible function, the program
can determine the number of subdivisions required to achieve a specific precision.

1

2 for p=1.5:0.5:4.5

3 for g = 0.1:0.1:0.9

4

5 %extract the integer and decimal part of p

6

7 p1=fix(p);

8 p2 =10*(p-p1);

9

10 %extract the integer and decimal part of g

11 g1=fix(g);

12 g2 =10*(g-g1);

13

14 %convert them into strings

15 sp1=num2str(p1);

16 sp2=num2str(p2);

17 sg1=num2str(g1);

18 sg2=num2str(g2);

19

20 % open the file containing the return value of the WriteFile

21 method depending on a sepcific combination of p and g

22 %

23

24 file=[’C:/Users/nguim/OneDrive/Documents/research_papers

25 /Code/newdata/P_G/t5/p’ sp1 ’p’ sp2 ’_g’ sg1 ’p’ sg2 ’.txt’];

26

27 % load the file as a 2 dimoentional vector

28 U=load(file);

29

30 N=U(:,1); % the vector N contains the subdivisions

31 G=U(:,2); % the vector G contains the actual return value the WriteFile method

32

33 % R is the residual vector containing the difference between the last value of G

and the other ones

34 %

35 R=log10(abs(G(1:end -1)-G(end)));

36 N=N(1:end -1);

37

38 % c is a parameter vector that will minimizes the euclidian distance between

39 the Residual functions and their fitted curves

40 %

41 c0=[-1 -6]; % initial parameter of the fminunc function

42 c=fminunc(@(c) fit_curve(c,R,N), c0);

43

44 [f,imin ,imax]= fit_curvef(c,N);

45 N1=N;

46 N1([imin imax])=[];

Nehemie Nguimbous

47 plot(N,R,N1,f,’--’);

48 hold on

49

50 endfor

51 endfor

Listing 4: Fitting the residual function.

6.2.2 Inside the fit curvef.m file

The fit_curvef function is responsible for performing the fitting task of the residual using atanh.
Parameters list:

• c: a two-dimensional vector.

• n: the number of subdivisions.

Process:

• Get the minimum value of the vector n.

• Get the maximum value of the vector n.

• Remove these extreme values from the vector n.

• Determine the fitting curve using the parameter c.

1

2 function [f,imin ,imax]= fit_curvef(c,n)

3

4 [minn ,imin]=min(n);

5 [maxn ,imax]=max(n);

6 n([imin imax])=[];

7 n1=2*(n-minn)/(maxn -minn) -1;

8 f=c(1)*atanh(n1)+c(2);

Listing 5: Implementation of the fit curvef method .

6.2.3 Inside the fit curve.m file

The fit_curve function returns the Euclidean distance between the residuals and their fitting curves.
Parameters list:

• c: a two-dimensional vector returned by the fminunc function.

• u: the function being fitted; in our case, it represents the residual function.

• n: represents the number of subdivisions.

Process:

• Call the fit_curvef function and pass into it the vector c.

Nehemie Nguimbous

• fit_curvef returns the fitting curve f, as well as Imax and Imin, which respectively represent the
maximum and minimum values of n.

• Remove Imax and Imin from n.

• Determine the Euclidean distance between the fitting curve f and u.

1

2 function R=fit_curve(c,u,n)

3

4 [f,imin ,imax]= fit_curvef(c,n);

5 u([imin imax])=[];

6 R=sqrt(sum((f-u).^2));

Listing 6: Implementation of the fit curve method.

Figure 3: specific case for t = 5, p = 2, and γ = 0.8. The x-axis represents the number of subdivisions and
the y-axis the logarithm of the corresponding residuals. The solid curve represents the numerical results
while the dashed one represents the fitting curve.

6.3 Approximating N using the fitting curve

Once completing the fitting with the atanh function , its inverse can now be utilised to determine the

corresponding R for every value of n. From the fit_curvef.m file, we have n1 =
2× (n−minn)

(maxn−minn)
− 1 and

f = c1×atanh(n1)+c2. The inverse process leads to n1 =
tanh(f − c2)

c1
and n =

(n1 + 1)× (maxn−minn)

2
+

1. This expression is used to approximate n in the n_approx function present in the functions.c file.

6.3.1 Inside the n approxfunction: located in functions.c

This function computes and returns the number of subdivisions n given t, p, g, and the residual R.
Parameters list:

Nehemie Nguimbous

• t: upper bound of the integral.

• p: between 1.5 and 4.5 with an increment of 0.5.

• g: between 0.1 and 0.9 with an increment of 0.1.

• R: the residual value.

Process:

• Load the c.txt containing the different values of the c vector for a given t.

• Load the Nmax_Nmin.txt file containing the maximum and minimum number of subdivisions for a
given t.

• Compute n using the new formula.

1 double n_approx(double t, double p, double g) {

2

3 double n1, n, pos_p , pos_g;

4 FILE * fp1;

5 FILE * fp2;

6 FILE * fp3;

7 char file_name1 [25];

8 char file_name2 [33];

9 char file_name3 [25];

10 float c1 = 0, c2 = 0, nMax = 0, nMin = 0, R;

11 char * param;

12 int i = 0, location = 0;

13

14 pos_p = 1 + (p - 1.5) / 0.5;

15 pos_g = g / 0.1;

16

17 // find the location of c1 and c2 in the C.txt file as well as the location of

Nmax and Nmin in the N.txt file knowing p and g

18

19 location = (int)((pos_p - 1) * 9 + pos_g);

20

21 // assign a value to param based on the value of t

22

23 if (t == 0.1) {

24 param = "0p1";

25 } else if (t == 1) {

26 param = "1";

27 } else {

28 param = "5";

29 }

30

31 // create a path to the C.txt , N.txt , and R.txt files using the param variable

32

33 sprintf(file_name1 , "../../ Data/C/t%s/C.txt", param);

34 sprintf(file_name2 , "../../ Data/Nmax_Nmin/t%s/N.txt", param);

Nehemie Nguimbous

35 sprintf(file_name3 , "../../ Data/R/t%s/R.txt", param);

36

37 // open N.txt , C.txt , and R.txt

38

39 fp1 = fopen(file_name1 , "r");

40 fp2 = fopen(file_name2 , "r");

41 fp3 = fopen(file_name3 , "r");

42

43 if (!fp2) {

44 printf("fail_2");

45 }

46

47 if (!fp1) {

48 printf("fail_1");

49 }

50 if (!fp3) {

51 printf("fail_3");

52 }

53

54 for (i = 0; i < location; i++) {

55 fscanf(fp1 , "%f %f ", & c1, & c2); // find c1 and c2 using the location

variable

56 fscanf(fp2 , "%f %f ", & nMin , & nMax); // find nMin and nMax using the

location variable

57 fscanf(fp3 , "%f ", & R); // find R using the location variable

58

59 }

60 ;

61 R = R - 1.5;

62

63 // close the files

64

65 fclose(fp1);

66 fclose(fp2);

67

68 n1 = tanh((R - c2) / c1);

69 n = ((n1 + 1) * (nMax - nMin)) / 2 + 1; // find n

70

71 return n;

72

73 }

Listing 7: Implementation of the n approx method.

6.3.2 Approximated number of subdivisions required for t = 0.1, 1, and 5

Below are the approximate number of subdivisions returned by the n_approx_general function for t = 0.1,
t = 1 and t = 5.

Nehemie Nguimbous

g/p 1.5 2.0 2.5 3 3.5 4 4.5

0.1 35065 51414 61242 73570 80108 86651 93201

0.2 99002 134710 162937 198630 216504 234382 252262

0.3 214565 342453 430919 519457 563799 608143 686814

0.4 602747 858551 1093366 1370345 1487766 1722571 1840192

0.5 1674913 2341552 3365120 3698389 4365537 5033725 5366720

0.6 1674913 7241978 9904136 12403810 13999256 15597980 17196034

0.7 4662043 28071526 37953058 45866233 54342976 60260601 68207443

0.8 15930379 132684487 182123946 223677191 263586831 301086078 332831576

0.9 76155108 727802772 1015373018 1025834015 1025841827 1025918580 1025859852

Table 6: Approximated number of subdivisions for t = 0.1

g/p 27873 26378 10927 21895 32362 39371 42358

0.1 27873 26378 10927 21895 32362 39371 42358

0.2 71597 67150 23662 55344 83377 103044 110919

0.3 174554 165106 59775 129525 202917 250255 278688

0.4 442094 395096 132836 314216 512656 630341 697983

0.5 1134337 1071579 313754 820575 1385528 1708829 1897254

0.6 1134337 3153872 871089 2317025 4088223 5210846 5958598

0.7 3527550 10468585 2640180 7900759 14564452 18417018 20991875

0.8 11753526 46563914 12411139 34340174 63593768 83514848 95754535

0.9 52352342 231613175 43366292 162079821 324972385 449967670 505825475

Table 7: Approximated number of subdivisions for t = 0.1

g/p 17083 11585 9085 7986 7286 6886 6586

0.1 17083 11585 9085 7986 7286 6886 6586

0.2 42163 27968 21670 18772 17273 16074 15474

0.3 98128 63737 48741 41544 38147 35748 33949

0.4 234320 146338 110344 93857 84362 78364 75366

0.5 595947 364389 268200 227526 201649 186865 178355

0.6 595947 990878 714928 595009 525021 485046 455084

0.7 1682968 3066607 2168010 1765265 1563165 1439166 1346239

0.8 5453895 11407642 7844868 6353968 5548342 5052182 4711303

0.9 21115912 51737121 34370523 27302158 23631082 21275601 19703359

Table 8: Approximated number of subdivisions for t = 5

7 Number of subdivisions required to compute I for continuous
values of t and discrete values of p and γ

Now that we have a program capable of predicting the number of subdivisions n required to compute I with
controlled precision, our goal is to expand it for continuous values of t, discrete values of p and γ. For that,
we implemented four different variants of linear interpolation formulas and selected the most conservative
one, which returns the highest value of n. For t ∈ [t1, t2] their general formulas are

Nehemie Nguimbous

1. nt = nt1 +
(t−t1)(nt2

−nt1
)

(t2−t1)
,

2. nt = nt1 +
(log(t)−log(t1))(nt2

−nt1
)

(log(t2)−log(t1))
,

3. log(nt) = log(nt1) +
(t−t1)(log(nt2

)−log(nt1
))

(t2−t1)
,

4. log(nt) = log(nt1) +
(log(t)−log(t1))(log(nt2

)−log(nt1
))

(log(t2)−log(t1))
,

with log referring to the log10 function.

7.1 Implementation in C: located in the functions.c file.

Below are their respective implementation in C.

1

2

3 int N_T(double t, double t1 , double t2 , int n1 , int n2)

4 {

5 int n = (int)(n1 + (t - t1)*(n2 - n1)/(t2 - t1));

6 return n;

7 }

8

9 int N_logT(double t, double t1 , double t2 , int n1 , int n2)

10 {

11 int n = (int)(n1 + (log10(t) - log10(t1))*(n2 - n1)/(log10(t2) - log10(t1)));

12 return n;

13 }

14

15 int logN_T(double t, double t1 , double t2 , int n1 , int n2)

16 {

17 double logn = log10(n1) + (t - t1)*(log10(n2)-log10(n1))/(t2 - t1);

18 return (int)(pow(10, logn));

19 }

20

21 int logN_logT(double t, double t1 , double t2 , int n1 , int n2)

22 {

23 double logn = log10(n1) + (log10(t) - log10(t1))*(log10(n2)- log10(n1))/

24 (log10(t2) - log10(t1));

25 return (int)(pow(10, logn));

26 }

Listing 8: Implementation of the previous interpolation functions in C.

7.2 Determining the most conservative linear interpolation method: inside the
linearNT function, located in the functions.c file

Since we have four variants of linear interpolation, the task of linearN_T is to find the most conservative
one. n1 and n2 are respectively the number of subdivisions required for t1 and t2 with t1 <= t <= t2.
The linearN_T function evaluates the number of subdivisions required for a given range of t values and
then selects the most conservative interpolation method among the four available variants.

Nehemie Nguimbous

1 int linearN_T(double t, double t1 , double t2 , int n1 , int n2)

2 {

3 int temp1 = N_T(t, t1 , t2 , n1 , n2);

4 int temp2 = N_logT(t,t1 , t2 , n1 , n2);

5 int temp3 = logN_T(t, t1 , t2 , n1 , n2);

6 int temp4 = logN_logT(t, t1 , t2 , n1 , n2);

7

8 int n = temp1;

9

10 if (n < temp2)

11 {

12 n = temp2;

13 }

14

15 if (n < temp3)

16 {

17 n = temp3;

18 }

19

20 if (n < temp4)

21 {

22 n = temp4;

23 }

24

25 return n;

26 }

Listing 9: Code used to compare the different interpolation methods.

8 Number of subdivisions required to compute I with a control
precision for continuous values of t, p and and γ

In the last section, we were able to reconstruct the curve of Dγ
t u for p = 2 and discrete values of γ. Moreover,

we can do the same for all discrete values of p as well. However, we face a problem for continuous values of
p and γ. For example, for p = 2.38 and γ = 0.46, we need to employ a different approach. Again, we use
interpolation, but this time it is bi-linear instead of linear. In fact, for a given (p, γ) such that p1 ≤ p ≤ p2
and γ1 ≤ γ ≤ γ2, we want to find its corresponding number of subdivisions n. Below are the bi-linear
interpolation formula and its implementation in our code.

8.1 Bi-linear interpolation formula

n = γ−γ2

γ1−γ2

(
np1,γ1

(p−p2)

p1−p2
+

np2,γ1
(p−p1)

p2−p1

)
+ γ−γ1

γ2−γ1

(
np1,γ2

(p−p2)

p1−p2
+

np2,γ2
(p−p1)

p2−p1

)
.

8.2 Implementation in C: inside the billinearN p g function: inside the func-
tions.c file.

Nehemie Nguimbous

1

2 int bilinearN_p_g(double p, double g, double t) {

3

4 int n;

5 double p1, p2, g1, g2;

6 double n_p1g1 , n_p1g2 , n_p2g1 , n_p2g2;

7

8 findPosition_p(p, & p1, & p2); // find p1

9 findPosition_g(g, & g1, & g2); // find p2

10

11 n_p1g1 = n_approx(t, p1, g1); // find n for p=p1 and g=g1

12 n_p1g2 = n_approx(t, p1, g2); // find n for p=p1 and g=g2

13 n_p2g1 = n_approx(t, p2, g1); // find n for p=p2 and g=g1

14 n_p2g2 = n_approx(t, p2, g2); // find n for p=p2 and g=g2

15

16 // find n

17

18 n = (int)((g - g2) / (g1 - g2) * (n_p1g1 * (p - p2) / (p1 - p2) + n_p2g1* (p -

p1) / (p2 - p1))

19 + (g - g1) / (g2 - g1) * (n_p1g2 * (p - p2) / (p1 - p2) + n_p2g2 * (p - p1) / (

p2 - p1)));

20

21 return n;

22 }

Listing 10: Bi-linear interpolation of n in C.

9 Summary of the interpolation process

On one hand, n_approx allows us to predict the number of subdivisions required to approximate I for
discrete values of t, p, and γ. On the other hand, n_approx_general performs the same task but over
their continuous range. It achieves this by employing both linear and bi-linear interpolation methods. The
process to find the number of subdivisions required for an unknown triplet (t, p, γ) involves finding two
triplets (t1, p1, γ1) and (t2, p2, γ2) such that t1 ≤ t ≤ t2, p1 ≤ p ≤ p2, and γ1 ≤ γ ≤ γ2. Moreover, it finds
n1 required for (t1, p1, γ1) and n2 required for (t2, p2, γ2), and then computes n required for (t, p, γ) using
interpolation. This comprehensive approach allows us to efficiently estimate the number of subdivisions
needed to achieve the desired precision for the integral over a wider range of input values.

Nehemie Nguimbous

9.1 Algorithm of the n approx general function

Algorithm 1: n approx general Algorithm

Result: Find n for continuous values of y, p and γ
;
if y ∈ {0.1, 1, 5} then

n = bilinear(t, p, γ) ;
end
else

find (t1, t2) ∈ {0.1, 1, 5} × {0.1, 1, 5} such that t1 ≤ t ≤ t2;
n1 = bilinear(t1, p, γ) ;
n2 = bilinear(t2, p, γ) ;
n = linear(t, t1, n1, t2, n2) ;

end

9.2 Implementation in C of the n approx general function: : inside the func-
tions.c file

1 int n_approx_general(double t, double p, double g) {

2

3 double t1, t2;

4

5 double p1 = (int) p; // extract the integer part of p

6 double p2 = 10 * (p - p1); // extract the decimal part of p

7 long int i = 0;

8 double g1 = (int) g; // extract the integer part of g

9 double g2 = 10 * (g - g1); // extract the decimal part of p

10

11 int n, n1 , n2;

12

13 // if t is not in the set {0, 0.1, 1, 5}, find t1 and t2 such that t1 <= t<= t2

14

15 if (t != 0.1 && t != 5 && t != 1 && t != 0) {

16 t1 = 0.1;

17 t2 = 10;

18

19 if (t < 1) {

20 t1 = 0.1;

21 t2 = 1;

22 } else if (1 < t < 5) {

23 t1 = 1;

24 t2 = 5;

25 } else {

26 t1 = 0.1;

27 t2 = 5;

28 }

29

Nehemie Nguimbous

30 n1 = bilinearN_p_g(p, g, t1); // find n for p, g and t1 using bilinear

interpolation

31 n2 = bilinearN_p_g(p, g, t2); // find n for p, g and t2 using bilinear

interpolation

32

33 n = linearN_T(t, t1 , t2 , n1 , n2); // find n knowing n1 and n2 using linear

interpolation

34

35 } else if (t == 0) // find n for t=0

36 {

37 t = 0.1;

38 n = bilinearN_p_g(p, g, t) + 1;

39

40 } else {

41

42 // if t is in the set {0.1, 1, 5} use bilinear interpolation to compute it

directly

43 n = bilinearN_p_g(p, g, t);

44

45 }

46 // verify that n is even , because the composite Simpson method only works with

even values of n.

47

48 if (n % 2 != 0) {

49 n += 1;

50 }

51

52 return n;

53 }

Listing 11: Implementation of the n approx general function

10 Assessment of the accuracy of the results

As a primary test for the quality of the results, we aim to reproduce the curve of Dγ
t u on [−t∞, t∞], and

compare its shape with the one from [1, page 12]. The newly computed curve is at the left and the former
one at the right.

Nehemie Nguimbous

error y
-4.744730e-008 3.6
-5.048329e-009 3.7
6.482569e-008 3.8
-4.435881e-009 3.9
2.060108e-007 4.0
-3.872901e-009 4.1
3.676208e-007 4.2
-3.364300e-009 4.3
-3.129406e-009 4.4
6.138696e-007 4.5
-2.703101e-009 4.6
7.505957e-007 4.7
-2.328432e-009 4.8
8.405479e-007 4.9
-2.001432e-009 5.0

Table 9: Error file for γ = 0.7

error y
-1.784137e-010 3.6
-1.721758e-010 3.7
-1.664409e-010 3.8
-1.605218e-010 3.9
-1.547047e-010 4.0
-1.494032e-010 4.1
-1.443059e-010 4.2
-1.395319e-010 4.3
-1.351115e-010 4.4
-1.307046e-010 4.5
-1.269774e-010 4.6
-1.235263e-010 4.7
-1.206676e-010 4.8
-1.180839e-010 4.9
-1.161406e-010 5.0

Table 10: New error file for γ = 0.7

(a) Plot of the reconstructed Dγ
t u. (b) Plot of the reconstructed Dγ

t u .

Figure 4: Comparison between the former and reconstructed Plot of Dγ
t u for sign

(
dxi

dσ

)
< 0 and p = 2.

The x-axis represents range of t-values and the y-axis the associated Dγ
t u.

The reproduction of Dγ
t u was just the visual part of the assessment process. In fact, we still need to verify

the precision of Dγ
t u values. To achieve this, we compute the absolute difference between Dγ

t u for N = n,
N = 2n and p = 2. Initially, the error variable used in the stopping condition of the writeFile function
was defined as error = abs(Simpson(lower, upper, n) - Simpson(lower, upper, n + 10)). Due to
the non-monotonic and the uncontrolled character of the errors’ magnitude depicted in table 9, we adjusted
the error variable to error = abs(Simpson(lower, upper, n) - Simpson(lower, upper, 2*n)). This
modification yielded satisfactory results, as illustrated in table 10.

10.1 Implementation of Dγ
t u in C: Inside the Du.c file

Below is the implementation of the Dγ
t u function.

Nehemie Nguimbous

10.1.1 Implementation of Dγ
t u

The function Du calculates the value of Dγ
t u for −5 ≤ t ≤ 5.

Parameters list:

• t: the function’s variable, between -5 and 5.

• nt: the number of subdivisions required to compute I3.

Process:

• Calculate the first operand of Dγ
t u and store its value in I1.

• Calculate the second operand of Dγ
t u and store its value in I2.

• Calculate the third operand of Dγ
t u, the one with the integral, and store its value in I3.

1 double Du(double t, long int nt, double tmax , double p, double g) {

2

3 double I1 = I_1(t, tmax , p, g);

4 double I2 = I_2(t, tmax , p, g);

5 double I3 = I_3(t, tmax , nt, p, g);

6

7 return I1 + I2 - I3;

8

9 }

Listing 12: Implementation of the Dγ
t u function in C

10.1.2 Implementation of I1, I2, and I3

I1, I2 and I3 are used to implement respectively the first, second and third operands of Dγ
t u

1 // Implementation of I_1

2

3 double I_1(double t, double tmax , double p, double g) {

4

5 return (pow(tmax , -g) / (tgamma (1 - g))) * (u(t-tmax , p) - u(t, p));

6

7 }

8

9 // Implementation of I_2

10

11 double I_2(double t, double tmax , double p, double g) {

12

13 return (pow(tmax , 1 - g) / tgamma (2 - g)) * (u1(t-tmax , p));

14

15 }

16

17 // Implementation of I_3

Nehemie Nguimbous

18

19 double I_3(double t, double tmax , long int nt, double p, double g) {

20

21 return (1 / tgamma (2 - g)) * simpson(t, t-tmax , nt, p, g);

22

23 }

Listing 13: Implementation of I1, I2 and I3 in C.

References

[1] Richard L Burden, Douglas J Faires, and Annette M Burden. Numerical Analysis. Brooks Cole, 10
edition, 2015.

[2] Y. Nec and M. J. Ward. Dynamics and stability of spike-type solutions to a one dimensional gierer-
meinhardt model with sub-diffusion. Physica D, 241:947—963, 2012.

