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Chapter 1

Gierer-Meinhardt model

The activator-inhibitor reaction-diffusion system featuring Gierer-Meinhardt kinetics is widely
recognized for generating spike-like solutions. In the work presented by [1] a deviation from
the conventional formulation of this model is studied, where an integration of sub-diffusion
effects is explored. This modified system is examined within the context of a one-dimensional
interval, subject to Neumann boundary conditions, and is expressed in the following manner:

∂γt a = ε2γaxx − a+
ap

hq
, −1 < x < 1, t > 0,

τ∂γt h = Dhxx − h+ ε−γ
am

hs
, −1 < x < 1, t > 0;

ax(±1, t) = hx(±1, t) = 0, a(x, 0) = a0(x), h(x, 0) = h0(x).

(1)

In this system, the variables a(x, t) and h(x, t) correspond to the concentrations of the acti-
vator and inhibitor, respectively. The parameters ε2γ and D represent constant diffusivities.
The reaction time constant is denoted as τ > 0. The anomaly exponent γ takes values within
the range of 0 < γ < 1. The exponents (p, q,m, s) are subject to the relationships

p > 1, q > 0, m > 0, s ≥ 0,
p− 1

q
<

m

s+ 1
.

In the limit as ε approaches zero, a solution to equation (1) is formulated, characterized by
the concentration of the activator at a finite collection of positions xi with i = 1, . . . , n. This
high concentration thereof is referred to as a spike, where each xi corresponds to the center
of the i-th spike. The underlying solution for the activator equation in (1), situated between
each spike, adopts the trivial state a(x, t) ≡ 0. Within the vicinity of each xi, an inner
coordinate yi is introduced, defined as

yi(t) = ε−γ
(
x− xi(σ)

)
,

where σ = εαt, with α = γ + 1. In §2, an asymptotic quasi-equilibrium solution within each
inner region for equation (1) is provided as ε→ 0.
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Chapter 2

Reduced System

2.1 Differential-algebraic (DAE) system

In [1] a mathematical framework is developed to describe the dynamics of a system under-
going sub-diffusion, where an n-spike quasi-equilibrium pattern is observed. This framework
involves a set of differential algebraic equations (DAEs) that capture the spike dynamics.
The temporal evolution of the i-th spike’s center and height, denoted as xi(σ) and H̄i(σ), is
determined by the differential-algebraic (DAE) system

H̄i(σ) = bm

n∑
j=1

H̄βm−s
j G(xi;xj), bm =

∫ ∞
−∞

umdy, (2a)

sgn

(
dxi
dσ

) ∣∣∣∣dxidσ

∣∣∣∣γ = − qbm
(p+ 1)H̄i

H̄βm−s
i 〈Gx〉i +

n∑
j=1
j 6=i

H̄βm−s
j Gx(xi;xj)

 f(p; γ). (2b)

In this context, u is the homoclinic function defined as the unique solution of the boundary
value problem

u′′ − u+ up = 0, −∞ < y <∞, u′(0) = 0, u(0) > 0, lim
|y|→∞

u = 0;

u(y) =

[(
p+ 1

2

)
sech2

(
(p− 1)

2
y

)] 1
p−1

.
(3)

In equation (2b), the parameter β is a combination of the kinetic exponents, β = q/(p− 1).
Additionally, the symbol 〈Gx〉i can be expressed as 1

2

(
Gx(x

−
i ;xi) + Gx(x

+
i ;xi)

)
. In this

context, G(x;xi) is the Green’s function satisfying

DGxx −G = −δ(x− xi), −1 < x < 1; Gx(±1;xi) = 0. (4)

Furthermore, the anomaly dependent factor f(p; γ) is defined by

f(p; γ) =

(∫ ∞
−∞

up+1dy

)/(∫ ∞
−∞

u′(y)Dγ
yudy

)
. (5)
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The operator Dγ
yu can be regarded as a propagating fractional derivative and is defined as

in Lemma 2.1 of [1]. For the numerical computation, this definition is truncated at y∞ and
regularised using integration by parts to get

Dγ
yu(y) =

y−γ∞
Γ(1− γ)

sgnx′i
(
u(y)− u(y + y∞sgnx′i)

)
+

y1−γ∞
Γ(2− γ)

u′(y + y∞sgnx′i)

− 1

Γ(2− γ)

∫ y+y∞sgnx′i

y

(u(ξ)− up(ξ))
(
(ξ − y)sgnx′i

)1−γ
dξ.

The methodology employed to compute this term is studied in [2].

2.2 Green’s function

To solve equation (4), we can separate the space into two sub-intervals, where the following
differential equations are valid:

DG−xx −G− = 0, −1 < x < xi; G−x (−1;xi) = 0,

DG+
xx −G+ = 0, xi < x < 1; G+

x (1;xi) = 0,
(6)

with G− and G+ representing the solutions for Green’s function in the sub-intervals (−1, xi)
and (xi, 1) respectively. The solution for (6), introducing the definition α = D−1/2, is clearly
of the form

G− = C−1 sinh(αx) + C−2 cosh(αx),

G+ = C+
1 sinh(αx) + C+

2 cosh(αx).

To obtain an exact value for the unknowns one must apply boundary and continuity condi-
tions.

2.2.1 Boundary conditions

Let us start with the condition G−x (−1;xi) = 0. Substituting this in the proposed solution
we can see that

G−x (−1;xi) = C−1 α cosh(−α) + C−2 α sinh(−α) = 0,

leading to the condition C−1 = C−2 tanh(α). Therefore

G− = C−2 tanh(α) sinh(αx) + C−2 cosh(αx) = C−2 sech(α) cosh(αx+ α),

G− = C− cosh(αx+ α).

Analogously for G+
x (1;xi) = 0, we obtain the condition C+

1 = −C+
2 tanh(α), and therefore

G+ = −C+
2 tanh(α) sinh(αx) + C+

2 cosh(αx) = C+
2 sech(α) cosh(αx− α),

G+ = C+ cosh(αx− α).
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2.2.2 Continuity conditions

The solution must satisfyG−(xi;xi) = G+(xi;xi)←→ C− cosh(αxi + α) = C+ cosh(αxi − α) .

The last condition is derived from the integration of equation (4) around the discontinuity
point:

lim
ε→0

∫ xi+ε

xi−ε
DGxxdx−

�
��

�
��

��*
0

lim
ε→0

∫ xi+ε

xi−ε
Gdx = − lim

ε→0

∫ xi+ε

xi−ε
δ(x− xi)dx,

lim
ε→0

DGx

∣∣∣∣∣
xi+ε

xi−ε

= −1 ←→ G+
x −G−x = − 1

D
,

leading to the condition C+ sinh(αxi − α)− C− sinh(αxi + α) = −α . This way we have

obtained a set of 2 equations for 2 unknowns that can be solved by direct calculation. From
the first boxed condition it is clear that

C− = C+ cosh(αxi − α)

cosh(αxi + α)
.

Then, substituting this result in the integral continuity equation, it follows that

C+ =
α cosh(αxi + α)

sinh(2α)
,

and finally we take this to the definition of C− in terms of C+, obtaining that

C− =
α cosh(αxi + α)

sinh(2α)

cosh(αxi − α)

cosh(αxi + α)
=
α cosh(αxi − α)

sinh(2α)
.

Therefore, the Green function is

G(x;xi) =


α cosh(αxi − α)

sinh(2α)
cosh(αx+ α), −1 < x < xi;

α cosh(αxi + α)

sinh(2α)
cosh(αx− α), xi < x < 1;

(7)

with α = D−1/2.

2.3 Integrals

2.3.1 Weight factor bm

An analytical expression for bm in equation (2a) is obtained by substituting um as defined in
equation (3):

bm =

∫ ∞
−∞

umdy =
4

p− 1

(
p+ 1

2

) m
p−1
∫ ∞
0

cosh−
2m
p−1 (v)dv.
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The exact solution for the integral is obtained in Appendix B of [3]. Incorporating that
solution into our expression, we obtain that

bm =
2

p− 1

(
p+ 1

2

) m
p−1

B

(
1

2
,
m

p− 1

)
, (8)

where B(µ, ν) is the beta function, computed via definition 8.384 of [4]:

B(µ, ν) =
Γ(µ)Γ(ν)

Γ(µ+ ν)
.

With these relations, the value of bm can be explicitly computed in C.

2.3.2 Anomaly dependent factor

The calculation of the numerator of the component f(p; γ) follows a similar approach as for
bm, particularly when setting m equal to p + 1. This section focuses on the computation of
the denominator in equation (5), which requires truncation at y∞:

∫ ∞
−∞

u′(y)Dγ
yudy =

∫ y∞

−∞
u′(y)Dγ

yudy +

∫ y∞

−y∞
u′(y)Dγ

yudy +

∫ ∞
−y∞

u′(y)Dγ
yudy.

In [1] it is demonstrated that Dγ
yu tends to zero as y tends to ±y∞. This result allows us

to disregard the influence of the tails in the complete calculation, leading to the trucated
expression ∫ ∞

−∞
u′(y)Dγ

yudy ≈
∫ y∞

−y∞
u′(y)Dγ

yudy.

The computation process for various values of p and γ is implemented in the programming
language C. Specifically, p ranges from 1.5 to 4.5 with intervals of 0.5, and γ ranges from
0.1 to 0.9 with intervals of 0.1. These values were chosen to be consistent with reasonable
chemical systems and in compatibility with [2].

1 /* algorithm employed for memory allocation */

2 void f2allocate(long int n,double* *A)

3 { /* allocate and initialise a double one -dimensional array */

4 if((*A=( double *) calloc(n,sizeof(double)))==NULL){

5 printf("Out of memory .\n");

6 exit(-1);

7 }

8 }

9

10 void memory(long int n, double* *det)

11 {

12 f2allocate(n,det);

13 }
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For γ values between 0.1 and 0.4, the program employs memory allocation to calculate
Dγ
yu over the range from −y∞ to y∞ using Simpson’s method. The number of subdivisions

for Simpson’s method is determined using the results from [2], where the calculation was
optimized to mantain a precision of 10−10. Subsequently, the program employs Simpson’s
method again with 100 subdivisions to calculate the outer integral, retrieving the required
values of Dγ

yu from the allocated array. It then iteratively refines the calculation using an
increasing number of subdivisions until the difference converges to an order of 10−10. This
way the same precision is mantained throughout the entire simulation.

1 /* number of sub -divisions obtained in [2] */

2 long int n = 2.0* n_approx_general (5.0,p,g);

3

4 /* memory allocation and Du calculation */

5 memory(n+1,&det);

6 double index = 0.0;

7 double i = -5.0;

8 double stepSize = (5.0 - (-5.0))/n;

9

10 while (i < 5.0){

11 index = (5.0 + i) / stepSize;

12 det[(int)round(index)] = integrand2(i,p,g);

13 i = i + stepSize;

14 }

15

16 /* outer integral calculation */

17 // Simpson method retrieving Du values from array

18 anom_in = simpson2 (-5.0,5.0,100,p,g,m,det);

19

20 for (int j = 100; j<=n/2.0; j*=2){

21 anom = simpson2 (-5.0,5.0 ,2*j,p,g,m,det);

22 if (fabs(anom -anom_in) < pow(10,-9)){

23 break;

24 }

25 anom_in = anom;

26 }

27

28 free(det);

For γ values in the range of 0.5 to 0.9, the program follows a similar approach, but in this case,
it calculates specific values of Dγ

yu on spot as needed, without utilizing memory allocation.
This decision arises from the observation that the number of subdivisions calculated in [2] for
these specific γ values tends to be too large. Through testing, it was discovered that for higher
γ values, the outer integral’s subdivision count didn’t need to be as extensive. Consequently,
this modification substantially reduces the computation time while maintaining accurate
results.

1 /* outer integral calculation */

2 // Simpson method calculating Du on -the -fly

3 anom_in = simpson2_big (-5.0,5.0,100,p,g,m,integrand2);

4
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5 for (int k = 100; k<=n; k*=2){

6 anom = simpson2_big (-5.0,5.0 ,2*k,p,g,m,integrand2);

7 if (fabs(anom -anom_in) < pow(10,-9)){

8 break;

9 }

10 anom_in = anom;

11 }

By employing the results obtained from these computational procedures, the anomaly depen-
dent factor is calculated for every combination of p and γ. The resulting outcome showcases
a reduction in data points while achieving enhanced precision relative to the portrayal in
Figure 2 of [1].

2.4 Numerical scheme

To approximate the solution of the initial-value problem, we need to transform equation (2b)
into the form

x′i = g(σ, xi), σ0 ≤ σ ≤ σn, xi(σ0) = η,

and then apply the fourth-order Runge-Kutta method. For this purpose, the following vari-
ables are defined:

wj = xi(σj),

k1 = hg
(
σj, xi(σj)

)
,

k2 = hg

(
σj +

h

2
, xi(σj) +

1

2
k1

)
,

k3 = hg

(
σj +

h

2
, xi(σj) +

1

2
k2

)
,

k4 = hg
(
σj+1, xi(σj) + k3

)
.

Here, w0 = η = x1(σ0) serves as the initial condition, and h = (σn − σ0) = εα(tn − t0). With
these definitions, the algorithm to use for obtaining the values of xi(σ) over time becomes:

wj+1 = wj +
1

6
(k1 + 2k2 + 2k3 + k4) .

2.5 One-spike pattern

2.5.1 Problem formulation

For a quasi-equilibrum pattern of a single spike centered at x1, the DAE system (2a, 2b) can
be simplified to
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H̄1(σ) = bmH̄
βm−s
1 G(x1;x1), (9a)

sgn

(
dx1
dσ

) ∣∣∣∣dx1dσ

∣∣∣∣γ = − qbm
(p+ 1)H̄1

[
H̄βm−s

1 〈Gx〉1
]
f(p; γ). (9b)

Let’s analyze the right-hand side of the differential equation (9b). The values q, p, β, m, bm,
f(p; γ) are constants or constant dependent values, so they are grouped together. Additionaly,
from the algebraic equation in (9a), we have that

H̄βm−s−1
1 =

1

bmG(x1;x1)
,

and since Green’s function is as defined in equation (7):

〈Gx〉1
G(x1;x1)

=
α sinh(2αx1)

cosh(2αx1) + cosh(2α)
.

Upon substitution, equation (9b) takes the form:

sgn

(
dx1
dσ

) ∣∣∣∣dx1dσ

∣∣∣∣γ = −qf(p; γ)α

(p+ 1)

[
sinh(2αx1)

cosh(2αx1) + cosh(2α)

]
,

which is equivalent to

dx1
dσ

= sgn

(
dx1
dσ

)[
−sgn

(
dx1
dσ

)
qf(p; γ)α

(p+ 1)

sinh(2αx1)

cosh(2αx1) + cosh(2α)

]1/γ
. (10)

We must ensure that the expression under the root is positive, so we separate equation (10)
in two parts. First, we impose the condition dx1

dσ
< 0. This way, the start point is at the right

side of the equilibrium point, resulting in the equation:

dx1
dσ

= −
[
qf(p; γ)α

(p+ 1)

sinh(2αx1)

cosh(2αx1) + cosh(2α)

]1/γ
.

Now, by imposing the condition dx1
dσ

> 0, with the start point at the left side of the equilibrium
point, we obtain

dx1
dσ

=

[
−qf(p; γ)α

(p+ 1)

sinh(2αx1)

cosh(2αx1) + cosh(2α)

]1/γ
.

In both cases, equation (10) satisfies the form x′1 = g(σ, x1), incorporating non-linear terms.
Finally, to complete the solution of the DAE system (9a, 9b)

H̄1(σ) =

[
bmα

2

cosh(2αx1) + cosh(2α)

sinh(2α)

]1/1+s−βm
.
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-1 0 1
0.02

0.09

0.16

x

h
(0

)

Figure 2.1: Inhibitor concentration in space
(
see equation (11)

)
for one spike pattern. The

system parameters used are p = 2, γ = 0.9 and D = 0.2.

2.5.2 Solution

To solve the system, the algorithm described in Section 2.4 was employed. A typical case
results are shown in Figure 2.1 and Figure 2.2, depicting the inhibitor concentration in space
and the drifting behavior of the center of the spike over time, respectively. The inhibitor
concentration in space was determined using the equation:

h(0)(x, t) = bm

n∑
i=i

H̄βm−s
i G(x;xi), (11)

which is a result taken from [1]. In particular, concerning the drifting behavior, curves were
generated for ε = 0.5, 0.25, and 0.1, and these were compared against the linearized solution(
where equation (10) was linearized around the equilibrium point, x1 = 0, for this purpose

)
.

It becomes evident from the comparison that as ε decreases, the solution approximates the
linearized result more accurately. This observation highlights that smaller ε values yield
superior solutions, as expected for an asymptotic solution.
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Figure 2.2: Drifting of one spike for several values of ε (see legend). The system parameters
are as in Figure 2.1, with D = 1.

2.6 Two-spike pattern

2.6.1 Problem formulation

In the case of a quasi-equilibrium pattern featuring two spikes centered at x1 and x2, with
the condition that −1 < x2(σ) < x1(σ) < 1, the DAE system (2a, 2b) can be simplified to:

sgn

(
dx1
dσ

) ∣∣∣∣dx1dσ

∣∣∣∣γ = − qbm
(p+ 1)H̄1

{
H̄βm−s

1 〈Gx〉1 + H̄βm−s
2 Gx(x1;x2)

}
f(p; γ),

sgn

(
dx2
dσ

) ∣∣∣∣dx2dσ

∣∣∣∣γ = − qbm
(p+ 1)H̄2

{
H̄βm−s

2 〈Gx〉2 + H̄βm−s
1 Gx(x2;x1)

}
f(p; γ),

(12)

where these equations describe the temporal evolution of the centers of the spikes. Similarly,
for the spike’s heights we have that

H̄1(σ) = bm

{
H̄βm−s

1 G(x1;x1) + H̄βm−s
2 G(x1;x2)

}
,

H̄2(σ) = bm

{
H̄βm−s

1 G(x2;x1) + H̄βm−s
2 G(x2;x2)

}
.

(13)
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For the specific scenario of a symmetric two-spike quasi-equilibrium solution where x2 = −x1
holds at all times, our attention can be directed to just one of the spikes. This allows us to
simplify the ordinary differential equations (ODEs) in equation (12) to:

sgn

(
dx1
dσ

) ∣∣∣∣dx1dσ

∣∣∣∣γ = − qbm
(p+ 1)H̄1

{
H̄βm−s

1 〈Gx〉1 + H̄βm−s
2 Gx(x1;−x1)

}
f(p; γ).

Another result of major importance in order to find a solution to the system is the relation
between the spike’s heights. By subtracting the equations in (13), we arrive at the expression

H̄1 − H̄2 = bm [G(x1;x1)−G(−x1;x1)]
(
H̄βm−s

1 − H̄βm−s
2

)
.

Both sides are related by a positive constant, therefore upon a proper scaling we can absorb
it into Hi and look at just:

H̄1 − H̄2 = H̄α
1 − H̄α

2 .

We designate one solution as H̄1 = H̄2 and the other as the unique solution of

H̄1 − H̄2 − H̄α
1 + H̄α

2 = 0; H̄1 6= H̄2.

This is studied by plotting the surface f
(
H̄1, H̄2

)
= H̄1− H̄2− H̄α

1 + H̄α
2 and its intersection

with the plane f
(
H̄1, H̄2

)
= 0, as depicted in Figure 2.3.

f

0 0
H̄1

1.5

α = 1.01

-0.01

1.5

0

H̄2

0.01

0 0
H̄1

1.5

H̄2

-1

1.5

f 0

1

α = 2

1.5

H̄2 0 0

-4

f

H̄1

1.5

0

4

α = 3.7

Figure 2.3: Surface f
(
H̄1, H̄2

)
for several values of α. The solutions mentioned are evident

as the intersection curves between the red and blue surfaces. Note that as H̄1 increases, the
surface approaches −∞, while as H̄2 increases, the surface tends towards∞ for all considered
cases.

Here, we will concentrate on the solution H̄1 = H̄2. With this in mind, let’s analyze the
right-hand side of equation (12). From equation (13) we deduce that

H̄βm−s−1
1 =

1

bm {G(x1;x1) +G(−x1;x1)}
,

and since Green’s function is as defined in equation (7), it follows that
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〈Gx〉1
G(x1;x1) +G(−x1;x1)

=
α sinh(2αx1)

4 cosh(αx1 − α) cosh(α) cosh(αx1)
,

Gx(x1;−x1)
G(x1;x1) +G(−x1;x1)

=
α sinh(αx1 − α)

2 cosh(α) cosh(αx1)
.

Simplifying further, we obtain:

sinh(2αx1)

4 cosh(αx1 − α) cosh(α) cosh(αx1)
+

sinh(αx1 − α)

2 cosh(α) cosh(αx1)
= −1

2

[
tanh(α− αx1)−tanh(αx1)

]
.

-1 0 1
0.07

0.1

0.13

x

h
(0

)

Figure 2.4: Inhibitor concentration in space
(
see equation (11)

)
for a two spike pattern. The

system parameters used are p = 2, γ = 0.9 and D = 0.2.

Then, these results are substituted into the differential equation, obtaining that

sgn

(
dx1
dσ

) ∣∣∣∣dx1dσ

∣∣∣∣γ =
qf(p; γ)α

2(p+ 1)

[
tanh(α− αx1)− tanh(αx1)

]
,

which is equivalent to

dx1
dσ

= sgn

(
dx1
dσ

)[
sgn

(
dx1
dσ

)
qf(p; γ)α

2(p+ 1)

(
tanh(α− αx1)− tanh(αx1)

)]1/γ
. (14)
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We must ensure that the expression under the root is positive, so we separate equation (14)
in two parts. First, we impose the condition dx1

dσ
< 0. This way, the start point is at the right

side of the equilibrium point, resulting in the equation:

dx1
dσ

= −
[
qf(p; γ)α

2(p+ 1)

(
tanh(αx1)− tanh(α− αx1)

)]1/γ
.

Now, by imposing the condition dx1
dσ

> 0, with the start point at the left side of the equilibrium
point, we obtain

dx1
dσ

=

[
−qf(p; γ)α

2(p+ 1)

(
tanh(αx1)− tanh(α− αx1)

)]1/γ
.

In both cases, equation (14) satisfies the form x′1 = g(σ, x1), incorporating non-linear terms.
Finally, to complete the solution of the DAE system of equations (12) and (13)

H̄1(σ) =

[
bmα

tanh(αx1) + tanh(α− αx1)

]1/1+s−βm
.

0 1000
-0.7

-0.65

-0.6

-0.55

-0.5

t

lo
g

(x
1
)

Linear

0.1

0.25

0.5

Figure 2.5: Drifting of one of the symmetric spikes (denoted as x1) for several values of ε (see
legend). The system parameters are as in Figure 2.4, with D = 1.
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2.6.2 Solution

To solve the system, the algorithm described in Section 2.4 was employed. A typical case
results are shown in Figure 2.4 and Figure 2.5, depicting the inhibitor concentration in space
and the drifting behavior of the center of the one of the spikes over time, respectively. The
inhibitor concentration in space was determined using equation (11).

In particular, concerning the drifting behavior, curves were generated for ε = 0.5, 0.25,
and 0.1, and these were compared against the linearized solution

(
where equation (14) was

linearized around the equilibrium point, x1 = 0.5, for this purpose
)
. As for one spike, it

becomes evident that as ε decreases, the solution approximates the linearized result more
accurately.
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