
THOMPSON RIVERS UNIVERSITY

A Novel Deep Unsupervised Learning Method for Sum-Rate

Optimization in Device-to-Device Networks with a

Quality-of-Service Constraint

By

Bindubritta Acharjee

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Science in Data Science

KAMLOOPS, BRITISH COLUMBIA

September, 2023

SUPERVISOR

Dr. Omer Waqar

CO-SUPERVISOR

Dr. Muhammad Hanif

ABSTRACT

This study introduces a new Deep Unsupervised Learning (DUL) approach based

on an optimization problem with box constraints coupled with polytope constraints

for maximizing the sum rate in Device-to-Device (D2D) networks, a key factor in en-

hancing network capacity and efficiency. Current deep learning methods struggle with

managing resource-intensive projection steps and need multiple iterations to optimize

the sum rate in varying D2D environments. The proposed approach overcomes these

challenges by minimizing the loss function and satisfying constraints when dealing

with a monotone matrix. The novel approach controls transmit power through a fully

connected, multi-layer Deep Neural Network (DNN), solving the complex, non-convex

optimization problem associated with optimizing the sum rate in a symmetric inter-

ference channel model. The result shows that this method outperforms other power

control methods regarding average sum rate, hit rate, and complexity when applied

to a standard symmetric K-user Gaussian interference channel.

Key Words: D2D communication; Sum-rate optimization; Deep Learning (DL);

Unsupervised Learning (UL); Box constraints, Monotone matrix.

ii

ACKNOWLEDGEMENTS

I am tremendously grateful for the opportunities and support I have received through-

out this journey, which has culminated in the successful completion of this Master’s

thesis. The experience has been an academic challenge and a journey of significant

personal growth, and this page is dedicated to acknowledging everyone who has con-

tributed to making this journey possible.

First and foremost, my profound gratitude goes to my thesis supervisor, Dr. Omer

Waqar, and co-supervisor, Dr. Muhammad Hanif. Your expertise, guidance, and

unwavering faith in my capabilities have been integral to my accomplishments. Your

patience and wisdom have helped me develop a robust research project and taught

me the essential qualities of a thoughtful researcher and academic.

I would also like to sincerely thank my committee members, Dr. Jabed Tomal and

Dr. Yasin Mamatjan, for their invaluable input and constructive feedback throughout

the development of this work. Your perspectives and insights have played a significant

role in shaping and refining my research.

I would also like to thank my MScDS program coordinators, Prof. Roger Yu and

Prof. Mohamed Tawhid, who have facilitated a smooth and conducive environment

for research.

My heartfelt thanks go to my family, who have supported and encouraged me

during this endeavor. Your faith in my abilities, patience, and understanding during

the stressful periods of this research have been my foundation.

Finally, I acknowledge the financial support from my supervisor, Dr. Omer Waqar,

as a form of a research assistantship, without which this research would not have been

possible.

As I write this acknowledgment, I realize that this journey, despite its challenges,

has been a privilege that I could not have navigated without the combined efforts

and encouragement of all those mentioned. Thank you all for being a part of this

meaningful voyage.

iii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 5

1.3 Research Objectives . 6

1.4 Research Questions . 6

1.5 Thesis Structure . 6

1.6 Significance of the Study . 7

2 Literature Review 8

2.1 Introduction . 8

2.2 D2D Communication Networks . 9

2.2.1 Background of D2D Communication 10

2.2.2 D2D Architecture . 11

2.2.3 D2D Communication Classification 14

2.2.4 Challenges in D2D Communication 16

2.3 Sum Rate Optimization for D2D Networks 16

iv

CONTENTS v

2.3.1 Sum Rate Optimization Techniques 17

2.3.2 Traditional Methods for Sum Rate Optimization of D2D Networks 19

2.3.3 Limitations of Conventional Methods for Sum Rate Optimiza-

tion of D2D Networks . 22

2.4 Machine Learning (ML) for Optimized Sum Rate in D2D Networks . 23

2.4.1 Supervised Learning (SL) . 24

2.4.2 Unsupervised Learning (UL) 25

2.4.3 Reinforcement Learning (RL) 26

2.4.4 Deep Learning (DL) . 27

2.4.5 Deep Unsupervised Learning (DUL) 30

2.5 Conclusion . 32

3 Methodology 33

3.1 The System Model . 33

3.1.1 Problem Formulation . 35

3.1.2 Constraint Elimination . 35

3.1.3 Formulation for The Optimization Problem 37

3.2 Research Design . 39

3.2.1 Generating Feasible Datasets for the Transmission Channel Pa-

rameters . 40

3.2.2 Proposed DNN Model . 41

3.2.3 Evaluation Metrics . 42

CONTENTS vi

4 Discussion 43

4.1 Setup, Training and Testing The DNN Model 43

4.1.1 Setup Specification . 43

4.1.2 Baseline Scheme . 44

4.1.3 Primary Parameters . 44

4.1.4 Datasets of Feasible Transmission Channel Parameters 45

4.1.5 Tuning Hyperparameters . 46

4.2 Results of the Analysis . 53

4.2.1 Training with A Given Background Noise Power 53

4.2.2 Training with Enhanced Generalization Capacity 64

4.3 Summary . 67

5 Conclusion 68

5.1 Overview . 68

5.2 Key Findings . 69

5.3 Implications . 70

5.4 Limitations and Future Research . 71

5.5 Final Words . 72

A Feasible Datasets for the Transmission Channel Parameters 78

B Simulation Results 79

C Codes on Google Colaboratory 88

CONTENTS vii

C.1 Codes for generating feasible datasets for the transmission channel pa-

rameters . 89

C.1.1 Codes to calculate the average sum rate for the basic model . 94

C.2 Codes for analyzing the PCNet model 97

C.2.1 For training with a given background noise power 97

C.2.2 Codes for analyzing the PCNet+ model: For enhanced gener-

alization capacity . 107

C.3 Codes for analyzing the Proposed Model 126

C.3.1 For training with a given background noise power 126

C.3.2 For enhanced generalization capacity 138

C.4 Codes for analyzing the Model A . 164

C.4.1 Codes to calculate the average sum rate for the basic model . 175

List of terms 176

List of Figures

1.1 Direct D2D communication between devices and conventional commu-

nications with BS . 2

2.1 DR-OC Link Establishment . 11

2.2 DC-OC Link Establishment . 12

2.3 DR-DC Link . 13

2.4 DC-DC Link . 14

2.5 Classifications of D2D Communication 15

3.1 The K-user interference channel . 34

3.2 The architecture of the proposed DNN model 41

4.1 Training with Learning Rate = 0.1 48

4.2 Training with Learning Rate = 0.01 48

4.3 Training with Learning Rate = 0.001 49

4.4 Training with Learning Rate = 0.0001 49

4.5 Training with Mini-Batch Size = 10,000 50

4.6 Training with Mini-Batch Size = 100 50

viii

LIST OF FIGURES ix

4.7 Training with epoch = 100 . 51

4.8 Training with three dense layers and [25, 50, 25] set of neurons 51

4.9 Training with four dense layers and [25, 25, 25, 25] set of neurons . . 52

4.10 Average Sum Rate Plot for SINRmin = [0.5, 0.0, 0.0, 0.0, 0.0] 54

4.11 Hit Rate Plot for SINRmin = [0.5, 0.0, 0.0, 0.0, 0.0] 55

4.12 Average Sum Rate Plot for SINRmin = [0.5, 0.5, 0.0, 0.0, 0.0] 56

4.13 Hit Rate Plot for SINRmin = [0.5, 0.5, 0.0, 0.0, 0.0] 57

4.14 Average Sum Rate Plot for SINRmin = [0.5, 0.5, 0.5, 0.0, 0.0] 58

4.15 Hit Rate Plot for SINRmin = [0.5, 0.5, 0.5, 0.0, 0.0] 59

4.16 Average Sum Rate Plot for SINRmin = [0.5, 0.5, 0.5, 0.5, 0.0] 60

4.17 Hit Rate Plot for SINRmin = [0.5, 0.5, 0.5, 0.5, 0.0] 61

4.18 Average Sum Rate Plot for SINRmin = [0.5, 0.5, 0.5, 0.5, 0.5] 62

4.19 Hit Rate Plot for SINRmin = [0.5, 0.5, 0.5, 0.5, 0.5] 63

4.20 Average Sum Rate Plot for different numbers of K with EsN0 = 0 dB

and SINRmin = 0.2 for all receiver antennas 65

4.21 Average Sum Rate Plot for different numbers of K with EsN0 = 20 dB

and SINRmin = 0.2 for all receiver antennas 66

List of Tables

4.1 Count ratios of feasible vs. random datasets for the channel parameters

with 5 SINR cases for K = 5, e.g., Case 3 : SINRmin= [0.5, 0.5, 0.5,

0.0, 0.0] . 46

4.2 Results for different hyperparameters for EsN0 = 0 dB and SINRmin

= (0.5, 0.5, 0.5, 0.5, 0.5) . 52

4.3 Average Sum Rates (Bit/Second/Hertz) for different EsN0 (dB) for

SINRmin = (0.5, 0.0, 0.0, 0.0, 0.0) 54

4.4 Hit Rates for PCNet for SINRmin = (0.5, 0.0, 0.0, 0.0, 0.0) 55

4.5 Average Sum Rates (Bit/Second/Hertz) for different EsN0 (dB) for

SINRmin = (0.5, 0.5, 0.0, 0.0, 0.0) 56

4.6 Hit Rates for PCNet for SINRmin = (0.5, 0.5, 0.0, 0.0, 0.0) 57

4.7 Average Sum Rates (Bit/Second/Hertz) for different EsN0 (dB) for

SINRmin = (0.5, 0.5, 0.5, 0.0, 0.0) 58

4.8 Hit Rates for PCNet for SINRmin = (0.5, 0.5, 0.5, 0.0, 0.0) 59

4.9 Average Sum Rates (Bit/Second/Hertz) for different EsN0 (dB) for

SINRmin = (0.5, 0.5, 0.5, 0.5, 0.0) 60

4.10 Hit Rates for PCNet for SINRmin = (0.5, 0.5, 0.5, 0.5, 0.0) 61

x

LIST OF TABLES xi

4.11 Average Sum Rates (Bit/Second/Hertz) for different EsN0 (dB) for

SINRmin = (0.5, 0.5, 0.5, 0.5, 0.5) 62

4.12 Hit Rates for PCNet for SINRmin = (0.5, 0.5, 0.5, 0.5, 0.5) 63

4.13 Average Sum Rates (Bit/Second/Hertz) for different numbers of K with

EsN0 = 0 dB and SINRmin = 0.2 for all receiver antennas 65

4.14 Average Sum Rates (Bit/Second/Hertz) for different numbers of K with

EsN0 = 20 dB and SINRmin = 0.2 for all receiver antennas 66

B.1 PCNet CVP% and Average Sum Rate (in Bit/Second/Hertz)

from all four Models for K = 5 and SINRmin = (0.5, 0.0, 0.0,

0.0, 0.0) . 80

B.2 PCNet CVP% and Average Sum Rate (in Bit/Second/Hertz)

from all four Models for K = 5 and SINRmin = (0.5, 0.5, 0.0,

0.0, 0.0) . 81

B.3 PCNet CVP% and Average Sum Rate (in Bit/Second/Hertz)

from all four Models for K = 5 and SINRmin = (0.5, 0.5, 0.5,

0.0, 0.0) . 82

B.4 PCNet CVP% and Average Sum Rate (in Bit/Second/Hertz)

from all four Models for K = 5 and SINRmin = (0.5, 0.5, 0.5,

0.5, 0.0) . 83

B.5 PCNet CVP% and Average Sum Rate (in Bit/Second/Hertz)

from all four Models for K = 5 and SINRmin = (0.5, 0.5, 0.5,

0.5, 0.5) . 84

B.6 PCNet+ CVP% and Average Sum Rate (in Bit/Second/Hertz)

from the two Models for K = 5 and SINRmin = (0.2, 0.2, 0.2,

0.2, 0.2) . 85

LIST OF TABLES xii

B.7 PCNet+ CVP% and Average Sum Rate (in Bit/Second/Hertz)

from the two Models for K = 6 and SINRmin = (0.2, 0.2, 0.2,

0.2, 0.2, 0.2) . 85

B.8 PCNet+ CVP% and Average Sum Rate (in Bit/Second/Hertz)

from the two Models for K = 7 and SINRmin = (0.2, 0.2, 0.2,

0.2, 0.2, 0.2, 0.2) . 85

B.9 PCNet+ CVP% and Average Sum Rate (in Bit/Second/Hertz)

from the two Models for K = 8 and SINRmin = (0.2, 0.2, 0.2,

0.2, 0.2, 0.2, 0.2, 0.2) . 85

B.10 CVP% and Average Sum Rate (in Bit/Second/Hertz) for the

Models for K = 5 and SINRmin = (0.5, 0.0, 0.0, 0.0, 0.0) 86

B.11 CVP% and Average Sum Rate (in Bit/Second/Hertz) for the

Models for K = 5 and SINRmin = (0.5, 0.5, 0.0, 0.0, 0.0) 86

B.12 CVP% and Average Sum Rate (in Bit/Second/Hertz) for the

Models for K = 5 and SINRmin = (0.5, 0.5, 0.5, 0.0, 0.0) 86

B.13 CVP% and Average Sum Rate (in Bit/Second/Hertz) for the

Models for K = 5 and SINRmin = (0.5, 0.5, 0.5, 0.5, 0.0) 86

B.14 CVP% and Average Sum Rate (in Bit/Second/Hertz) for the

Models for K = 5 and SINRmin = (0.5, 0.5, 0.5, 0.5, 0.5) 87

Chapter 1

Introduction

1.1 Background

The evolution of wireless communication systems and the exponential increase in mo-

bile devices have sparked a critical requirement for more sophisticated network man-

agement mechanisms. The proliferation of smart devices and the exponential growth

of data traffic have necessitated the development of efficient wireless communication

methods. D2D communication, a significant constituent of 5G and beyond networks,

has been seen as a promising solution to meet these evolving demands. Direct data

exchanges among two nearby mobile devices, without data relay via Base Stations

(BSs), may provide better spectrum, energy, and transmission latency performance

[1, 2, 3].

As illustrated in Figure 1.1, D2D communication refers to the technology that

allows devices to communicate with or without network infrastructure involving ac-

cess points or BSs [4]. This technique allows new device-centric communication that

frequently does not require direct interaction with the network infrastructure; there-

fore, it is expected to alleviate certain aspects of the network capacity issue as 5G

promises to connect more devices to faster, more reliable networks. However, the

success of D2D communication relies heavily on achieving the optimal sum rate, a

major parameter defining the total data transmission capacity of the network.

1

Figure 1.1: Direct D2D communication between devices and conventional commu-
nications with BS

A crucial challenge in D2D networks is to optimize the utilization of limited

wireless resources to achieve higher data rates while maintaining the Quality of Ser-

vice (QoS) requirements. Sum-rate maximization, which aims to maximize the total

achievable data rate in the network, plays a pivotal role in addressing this challenge.

However, the quest to achieve a higher sum rate in D2D wireless networks comes with

several challenges, including:

• Interference Management: With D2D communication, devices operate close

to each other, leading to significant cross-tier and co-tier interference. This

interference can significantly degrade the network’s performance and impact

the overall sum rate.

• Resource Allocation: Efficient resource allocation, including power, spec-

trum, and time, is crucial for optimizing the sum rate. However, it is challenging

due to the dynamic nature of the wireless environment and the large number of

D2D pairs sharing the same resources.

• Scalability Issues With the increase in the number of devices, managing and

maintaining the quality of service becomes significantly more challenging. Tra-

ditional methods may scale poorly with the rapid increase in the number of

2

devices.

• User Mobility Users’ movement in D2D networks introduces additional chal-

lenges to maintaining consistent and reliable connections. The dynamic topology

due to mobility affects the overall network performance and sum rate.

• Security and Privacy Concerns Security and privacy are significant chal-

lenges in D2D communications. Malicious attacks and eavesdropping can dis-

rupt network operations, affecting the sum rate.

• Signal Propagation Conditions Factors like path loss, shadowing, and multi-

path fading can adversely affect the signal quality, thereby impacting the sum

rate in D2D networks.

• Device Heterogeneity Device heterogeneity poses a significant challenge for

D2D wireless networks. It refers to the variance in capabilities, functionalities,

and technical specifications among different devices participating in the network.

These variations could be in processing power, memory, battery life, commu-

nication range, network protocols, operating systems, or software applications.

This heterogeneity adds complexity to the optimization of the sum rate.

• Energy Efficiency A high sum rate requires high transmission power, which

can drain device batteries quickly. Therefore, balancing energy efficiency and

sum rate is a significant challenge.

Considering all the challenges, especially the nature of the wireless communica-

tion medium, careful control of the transmit power of the User Equipment (UE) is

considered the most appropriate method for managing interference and enhancing the

overall system performance [5].

Advanced techniques such as machine learning and optimization algorithms are

being explored to manage these challenges of D2D networks. These techniques aim to

provide flexible and intelligent solutions that can adapt to the dynamics and diversity

of D2D networks and can help optimize resource allocation, manage interference, and

enhance the overall performance of D2D networks. However, implementing these

3

techniques also has its own set of challenges, such as computational complexity and

model training requirements.

DL, a subset of machine learning techniques that uses a layered structure of al-

gorithms called Neural Networks (NNs), has shown its potential in solving complex

and nonlinear problems in various domains, mainly due to the latest low-cost and

advanced computational power. Recent advancements in processing capabilities, in-

cluding the development of Graphics Processing Units (GPUs) and Tensor Processing

Units (TPUs), and distributed computing technologies, have made it feasible to train

complex deep learning models. Therefore, DL has been introduced recently to wire-

less communication and has shown promising improvements in optimizing network

performance parameters.

Supervised Learning (SL), UL, and Reinforcement Learning (RL) are the three

basic categories of procedures used to train NNs in DL. Because labeling a data col-

lection is frequently prohibitively time-consuming, SL is regarded as unfeasible, espe-

cially for large wireless networks. Again, due to the inherent exploitation-exploration

trade-off, RL is only appropriate for problems described as Markov Decision Processes

(MDPs), and convergence of these methods is typically challenging [6]. However, as

prior knowledge regarding the analytical frameworks of communication theory can be

utilized to train NNs through UL effectively, it is preferred over SL and RL for various

complex non-convex optimization issues in many recent studies [6, 7, 8, 9, 10]. UL

leverages the underlying data distribution to learn functional patterns without super-

visory signals. This approach can provide novel insights into optimizing the sum rate

in D2D wireless networks.

Training a NN to solve constrained optimization problems, especially when multi-

ple constraints are involved, is challenging. A common strategy is to include a penalty

term in the loss function, allowing flexibility in managing various constraints. How-

ever, this method only provides a “soft” boundary, penalizes infeasibility, and requires

tuning an additional hyperparameter. It does not always achieve optimality or fea-

sibility. As an alternative, projection-based approaches set up a ’hard’ boundary to

ensure feasibility [11], but they increase computational complexity due to the require-

ment of an optimization solver. Approaches like OptNet, a differentiable quadratic

4

programming layer within the NN architecture, also suffer from high computational

complexity and limited performance. One solution proposed is the double description

approach, which iteratively constructs a feasible region and performs optimization

within it [12]. Moreover, this method [12] is explicitly tailored for homogeneous lin-

ear constraints. Modifying such a method to accommodate non-homogeneous linear

constraints may present substantial challenges. For example, numerical methods for

homogeneous systems might not be stable for non-homogeneous ones. Then, in the

optimization context, moving from homogeneous to non-homogeneous constraints can

change the nature of the feasible region and the optimization problem’s characteristics

[13]. This approach was recently extended for non-homogeneous linear constraints in

[14], where a correction process using gradient descent, named the Deep Constraint

Completion and Correction (DC3) algorithm, ensures the feasibility of linear con-

straints. However, this requires an iterative process for training and testing, contra-

dicting the objective of using deep learning models as a substitute for non-data-driven

optimization algorithms.

1.2 Problem Statement

Based on the above, the existing methods require substantial computational power

and time to achieve the optimal sum rate in D2D networks. In addition, they are not

always adept at handling the dynamism and nonlinearity of wireless communication

environments. These challenges emphasize the need for innovative approaches that

can enhance the sum-rate performance of D2D networks efficiently and adaptively.

So, a new DUL-based framework is proposed that guarantees feasible solutions

for any optimization problem featuring non-homogeneous linear inequality and box

constraints. It uses a particular property of a monotone matrix to handle the poly-

tope constraints and ensure the solution is possible without iterations, projections,

or tuning of additional hyperparameters. Its application to power allocation for D2D

networks illustrates the functionality of this approach, showing that it guarantees con-

straint satisfaction and improves network performance in terms of the average sum

rate.

5

1.3 Research Objectives

The main objective of this research is to devise a novel DUL method that can be used

to optimize the sum rate in D2D wireless networks. Specifically, the study aims to:

• Investigate the potential of DUL methods for D2D wireless communication and

provide an overview of the current state of the art.

• Propose novel DUL-based models for sum rate optimization in D2D networks.

• Develop a framework to evaluate the performance of the proposed models and

compare it with current optimization methods.

1.4 Research Questions

The study seeks to answer the following research questions:

• How can DUL methods improve the sum-rate performance of D2D networks?

• What DUL models can be proposed for sum rate optimization in D2D wireless

networks?

• How does the performance of the proposed DUL models compare with existing

sum rate optimization methods?

1.5 Thesis Structure

The rest of this thesis report is organized as follows:

• Chapter 2 provides a literature review on D2D wireless networks, sum rate

optimization methods, and DUL techniques.

6

• Chapter 3 introduces the methodology of the study and presents the proposed

models.

• Chapter 4 discusses the performance evaluation results.

• Finally, Chapter 5 concludes the thesis with a summary of the findings, contri-

butions, and suggestions for future work.

1.6 Significance of the Study

This research is expected to significantly contribute to the body of knowledge in

wireless communication and deep learning. By developing and evaluating novel DUL

models for sum rate optimization in D2D networks, this study can pave the way

for more efficient, adaptive, and intelligent wireless communication systems, which

are crucial in the context of the emerging era of the Internet of Things (IoT) and

5G/beyond networks.

7

Chapter 2

Literature Review

This chapter comprehensively reviews the existing literature on applying unsupervised

deep learning or DUL methods for achieving the optimal sum rate in D2D networks.

The review focuses on understanding the limitations of traditional mathematical and

heuristic-based optimization methods, exploring the dynamism and nonlinearity of

wireless communication environments, and outlining the potential and effectiveness

of DUL methods.

2.1 Introduction

The fifth-generation technology standard for broadband cellular networks, known as

5G, has made significant progress in connectivity and telecommunications. This inno-

vation promises Ultra-Reliable Low-Latency Communication (URLLC), greater band-

width, vast connectivity, increased coverage, higher data rates, and improved support

for mobility. However, the deployment and maximization of 5G networks still have

some challenges, particularly in achieving comprehensive coverage.

By definition, network coverage is the area covered by one BS or cell where the

user can send a service request or receive a service. Enhanced coverage is one of the

most significant issues in 5G and beyond networks, impacting system performance

and the end-user experience. Various factors, including network density, the loca-

8

tion of user equipment and base stations, and environmental conditions, influence

network coverage. Coverage issues include coverage holes, overshoot, poor coverage,

mismatched channel coverage, and cell edge issues [15].

To meet the key parameters of 5G and beyond, i.e., ultra-low latency, ultra-

high availability, ultra-speed, and ultra-reliability, various technologies are proposed,

including Multiple Input and Multiple Outputs (MIMO) for massive connectivity, ex-

treme Mobile BroadBand (eMBB) for high data rates and low latency, and millimeter

Wave (mmWave) spectrum for large bandwidths [16].

D2D communication is a crucial technology for 5G networks and beyond because

it can enhance network efficiency, scalability, and latency and support new use cases.

It allows for direct communication between devices without the need to route the data

through a central base station or access point, resulting in more efficient network use.

However, while D2D communication offers many advantages, it also presents several

challenges.

2.2 D2D Communication Networks

D2D wireless networks are a networking paradigm that allows devices to communicate

directly without intermediary infrastructure, such as cellular towers or WiFi routers.

This form of networking utilizes the principles of peer-to-peer connectivity, enabling

devices in close proximity to establish a communication link directly, reducing latency

and relieving network congestion from central nodes. D2D communication is integral

to emerging technologies such as the IoT, Vehicular Ad hoc Networks (VANETs), and

5G and beyond wireless networks, where seamless and efficient data exchange between

devices is critical. Despite the advantages, D2D networks also bring challenges in

security, interference management, and power control, which are actively researched

topics in this domain.

9

2.2.1 Background of D2D Communication

Several crucial technological advancements and changes in communication protocols

over the years have shaped the development of D2D communication. In the early days

of telecommunications, devices typically communicated through a centralized network

infrastructure. This infrastructure included base stations or satellites that routed calls

and data from one device to another. However, this system had limitations, especially

regarding bandwidth and latency.

The first significant step towards D2D communication came in the late 1990s with

the introduction of Bluetooth technology. This wireless technology standard was de-

signed for exchanging data between fixed and mobile devices over short distances.

Bluetooth facilitated the development of Personal Area Networks (PANs), where de-

vices could interact directly without needing a centralized network. It was primarily

used for file transfers and to connect peripheral devices.

Building on Bluetooth’s short-range connectivity, Wi-Fi Direct emerged in the

late 2000s as another form of D2D communication. Wi-Fi Direct allows for direct

connection between devices without needing a traditional Wi-Fi network or hotspot,

further expanding the scope and potential of D2D communication. This allowed

for faster and more reliable connections over longer distances than Bluetooth. In

academics, D2D communication was initially presented on paper [17] to allow multi-

hop relays in cellular networks.

LTE-Direct, introduced in the early 2010s, was a crucial step toward mainstream

D2D communication. It introduced device discovery and communication over longer

distances than Bluetooth or Wi-Fi Direct and was integrated into 4G LTE cellular

technology. This allowed mobile devices to discover and connect directly, bypassing

the cellular base station and reducing latency and network congestion. FlashLinQ

[18], a PHY/MAC network architecture for D2D communications underlying cellular

networks, was the first attempt to implement D2D communication in a cellular net-

work.

The advent of 5G technology has brought D2D communication to the forefront.

10

The enhanced Machine-Type Communication (eMTC), NarrowBand IoT (NB-IoT),

and Vehicle-to-Everything (V2X) communication in 5G networks all heavily rely on

D2D communication. With 5G, D2D communication is envisioned for high data rates

and low latency applications, including autonomous driving, smart grids, and the

IoT. Technologies such as 6G will likely further advance D2D, paving the way for

applications that we can only begin to imagine today.

2.2.2 D2D Architecture

The cellular architecture of D2D communication is divided into two tiers [17]. The first

is the macro-cell tier, where communication is between the BS and the device in the

macro-cell layer. In the second tier, also called the device tier, devices communicate

with each other.

It is worth mentioning that radio base stations known as Node B, evolved Node

B (eNodeB), and next generation Node B (gNodeB) enable mobile phones to connect

to 3G, 4G, and 5G mobile networks, respectively. gNodeB is usually abbreviated as

gNB in 5G network architecture diagrams.

There are four different categories for the two-tier D2D network [19].

Figure 2.1: DR-OC Link Establishment

11

• Device Relaying with Operator Controlled Link Establishment

Device Relaying with an Operator-Controlled (DR-OC) link establishment system

involves the interaction of devices within a network through relay points regulated

and managed by an operator’s base station (gNB for 5G networks), where base stations

serve as relay points for connecting mobile devices. This operator’s role is to establish,

maintain, and terminate connections or links between these devices. Figure 2.1 shows

the process of operator-controlled link establishment, which involves setting up these

communication links in an organized and effective manner. The operator can monitor

and control the communication traffic by allocating resources, adjusting parameters,

or rerouting connections to optimize the network’s performance.

Figure 2.2: DC-OC Link Establishment

• D2D Communication with Operator Controlled Link Establishment

D2D Communication with Operator-Controlled (DC-OC) link establishment enables

direct communication between devices without data traffic passing through the core

network, thus increasing system capacity and overall efficiency. As depicted in Figure

2.2, the operator-controlled link establishment aspect provides a mechanism to effec-

tively manage and control these connections. It involves setting up, maintaining, and

12

terminating the links based on network policy, resource availability, or the commu-

nication requirements of the devices. It allows for better management of resources,

ensuring optimal performance, and avoiding interference with other network oper-

ations. D2D communication with operator-controlled link establishment is already

being utilized in several areas. For instance, in vehicular networks, cars can use D2D

communication to share information about traffic, road conditions, or safety alerts.

D2D communication can enable direct communication between emergency responders

in public safety scenarios, even when traditional network infrastructure is unavailable.

Figure 2.3: DR-DC Link

• Device Relaying with Device-Controlled Link

Device Relaying with Device-Controlled (DR-DC) Link Setup allows devices to inde-

pendently form, manage, and disconnect links within a network without requiring a

central operator. Device relaying refers to the mechanism where intermediary devices,

known as relays, forward signals or data from one device to another. Device-controlled

link establishment, however, empowers devices to establish, manage, and terminate

their links based on predefined protocols, conditions, and requirements, as shown in

Figure 2.3. This decentralization facilitates a more robust and efficient network, allow-

ing devices to react swiftly and dynamically to changes in the network environment.

Device relaying with device-controlled link establishment finds applications in various

13

domains, such as vehicular networks, drone swarms, and IoT networks, where devices

often need to communicate directly and quickly adjust to changing conditions.

• D2D Communication with Device-Controlled Link

D2D Communication with a Device-Controlled (DC-DC) Link enables devices in close

proximity to establish direct communication links autonomously, bypassing tradi-

tional routing through a central base station or network operator. It allows nearby

devices to communicate directly, resulting in lower latency, greater spectral efficiency,

and less burden on the central network infrastructure, as illustrated in Figure 2.4.

Device-controlled link establishment gives devices the autonomy to initiate, manage,

and terminate these D2D links based on their requirements and prevailing network

conditions. DC-DC link establishment is particularly relevant when direct and rapid

communication is crucial, such as in vehicular networks for sharing traffic updates or

safety alerts, drone swarms for coordinated movement, and IoT networks for real-time

data exchange.

Figure 2.4: DC-DC Link

2.2.3 D2D Communication Classification

As Figure 2.5 shows, in general, there are two types of D2D communications [20].

14

Figure 2.5: Classifications of D2D Communication

• In-band D2D Communication

In-band D2D communication refers to a form of communication where devices directly

communicate using the same frequency band as cellular communication. Typically,

the high control over the cellular (i.e., licensed) spectrum is the catalyst for adopting

in-band communication. Inband communication can be further classified as under-

lay or overlay. Cellular and D2D communications use the same radio resources for

underlay D2D communication. Whereas in overlay communication, D2D links are

allocated dedicated cellular resources. By reusing spectrum resources (i.e., underlay)

or allocating dedicated cellular resources to D2D users that accommodate a direct

connection between the transmitter and the receiver (i.e., overlay), inband D2D can

enhance the spectrum efficiency of cellular networks. Managing interference between

D2D and cellular communications, especially when operating on the same frequency

band, is complex. This interference can be mitigated by implementing resource allo-

cation methods with a high degree of complexity, which increases the computational

burden of BS or D2D users.

• Out-band D2D Communication

Out-band D2D communication refers to a type of D2D communication where the

devices communicate directly using a different frequency band than the one used

for traditional cellular communication. It can be further classified as controlled or

autonomous. The devices might utilize unlicensed frequency bands (like the ones

15

used for Wi-Fi or Bluetooth) or licensed bands different from the cellular band to

communicate with each other directly. The key idea is to offload traffic from the

primary (cellular) band, thereby improving spectral efficiency and capacity.

Compared to in-band D2D, out-band D2D has its advantages and challenges.

On the one hand, out-band D2D can mitigate interference with the cellular network

because it uses a different frequency band. On the other hand, using an unlicensed

spectrum brings challenges of its own, such as coexistence with other wireless systems

using the same spectrum (like Wi-Fi or Bluetooth), and the quality of service may

not be as robust due to the potential for interference from other devices.

2.2.4 Challenges in D2D Communication

With the evolution of 5G and the advent of 6G, the relevance of D2D communica-

tion with device-controlled link establishment is expected to increase dramatically.

Autonomous and efficient link management will become increasingly critical as more

devices join the network and move towards a truly interconnected world. However,

there are still numerous complex challenges to resolve in 5G and beyond networks,

particularly in physical layer characteristics, network architectures, and performance

requirements. Interference Management is one of the most significant barriers to D2D

communication. D2D communication may enhance spectral efficiency if interference

caused by D2D is minimized and minimal QoS is ensured [21].

2.3 Sum Rate Optimization for D2D Networks

An essential performance metric for D2D networks is the sum rate, or the total data

rate supported by the network. The sum rate is the aggregate of the individual

data rates of all active D2D links in the network. Sum-rate maximization aims to

optimize the network’s total throughput, or data rate. By maximizing the sum rate,

the network can support more data traffic and provide a better user experience.

Maximizing the sum rate is a critical challenge in D2D network design, involving

16

complex considerations around interference management, power control, and resource

allocation. One key challenge is maximizing the sum rate and maintaining user fair-

ness. A network might achieve a high sum rate by favoring users with good channel

conditions, but this could lead to poor service for other users. Also, the dynamic

and decentralized nature of D2D networks complicates the sum-rate maximization

problem. As devices move and network conditions change, the optimal settings for

resource allocation, interference management, and power control can change rapidly.

2.3.1 Sum Rate Optimization Techniques

Sum-rate maximization in D2D networks involves sophisticated techniques that ad-

dress several key factors:

1. Resource Allocation: Efficient allocation of resources such as frequency bands

and power can significantly enhance the sum rate. Advanced algorithms are

often used to dynamically allocate resources based on network conditions and

data traffic requirements.

2. Interference Management: In D2D networks, device interference can sig-

nificantly degrade the network’s performance. Techniques such as interference

alignment, cancellation, and avoidance can help manage interference and im-

prove the sum rate.

3. Power Control: Power control refers to adjusting the transmission power of

devices to balance achieving good link quality and minimizing interference from

other devices. Optimal power control is critical to achieving the maximum sum

rate.

A list of research studies on the sum rate optimization problem for D2D commu-

nication has been presented here, starting with the authors names and then the focus

and coverage of the research.

1. Naderializadeh, Navid and Avestimehr, A. Salman [22]

The paper explores the issue of spectrum sharing in device-to-device commu-

17

nication systems, introducing a novel concept called the Information-Theoretic

Independent Set (ITIS). Based on treating interference as noise, ITIS represents

a subset of users who can theoretically transmit data simultaneously within a

wireless network. This concept forms the basis for their innovative Information-

Theoretic Link scheduling (ITLinQ) spectrum-sharing scheme. ITLinQ sched-

ules simultaneous data transmission for users in a single ITIS during each time

slot. In analyzing ITLinQ’s capacity, the researchers set a lower boundary on

the proportion of the information-theoretic capacity region it could achieve, fac-

toring in a specific gap in a network model with randomly distributed nodes.

However, ITLinQ is heuristic. This means that while it aims to approximate

the globally optimal solution, it does not always guarantee the attainment of

the global optimum. Moreover, depending on the implementation, the compu-

tational complexity of ITLinQ can still be substantial, especially for large-scale

networks.

2. F. Hussain, M. Y. Hassan, M. S. Hossen, and S. Choudhury [23]

In a cellular network featuring D2D communication, an optimization challenge

arises when sharing Resource Blocks (RBs) between D2D pairs and cellular

user devices to increase the system’s total data transfer rate, or sum rate. It

has been discovered that sharing does not always improve the sum rate and can

sometimes reduce it. To address this, a new algorithm was developed based

on weighted bipartite matching, which prevents rate decline and optimizes the

sharing process for the maximum sum rate. However, the objective of a weighted

bipartite matching algorithm is to find an optimal one-to-one mapping based

on the given weights. This might not always translate to the global maximum

sum rate, especially when considering interference and other complex network

dynamics.

3. Lin, Shijun and Fu, Liqun and Li, Kewei and Li, Yong [24]

The paper explores optimizing the sum rate in D2D communication within cel-

lular networks, where numerous Cellular Users (CUs) share uplink resources

with D2D pairs. The authors present system sum-rate maximization as an

NP-hard mixed integer non-linear programming problem. They tackle this by

18

employing optimization decomposition. 1) Given a specific resource allocation

policy, they deduce the optimal Signal-to-Interference plus Noise Ratio (SINR)

threshold that elevates the system sum rate. 2) They propose a coalition game

methodology to enhance the resource allocation policy further, demonstrating

that this strategy can reach a Nash-stable partition in a finite time. Simula-

tion results exhibit that the coalition game’s performance closely matches the

exhaustive search but with a significantly reduced runtime. However, optimiza-

tion decomposition and coalition games are computationally intensive due to

iterative processes. They may not converge quickly in dynamic settings, and

stable coalition structures are not always guaranteed, especially in complex net-

works.

2.3.2 Traditional Methods for Sum Rate Optimization of D2D

Networks

Traditional, i.e., non-data-driven, methods for optimizing the sum rate in D2D net-

works often involve mathematical optimization techniques. Several traditional opti-

mization methods have been used to optimize the sum rate for D2D networks, as

follows:

• Convex Optimization Techniques: In some situations, the problem of sum

rate optimization in D2D networks can be formulated as a convex optimiza-

tion problem. Convex optimization techniques can then ensure convergence to

a global optimum. For instance, these techniques often involve linear program-

ming, quadratic programming, or geometric programming.

• Graph Theory Approaches: In this case, the problem of sum rate optimiza-

tion is modeled as a graph, where vertices represent users and edges represent

possible D2D links. Techniques from graph theory, such as maximum matching

or minimum cut, can then be used to optimize the sum rate.

• Game Theory Approaches: These approaches model the interactions be-

tween D2D pairs and between D2D pairs and cellular users as a game, where

19

each player aims to maximize their data rate. The Nash equilibrium of the

game represents a stable state where no player can increase its data rate by

unilaterally changing its strategy.

• Heuristic Algorithms: When the sum rate optimization problem is too com-

plex or does not have a precise mathematical formulation, heuristic algorithms

such as genetic algorithms, swarm optimization, or simulated annealing can be

used. These algorithms generate satisfactory, although not always optimal, so-

lutions to the problem.

Below is a list of studies on the sum rate optimization problem for D2D communi-

cation using traditional methods, starting with the authors names and then the focus

and coverage of the research.

1. Chiang, Mung and Tan, Chee Wei and Palomar, Daniel P. and O’neill,

Daniel and Julian, David [25]

In wireless networks where interference impacts QoS, power control issues can

be presented as nonlinear optimization problems. These aim to maximize sys-

tem or user throughput while adhering to individual QoS constraints. The study

showed that in high Signal-to-Interference Ratio (SIR) environments, these com-

plex problems can be transformed into geometric programming, facilitating ef-

fective solutions even with numerous users. Researchers proposed a systematic

method for power control based on geometric programming-based distributed

algorithms, showing its implications through numerical examples. However,

these algorithms depend on how accurate and good the information about the

channel state is. In dynamic environments with fluctuating channel conditions,

achieving optimal solutions can be challenging due to potential delays and inac-

curacies in information exchange, leading to suboptimal power allocations and

reduced sum rate performance.

2. Qian, Li Ping and Zhang, Ying Jun and Huang, Jianwei [26]

Achieving Weighted Throughput Maximization (WTM) through power control

in wireless networks with interference has been a complex challenge due to the

non-convex optimization problem that arises from link interference. This paper

20

introduces a MAPEL algorithm that converges to an optimal solution for the

WTM problem in the general SINR regime. MAPEL identifies the optimal

power control solution by creating increasingly precise approximations of the

feasible SINR region. Adjusting the approximation factor also allows a trade-off

between optimality and convergence time. However, this algorithm suffers from

high computational complexity, which limits its practicality to small scenarios

only. MAPEL served as a benchmark for evaluating other algorithms for the

same problem and was used in this study to assess the performance of several

existing algorithms through extensive simulations.

3. Liu, Liang and Zhang, Rui and Chua, Kee-Chaing [27]

Identifying the highest possible value of the Weighted Sum Rate (WSR) for a

K-user Gaussian Interference Channel (GIC) is critical in wireless communi-

cation. However, conventional convex optimization strategies struggle to meet

this challenge due to the mutual interference between users, causing the problem

to be non-convex. The study introduces a novel approach, merging monotonic

optimization and rate profile strategies, to discover the best power control and

beamforming solutions for maximizing the WSR. The proposed framework can

be employed in GICs equipped with single-antenna transmitters and single-

or multi-antenna receivers (SISO or SIMO) or multi-antenna transmitters and

single-antenna receivers (MISO). Uniquely, this study aims to maximize the

WSR within the GIC’s achievable rate region directly, leveraging the under-

standing that this region is a “normal” set and the users’ WSR steadily rises.

Hence, WSR maximization is recognized as a monotonic optimization over a

normal set, solvable globally through the existing outer polyblock approxima-

tion algorithm. Numerical evidence underpins the suggested algorithms’ capa-

bility to achieve the highest WSR for SISO, SIMO, or MISO GIC, setting a

performance standard for other heuristic algorithms. However, a fundamen-

tal limitation of merging monotonic optimization and rate profile strategies for

power control and beamforming solutions is that they often require precise and

up-to-date channel state information. Any mismatch or delay in acquiring this

information can lead to suboptimal beamforming vectors and power levels, po-

tentially compromising the WSR maximization objective.

21

2.3.3 Limitations of Conventional Methods for Sum Rate Op-

timization of D2D Networks

Conventional methods primarily involve traditional mathematical optimization or

heuristic-based algorithms. However, the main limitation associated with these meth-

ods is their requirement for perfect Channel State Information (CSI). Moreover, these

methods can be computationally expensive, posing significant challenges in their prac-

tical implementation. Traditional approaches often struggle with the dynamism and

nonlinearity of wireless communication environments.

Dynamism refers to the continually changing aspects of the environment, such as

the number of active devices, their location, signal strength, and available spectrum.

Conversely, nonlinearity refers to the complex and often unpredictable interactions

between signals as they propagate through the environment. Both of these factors

significantly influence the performance of wireless communication systems.

Dynamism impacts the wireless communication environment in several ways. For

instance, devices may frequently join or leave the network, leading to variable traffic.

Mobile devices can move in and out of coverage areas, creating fluctuations in signal

strength. The available spectrum for wireless transmission may also vary depending

on the congestion in the network, leading to unpredictable changes in the network

capacity.

Nonlinearity manifests in multipath propagation, where a signal may travel along

multiple paths before reaching its destination, creating signal interference and distor-

tion. The complex topography and the presence of obstacles also lead to unpredictable

signal behaviors, contributing to the nonlinearity of the wireless environment.

Traditional methods for sum rate optimization have several limitations in address-

ing the dynamism and nonlinearity inherent in wireless environments.

• Static Algorithms: Many traditional sum rate optimization algorithms are

static, meaning they are not designed to adapt to the dynamic changes in the

wireless environment. They may work well in a static scenario but fail to deliver

22

optimal results in real-world, dynamic conditions.

• Limited Capabilities for Nonlinearity Management: Traditional meth-

ods often rely on linear mathematical models that may struggle to capture the

complexity and unpredictability of the wireless environment.

• Assumption of Ideal Conditions: Traditional algorithms often make as-

sumptions about the wireless environment, such as perfect channel knowledge

or the absence of interference. These assumptions often do not hold in real-

world scenarios, leading to suboptimal performance.

• High Computational Complexity: Traditional methods can have high com-

putational complexity, making them unsuitable for real-time applications requir-

ing quick decisions.

These attributes, which result from user mobility, signal variations, and interfer-

ence from other devices, significantly hinder the effectiveness of traditional sum rate

optimization methods.

Emerging technologies such as Artificial Intelligence (AI) and Machine Learning

(ML) provide potential solutions to these challenges. They can help design intelligent

algorithms that dynamically adjust network parameters to maximize the sum rate.

They can also enable devices to learn from past experiences and make better resource

allocation and power control decisions.

2.4 Machine Learning (ML) for Optimized Sum

Rate in D2D Networks

ML is a subset of AI that uses statistical techniques to enable machines to improve

at tasks with experience. With its ability to learn from data and improve over time,

machine learning can offer effective solutions to the sum-rate maximization problem.

The complexity of D2D networks, characterized by many devices and rapidly changing

network conditions, makes ML a suitable approach for tackling challenges such as

23

power control, resource allocation, and interference management, which are critical

for maximizing the sum rate. Several machine learning techniques have been proposed

for sum-rate maximization in D2D networks, each with strengths and limitations.

2.4.1 Supervised Learning (SL)

SL is a type of machine learning where a model is trained using labeled data. Labeled

data refers to datasets with input data and corresponding desired output, often called

“labels” or “targets.” Supervised learning aims to develop a model that, given input

data, can accurately predict the corresponding output.

In many supervised learning tasks, such as regression problems, the model’s per-

formance is evaluated using a loss or cost function. One commonly used loss function

is the Mean Squared Error (MSE). The aim is to minimize this MSE to improve the

model’s accuracy.

The MSE is the average of the squared differences between the actual output

(label) and the predicted output (prediction from the model). The objective of super-

vised learning, therefore, is to adjust the model’s parameters to minimize the MSE.

It is often done using optimization algorithms like Gradient Descent.

However, to minimize the MSE, labeled data is crucial in supervised learning for

the following reasons for training the model and minimizing the mean squared error:

• Model Training: The model learns the relationship between input data and

output (labels) during training. In other words, it adjusts its parameters so

that the predicted output is as close as possible to the actual output. Without

labels, the model has no way of knowing what output to aim for given the input

data.

• Performance Evaluation: The MSE requires both the predicted output (from

the model) and the actual output (from the label) to be computed. Without

the actual output, there is no way to calculate the MSE and, thus, no way to

evaluate or improve the model’s performance.

24

• Model Adjustment: The minimization of MSE guides adjusting the model’s

parameters during the learning process. The gradient of the MSE for the model’s

parameters provides a “direction” in which to adjust the parameters to reduce

the MSE. Without labeled data, this gradient cannot be calculated.

2.4.2 Unsupervised Learning (UL)

UL is a type of machine learning where a model learns to identify patterns and

structure in the input data without any labeled outputs to guide the learning process.

The primary goal here is to model the underlying structure or distribution of the data

in order to learn more about it.

Unlike supervised learning, which minimizes the discrepancy between predicted

and actual labels (such as in MSE), unsupervised learning seeks to minimize an ob-

jective function defined directly on the input data. This objective function typically

quantifies the model’s ability to capture the underlying patterns or structures in the

input data.

For instance, in a clustering problem (a common unsupervised learning task), the

objective might be to minimize the intra-cluster distances (i.e., ensure that points

within the same cluster are close to each other) while maximizing the inter-cluster

distances (i.e., ensure that points from different clusters are far from each other). No

labeled data is needed; the model looks for natural groupings in the input data.

Another common unsupervised learning method is dimensionality reduction, such

as Principal Component Analysis (PCA), which aims to minimize information loss

when representing high-dimensional data in a lower-dimensional space.

This approach somewhat resembles “self-supervised” learning, a relatively new

paradigm in machine learning. In self-supervised learning, the model generates its

labels from the input data, effectively creating a supervised learning problem out of

an unsupervised one. For instance, a model might be trained to predict the next word

in a sentence (the label) given the previous words (the input data).

25

However, in wireless communications literature, “unsupervised learning” describes

any learning approach that does not require labeled data. It is because, in many

wireless scenarios, it is not practical or possible to obtain labeled data. In these cases,

unsupervised learning methods that can work directly with the raw data, extracting

meaningful insights and improving system performance, become particularly valuable.

2.4.3 Reinforcement Learning (RL)

RL involves an agent learning to make decisions by interacting with its environment

to maximize cumulative reward. In the D2D network context, an RL agent could

represent a network controller or individual devices, and the environment would be

the D2D network. The RL agent learns the optimal actions, such as power control

or resource allocation decisions, that maximize the sum rate, thereby serving as the

cumulative reward.

There are various ways reinforcement learning techniques have been utilized for

sum-rate maximization in D2D networks:

• Q-Learning: A simple yet powerful RL algorithm, Q-learning can be applied

to learn the optimal policy for power control or resource allocation in D2D

networks. The Q-values, representing the expected future reward of taking a

certain action in a given state, guide the decision-making process.

• Multi-Agent Reinforcement Learning (MARL): In large D2D networks,

multiple devices must make coordinated decisions to maximize the sum rate.

MARL, where multiple RL agents learn to cooperate or compete with each

other, provides a framework for learning such coordinated strategies.

While RL holds great promise for sum-rate maximization in D2D networks, sev-

eral challenges must be addressed. These include RL algorithms’ instability and slow

convergence, the exploration-exploitation dilemma, and the complexity of coordinat-

ing multiple agents in MARL settings. Furthermore, real-world implementation of RL

in D2D networks requires addressing issues like communication overhead and privacy

26

concerns.

However, advances in RL research and the computational capabilities of wireless

devices provide optimistic prospects for overcoming these challenges. Techniques like

experience replay and target networks can improve the stability and convergence of

RL, while strategies like epsilon-greedy and Thompson sampling can balance explo-

ration and exploitation. Furthermore, paradigms like federated learning can address

privacy concerns by allowing devices to learn while keeping their data local.

2.4.4 Deep Learning (DL)

DL is a subfield of machine learning based on artificial neural networks in which

multiple processing layers extract progressively higher-level features from data. The

term “deep” in deep learning signifies the number of layers that the data undergoes

through its transformation process. When neural networks have many layers, they

are called Deep Neural Networks (DNNs). They are more complex and powerful, as

they can process data in more ways and create more nuanced understandings of the

input.

The increase in data and computing power powers deep learning algorithms and

has numerous applications, including automatic speech recognition, natural language

processing, sound recognition, machine translation, image processing, material inspec-

tion, social network filtering, bioinformatics, drug design, and board game programs,

where deep learning systems have demonstrated superior performance.

Deep Learning models can learn intricate patterns in high-dimensional data, mak-

ing them well-suited for the complexity and variability of D2D networks. By process-

ing historical network data, these models can predict optimal configurations, like

resource allocation and power control, which can be used to maximize the sum rate.

Several deep learning techniques are being applied for sum-rate maximization in

D2D networks:

• Deep Neural Networks (DNNs): DNNs, with their ability to model complex

27

non-linear relationships, can be used to predict the sum rate based on network

parameters. Given the predicted sum rate, optimization techniques can then be

used to find the parameter settings that maximize the sum rate.

• Convolutional Neural Networks (CNNs): CNNs, known for their excel-

lence in processing grid-like data (e.g., image and signal processing), can process

spatial network data. They can assist in tasks like device clustering or interfer-

ence prediction, contributing to sum-rate maximization.

• Deep Reinforcement Learning (DRL): DRL combines the power of deep

learning and reinforcement learning, using deep learning models to predict the

Q-values in reinforcement learning. DRL can adapt to dynamic network condi-

tions and continuously optimize the sum rate.

Despite the promising potential of deep learning for sum-rate maximization in

D2D networks, certain challenges exist. Training deep learning models requires a

substantial amount of labeled data and computational resources, and the black-box

nature of these models can lead to interpretability issues. However, advances in ma-

chine learning research and the growing computational power of wireless devices are

expected to mitigate these challenges. Transfer learning and data augmentation can

help train models with fewer data points, while model compression and hardware

acceleration can alleviate computational concerns. Additionally, developments in ex-

plainable AI can enhance model interpretability.

A list of works that have been done on the sum rate optimization problem for

D2D communication using deep learning methods is displayed here, starting with the

authors names and then the focus and coverage of the research.

1. Sun, Haoran and Chen, Xiangyi and Shi, Qingjiang and Hong, Mingyi

and Fu, Xiao and Sidiropoulos, Nicholas D. [28]

The paper presents a new approach to addressing the challenges posed by nu-

merical optimization in key Signal Processing (SP) applications such as com-

munications, radar, filter design, and speech and image analytics. The com-

plexity of optimization algorithms often creates a disconnect between theory

28

and real-time processing. To mitigate this, the authors propose using a DNN

to approximate the unknown nonlinear mapping between the input and out-

put of an SP algorithm. Initially, the paper identifies a subset of optimization

algorithms that a fully connected DNN can effectively approximate. The au-

thors then apply this approach to the widely used interference management

algorithm, Weighted Minimum Mean Square Error (WMMSE), demonstrating

its effectiveness. Tests conducted with synthetically generated wireless channel

data and actual Digital Subscriber Line (DSL) channel data revealed that a

relatively small network could achieve high approximation accuracy and could

significantly speed up computation times. However, the main problem is that it

depends on the quality and variety of the training data, and any difference can

lead to less-than-optimal approximations.

2. Lee, Woongsup and Kim, Minhoe and Cho, Dong-Ho [29]

This letter introduces Deep Power Control (DPC), the first framework for con-

trolling transmit power based on a CNN. In DPC, the strategy for adjusting

transmit power to optimize either Spectral Efficiency (SE) or Energy Efficiency

(EE) is learned using a CNN. Unlike traditional power control schemes that

require a substantial number of calculations, DPC allows for determining users’

transmit power with significantly fewer computations, making real-time process-

ing possible. It also presents a variant of DPC that can be implemented in a

decentralized fashion using local channel state information, drastically reducing

the signaling overhead. Simulation results indicate that DPC can achieve nearly

the same or even superior SE and EE as traditional power control methods but

with considerably less computation time. However, a significant limitation is

the dependency on extensive training and accurate data. Additionally, CNNs

can be computationally intensive, potentially posing challenges for real-time ap-

plications in dynamic environments.

3. Ron, Dara and Lee, Jung-Ryun [30]

This paper addresses interference arising from concurrent frequency band us-

age by Device-to-Device User Equipment (DUE) and Cellular User Equipment

(CUE) in scenarios where cellular uplinks underlay D2D communication. This

29

interference can be mitigated by optimizing the transmit power of the devices,

which is typically modeled as a complex NP-hard combinatorial optimization

problem with linear constraints. Conventional optimization methods are gen-

erally unable to solve this problem effectively. The authors introduce a DRL

algorithm to optimize the transmit power for both DUEs and CUEs within the

context of D2D communication underlaid by uplink cellular networks. This

algorithm effectively resolves the optimization problem by combining optimal

decision-making with efficient deep network training. The proposed algorithm

offers a solution near the global optimum with significantly lower computational

complexity than an exhaustive search, such as fixed-power, WMMSE, gradient

descent, and Newton-Raphson approaches. However, a key limitation is the

need for substantial training in varied scenarios. DRL can be sensitive to its

training environment, and suboptimal training can lead to inefficient power al-

location decisions in unencountered scenarios, potentially causing interference

and subpar network performance.

2.4.5 Deep Unsupervised Learning (DUL)

Unsupervised deep learning or DUL, as an emerging field, has shown promise in ad-

dressing the shortcomings of traditional methods. The potential of DUL methods for

understanding the wireless environment’s complexities without needing labeled data

sets has made them effective. Several studies have specifically looked into applying

DUL to D2D networks. These methods are adept at handling the dynamism and

nonlinearity of wireless environments. Their study showed a significant improvement

in the sum rate compared to traditional methods.

A listing of research studies on the sum rate optimization problem for D2D com-

munication utilizing deep unsupervised learning is provided below, starting with the

authors names and then the focus and coverage of the research.

1. Liang, Fei and Shen, Cong and Yu, Wei and Wu, Feng [31]

A new power control strategy based on DNNs is proposed to maximize the sum

30

rate of a multi-user interference channel, addressing a non-convex optimization

problem. The solution, PCNet, is a specifically designed neural network trained

via unsupervised learning. PCNet(+) enhances its generalization by using noise

power as an input. A further improvement, ePCNet(+), uses multiple inde-

pendently trained PCNets, outperforming single PCNet(+) and other existing

solutions, as per simulation results. Nevertheless, it offers a flexible boundary,

necessitates the adjustment of a penalty parameter, and frequently does not

guarantee the best or most feasible solution.

2. Lea, Benjamin and Shome, Debaditya and Waqar, Omer and Tomal,

Jabed [32]

The study involves a system model integrating energy-harvesting drones with

D2D networks. The aim is to develop an optimal power transmission vector,

maximizing the D2D network’s sum rate while satisfying the drones’ energy

needs. Given the need for real-time solutions, a hybrid approach is proposed,

combining deep unsupervised learning with a comprehensive power scheme via

a deep neural network. The hybrid method outperforms non-data-driven meth-

ods by up to 91% in sum rate, achieving efficient solutions within the channel

coherence time. However, it also suffers from the issue of a “soft” boundary,

requires tuning a penalty factor, and often does ensure neither optimality nor

feasibility.

3. Kim, Donghyeon and Jung, Haejoon and Lee, In-Ho [33]

Managing transmit power is crucial for effectively reducing interference and in-

creasing the sum rate in overlay D2D communication systems. However, such

power control for optimizing the sum rate is an NP-hard problem typically ad-

dressed using iterative algorithms like the WMMSE method, which is complex

and time-consuming. The authors introduce an unsupervised learning-based

deep learning power control scheme that considers partial and outdated CSI to

address these challenges. This scheme uses a DNN to formulate an optimiza-

tion problem to maximize spectral efficiency while considering user fairness and

energy efficiency constraints. Moreover, the authors propose a method for re-

porting CSI based on the channel-to-interference power ratio that significantly

31

reduces the feedback overhead. Simulation results indicate improved spectral

efficiency, energy efficiency, and fairness performance across varying topograph-

ical sizes and channel correlation coefficients. However, the major limitation is

the potential for suboptimal decision-making. Relying on incomplete or out-

dated CSI can lead to inaccurate power control decisions, resulting in increased

interference and a compromised sum rate, negating the very goals of the scheme.

2.5 Conclusion

The reviewed literature suggests that conventional methods struggle with large-scale

optimization due to computational intensity [22]-[27]. DNNs can efficiently handle

these problems due to their function approximation abilities [34]. However, ensuring

feasible solutions with NNs in constrained optimization, especially with intertwined

constraints, is challenging. One strategy for constraints in deep learning is using a

penalty term in the loss function, especially for D2D networks [31]. While this offers

flexibility, it gives only a “soft” boundary, requiring an additional penalty factor to

balance optimality and feasibility, often failing to achieve either. Projection-based

methods [11] provide “hard” boundaries but increase computational complexity and

often do not yield optimal solutions. Some recent methods ensure feasibility using

iterative processes like the double description method and the gradient-descent-based

DC3 algorithm [14]. However, these iterative steps contradict the primary advantage

of using deep learning over traditional iterative algorithms. This implies that more

extensive research and validation are needed to conclusively establish these meth-

ods’ practicality and effectiveness. This research, therefore, introduces a new DUL-

based framework designed to consistently produce feasible solutions for optimization

problems with non-homogeneous linear inequality constraints combined with box con-

straints. The study further showcases its efficacy in optimizing the sum rate in D2D

networks.

In the next chapter, the methodology of the study will be discussed in detail,

laying the foundation for the experimental setup and analysis of the results.

32

Chapter 3

Methodology

This chapter delineates the methodology implemented in this research study. It be-

gins by introducing the system model, research design and discussing the selection

of the DUL model. This is followed by explaining the proposed network model, the

data generation methods, and the evaluation metrics used to assess the model’s per-

formance.

3.1 The System Model

For a standard K-user single-antenna interference channel model, as shown in Figure

3.1, where all transmitter-receiver pairs are considered to share the same narrowband

spectrum and to be synchronized, the discrete-time baseband signal received by the

i-th receiver is:

yi = hi,ixi +
∑

j∈K/{i}

hj,ixj + ni (3.1)

Here, xi = the signal transmitted by the i-th transmitter; K = {1, 2, . . ., K}

= the set of transmitter-receiver pairs; K/{i} = the set of transmitter-receiver pairs

excluding the i-th one; hi,i = the direct link channel for the i-th user; hj.i = the

cross-link channel for the j-th transmitter and the i-th receiver; ni = the i-th receiver

noise and ni ∼ N(0, σ2
i). Also, xi ∈ C, hi,i ∈ C and hj,i ∈ C when C = the set of

33

Figure 3.1: The K-user interference channel

complex numbers. Moreover, hj,i follows the Circularly Symmetric Complex Gaussian

(CSCG) distributions with zero means and unit variances.

It is relevant to point out that this model has been thoroughly explored in studies

[26, 35, 36, 28, 31].

Equation (3.1) can be written in a matrix form as:


y1

y2
...

yK


K×1

=


h1,1 h2,1 . . . hK,1

h1,2 h2,2 . . . hK,2
...

...
. . .

...

h1,K h2,K . . . hK,K


K×K

×


x1

x2
...

xK


K×1

+


n1

n2

...

nK


K×1

(3.2)

For a given vector P = (P1, P2, . . ., PK)
T = the joint power profile of all users, Pi

= the transmit power for i-th user when (0 ≤ Pi ≤ Pmax), and the channel realization

{hij}i,jϵK , the achieveable rate of the i-th receiver under Gaussian codebooks is:

Ri(P) = log2

(
1 +

Pi|hi,i|2

σ2
i +

∑
j∈K/{i} Pj|hj,i|2

)
(3.3)

34

Then the SINR is:

SINRi(P) =
Pi|hi,i|2

σ2
i +

∑
j∈K/{i} Pj|hj,i|2

(3.4)

3.1.1 Problem Formulation

Power control in interference management aims to identify the ideal power profile P

for all users to enhance system performance, i.e., SINR. It needs to be done while

adhering to certain specified restrictions, as detailed below:

maximize
P

K∑
i=1

Ri(P)

subject to SINRi(P) ≥ ri,min

and (0 ≤ Pi ≤ Pmax)

(3.5)

Here, ri,min = the minimum required SINR of the i-th receiver and rmin = (r1,min,

r2,min, . . ., rK,min).

3.1.2 Constraint Elimination

Typically, DNNs parameters are unbounded and can take on random values in the en-

tire real space. However, for wireless communications optimization problems, the op-

timization variables are susceptible to numerous constraints. Eliminating constraints

and transforming constrained optimization issues into unconstrained problems is a

natural application of the proposed DNNs with constrained variables.

From Equation (3.5):

SINRi(P) ≥ ri,min (3.6)

Now, from Equation (3.4):

Pi|hi,i|2

σ2
i +

∑
j∈K/{i} Pj|hj,i|2

≥ ri,min (3.7)

35

This Equation (3.7) can be reorganised as:

Pi|hi,i|2 − ri,min
∑

j∈K/{i}

Pj|hj,i|2 ≥
(
ri,min × σ2

i

)
(3.8)

So, the equation in matrix form becomes:
|h1,1|2 −r1,min|h2,1|2 . . . −r1,min|hK,1|2

−r2,min|h1,2|2 |h2,2|2 . . . −r2,min|hK,2|2
...

...
. . .

...

−rK,min|h1,K |2 −rK,min|h2,K |2 . . . |hK,K |2


K×K

×


P1

P2

...

PK


K×1

≥


r1,min × σ2

1

r2,min × σ2
2

...

rK,min × σ2
K


K×1

(3.9)

Equation (3.9) can be expressed as:

AK×K ×PK×1 ≥ bK×1 (3.10)

Equation (3.10) satisfies conditions of linear inequality constraint and the trans-

form is:

P = A−1(b+ ν) (3.11)

where, A−1 = the pseudo inverse of A and ν = eν
′
> 0 = the introduced set of

slack variables.

36

3.1.3 Formulation for The Optimization Problem

For an optimization problem:

P1 : min
x

f(x)

subject to Ax ≥ b

and 0 ≤ x ≤ c

(3.12)

Here, x, b, and c are K-dimensional real vectors, with non-negative entries; f(x)

is a real-valued (not necessarily convex) objective function; and A is a K × K real

monotone matrix.

The non-homogeneous constraint given in Equation (3.12) can be rewritten as:

Ax = b+ µ (3.13)

Here µ ≥ 0 is a K-dimensional real vector. As a consequence,

x = x̂+ A−1µ (3.14)

Where,

x̂ = A−1b (3.15)

It is worth mentioning that A is monotone, and, as such, all entries of A−1 are

non-negative [37]. Consequently, A−1µ ≥ 0, and x ≥ x̂. Therefore, the problem P1

is infeasible if x̂ ≰ c. Furthermore, b ≥ 0 implies x̂ ≥ 0. Hence, we can have x ≥ 0.

As such, the lower-limit constraint in Equation (3.12) is satisfied implicitly.

In the following, the optimization problem P1 is transformed into an equivalent

problem in terms of µ. To this end, it is observed that the P1 constraint of Equation

(3.12) is equivalent to µ ≥ 0. Moreover, since the lower-limit constraint of Equation

37

(3.12) is always satisfied implicitly, it can be expressed in terms of µ as:

A−1µ ≤ c− x̂ (3.16)

Consequently, P1 can be reformulated in terms of µ as follows:

P2 : min
µ

f(x̂+ A−1µ)

subject to µ ≥ 0

and A−1µ ≤ c− x̂

(3.17)

Although it is quite straightforward to satisfy constraint of P2 of Equation (3.17)

in DNNs by employing ReLU activation function, meeting constraint of Equation

(3.12) is non-trivial. In what follows, a method that guarantees satisfaction of both

constraints of P2 simultaneously by the DNNs is proposed. To this end, it can be writ-

ten A−1 =
[
a1 a2 · · · aK

]
, where ak is the k-th column of A−1, and k = 1, 2, · · · , K.

Denoting the k-th element of µ by µk, Equation (3.17) can be re-written as:

K∑
k=1

µkak ≤ c− x̂ (3.18)

Equivalently,

µkak ≤ c− x̂−
K∑

l=1,l ̸=k

µlal (3.19)

Noting that µkak ≥ 0 for 1 ≤ k ≤ K, it comes:

µkak ≤ c− x̂ (3.20)

and

0 ≤ µk ≤ βk ≜ min
l

cl − x̂l
ak,l

(3.21)

Where cl, x̂l, and ak,l are the l-th elements of c, x̂, and ak, respectively, and

k, l = 1, 2, · · · , K.

38

Here, the lower limit on µk comes directly from Equation (3.17). To point out that

Equation (3.21) is a box constraint and can be easily implemented using a sigmoid

activation function in DNNs. It is important to mention here that Equation (3.21)

must be satisfied for Equation (3.17) to hold. However, the converse is not true in

general. Nonetheless, Equation (3.21) provides a tight boundary box of the convex

polytope represented by Equation (3.17).

Since Equation (3.21) does not imply Equation (3.17) in all cases, it is proposed

to scale µ by α ≥ 0, if Equation (3.17) is not satisfied. To this end, it is defined

ν = αµ, where α = 1 if Equation (3.17) is satisfied. Otherwise, α is computed using

Equation (3.17) as:

α =


1 if Equation (3.17) is satisfied;

min
l

cl − x̂l
[A−1µ]l

otherwise;
(3.22)

and [A−1µ]l is the l-th element of A−1µ with l = 1, 2, · · · , K. By employing

Equation (3.22) it is ensured that A−1ν ≤ c− x̂, thus 100% constraint satisfaction is

ensured. For noting that min
l

cl − x̂l
[A−1µ]l

cannot be less than unity when Equation (3.17)

is satisfied, it can be re-writen α in a more compact form as:

α = min

{
1,min

l

cl − x̂l
[A−1µ]l

}
(3.23)

Regarding the Equation (3.5), α can be expressed as:

α = min

{
1, min

1≤l≤K

Pmax − P̂l
[A−1µ]l

}
(3.24)

3.2 Research Design

The research was executed following a quantitative approach to develop a predic-

tion model that can estimate the optimal sum rate for D2D networks using DUL

techniques. The study involved designing a deep learning model, training it on a

39

comprehensive dataset, and subsequently evaluating its performance.

3.2.1 Generating Feasible Datasets for the Transmission Chan-

nel Parameters

The data used for training, validation, and testing the model were generated from

CSCG distributions with zero means and unit variances for various D2D network

simulations. The variables included maximum transmission power, minimum SINR

for each receiver, and the number of devices.

Matrix B defines the necessary and sufficient criteria for evaluating the viability

of Equation (3.5) as [26, 38]:

Bi,j =

0, i = j

γi,min|hj,i|2
|hi,i|2 , i ̸= j

(3.25)

Here, Bi,j = the (i,j)-th element of B and γi,min = ri,min = the minimum SINR

of the i-th receiver that is required to satisfy as constraint.

It is possible to locate a workable power allocation P̂ in the following way if the

maximum eigenvalue of B is less than 1:

P̂ = (I−B)−1u (3.26)

where, I is an K × K identity matrix and u is a K× 1 column vector with the

i-th element ui as:

ui =
γi,minσ

2
i

|hi,i|2
(3.27)

If every element in P̂ falls between 0 and Pmax, then the power profile P̂ is a viable

solution to the problem posed by equation Equation (3.5). However, there might be

better options than this.

40

3.2.2 Proposed DNN Model

The choice of model for this study was influenced by the need for a system that

could learn complex distributions from the data without requiring labeled examples

to exploit a fully connected deep neural network to address the power control problem.

Figure 3.2: The architecture of the proposed DNN model

• DNN Architecture

Using Equation (3.17) and Equation (3.23), the DNN architecture as shown in Figure

3.2 is proposed to solve the optimization problem of Equation (3.5). The proposed

network model comprises several layers: input, hidden (flattened, dense, batch nor-

malization), and output.

The input layer of a neural network receives the feature vector, which is the feasible

concatenation of the channel coefficients’ magnitudes, |hi,j|. The input layer has K2

neurons corresponding to the elements of A or any bijective function related to A.

Next are the densely interconnected hidden layers. A ReLU activation function is used

41

to calculate the output of each node in the concealed layer, which is then followed

by a Batch Normalization (BN) layer. The addition of the BN layer expedites the

training procedure. Then, the output layer is activated using the sigmoid function.

The output layer has K neurons corresponding to µ with scaled sigmoid activation

function corresponding to Equation (3.21). Finally, there is a Lambda layer to

calculate the power profile P that satisfies both the SINR and power constraints of

the optimization problem Equation (3.5) corresponding to Equation (3.22) using P̂,

A−1 and ν. The loss function is f(P̂ + A−1ν), where ν = αµ, and α is given in

Equation (3.22).

LossDNN =
1

|Ψ|
∑
ψϵΨ

−Rψ (P) (3.28)

Here, ψ represents the mini-batch of size |Ψ|. The objective of the DNN is to

minimize the loss function and maximize the sum rate R(P), which would help the

model recognize the correlations and dependencies between different network param-

eters and their effect on the sum rate. It is essential to mention that this training

framework is known as UL because the objective function is directly incorporated into

the loss function, eliminating the need for label data.

3.2.3 Evaluation Metrics

The performance of this proposed DUL-based DNN model was compared mainly

based on two metrics: Constraint Violation Probability (CVP) or Hit Rate (HR),

HR = 1 - CVP, and the Average Sum Rate (ASR) in Bit/Second/Hertz. However,

the complexity, the model’s robustness to channel noise, and the ability to handle

different network conditions were also assessed. In problem (3.5), the CVP refers to

the likelihood that a given solution violates the two constraints: transmit power P

and SINR of the problem. The ASR refers to the cumulative data rate of multiple

concurrent transmissions in the network, averaged over channel realizations.

The following chapter presents the results obtained from these experiments and

interprets the findings.

42

Chapter 4

Discussion

This chapter outlines the experimental setup and the process of model validation

and testing, presents the analysis results and discusses the findings from the study

carried out to explore the application of DUL for achieving an optimum sum rate for

D2D networks. The primary focus was understanding how effectively deep learning

techniques can improve the sum rate, which is a critical factor in determining the

overall network performance.

4.1 Setup, Training and Testing The DNN Model

4.1.1 Setup Specification

The simulations for this study were done on Google Colaboratory, also known as

Colab, a research project created by Google. It provides a free virtual machine with

pre-installed Python libraries, including TensorFlow, and offers access to GPUs and

TPUs for machine learning tasks. The “Runtime” setting for Colab was set to:

• Runtime type: Python3

• Hardware accelerator: TPU

• Shape: High-RAM (Random-Access Memory)

43

4.1.2 Baseline Scheme

The performance of the proposed DUL approach is measured against PCNet, a method

previously proposed in referenced literature [31]. This benchmark is used for a fair

comparison. One key aspect that the proposed DNN-based method and PCNet share

is their ability to circumvent intensive computational steps, such as projection pro-

cedures or iterative algorithms, which can often be resource-heavy. In addition, it

employs a soft-loss function to train the NN, incorporating a penalty term, denoted

by λ, into the sum rate.

A separate PCNet needs to be trained for a specific background noise power

since it only considers channel coefficients as input. This requires multiple PCNet

models for different noise powers in real-world applications, limiting its generalization.

PCNet+, a modified version of PCNet, is introduced in [31] to improve generalization

by including noise power, σ2, alongside channel coefficients as input.The proposed

DUL approach is also modified to compare the performance with the PCNet+ model.

4.1.3 Primary Parameters

Throughout the study, the symmetric interference channel model with i.i.d. the

Rayleigh fading channel model with unity mean channel gain was considered for all

channels. Five transmitter-receiver antenna pairs were taken to evaluate the efficacy

of this proposed model with the PCNet model, i.e., when K = 5. Each receiver’s

noise output was set to the same variance or σ2 level. The maximum transmit power

was set to Pmax = 1.0 Watt for all transmitter and was considered the noise level

EsN0 as:

EsN0 = 10 log10
Pmax

σ2
(4.1)

For performance analysis, the results under seven typical values of EsN0 = (0

dB, 10 dB, 20 dB, 30 dB, 40 dB, 50 dB, 60 dB) are presented. Different values of K,

i.e., K = [5, 6, 7, 8], were also considered with EsN0 = (0 dB, 10 dB, 20 dB, 30 dB,

40 dB) to compare the performance with the PCNet+ model.

44

4.1.4 Datasets of Feasible Transmission Channel Parameters

In wireless communications, the SINR is an important parameter that quantifies cel-

lular connection quality. It reflects the balance between the desired signal and the

interference and noise levels.

• Training with a given background noise power: In this particular scenario,

five different SINR cases were considered with SINRmin = 0.5. Combining this

with seven individual EsN0, 35 (1 K value × 5 SINR cases × 7 EsN0) distinct

scenarios were taken. For each scenario, a dataset of 250,000 data points, each of

which was a five-by-five matrix related to the transmission channel parameters,

has been generated, resulting in an impressive total of 8,750,000 (35 × 250,000)

data points. The total size of these datasets is 11.1 GB.

• Training with enhanced generalization capacity: For this scenario, four

different K, i.e., K = [5, 6, 7, 8] with the most stringent SINR case of SINRmin

= 0.2 values and five individual EsN0, 20 (4 K values × 1 SINR case × 5

EsN0) different scenarios were taken. For each scenario, a dataset of 250,000

data points resulted in a total of 5,000,000 (20 × 250,000). The total size of

these datasets is 11 GB.

All the datasets can be accessed via the link provided in Appendix A. These

comprehensive datasets provide a wide variety of scenarios, that cater to numerous

situations in wireless communications, enabling robust analysis and modeling.

Table 4.1, referenced in the text, compares the ratio between feasible and random

datasets for the transmission channel parameters for five different SINR cases with

seven individual noise levels (EsN0) in dB, when K = 5. A feasible dataset repre-

sents a likely scenario that meets both the constraints SINRi(P) and Pi of Equation

(3.5). In contrast, a random dataset is generated without considering specific condi-

tions or restrictions. The ratio between these two dataset types helps to understand

the balance between real-world applicability (feasible datasets) and broad variability

(random datasets), which can significantly impact the model’s performance and abil-

ity to generalize to new, unseen data.

45

Table 4.1: Count ratios of feasible vs. random datasets for the channel parameters
with 5 SINR cases for K = 5, e.g., Case 3 : SINRmin= [0.5, 0.5, 0.5, 0.0, 0.0]

SINRmin 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB

Case 1 60.65% 95.13% 99.50% 99.95% 99.99% 100.00% 100.00%

Case 2 22.51% 63.05% 70.79% 71.69% 71.70% 71.70% 71.80%

Case 3 4.73% 25.76% 31.50% 32.06% 32.19% 32.21% 32.27%

Case 4 0.55% 5.91% 7.92% 8.14% 8.15% 8.16% 8.22%

Case 5 0.03% 0.74% 1.05% 1.10% 1.11% 1.13% 1.13%

In analyzing the performances, the dataset was divided into three distinct sections:

training, testing, and validation. This division is essential for ensuring the model have

a balanced ability to learn from data (training), evaluate its performance during the

learning process (validation), and verify its final accuracy and robustness on unseen

data (testing). An 80%:10%:10% split for the training, validation, and testing data

was utilized.

4.1.5 Tuning Hyperparameters

Hyperparameter tuning in DNNs is a central facet of model optimization and in-

strumental in realizing peak performance. Consequently, an extensive preliminary

analysis was conducted to tune key hyperparameters systematically. These include

the learning rate, batch size, number of hidden layers and neurons, epochs, and op-

timization algorithms. The Adam Optimizer was employed for network training in

alignment with conventional practice. However, an array of other hyperparameters

were explored and tested. This selection was driven by the necessity to strike a bal-

ance among critical factors: computational execution time, effective training of the

model, and the achievement of an optimal average sum rate.

This report presents several training outcomes predicated on SINRmin = (0.5,

0.5, 0.5, 0.5, 0.5) and EsN0 set at 0 dB. Figures 4.1 through 4.4 demonstrate the

implications of varying the learning rate from 0.1 to 0.0001. The training trajectories

46

corresponding to mini-batch sizes of 10,000 and 100 are depicted in Figures 4.5 and

4.6, respectively. As represented in Figure 4.7, an increased number of epochs results

in a flattened tail in the learning curve. Moreover, Figures 4.8 and 4.9 display the

training curves resulting from the addition of one [(K × K), (2 × K × K), (K × K)]

and two [(K × K), (K × K), (K × K), (K × K)] more dense layers, respectively from

[(2 × K × K), (K × K)] set of neurons. Finally, Table 4.2 provides a detailed account

of the execution time and the average sum rate (measured in Bit/Second/Hertz) for

all the hyperparameter combinations explored in this study. It should be noted that

there is a 0% CVP, meaning the HR is consistently 100% across all scenarios.

The trials demonstrated the significant influence of various hyperparameters on

the performance and efficiency of the training process in DNNs. If the learning rate is

too large, the model may overshoot the optimal solution; if it is too small, the learning

process can become excessively slow. Batch size, the number of training examples used

in one iteration, impacts both the training process’s speed and the model’s quality.

Smaller batch sizes can offer a regularizing effect and better generalization, but the

learning process may become slower and less stable. Larger batch sizes can make the

training faster, but they require more memory, and the model may converge to a less

optimal solution.

The epoch size determines the number of complete passes the learning algorithm

makes over the entire training dataset. This parameter’s optimal value is crucial

for the convergence and performance of the model. Too few epochs can lead to

underfitting of the model, as it might not have learned all the intricate patterns in

the data. Conversely, too many epochs can lead to overfitting, as the model may start

to memorize the training data instead of learning to generalize from it. Furthermore,

the number of epochs directly affects the computational cost, as more epochs require

more time to compute. Therefore, choosing an appropriate epoch size is a delicate

balance between model performance and computational efficiency.

Determining the optimal number of hidden dense layers and neurons per layer

is challenging. More layers and neurons can increase the model’s capacity to learn

complex patterns, but they can also make the model prone to overfitting and increase

the computational cost. Conversely, too few can lead to underfitting.

47

Figure 4.1: Training with Learning Rate = 0.1

Figure 4.2: Training with Learning Rate = 0.01

48

Figure 4.3: Training with Learning Rate = 0.001

Figure 4.4: Training with Learning Rate = 0.0001

49

Figure 4.5: Training with Mini-Batch Size = 10,000

Figure 4.6: Training with Mini-Batch Size = 100

50

Figure 4.7: Training with epoch = 100

Figure 4.8: Training with three dense layers and [25, 50, 25] set of neurons

51

Figure 4.9: Training with four dense layers and [25, 25, 25, 25] set of neurons

Table 4.2: Results for different hyperparameters for EsN0 = 0 dB and SINRmin =
(0.5, 0.5, 0.5, 0.5, 0.5)

Layer Epoch
Batch

Size

Learning

Rate

Training

Time

Avgerage Sum Rate

(Bit /Second /Hertz)

2 50 1,000 0.1 55.952s 3.492

2 50 1,000 0.01 55.889s 3.498

2 50 1,000 0.001 55.859s 3.490

2 50 1,000 0.0001 56.463s 3.483

2 50 10,000 0.0001 19.64s 3.455

2 50 100 0.0001 294.999s 3.490

2 100 1,000 0.0001 109.658s 3.486

3 50 1,000 0.0001 66.399s 3.487

4 50 1,000 0.0001 71.527s 3.486

52

4.2 Results of the Analysis

Certain parameters were held constant to ensure a balanced and equitable comparison

between the proposed DUL method and PCNet/PCNet+. Specifically, the architec-

ture of the neural networks, in terms of the number of hidden layers and neurons per

layer, was maintained identically for both approaches. The performance was measured

with two dense layers of [(2 × K × K), (K × K)] number of neurons, respectively.

The NNs were trained using a mini-batch gradient descent algorithm with a batch

size of 1,000 realizations. Adam Optimizer was used with a learning rate of 0.0001

and a total of 50 epochs.

In addition, for a fair comparison of the ASR, the infeasible output power vectors

were scaled for the benchmark schemes, i.e., PCNet/PCNet+. As detailed in subsec-

tion 4.1.5, the proposed model consistently yields a feasible power vector. Conversely,

the NNs used in the benchmark schemes do not always produce power vectors adher-

ing to the constraints. So, a heuristic method is used, where P̂ is scaled when the NN

gives a power vector that is not feasible, as shown in Equation (15) of [31].

The DNN input layer containsK2 nodes for training with a given background noise

power because it only takes channel coefficients as the input. However, the input layer

contains (K2 + 1) inputs for training its NNs with enhanced generalization capacity

to take the noise power σ2 as another input to the network, in addition to the channel

coefficients.

4.2.1 Training with A Given Background Noise Power

Comparison plots on ASR (4.10, 4.12, 4.14, 4.16 and 4.18) and HR (4.11, 4.13, 4.15,

4.17 and 4.19) between the proposed model and PCNet are presented in the next few

pages for the five cases of minimum SINR requirements. Respective data tables are

also provided for reference. Tables 4.3, 4.5, 4.7, 4.9, and 4.11 are for ASR for both

models. However, Tables 4.4, 4.6, 4.8, 4.10 and 4.12 are only for HR of PCNet for

different λ values. HR for proposed model is always 100%.

53

4.2.1.1 Results for Case 1 : SINRmin= [0.5, 0.0, 0.0, 0.0, 0.0]

Figure 4.10: Average Sum Rate Plot for SINRmin = [0.5, 0.0, 0.0, 0.0, 0.0]

Table 4.3: Average Sum Rates (Bit/Second/Hertz) for different EsN0 (dB) for
SINRmin = (0.5, 0.0, 0.0, 0.0, 0.0)

Model 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB

PCNet 1.860 3.580 6.078 9.156 12.466 15.761 19.096

Proposed 1.945 3.678 6.102 9.154 12.459 15.751 19.085

54

Figure 4.11: Hit Rate Plot for SINRmin = [0.5, 0.0, 0.0, 0.0, 0.0]

Table 4.4: Hit Rates for PCNet for SINRmin = (0.5, 0.0, 0.0, 0.0, 0.0)

EsN0 λ = 0 λ = 5 λ = 10 λ = 15 λ = 20 λ = 25

0 dB 53.92% 83.92% 90.54% 92.99% 94.32% 95.38%

10 dB 27.84% 92.52% 96.35% 97.80% 98.39% 98.78%

20 dB 51.91% 99.24% 99.48% 99.70% 99.77% 99.84%

30 dB 46.20% 99.84% 99.90% 100.00% 100.00% 100.00%

40 dB 0.25% 99.84% 99.87% 99.90% 99.99% 100.00%

50 dB 0.11% 99.82% 99.94% 99.98% 100.00% 100.00%

60 dB 0.19% 99.69% 99.97% 100.00% 100.00% 100.00%

55

4.2.1.2 Results for Case 2 : SINRmin= [0.5, 0.5, 0.0, 0.0, 0.0]

Figure 4.12: Average Sum Rate Plot for SINRmin = [0.5, 0.5, 0.0, 0.0, 0.0]

Table 4.5: Average Sum Rates (Bit/Second/Hertz) for different EsN0 (dB) for
SINRmin = (0.5, 0.5, 0.0, 0.0, 0.0)

Model 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB

PCNet 2.020 2.878 3.322 3.525 3.631 3.457 3.606

Proposed 2.147 3.107 3.726 3.946 4.019 4.031 4.015

56

Figure 4.13: Hit Rate Plot for SINRmin = [0.5, 0.5, 0.0, 0.0, 0.0]

Table 4.6: Hit Rates for PCNet for SINRmin = (0.5, 0.5, 0.0, 0.0, 0.0)

EsN0 λ = 0 λ = 5 λ = 10 λ = 15 λ = 20 λ = 25

0 dB 33.95% 68.16% 78.12% 83.82% 85.71% 86.23%

10 dB 8.34% 79.03% 86.58% 90.08% 90.96% 92.38%

20 dB 0.26% 79.68% 89.13% 92.41% 93.16% 94.10%

30 dB 0.32% 68.22% 88.78% 92.32% 93.50% 93.99%

40 dB 0.11% 70.22% 89.64% 92.53% 93.69% 95.65%

50 dB 0.00% 75.56% 90.13% 92.48% 93.56% 95.62%

60 dB 0.16% 71.12% 89.75% 91.40% 94.42% 94.64%

57

4.2.1.3 Results for Case 3 : SINRmin= [0.5, 0.5, 0.5, 0.0, 0.0]

Figure 4.14: Average Sum Rate Plot for SINRmin = [0.5, 0.5, 0.5, 0.0, 0.0]

Table 4.7: Average Sum Rates (Bit/Second/Hertz) for different EsN0 (dB) for
SINRmin = (0.5, 0.5, 0.5, 0.0, 0.0)

Model 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB

PCNet 2.371 2.804 2.997 3.033 3.020 3.023 3.040

Proposed 2.524 3.098 3.430 3.512 3.513 3.521 3.519

58

Figure 4.15: Hit Rate Plot for SINRmin = [0.5, 0.5, 0.5, 0.0, 0.0]

Table 4.8: Hit Rates for PCNet for SINRmin = (0.5, 0.5, 0.5, 0.0, 0.0)

EsN0 λ = 0 λ = 5 λ = 10 λ = 15 λ = 20 λ = 25

0 dB 17.78% 47.84% 60.56% 65.88% 69.00% 69.62%

10 dB 0.47% 56.54% 68.56% 74.18% 76.71% 78.09%

20 dB 0.01% 56.30% 73.10% 76.58% 79.23% 81.17%

30 dB 0.24% 51.90% 75.10% 77.99% 81.97% 83.17%

40 dB 0.00% 52.51% 73.15% 77.89% 79.70% 79.89%

50 dB 0.00% 51.26% 73.94% 77.19% 79.57% 80.62%

60 dB 0.00% 54.01% 73.28% 79.08% 80.82% 81.36%

59

4.2.1.4 Results for Case 4 : SINRmin= [0.5, 0.5, 0.5, 0.5, 0.0]

Figure 4.16: Average Sum Rate Plot for SINRmin = [0.5, 0.5, 0.5, 0.5, 0.0]

Table 4.9: Average Sum Rates (Bit/Second/Hertz) for different EsN0 (dB) for
SINRmin = (0.5, 0.5, 0.5, 0.5, 0.0)

Model 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB

PCNet 2.804 3.054 3.136 3.155 3.161 3.159 3.152

Proposed 2.990 3.350 3.497 3.524 3.531 3.525 3.513

60

Figure 4.17: Hit Rate Plot for SINRmin = [0.5, 0.5, 0.5, 0.5, 0.0]

Table 4.10: Hit Rates for PCNet for SINRmin = (0.5, 0.5, 0.5, 0.5, 0.0)

EsN0 λ = 0 λ = 5 λ = 10 λ = 15 λ = 20 λ = 25

0 dB 5.72% 29.58% 43.98% 49.43% 53.28% 54.07%

10 dB 0.02% 37.13% 52.56% 53.59% 55.37% 56.99%

20 dB 0.00% 38.82% 54.83% 58.22% 58.28% 59.66%

30 dB 0.00% 39.82% 51.71% 56.96% 59.90% 61.92%

40 dB 0.00% 41.96% 55.16% 56.52% 57.74% 58.72%

50 dB 0.00% 42.23% 52.84% 57.44% 58.91% 61.80%

60 dB 0.00% 41.48% 52.41% 57.44% 59.28% 60.00%

61

4.2.1.5 Results for Case 5 : SINRmin= [0.5, 0.5, 0.5, 0.5, 0.5]

Figure 4.18: Average Sum Rate Plot for SINRmin = [0.5, 0.5, 0.5, 0.5, 0.5]

Table 4.11: Average Sum Rates (Bit/Second/Hertz) for different EsN0 (dB) for
SINRmin = (0.5, 0.5, 0.5, 0.5, 0.5)

Model 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB

PCNet 3.278 3.429 3.479 3.487 3.488 3.489 3.488

Proposed 3.486 3.712 3.790 3.803 3.804 3.803 3.804

62

Figure 4.19: Hit Rate Plot for SINRmin = [0.5, 0.5, 0.5, 0.5, 0.5]

Table 4.12: Hit Rates for PCNet for SINRmin = (0.5, 0.5, 0.5, 0.5, 0.5)

EsN0 λ = 0 λ = 5 λ = 10 λ = 15 λ = 20 λ = 25

0 dB 1.18% 19.37% 30.67% 34.52% 35.22% 36.99%

10 dB 0.00% 24.65% 31.14% 32.67% 33.84% 34.03%

20 dB 0.00% 27.02% 34.30% 34.92% 35.43% 36.22%

30 dB 0.00% 27.08% 33.44% 36.26% 36.38% 37.09%

40 dB 0.00% 26.11% 34.87% 36.92% 37.45% 37.80%

50 dB 0.00% 26.22% 35.49% 35.60% 36.93% 37.44%

60 dB 0.00% 26.88% 35.17% 34.95% 35.24% 36.31%

63

Figures 4.10 to 4.19 show the proposed DUL model consistently outperforming

the PCNet model across all QoS (i.e., SINRmin requirements) and the entire EsN0

range for HR and ASR, except in Case 1 of SINRmin, where they perform at par

for ASR. The proposed model adhered to all constraints, recording no violations. In

contrast, PCNet faced challenges, especially with stringent QoS demands.

Training times for the NNs were 46.408 seconds for PCNet and 49.717 seconds for

the proposed model. The additional time for the proposed model is due to calculations

at the Lambda layer to ensure the power profile P meets both SINR and power

constraints as outlined in Equation (3.5), related to Equation (3.22) using P̂, A−1

and ν.

PCNet’s training involves a soft-loss function that adds a penalty term to the

sum rate. A high penalty value enhances QoS adherence but could lower the average

sum rate. Conversely, a low penalty value might elevate the sum rate but risk QoS

breaches. Fine-tuning this penalty factor, which acts like an extra hyperparameter,

can be tedious. For these comparisons, PCNet’s penalty was optimized for maximum

sum rates.

The proposed DUL-based DNN method is based on an equivalent constrained op-

timization problem, utilizing the properties of a monotone matrix. This model adeptly

manages polytope constraints, leveraging a monotone matrix’s unique characteristic.

Notably, the DUL approach guarantees solution feasibility without iterations, projec-

tions, or additional hyperparameter tuning. Unlike PCNet, the proposed algorithm

seeks power profile values both at and within the boundaries of the box polytope con-

straint, leading to better performance under stringent QoS compared to loose QoS.

4.2.2 Training with Enhanced Generalization Capacity

Comparison plots on ASR (4.20 and 4.21) between the proposed model and PCNet+

are presented in the next two pages for different numbers of K with EsN0 = 0 dB and

SINRmin = 0.2 for all receiver antennas. Respective data tables are also provided

for reference. Tables 4.13 and 4.14 are for ASR for both models.

64

4.2.2.1 ASR for EsN0 = 0 dB with SINRmin= 0.2 for all Receivers

Figure 4.20: Average Sum Rate Plot for different numbers of K with EsN0 = 0 dB
and SINRmin = 0.2 for all receiver antennas

Table 4.13: Average Sum Rates (Bit/Second/Hertz) for different numbers of K
with EsN0 = 0 dB and SINRmin = 0.2 for all receiver antennas

Model K = 5 K = 6 K = 7 K = 8

PCNet+ 1.659 1.872 2.095 2.324

Proposed 2.011 2.210 2.405 2.605

65

4.2.2.2 ASR for EsN0 = 20 dB with SINRmin= 0.2 for all Receivers

Figure 4.21: Average Sum Rate Plot for different numbers of K with EsN0 = 20 dB
and SINRmin = 0.2 for all receiver antennas

Table 4.14: Average Sum Rates (Bit/Second/Hertz) for different numbers of K
with EsN0 = 20 dB and SINRmin = 0.2 for all receiver antennas

Model K = 5 K = 6 K = 7 K = 8

PCNet+ 2.003 2.096 2.242 2.423

Proposed 2.555 2.575 2.660 2.790

66

Training individual NNs for each EsN0 typically yields better performance than

a single adaptive network. While improved generality may reduce performance, it is

still desirable. The figures 4.20 and 4.21 reveal that the DUL-based DNN model sur-

passes the PCNet+ model in ASR for both EsN0 scenarios, consistent with enhanced

generalization capacity. Training NNs took 346.42 and 401.95 seconds for PCNet+

and the proposed model, respectively.

Appendix B is attached for comprehensive details regarding the simulation results.

All Python code in Colab is included in Appendix C.

4.3 Summary

The performance of the PCNet/PCNet+ and the proposed DUL-based DNN model

was mainly compared based on constraint adherence or hit rate valuations, and aver-

age sum rates. The proposed model distinguishes itself by ensuring complete satisfac-

tion of all constraints and a better average sum rate whenever the problem is feasible.

PCNet/PCNet+, in contrast, relies on a penalty factor λ as a mechanism to augment

its hit rate, operating under the principle that the larger the penalty for constraint vio-

lations, the higher the consequent hit rate, and vice versa. However, PCNet/PCNet+

encounters difficulties maintaining high hit rates when QoS requirements become in-

creasingly stringent. Additionally, it is noteworthy that changes in noise level EsN0

exert minimal impact on the hit rates of PCNet/PCNet+. Contrarily, the proposed

DUL-based scheme exhibits exceptional performance, consistently achieving a 100%

hit rate, irrespective of the QoS constraints and EsN0 noise levels. In all scenarios

and across the complete EsN0 noise level range, the proposed DUL-based scheme

surpasses PCNet/PCNet+’s performance, except for the slightly extended training

time needed to train its NNs. However, this superior performance is achieved with-

out extensive hyperparameter tuning, unlike PCNet/PCNet+, which requires careful

selection of the penalty factor λ. Moreover, the DUL-based scheme eliminates the

need for feasibility checks on its output or the application of heuristic solutions. This

streamlined approach leads to a reduction in computational overhead, making the

DUL-based scheme a more efficient solution when compared to PCNet/PCNet+.

67

Chapter 5

Conclusion

5.1 Overview

This thesis embarks on an in-depth exploration of DUL methodologies, emphasizing

their ability to augment the sum rate in D2D networks. At the heart of this exploration

lies a substantial contribution, wherein an inventive DUL-based optimizer is put forth.

This innovative model takes strides in efficiently tackling the challenge of loss function

minimization, grappling simultaneously with box and polytope constraints tied to a

monotone matrix.

The strength of this proposed model is rooted in its robustness and ease of im-

plementation. Leveraging Sigmoid activation functions within the output layer, the

model encapsulates a unique configuration that can deftly handle complex computa-

tional tasks. Notably, this design enables the model to fulfill both box and polytope

constraints concurrently while driving the optimization of the loss function.

With its pioneering approach, the model showcases the potential of DUL method-

ologies in enhancing network efficiency, setting the stage for further research and

advancement in this field. The study lays out a solid foundation for future endeavors

seeking to unlock the untapped potential of DUL in optimizing D2D networks, signi-

fying a critical step forward in wireless communication networks.

68

5.2 Key Findings

The research revealed a noteworthy improvement in the sum rate when deploying

the DUL model compared to conventional D2D communication methods. It has been

shown that the model can effectively learn complex data patterns and make informed,

real-time decisions regarding power control to transmit, resulting in more efficient use

of the available spectrum.

The model’s performance remained consistent across varying network channel

parameters, showcasing its adaptability. Deep learning techniques can support more

dynamic and responsive management of D2D communications, resulting in better

quality of service for users and enhanced network capacity.

During meticulous analysis, a salient feature of the proposed DUL-based optimizer

emerges: it reliably ensures an exceptional 100% constraint satisfaction rate. This

level of consistency sets it apart from its contemporaries, especially compared to

existing DUL-based methodologies such as PCNet.

Additionally, the proposed methodology demonstrates a clear superiority in per-

formance when juxtaposed with PCNet in terms of the average sum rate. The prowess

of this method does not end there; it extends into the realm of simplicity and effi-

ciency. Unlike many other methods, the proposed approach successfully eliminates

the need for additional hyperparameters or heuristic solutions, often deemed neces-

sary in methods akin to PCNet.

This streamlined operation not only makes the proposed approach more accessible

but also improves its efficiency. The proposed methodology’s exemplary performance,

simplicity, and high efficiency underscore the potential of DUL as a robust tool for

optimizing D2D networks. It signifies a remarkable advancement in the field, opening

up new possibilities for future research and development in D2D network optimization.

The superiority of this approach has been verified through comprehensive study,

meticulous data analysis, and simulation, underscoring the considerable potential of

machine-learning techniques in managing D2D networks and enhancing their perfor-

69

mance. The thesis underscores the potential for these innovative techniques to manage

D2D networks more efficiently and significantly improve their performance, thereby

providing a substantial contribution to the field.

5.3 Implications

Employing DUL-based DNNs for D2D networks holds considerable promise. The

potential ramifications of this transition are manifold:

1. It paves the way for an enhanced user experience by optimizing communication

processes and reducing latency.

2. It could lead to more efficient resource management by utilizing machine learning

algorithms to optimally allocate network resources, thus minimizing waste and

maximizing network efficiency.

3. Adopting DUL can support the growth and scalability of D2D networks, making

them more adaptable and resilient in the face of the rapidly evolving demands

of today’s digital landscape.

The outcomes of this research hint at a paradigm shift in how D2D networks are

managed, steering away from the conventional and static processes currently employed

for resource allocation and interference management. Traditional methods often rely

on pre-defined processes that may not cater to network conditions’ dynamic and

unpredictable nature. In contrast, the new paradigm suggests using flexible and

adaptive models powered by machine learning. These models can learn from past

experiences and continually evolve their strategies, dynamically adapting to changing

network conditions.

It would enable a more proactive and responsive approach where networks can

anticipate changes and adapt their strategies in real-time. It signifies transforming

from a reactive model to a proactive, predictive network management model. This

shift could dramatically improve the efficiency, reliability, and user experience of D2D

70

networks, making them more suitable for a world increasingly reliant on robust and

efficient digital communication platforms.

5.4 Limitations and Future Research

Despite the promising findings, the study also identified potential challenges, notably

computational complexity with real-world application in 5G and beyond networks.

The current model operates under the assumption of ideal channel estimation. It,

however, tends to be unrealistic in real-world scenarios where numerous variables can

influence the estimation process. Therefore, future research endeavors should focus

on enhancing the model’s robustness against potential errors in channel estimation.

It would pave the way for a more accurate and reliable model that can withstand

practical challenges.

The proposed model demonstrates a commendable ability for generalization, par-

ticularly in the context of background noise power. However, integrating other sys-

tem parameters like the number of users and the distribution of channel coefficients

presents a significant challenge. Developing a model that can generalize these system

parameters effectively and accurately is a crucial research direction that warrants ex-

ploration.

The current framework of the proposed scheme is centralized, meaning all process-

ing and decision-making happen in one central unit. It may present limitations when

scaling or when the network demands a more distributed approach. Consequently,

another significant and intriguing line of inquiry lies in developing a distributed ver-

sion of this scheme. While this is a challenging venture, its success could significantly

enhance the scalability and efficiency of the system, thereby making it more adaptable

to diverse network conditions and requirements.

Additionally, the process of selecting appropriate hyperparameters for the model

is an area that requires further investigation. Developing strategies for hyperparam-

eter selection that can optimize the model’s performance will be essential for future

71

research.

These concerns present an avenue for future research and must be addressed to

fully realize the benefits of DUL in real-world D2D networks. Further research might

also investigate the potential of other deep learning architectures or ensemble models

that could further enhance sum-rate optimization.

5.5 Final Words

This research study has shed light on the remarkable potential of DUL as a potent

tool for optimizing the sum rate in D2D networks. Undeniably, the current landscape

presents many challenges and limitations that need to be addressed. However, the

prospective advantages of successfully implementing DUL in this context indicate that

this field is ripe for further exploration and progressive development.

As the realm of D2D communication technologies continues to evolve, so should

the methodologies used to enhance their performance. The employment of DUL in

this sphere represents an exciting frontier in network optimization. The benefits of

harnessing DUL stretch far beyond traditional techniques, promising superior network

performance and more effective utilization of D2D networks. By dynamically learning

and adapting to network conditions, DUL can revolutionize how we manage and

optimize these networks.

This promising trajectory of DUL-based optimization strategies for D2D networks

paints an exciting future, suggesting a shift towards more adaptive and efficient net-

work management. As we continue to explore the nuances of this technology and

build on the foundation provided by this study, the D2D communication field stands

to make significant strides in network optimization, performance enhancement, and

resource utilization.

72

Bibliography

[1] J. Liu, N. Kato, J. Ma, and N. Kadowaki, “Device-to-Device Communication in

LTE-Advanced Networks: A Survey,” IEEE Communications Surveys & Tutori-

als, vol. 17, no. 4, pp. 1923–1940, 2015.

[2] S.-Y. Lien, C.-C. Chien, F.-M. Tseng, and T.-C. Ho, “3GPP device-to-device

communications for beyond 4G cellular networks,” IEEE Communications Mag-

azine, vol. 54, no. 3, pp. 29–35, 2016.

[3] M. S. M. Gismalla, A. I. Azmi, M. R. B. Salim, M. F. L. Abdullah, F. Iqbal,

W. A. Mabrouk, M. B. Othman, A. Y. I. Ashyap, and A. S. M. Supa’at, “Sur-

vey on Device to Device (D2D) Communication for 5GB/6G Networks: Con-

cept, Applications, Challenges, and Future Directions,” IEEE Access, vol. 10,

pp. 30 792–30 821, 2022.

[4] X. Shen, “Device-to-device Communication in 5G Cellular Networks,” IEEE Net-

work, vol. 29, no. 2, pp. 2–3, 2015.

[5] C. Liu and B. Natarajan, “Power-Aware Maximization of Ergodic Capacity in

D2D Underlay Networks,” IEEE Transactions on Vehicular Technology, vol. 66,

no. 3, pp. 2727–2739, 2017.

[6] A. Mehmood, O. Waqar, and M. M. Ur Rahman, “Throughput maximization

of an IRS-assisted wireless powered network with interference: A deep unsuper-

vised learning approach,” Physical Communication, vol. 51, p. 101558, 2022, doi:

https://doi.org/10.1016/j.phycom.2021.101558.

[7] A. Kaushik, M. Alizadeh, O. Waqar, and H. Tabassum, “Deep Unsuper-

vised Learning for Generalized Assignment Problems: A Case-Study of User-

73

Association in Wireless Networks,” in 2021 IEEE International Conference on

Communications Workshops (ICC Workshops), 2021, pp. 1–6.

[8] H. Song, M. Zhang, J. Gao, and C. Zhong, “Unsupervised Learning-Based Joint

Active and Passive Beamforming Design for Reconfigurable Intelligent Surfaces

Aided Wireless Networks,” IEEE Communications Letters, vol. 25, no. 3, pp.

892–896, 2021.

[9] J. Gao, C. Zhong, X. Chen, H. Lin, and Z. Zhang, “Unsupervised Learning for

Passive Beamforming,” IEEE Communications Letters, vol. 24, no. 5, pp. 1052–

1056, 2020.

[10] H. Huang, W. Xia, J. Xiong, J. Yang, G. Zheng, and X. Zhu, “Unsupervised

Learning-Based Fast Beamforming Design for Downlink MIMO,” IEEE Access,

vol. 7, pp. 7599–7605, 2019.

[11] Y. Li, S. Han, and C. Yang, “Multicell Power Control Under Rate Constraints

With Deep Learning,” IEEE Transactions on Wireless Communications, vol. 20,

pp. 7813–7825, 12 2021.

[12] T. Frerix, M. Niesner, and D. Cremers, “Homogeneous Linear Inequality

Constraints for Neural Network Activations,” in 2020 IEEE/CVF Conference on

Computer Vision and Pattern Recognition Workshops (CVPRW). Los Alamitos,

CA, USA: IEEE Computer Society, jun 2020, pp. 3229–3234. [Online]. Available:

https://doi.ieeecomputersociety.org/10.1109/CVPRW50498.2020.00382

[13] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge University

Press, 2004.

[14] P. Donti, D. Rolnick, and J. Kolter, “DC3: A learning method for optimization

with hard constraints,” International Conference on Learning Representations

2021, 04 2021.

[15] M. Haroon, Z. Abbas, F. Muhammad, and G. Abbas, “Coverage Analysis of Cell

Edge Users in Heterogeneous Wireless Networks using Stienen’s Model and RFA

Scheme,” International Journal of Communication Systems, 07 2020.

74

https://doi.ieeecomputersociety.org/10.1109/CVPRW50498.2020.00382

[16] C. Sudhamani, M. Roslee, J. J. Tiang, and A. U. Rehman, “A

Survey on 5G Coverage Improvement Techniques: Issues and Future

Challenges,” Sensors, vol. 23, no. 4, 2023. [Online]. Available: https:

//www.mdpi.com/1424-8220/23/4/2356

[17] Y.-D. Lin and Y.-C. Hsu, “Multihop cellular: a new architecture for wireless com-

munications,” in Proceedings IEEE INFOCOM 2000. Conference on Computer

Communications. Nineteenth Annual Joint Conference of the IEEE Computer

and Communications Societies (Cat. No.00CH37064), vol. 3, 2000, pp. 1273–

1282 vol.3.

[18] X. Wu, S. Tavildar, S. Shakkottai, T. Richardson, J. Li, R. Laroia, and A. Jovi-

cic, “FlashLinq: A Synchronous Distributed Scheduler for Peer-to-Peer Ad Hoc

Networks,” IEEE/ACM Transactions on Networking, vol. 21, no. 4, pp. 1215–

1228, 2013.

[19] J. Iqbal, M. A. Iqbal, A. Ahmad, M. Khan, A. Qamar, and K. Han, “Comparison

of Spectral Efficiency Techniques in Device-to-Device Communication for 5G,”

IEEE Access, vol. 7, pp. 57 440–57 449, 2019.

[20] A. Asadi, Q. Wang, and V. Mancuso, “A Survey on Device-to-Device Com-

munication in Cellular Networks,” IEEE Communications Surveys & Tutorials,

vol. 16, no. 4, pp. 1801–1819, 2014.

[21] S. Xu, H. Wang, and T. Chen, “Effective Interference Cancellation Mechanisms

for D2D Communication in Multi-Cell Cellular Networks,” in 2012 IEEE 75th

Vehicular Technology Conference (VTC Spring), 2012, pp. 1–5.

[22] N. Naderializadeh and A. S. Avestimehr, “ITLinQ: A new approach for spectrum

sharing in device-to-device communication systems,” in 2014 IEEE International

Symposium on Information Theory, 2014, pp. 1573–1577.

[23] F. Hussain, M. Y. Hassan, M. S. Hossen, and S. Choudhury, “An optimal resource

allocation algorithm for D2D communication underlaying cellular networks,” in

2017 14th IEEE Annual Consumer Communications & Networking Conference

(CCNC), 2017, pp. 867–872.

75

https://www.mdpi.com/1424-8220/23/4/2356
https://www.mdpi.com/1424-8220/23/4/2356

[24] S. Lin, L. Fu, K. Li, and Y. Li, “Sum-Rate Optimization for Device-to-Device

Communications over Rayleigh Fading Channel,” in 2017 IEEE 85th Vehicular

Technology Conference (VTC Spring), 2017, pp. 1–6.

[25] M. Chiang, C. W. Tan, D. P. Palomar, D. O’neill, and D. Julian, “Power Control

By Geometric Programming,” IEEE Transactions on Wireless Communications,

vol. 6, no. 7, pp. 2640–2651, 2007.

[26] L. P. Qian, Y. J. Zhang, and J. Huang, “MAPEL: Achieving global optimality for

a non-convex wireless power control problem,” IEEE Transactions on Wireless

Communications, vol. 8, no. 3, pp. 1553–1563, 2009.

[27] L. Liu, R. Zhang, and K.-C. Chua, “Achieving Global Optimality for Weighted

Sum-Rate Maximization in the K-User Gaussian Interference Channel with Mul-

tiple Antennas,” IEEE Transactions on Wireless Communications, vol. 11, no. 5,

pp. 1933–1945, 2012.

[28] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos, “Learning to

Optimize: Training Deep Neural Networks for Interference Management,” IEEE

Transactions on Signal Processing, vol. 66, no. 20, pp. 5438–5453, 2018.

[29] W. Lee, M. Kim, and D.-H. Cho, “Deep Power Control: Transmit Power Con-

trol Scheme Based on Convolutional Neural Network,” IEEE Communications

Letters, vol. 22, no. 6, pp. 1276–1279, 2018.

[30] D. Ron and J.-R. Lee, “DRL-Based Sum-Rate Maximization in D2D Commu-

nication Underlaid Uplink Cellular Networks,” IEEE Transactions on Vehicular

Technology, vol. 70, no. 10, pp. 11 121–11 126, 2021.

[31] F. Liang, C. Shen, W. Yu, and F. Wu, “Towards Optimal Power Control via

Ensembling Deep Neural Networks,” IEEE Transactions on Communications,

vol. 68, no. 3, pp. 1760–1776, 2020.

[32] B. Lea, D. Shome, O. Waqar, and J. Tomal, “Sum rate maximization of D2D

networks with energy constrained UAVs through deep unsupervised learning,” in

2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Commu-

nication Conference (UEMCON), 2021, pp. 0453–0459.

76

[33] D. Kim, H. Jung, and I.-H. Lee, “Deep Learning-Based Power Control Scheme

With Partial Channel Information in Overlay Device-to-Device Communication

Systems,” IEEE Access, vol. 9, pp. 122 125–122 137, 2021.

[34] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks

are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366,

1989. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

0893608089900208

[35] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An Iteratively Weighted MMSE

Approach to Distributed Sum-Utility Maximization for a MIMO Interfering

Broadcast Channel,” IEEE Transactions on Signal Processing, vol. 59, no. 9,

pp. 4331–4340, 2011.

[36] C. S. Chen, K. W. Shum, and C. W. Sung, “Round-robin power control

for the weighted sum rate maximisation of wireless networks over multiple

interfering links,” European Transactions on Telecommunications, vol. 22, no. 8,

pp. 458–470, 2011. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/

10.1002/ett.1496

[37] O. L. Mangasarian, “Characterizations of real matrices of monotone kind,”

SIAM Review, vol. 10, no. 4, pp. 439–441, 1968. [Online]. Available:

https://doi.org/10.1137/1010095

[38] M. Chiang, P. Hande, T. Lan, and C. W. Tan, Power Control in Wireless Cellular

Networks. New Foundations and Trends, 2008, vol. 2, no. 4.

77

https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.1496
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.1496
https://doi.org/10.1137/1010095

Appendix A

Feasible Datasets for the

Transmission Channel Parameters

In total, 55 feasible different datasets have been generated to analyze the model’s

performance, which totals 22.1 GB.

File Type: .csv

Link for datasets:

https://1drv.ms/f/s!ApktXr3Tu2RWgtQPgQM8qhtPgzYmgw?e=KNdtfu

There are three groups of datasets, as follows:

1. Dataset Group A: 35 datasets for K = 5, EsN0 = [0 dB, 10 dB, 20 dB, 30

dB, 40 dB, 50 dB, 60 dB], and five scenarios of SINRmin = 0.5. The total size

of these datasets is 11.1 GB.

2. Dataset Group B: 20 datasets in total for EsN0 = [0 dB, 10 dB, 20 dB, 30

dB, 40 dB] for each K = [5, 6, 7, 8], with all SINRmin = 0.2, e.g., for K = 5,

SINRmin = [0.2, 0.2, 0.2, 0.2, 0.2]. The total size of these datasets is 11 GB.

3. Dataset Group C: 25 datasets out of 35 datasets from Group A, i.e., K = 5,

and five scenarios of SINRmin = 0.5 but EsN0 = [0 dB, 10 dB, 20 dB, 30 dB,

40 dB]

78

https://1drv.ms/f/s!ApktXr3Tu2RWgtQPgQM8qhtPgzYmgw?e=KNdtfu

Appendix B

Simulation Results

Tables B1 to B14 with Results

Notes:

• “Basic” stands for basic model for finding P̂ through Equation (3.26)

• “Model A” determines P using P̂+A−1µ, where 0 ≤ µk ≤ min
1≤l≤K

Pmax − P̂l

[
∑K

k=1 ak]l
and

normalizes it such that the maximum of powers is Pmax.

• Hit Rate (HR) = 1 - Constraint Violation Probability (CVP)

• CVP for Basic Model = CVP for Model A = CVP for Proposed Model = 0.00%

• Parameters: Epochs = 50; Batch Size = 1,000 and Learning Rate = 0.0001

• PCNet+, a modified version of PCNet, is introduced in [31] to improve gener-

alization by including noise power, σ2, alongside channel coefficients as input.

79

Table B.1: PCNet CVP% and Average Sum Rate (in Bit/Second/Hertz)
from all four Models for K = 5 and SINRmin = (0.5, 0.0, 0.0, 0.0, 0.0)

EsN0 Basic λ CVP PCNet Model A Proposed

0 dB

λ = 0 46.08% 1.654
λ = 5 16.08% 1.845

0.585
λ = 10 9.46% 1.860

1.821 1.945
λ = 15 7.01% 1.859
λ = 20 5.68% 1.851
λ = 25 4.62% 1.849

10 dB

λ = 0 72.16% 3.188
λ = 5 7.48% 3.580

0.585
λ = 10 3.65% 3.567

3.623 3.678
λ = 15 2.20% 3.552
λ = 20 1.61% 3.542
λ = 25 1.22% 3.529

20 dB

λ = 0 48.09% 5.924
λ = 5 0.76% 6.078

0.585
λ = 10 0.52% 6.072

6.006 6.102
λ = 15 0.30% 6.068
λ = 20 0.23% 6.053
λ = 25 0.16% 6.049

30 dB

λ = 0 53.80% 9.139
λ = 5 0.16% 9.156

0.585
λ = 10 0.10% 9.153

9.150 9.154
λ = 15 0.00% 9.144
λ = 20 0.00% 9.137
λ = 25 0.00% 9.127

40 dB

λ = 0 99.75% 12.443
λ = 5 0.16% 12.466

0.585
λ = 10 0.13% 12.462

12.458 12.459
λ = 15 0.10% 12.443
λ = 20 0.01% 12.435
λ = 25 0.00% 12.415

50 dB

λ = 0 99.89% 15.749
λ = 5 0.18% 15.761

0.585
λ = 10 0.06% 15.748

15.746 15.751
λ = 15 0.02% 15.731
λ = 20 0.00% 15.725
λ = 25 0.00% 15.705

60 dB

λ = 0 99.81% 19.068
λ = 5 0.31% 19.096

0.585
λ = 10 0.03% 19.029

19.094 19.085
λ = 15 0.00% 19.027
λ = 20 0.00% 18.980
λ = 25 0.00% 18.975

80

Table B.2: PCNet CVP% and Average Sum Rate (in Bit/Second/Hertz)
from all four Models for K = 5 and SINRmin = (0.5, 0.5, 0.0, 0.0, 0.0)

EsN0 Basic λ CVP PCNet Model A Proposed

0 dB

λ = 0 66.05% 1.863
λ = 5 31.84% 2.008

1.170
λ = 10 21.88% 2.020

2.050 2.147
λ = 15 16.18% 2.018
λ = 20 14.29% 2.011
λ = 25 13.77% 2.000

10 dB

λ = 0 91.66% 2.573
λ = 5 20.97% 2.878

1.170
λ = 10 13.42% 2.872

3.068 3.107
λ = 15 9.92% 2.855
λ = 20 9.04% 2.855
λ = 25 7.62% 2.845

20 dB

λ = 0 99.74% 3.105
λ = 5 20.32% 3.322

1.170
λ = 10 10.87% 3.313

3.690 3.726
λ = 15 7.59% 3.294
λ = 20 6.84% 3.289
λ = 25 5.90% 3.269

30 dB

λ = 0 99.68% 3.273
λ = 5 31.78% 3.525

1.170
λ = 10 11.22% 3.439

3.936 3.946
λ = 15 7.68% 3.422
λ = 20 6.50% 3.391
λ = 25 6.01% 3.369

40 dB

λ = 0 99.89% 3.311
λ = 5 29.78% 3.631

1.170
λ = 10 10.36% 3.472

4.016 4.019
λ = 15 7.47% 3.436
λ = 20 6.31% 3.405
λ = 25 4.35% 3.390

50 dB

λ = 0 100.00% 3.310
λ = 5 24.44% 3.457

1.170
λ = 10 9.87% 3.455

4.022 4.031
λ = 15 7.52% 3.442
λ = 20 6.44% 3.397
λ = 25 4.38% 3.383

60 dB

λ = 0 99.84% 3.300
λ = 5 28.88% 3.606

1.170
λ = 10 10.25% 3.452

4.015 4.015
λ = 15 8.60% 3.446
λ = 20 5.58% 3.397
λ = 25 5.36% 3.390

81

Table B.3: PCNet CVP% and Average Sum Rate (in Bit/Second/Hertz)
from all four Models for K = 5 and SINRmin = (0.5, 0.5, 0.5, 0.0, 0.0)

EsN0 Basic λ CVP PCNet Model A Proposed

0 dB

λ = 0 82.22% 2.245
λ = 5 52.16% 2.353

1.755
λ = 10 39.44% 2.371

2.443 2.524
λ = 15 34.12% 2.368
λ = 20 31.00% 2.354
λ = 25 30.38% 2.317

10 dB

λ = 0 99.53% 2.615
λ = 5 43.46% 2.804

1.755
λ = 10 31.44% 2.791

3.051 3.098
λ = 15 25.82% 2.756
λ = 20 23.29% 2.739
λ = 25 21.91% 2.734

20 dB

λ = 0 99.99% 2.807
λ = 5 43.70% 2.997

1.755
λ = 10 26.90% 2.968

3.412 3.430
λ = 15 23.42% 2.941
λ = 20 20.77% 2.904
λ = 25 18.83% 2.886

30 dB

λ = 0 99.76% 2.856
λ = 5 48.10% 3.033

1.755
λ = 10 24.90% 3.026

3.510 3.512
λ = 15 22.01% 2.999
λ = 20 18.03% 2.955
λ = 25 16.83% 2.170

40 dB

λ = 0 100.00% 2.840
λ = 5 47.49% 3.020

1.755
λ = 10 26.85% 3.016

3.500 3.513
λ = 15 22.11% 2.974
λ = 20 20.30% 2.933
λ = 25 20.11% 2.920

50 dB

λ = 0 100.00% 2.845
λ = 5 48.74% 3.023

1.755
λ = 10 26.06% 2.990

3.497 3.521
λ = 15 22.81% 2.966
λ = 20 20.43% 2.949
λ = 25 19.38% 2.932

60 dB

λ = 0 100.00% 2.842
λ = 5 45.99% 3.040

1.755
λ = 10 26.72% 2.997

3.506 3.519
λ = 15 20.92% 2.976
λ = 20 19.18% 2.948
λ = 25 18.64% 2.921

82

Table B.4: PCNet CVP% and Average Sum Rate (in Bit/Second/Hertz)
from all four Models for K = 5 and SINRmin = (0.5, 0.5, 0.5, 0.5, 0.0)

EsN0 Basic λ CVP PCNet Model A Proposed

0 dB

λ = 0 94.28% 2.705
λ = 5 70.42% 2.791

2.340
λ = 10 56.02% 2.804

2.914 2.990
λ = 15 50.57% 2.796
λ = 20 46.72% 2.785
λ = 25 45.93% 2.768

10 dB

λ = 0 99.98% 2.948
λ = 5 62.87% 3.054

2.340
λ = 10 47.44% 3.040

3.313 3.350
λ = 15 46.41% 3.019
λ = 20 44.63% 3.002
λ = 25 43.01% 2.996

20 dB

λ = 0 100.00% 3.028
λ = 5 61.18% 3.136

2.340
λ = 10 45.17% 3.116

3.486 3.497
λ = 15 41.78% 3.100
λ = 20 41.72% 3.085
λ = 25 40.34% 3.080

30 dB

λ = 0 100.00% 3.036
λ = 5 60.18% 3.155

2.340
λ = 10 48.29% 3.125

3.516 3.524
λ = 15 43.04% 3.115
λ = 20 40.10% 3.102
λ = 25 38.08% 3.100

40 dB

λ = 0 100.00% 3.040
λ = 5 58.04% 3.161

2.340
λ = 10 44.84% 3.151

3.527 3.531
λ = 15 43.48% 3.123
λ = 20 42.46% 3.107
λ = 25 41.28% 3.104

50 dB

λ = 0 100.00% 3.036
λ = 5 57.77% 3.159

2.340
λ = 10 47.16% 3.127

3.521 3.525
λ = 15 42.56% 3.112
λ = 20 41.09% 3.106
λ = 25 38.20% 3.101

60 dB

λ = 0 100.00% 3.028
λ = 5 58.52% 3.152

2.340
λ = 10 47.49% 3.119

3.509 3.513
λ = 15 42.56% 3.108
λ = 20 40.72% 3.098
λ = 25 40.00% 3.092

83

Table B.5: PCNet CVP% and Average Sum Rate (in Bit/Second/Hertz)
from all four Models for K = 5 and SINRmin = (0.5, 0.5, 0.5, 0.5, 0.5)

EsN0 Basic λ CVP PCNet Model A Proposed

0 dB

λ = 0 98.82% 3.215
λ = 5 80.63% 3.274

2.925
λ = 10 69.33% 3.278

3.415 3.486
λ = 15 65.48% 3.263
λ = 20 64.78% 3.258
λ = 25 63.01% 3.248

10 dB

λ = 0 100.00% 3.376
λ = 5 75.35% 3.429

2.925
λ = 10 68.86% 3.416

3.677 3.712
λ = 15 67.33% 3.407
λ = 20 66.16% 3.403
λ = 25 65.97% 3.398

20 dB

λ = 0 100.00% 3.418
λ = 5 72.98% 3.479

2.925
λ = 10 65.70% 3.465

3.781 3.790
λ = 15 65.08% 3.459
λ = 20 64.57% 3.456
λ = 25 63.78% 3.454

30 dB

λ = 0 100.00% 3.420
λ = 5 72.92% 3.487

2.925
λ = 10 66.56% 3.473

3.801 3.803
λ = 15 63.74% 3.469
λ = 20 63.62% 3.466
λ = 25 62.91% 3.463

40 dB

λ = 0 100.00% 3.422
λ = 5 73.89% 3.488

2.925
λ = 10 65.13% 3.476

3.802 3.804
λ = 15 63.08% 3.471
λ = 20 62.55% 3.468
λ = 25 62.20% 3.466

50 dB

λ = 0 100.00% 3.424
λ = 5 73.78% 3.489

2.925
λ = 10 64.51% 3.478

3.803 3.803
λ = 15 64.40% 3.472
λ = 20 63.07% 3.468
λ = 25 62.56% 3.467

60 dB

λ = 0 100.00% 3.424
λ = 5 73.12% 3.488

2.925
λ = 10 64.83% 3.478

3.805 3.804
λ = 15 65.05% 3.470
λ = 20 64.76% 3.468
λ = 25 63.69% 3.466

84

Table B.6: PCNet+ CVP% and Average Sum Rate (in Bit/Second/Hertz)
from the two Models for K = 5 and SINRmin = (0.2, 0.2, 0.2, 0.2, 0.2)

EsN0 λ PCNet+ CVP PCNet+ Proposed

0 dB λ = 5 93.28% 1.659 2.011

10 dB λ = 5 78.74% 1.954 2.445

20 dB λ = 5 78.07% 2.003 2.555

30 dB λ = 5 78.01% 2.007 2.568

40 dB λ = 5 77.75% 2.003 2.568

Table B.7: PCNet+ CVP% and Average Sum Rate (in Bit/Second/Hertz)
from the two Models for K = 6 and SINRmin = (0.2, 0.2, 0.2, 0.2, 0.2, 0.2)

EsN0 λ PCNet+ CVP PCNet+ Proposed

0 dB λ = 5 95.81% 1.872 2.210

10 dB λ = 5 48.65% 2.858 3.415

20 dB λ = 5 84.67% 2.096 2.575

30 dB λ = 5 84.68% 2.098 2.585

40 dB λ = 5 84.66% 2.103 2.593

Table B.8: PCNet+ CVP% and Average Sum Rate (in Bit/Second/Hertz)
from the two Models for K = 7 and SINRmin = (0.2, 0.2, 0.2, 0.2, 0.2, 0.2,
0.2)

EsN0 λ PCNet+ CVP PCNet+ Proposed

0 dB λ = 5 95.49% 2.095 2.405

10 dB λ = 5 88.84% 2.223 2.608

20 dB λ = 5 89.18% 2.242 2.660

30 dB λ = 5 89.54% 2.243 2.669

40 dB λ = 5 89.66% 2.239 2.662

Table B.9: PCNet+ CVP% and Average Sum Rate (in Bit/Second/Hertz)
from the two Models for K = 8 and SINRmin = (0.2, 0.2, 0.2, 0.2, 0.2, 0.2,
0.2, 0.2)

EsN0 λ PCNet+ CVP PCNet+ Proposed

0 dB λ = 5 97.05% 2.324 2.608

10 dB λ = 5 93.24% 2.414 2.761

20 dB λ = 5 93.57% 2.423 2.790

30 dB λ = 5 93.42% 2.426 2.798

40 dB λ = 5 93.31% 2.425 2.792

85

Table B.10: CVP% and Average Sum Rate (in Bit/Second/Hertz) for the
Models for K = 5 and SINRmin = (0.5, 0.0, 0.0, 0.0, 0.0)

EsN0 λ PCNet+ CVP PCNet+ Proposed

0 dB λ = 5 0.13% 1.261 1.234

10 dB λ = 5 0.07% 3.078 3.039

20 dB λ = 5 0.08% 5.971 5.932

30 dB λ = 5 0.05% 9.162 8.693

40 dB λ = 5 0.06% 12.437 12.466

Table B.11: CVP% and Average Sum Rate (in Bit/Second/Hertz) for the
Models for K = 5 and SINRmin = (0.5, 0.5, 0.0, 0.0, 0.0)

EsN0 λ PCNet+ CVP PCNet+ Proposed

0 dB λ = 5 33.02% 1.977 2.002

10 dB λ = 5 28.90% 2.873 3.046

20 dB λ = 5 20.46% 3.338 3.704

30 dB λ = 5 19.30% 3.458 3.913

40 dB λ = 5 19.32% 3.489 3.980

Table B.12: CVP% and Average Sum Rate (in Bit/Second/Hertz) for the
Models for K = 5 and SINRmin = (0.5, 0.5, 0.5, 0.0, 0.0)

EsN0 λ PCNet+ CVP PCNet+ Proposed

0 dB λ = 5 73.93% 2.236 2.422

10 dB λ = 5 49.71% 2.798 3.086

20 dB λ = 5 50.74% 2.968 3.413

30 dB λ = 5 51.59% 2.998 3.484

40 dB λ = 5 52.40% 2.985 3.477

Table B.13: CVP% and Average Sum Rate (in Bit/Second/Hertz) for the
Models for K = 5 and SINRmin = (0.5, 0.5, 0.5, 0.5, 0.0)

EsN0 λ PCNet+ CVP PCNet+ Proposed

0 dB λ = 5 95.31% 2.687 2.936

10 dB λ = 5 67.54% 3.047 3.352

20 dB λ = 5 68.10% 3.117 3.494

30 dB λ = 5 68.16% 3.123 3.509

40 dB λ = 5 68.03% 3.125 3.518

86

Table B.14: CVP% and Average Sum Rate (in Bit/Second/Hertz) for the
Models for K = 5 and SINRmin = (0.5, 0.5, 0.5, 0.5, 0.5)

EsN0 λ PCNet+ CVP PCNet+ Proposed

0 dB λ = 5 87.93% 3.246 3.453

10 dB λ = 5 89.91% 3.402 3.713

20 dB λ = 5 89.56% 3.441 3.783

30 dB λ = 5 89.65% 3.444 3.793

40 dB λ = 5 89.40% 3.447 3.794

87

Appendix C

Codes on Google Colaboratory

List of code files (File Type: .ipynb):

1. Codes for generating feasible datasets for the transmission channel parameters

(a) Codes to calculate the average sum rate for the basic model

2. Codes for analyzing the PCNet model

(a) For training with a given background noise power

(b) PCNet+ model: For enhanced generalization capacity

3. Codes for analyzing the Proposed Model

(a) For training with a given background noise power

(b) For enhanced generalization capacity

4. Codes for analyzing the Model A

(a) Codes to calculate the average sum rate for the basic model

Notes:

• “Basic” model is for finding feasible power allocation P̂ through Equation (3.26)

• “Model A” determines P using P̂+A−1µ, where 0 ≤ µk ≤ min
1≤l≤K

Pmax − P̂l

[
∑K

k=1 ak]l
and

normalizes it such that the maximum of powers is Pmax.

88

C.1 Codes for generating feasible datasets for the

transmission channel parameters

1 import numpy as np

2

3 ## Number of transmitter -receiver pairs

4 K = 5

5

6 ## Variances for noise signals

7 sigma_sqr_noise = np.array ([1e-0, 1e-0, 1e-0, 1e-0, 1e-0], dtype =

float)

8

9 ## Minimum rate for the achievable SINR of multiple concurrent

10 ## transmissions

11 SINR_P_min = np.array ([0.5 , 0.5, 0.5, 0.5, 0.5], dtype = float)

12

13 ## Maximum transmit power

14 p_max = 1.0

1 ## Function to generate the Circularly Symmetric Complex Gaussian (

CSCG) distributions

2

3 def complex_gaussian(d_mean = 0, d_var = 1, n = 1000):

4 # Draw random samples from a normal (Gaussian) distribution.

5 # Parameters:

6 # loc = Mean or center of the distribution.

7 # scale = Standard deviation or spread or width of the

distribution. Must be non -negative.

8 # size = int or tuple of ints , optional

9 return np.random.normal(loc = d_mean , scale = np.sqrt (2* d_var)/2,

size = (n, 2)).view(np.complex128)

10

11

12 ## Function to generate the channel -coefficient matrix H

13 def generate_H(K, sigma_sqr_h , sample_size):

14 hij = []

15 for i in range(K): # Total rows , i.e., total receivers or users

16 hj =[]

89

17 for j in range(K): # Total columns , i.e., total transmitters

18 h = complex_gaussian(d_mean = 0, d_var = sigma_sqr_h , n =

sample_size)

19 hj.append(h)

20 hj = np.concatenate(hj , 1)

21 hij.append(hj)

22 hij = np.stack(hij , 1)

23 return hij

1 ## Create matrix H

2 H_size = int(1e6)

3 sigma_sqr_h = 1

4 # np.random.seed (0)

5 H = generate_H(K, sigma_sqr_h , H_size)

6 print(H.shape)

7 # print(H)

1 import numba as nb

2

3 ## Function to compute the square of the absolute value of an array

4 ## of complex numbers

5 @nb.vectorize ([nb.float64(nb.complex128),nb.float32(nb.complex64)])

6 def cmplx_abs_sqr(cmplx_var):

7 return cmplx_var.real **2 + cmplx_var.imag **2

1 ## Function to generate the matrix B

2 def generate_B(H_size , K, SINR_P_min , H):

3 Bij_list = []

4 H_abs_sqr = cmplx_abs_sqr(H)

5 for k in range(H_size):

6 for i in range(K): # Total rows

7 Bj_list =[]

8 for j in range(K): # Total columns

9 if i==j:

10 B = 0

11 else:

12 B_temp = np.multiply(SINR_P_min[i], H_abs_sqr[k,i,j])

13 B = np.divide(B_temp , H_abs_sqr[k,i,i])

14 Bj_list.append(B)

15 Bij_list.append(Bj_list)

90

16 Bij_array = np.array(Bij_list)

17 Bij = Bij_array.reshape ((H_size , K, K)) # H_size X row X column

18 return Bij

1 ## Create matrix B

2 B = generate_B(H_size , K, SINR_P_min , H)

3 print(B.shape)

4 # print(B)

1 ## Function to generate the vector u

2 def generate_u(H_size , K, SINR_P_min , sigma_sqr_noise , H):

3 ui_list = []

4 H_abs_sqr = cmplx_abs_sqr(H)

5 for k in range(H_size):

6 for i in range(K): # Total rows , i.e., total transmitters

7 u_temp = np.multiply(SINR_P_min[i], sigma_sqr_noise[i])

8 u = np.divide(u_temp , H_abs_sqr[k,i,i])

9 ui_list.append(u)

10 ui_array = np.array(ui_list)

11 ui = ui_array.reshape ((H_size , K, 1)) # H_size X row X column

12 return ui

1 ## Create vector u

2 u = generate_u(H_size , K, SINR_P_min , sigma_sqr_noise , H)

3 print(u.shape)

4 # print(u)

1 ## Finding indexes of H matrix with the hij set that satisfy

2 ## constraint on the maximum transmit power p_max

3

4 count_var = 0

5 indx_F_H = []

6 indx_temp_F_H = []

7 p_hat_temp_list = []

8

9 for k in range(H_size):

10 eigen_value , eigen_vector = np.linalg.eig(B[k])

11 # print(eigen_value)

12 if max(abs(eigen_value)) < 1:

13 subtr = np.identity(K) - B[k,:,:]

14 invr = np.linalg.inv(subtr)

91

15 u_temp = u[k]

16 p_temp = np.matmul(invr , u_temp)

17 p_hat_temp_list.append(p_temp)

18 indx_temp_F_H.append(k)

19 count_var += 1

20

21 p_hat_temp_array = np.array(p_hat_temp_list)

22 p_hat_temp = p_hat_temp_array.reshape ((count_var ,K,1))

23 print(p_hat_temp.shape)

24 # print(p_hat_temp)

25

26

27 P = abs(p_hat_temp)

28 fcount = 0

29 p_hat_list = []

30 for n in range(count_var):

31 P_max = np.amax(P[n])

32 if P_max <= p_max:

33 p = p_hat_temp[n]

34 p_hat_list.append(p)

35 indx_F_H.append(indx_temp_F_H[n])

36 fcount += 1

37

38 p_hat_array = np.array(p_hat_list)

39 p_hat = p_hat_array.reshape ((fcount ,K,1))

40 # p_hat = p_hat_array.reshape ((fcount ,1,K))

41 print(p_hat.shape)

42 p_hat_size = p_hat.shape [0]

43 # print(p_hat)

1 ## H matrix for a feasible power profile

2 F_H_size = len(indx_F_H)

3 F_H = np.empty((F_H_size , K, K), dtype = complex , order = ’C’)

4

5 for i in range(F_H_size):

6 j = indx_F_H[i]

7 F_H[i] = H[j]

8

9 print(F_H.shape)

92

10 # print(F_H)

1 # ## Checking SINR_P for feasible H matrix

2 # F_H_abs_sqr = cmplx_abs_sqr(F_H)

3

4 # for k in range(F_H_size):

5 # SINR_P_F_H_list = []

6 # for i in range(K):

7 # ph = 0

8 # for j in range(K):

9 # ph_j = np.multiply(p_hat[k,j], F_H_abs_sqr[k,i,j])

10 # ph = ph + ph_j

11

12 # numr = np.multiply(p_hat[k,i], F_H_abs_sqr[k,i,i])

13 # dnumr = sigma_sqr_noise[i] + ph - numr

14 # SINR_P_temp = np.divide(numr , dnumr)

15 # SINR_P_F_H_list.append(SINR_P_temp)

16

17 # SINR_P_F_H_array = np.array(SINR_P_F_H_list)

18 # SINR_P_F_H = SINR_P_F_H_array.reshape ((1, K))

19 # print(SINR_P_F_H)

20 # p_hat_t = p_hat[k]. reshape ((1, 1, K)) # H_size X row X column

21 # print(p_hat_t)

1 ## Saving 3D Numpy array to CSV file

2 # Saving feasible H matrix F_H

3 from numpy import savetxt

4

5 # Reshaping the array from 3D to 2D

6 F_H_2D = F_H.reshape(F_H.shape[0], -1)

7

8 # Saving reshaped array to file in "Files" of colab at left bar

9 # Can download the file in local drive

10 savetxt(’F_H_2D.csv’, F_H_2D , delimiter=’,’)

1 # ## Saving p_hat matrix to CSV file

2 # # from numpy import savetxt

3

4 # # Reshaping the array from 3D to 2D

5 # p_hat_2D = p_hat.reshape(p_hat.shape [0], -1)

93

6

7 # # Saving reshaped array to file in "Files" of colab at left bar

8 # # Can download the file in local drive

9 # savetxt(’p_hat_2D.csv ’, p_hat_2D , delimiter=’,’)

C.1.1 Codes to calculate the average sum rate for the basic

model

1 ## Function to split datasets for training , validation , and testing.

2 def split(np_array):

3 # data_size = np_array.shape [0]

4 # train_data_size = int(data_size * 0.8)

5 # valid_data_size = int(data_size * 0.1)

6 # test_data_size = int(data_size * 0.1)

7

8 train_data_size = int (200000)

9 valid_data_size = int (25000)

10 test_data_size = int (25000)

11

12 train_e_indx = train_data_size

13 valid_e_indx = train_e_indx + valid_data_size

14 test_e_indx = valid_e_indx + test_data_size

15 test_data_size_n = test_e_indx - valid_e_indx

16

17 row_count = np_array.shape [1]

18 column_count = np_array.shape [2]

19

20 train_data = np.empty ((train_data_size , row_count , column_count),

dtype = complex , order = ’C’)

21 valid_data = np.empty ((valid_data_size , row_count , column_count),

dtype = complex , order = ’C’)

22 test_data = np.empty ((test_data_size_n , row_count , column_count),

dtype = complex , order = ’C’)

23

24 for i in range(train_e_indx):

25 train_data[i] = np_array[i]

26

94

27 xv = 0

28 for j in range(train_e_indx , valid_e_indx):

29 valid_data[xv] = np_array[j]

30 xv = xv + 1

31

32 xt = 0

33 for k in range(valid_e_indx , test_e_indx):

34 test_data[xt] = np_array[k]

35 xt = xt + 1

36

37 # print(train_data.shape , valid_data.shape , test_data.shape)

38

39

40 ## Training input will be the absolute value

41 train_input = np.absolute(train_data)

42 valid_input = np.absolute(valid_data)

43 test_input = np.absolute(test_data)

44

45 print(train_input.shape , valid_input.shape , test_input.shape)

46

47 return [train_input , valid_input , test_input , test_data]

1 ## Split F_H matrix

2 F_H_S = split(F_H)

3 train_input_F_H = F_H_S [0]

4 valid_input_F_H = F_H_S [1]

5 test_input_F_H = F_H_S [2]

6 test_data_F_H = F_H_S [3]

1 ## Split p_hat vector

2 p_hat_S = split(p_hat)

3 train_input_p_hat = p_hat_S [0]

4 valid_input_p_hat = p_hat_S [1]

5 test_input_p_hat = p_hat_S [2]

6 test_data_p_hat = p_hat_S [3]

1 ## Function to calculate the average sum rate

2 # Here , p_model is the output of DNN , and it is a 2D array.

3 import math

4

95

5 def average_sum_rate(hij , p_model , sigma_sqr_noise , K):

6 R = 0

7 hij_size = hij.shape [0]

8 hij_abs_sqr = cmplx_abs_sqr(hij)

9

10 for k in range(hij_size):

11 for i in range(K): # Total rows

12 phn = 0

13 for j in range(K): # Total columns

14 phn_j = np.multiply(p_model[k,j], hij_abs_sqr[k,i,j])

15 phn = phn + phn_j

16

17 numr_s = np.multiply(p_model[k,i], hij_abs_sqr[k,i,i])

18 dnumr_s = sigma_sqr_noise[i] + phn - numr_s

19 R_temp = math.log2(1 + np.divide(numr_s , dnumr_s))

20 R = R + R_temp

21

22 return (R/hij_size)

1 # DNN Sum Rate for test_data_F_H

2 output_P_hat = abs(test_data_p_hat)

3 sumrate_F_H = average_sum_rate(test_data_F_H , output_P_hat ,

sigma_sqr_noise , K)

4 print("Average Sum Rate for all H matrices: {:.3f} Bit/Second/Hertz".

format(sumrate_F_H))

96

C.2 Codes for analyzing the PCNet model

C.2.1 For training with a given background noise power

1 import numpy as np

2

3 ## Number of transmitter -receiver pairs

4 K = 5

5

6 ## Variances for noise signals

7 sigma_sqr_noise = np.array ([1e-0, 1e-0, 1e-0, 1e-0, 1e-0], dtype =

float)

8

9 ## Minimum rate for the achievable SINR of multiple concurrent

10 ## transmissions

11 SINR_P_min = np.array ([0.5 , 0.5, 0.5, 0.5, 0.5], dtype = float)

12

13 ## Maximum transmit power

14 p_max = 1.0

1 ## Loading a CSV file (F_H_2D.csv) for feasible H matrices that was

2 ## uploaded to Google Collab ’s session storage.

3 from numpy import loadtxt

4

5 ## Reading an array from the file

6 F_H_2D_L = np.loadtxt(’F_H_2D.csv’, delimiter = ’,’, dtype = str)

7

8 ## Reshaping the array from 2D to 3D

9 F_H_3D = F_H_2D_L.reshape(F_H_2D_L.shape[0], F_H_2D_L.shape [1] // K,

K)

10 F_H_3D_size = F_H_3D.shape [0]

1 ## Converting string data to complex data and removing the initial

2 ## whitespace

3 F_H_list = []

4 for k in range(F_H_3D_size):

5 for i in range(K): # Total rows

6 for j in range(K): # Total columns

97

7 F_H_temp = complex(F_H_3D[k][i][j].strip ())

8 F_H_list.append(F_H_temp)

9 F_H_array = np.array(F_H_list)

10 F_H = F_H_array.reshape ((F_H_3D_size , K, K)) # H_size X row X

column_count

11 print(F_H.shape)

12 F_H_size = F_H.shape [0]

13 # print(F_H)

1 import numba as nb

2

3 ## Function to compute the square of the absolute value of an array

4 ## of complex numbers

5 @nb.vectorize ([nb.float64(nb.complex128),nb.float32(nb.complex64)])

6 def cmplx_abs_sqr(cmplx_var):

7 return cmplx_var.real **2 + cmplx_var.imag **2

1 ## Function to generate the matrix A (K x K)

2 def generate_A(F_H_size , K, SINR_P_min , F_H):

3 Aij_list = []

4 F_H_abs_sqr = cmplx_abs_sqr(F_H)

5

6 for k in range(F_H_size):

7 for i in range(K): # Total rows

8 Aj_list =[]

9 for j in range(K): # Total columns

10 if i==j:

11 A = F_H_abs_sqr[k,i,j]

12 else:

13 A = np.multiply(-SINR_P_min[i], F_H_abs_sqr[k,i,j])

14 Aj_list.append(A)

15 Aij_list.append(Aj_list)

16 Aij_array = np.array(Aij_list)

17 Aij = Aij_array.reshape ((F_H_size , K, K)) # H_size X row X column

18 return Aij

1 ## Create matrix A

2 A = generate_A(F_H_size , K, SINR_P_min , F_H)

3 print(A.shape)

4 # print(A)

98

1 ## Function to generate the vector b (K x 1)

2 def generate_b(F_H_size , K, SINR_P_min , sigma_sqr_noise , F_H):

3 bi_list = []

4 for k in range(F_H_size):

5 for i in range(K): # Total rows , i.e., total transmitters

6 b = np.multiply(SINR_P_min[i], sigma_sqr_noise[i])

7 bi_list.append(b)

8 bi_array = np.array(bi_list)

9 bi = bi_array.reshape ((F_H_size , K, 1)) # H_size X row X column

10 return bi

1 ## Create vector b

2 b = generate_b(F_H_size , K, SINR_P_min , sigma_sqr_noise , F_H)

3 print(b.shape)

4 # print(b)

1 ## Create matrix A_inv , i.e., the pseudo inverse of matrix A

2 A_inv = np.linalg.pinv(A)

3 print(A_inv.shape)

4 # print(A_inv)

1 ## Create a vector p_hat = (A_inv x b)

2 p_hat = np.matmul(A_inv , b)

3 print(p_hat.shape)

4 # print(p_hat)

1 ## Function to split datasets for training , validation , and testing.

2

3 def split(np_array):

4 # data_size = np_array.shape [0]

5 # train_data_size = int(data_size * 0.8)

6 # valid_data_size = int(data_size * 0.1)

7 # test_data_size = int(data_size * 0.1)

8

9 train_data_size = int (200000)

10 valid_data_size = int (25000)

11 test_data_size = int (25000)

12

13 train_e_indx = train_data_size

14 valid_e_indx = train_e_indx + valid_data_size

15 # test_e_indx = valid_e_indx + test_data_size - 2

99

16 test_e_indx = valid_e_indx + test_data_size

17 test_data_size_n = test_e_indx - valid_e_indx

18

19 row_count = np_array.shape [1]

20 column_count = np_array.shape [2]

21

22 train_data = np.empty ((train_data_size , row_count , column_count),

dtype = complex , order = ’C’)

23 valid_data = np.empty ((valid_data_size , row_count , column_count),

dtype = complex , order = ’C’)

24 test_data = np.empty ((test_data_size_n , row_count , column_count),

dtype = complex , order = ’C’)

25

26 for i in range(train_e_indx):

27 train_data[i] = np_array[i]

28

29 xv = 0

30 for j in range(train_e_indx , valid_e_indx):

31 valid_data[xv] = np_array[j]

32 xv = xv + 1

33

34 xt = 0

35 for k in range(valid_e_indx , test_e_indx):

36 test_data[xt] = np_array[k]

37 xt = xt + 1

38

39 # print(train_data.shape , valid_data.shape , test_data.shape)

40

41 ## Training input will be the absolute value

42 train_input = np.absolute(train_data)

43 valid_input = np.absolute(valid_data)

44 test_input = np.absolute(test_data)

45

46 print(train_input.shape , valid_input.shape , test_input.shape)

47

48 return [train_input , valid_input , test_input , test_data]

1 ## Split F_H Matrix

2 F_H_S = split(F_H)

100

3 train_input_F_H = F_H_S [0]

4 valid_input_F_H = F_H_S [1]

5 test_input_F_H = F_H_S [2]

6 test_data_F_H = F_H_S [3]

1 ## Split p_hat Matrix

2 p_hat_S = split(p_hat)

3 train_input_p_hat = p_hat_S [0]

4 valid_input_p_hat = p_hat_S [1]

5 test_input_p_hat = p_hat_S [2]

6 test_data_p_hat = p_hat_S [3]

1 ## Define the DNN model - The Sequential model

2 import tensorflow as tf

3 from tensorflow import keras

4 ## from tensorflow.keras import layers # shows warning

5 from keras.api._v2.keras import layers

6

7 model = keras.Sequential(name = "sequential_model")

8

9 model.add(keras.Input(shape = (K,K), name = "hij_inputs"))

10 model.add(layers.Flatten(name = "flatten_layer_hij"))

11

12 model.add(layers.Dense(units = 2*K*K, activation = ’relu’,

input_shape = (K*K,), name = "dense_layer_1"))

13 model.add(layers.BatchNormalization ())

14

15 model.add(layers.Dense(units = K*K, activation = ’relu’, input_shape

= (2*K*K,), name = "dense_layer_2"))

16 model.add(layers.BatchNormalization ())

17

18 model.add(layers.Dense(units = K, activation = ’sigmoid ’, input_shape

= (K*K,), name = "P_hat"))

19

20 model.summary ()

1 ## Plot the model as a graph

2 keras.utils.plot_model(model , "Sequential_Model.png")

1 ## Display the input and output shapes of each layer

101

2 keras.utils.plot_model(model , "Sequential_Model_with_shape_info.png",

show_shapes=True)

1 ## Convert sigma_sqr_noise from numpy array to tensor

2 sigma_sqr_noise_t = tf.convert_to_tensor(sigma_sqr_noise , dtype =

float)

3 tf.print(sigma_sqr_noise_t)

1 ## Convert SINR_P_min from numpy array to tensor

2 SINR_P_min_t = tf.convert_to_tensor(SINR_P_min , dtype = float)

3 tf.print(SINR_P_min_t)

1 ## The customized loss function that penalizes the constraint

violation

2 def custom_loss(y_true , y_pred):

3 p = tf.math.multiply(p_max , y_pred)

4 hij = tf.reshape(y_true [:,0:K*K], (-1,K,K))

5 hij_abs_sqr = tf.math.square(tf.math.abs(hij))

6

7 lambda_l = 0.0

8 R_P = 0.0

9 pnlty_f_CV = 0.0

10

11 for i in range(K): # Total rows

12 ph = 0.0

13 for j in range(K): # Total columns

14 ph_j = tf.math.multiply(p[:,j], hij_abs_sqr [:,i,j])

15 ph = tf.math.add(ph , ph_j)

16

17 numr = tf.math.multiply(p[:,i], hij_abs_sqr [:,i,i])

18 dnumr = tf.math.add(sigma_sqr_noise_t[i], tf.math.subtract(ph,

numr))

19 SINR_i = tf.math.divide(numr , dnumr)

20 R_P = tf.math.add(R_P , (tf.math.log(1 + SINR_i)/tf.math.log (2.0))

)

21 pnlty_f_CV = tf.math.add(pnlty_f_CV ,

22 tf.nn.relu((tf.math.log(1 + SINR_P_min_t

[i])/tf.math.log (2.0))

23 - (tf.math.log(1 + SINR_i)/tf.

math.log (2.0))))

102

24

25 loss = tf.math.add(-R_P , tf.math.multiply(lambda_l , pnlty_f_CV))

26 loss = tf.reduce_mean(loss) # batch mean

27 return loss

1 ## Build and compile the DNN model

2 ## Training and Testing

3 import matplotlib.pyplot as plt

4

5 optA = tf.keras.optimizers.Adam(learning_rate = 0.0001)

6 model.compile(optimizer = optA , loss = custom_loss)

7

8 history = model.fit(train_input_F_H , train_input_F_H , epochs = 50,

validation_data = (valid_input_F_H , valid_input_F_H), batch_size

= 1000)

9

10 plt.plot(history.epoch , history.history[’loss’], color = "blue",

label = "Training")

11 plt.plot(history.epoch , history.history[’val_loss ’], color="black",

label = "Validation")

12 plt.xlabel("epochs")

13 plt.ylabel("loss")

14 plt.legend ()

15 plt.show()

1 ## Constraint violation probability and

2 ## finding indexes of test_input_F_H matrix with the hij set that do

3 ## not satisfy constraint on the minimum SINR_P_min rate but satisfy

4 ## the maximum transmit power p_max

5

6 output_P_hat_temp = p_max * model.predict(test_input_F_H)

7 output_P_hat = output_P_hat_temp.reshape ((output_P_hat_temp.shape[0],

output_P_hat_temp.shape [1], 1)) # test_input_F_H_size X row X

column

8 output_P_hat_size = output_P_hat.shape [0]

9 test_data_F_H_abs_sqr = cmplx_abs_sqr(test_data_F_H)

10

11 indx_n = []

12 count_v = 0

13

103

14 for k in range(output_P_hat_size):

15 for i in range(K): # Total rows

16 ph = 0

17 for j in range(K): # Total columns

18 ph_j = np.multiply(output_P_hat[k,j], test_data_F_H_abs_sqr[k,i

,j])

19 ph = ph + ph_j

20

21 numr = np.multiply(output_P_hat[k,i], test_data_F_H_abs_sqr[k,i,i

])

22 dnumr = sigma_sqr_noise[i] + ph - numr

23 SINR_out = np.divide(numr , dnumr)

24 if np.round(SINR_out , decimals = 3) < SINR_P_min[i]:

25 indx_n.append(k)

26 count_v = count_v + 1

27 # print(SINR_out)

28 break

29

30 violation_prb = (count_v / output_P_hat_size) * 100

31 print("Constraints Violation Probability: {:.2f}%".format(

violation_prb))

32 # print(len(indx_n))

33 # print(indx_n)

1 ## Function to calculate the average sum rate

2 # Here , p_model is the output of DNN , and it is a 2D array.

3 import math

4

5 def average_sum_rate(hij , p_model , sigma_sqr_noise , K):

6 R = 0

7 hij_size = hij.shape [0]

8 hij_abs_sqr = cmplx_abs_sqr(hij)

9

10 for k in range(hij_size):

11 for i in range(K): # Total rows

12 phn = 0

13 for j in range(K): # Total columns

14 phn_j = np.multiply(p_model[k,j], hij_abs_sqr[k,i,j])

15 phn = phn + phn_j

104

16

17 numr_s = np.multiply(p_model[k,i], hij_abs_sqr[k,i,i])

18 dnumr_s = sigma_sqr_noise[i] + phn - numr_s

19 R_temp = math.log2(1 + np.divide(numr_s , dnumr_s))

20 R = R + R_temp

21

22 return (R/hij_size)

1 # Calculating the curated power vector p_tilda

2 # p_tilda = test_input_p_hat when SINR_P_min is not met

3 # p_tilda = output_P_hat when SINR_P_min is met

4

5 p_tilda = np.empty((output_P_hat_size , K, 1), dtype = float , order =

’C’)

6

7 i = 0

8 for j in range(output_P_hat_size):

9 if (i < len(indx_n)) and (j == indx_n[i]):

10 p_tilda[j] = (test_input_p_hat[j] * p_max) / np.amax(

test_input_p_hat[j])

11 i = i + 1

12 else:

13 p_tilda[j] = output_P_hat[j]

14

15 print(p_tilda.shape)

16 # print(p_tilda)

1 ## Checking p_tilda , i.e., the power for test_data_F_H for negative

2 ## values and Hit Rate i.e. percentage for 0 <= p_tilda <= p_max

3 count_p_t = 0

4 count_n_t = 0

5

6 for n in range(output_P_hat_size):

7 P_max = np.amax(p_tilda[n])

8 if np.round(P_max , decimals = 3) <= 1:

9 count_p_t = count_p_t + 1

10

11 if np.any(p_tilda[n] < 0):

12 count_n_t = count_n_t + 1

13 print(n,’\n’)

105

14 print(p_tilda)

15

16 p_tilda_hit_rate = (count_p_t / output_P_hat_size) * 100

17 print("Hit Rate for Power p_tilda: {:.2f}%".format(p_tilda_hit_rate))

18 print("Negative power count: ", count_n_t)

1 ## Constraint violation probability for p_tilda on the SINR_P_min

2 # indx_t = []

3 count_v_t = 0

4

5 for k in range(output_P_hat_size):

6 for i in range(K): # Total rows

7 ph = 0

8 for j in range(K): # Total columns

9 ph_j = np.multiply(p_tilda[k,j], test_data_F_H_abs_sqr[k,i,j])

10 ph = ph + ph_j

11

12 numr = np.multiply(p_tilda[k,i], test_data_F_H_abs_sqr[k,i,i])

13 dnumr = sigma_sqr_noise[i] + ph - numr

14 SINR_out_t = np.divide(numr , dnumr)

15 # if k == 24463:

16 # print(SINR_out_t)

17

18 if np.round(SINR_out_t , decimals = 2) < SINR_P_min[i]:

19 # indx_t.append(k)

20 count_v_t = count_v_t + 1

21 break

22

23 violation_prb_t = (count_v_t / output_P_hat_size) * 100

24 print("SINR_P_min Constraints Violation Probability for p_tilda: {:.2

f}%".format(violation_prb_t))

1 ## DNN Sum Rate for test_data_F_H

2 sumrate_s_F_H = average_sum_rate(test_data_F_H , p_tilda ,

sigma_sqr_noise , K)

3 print("Total Average Sum Rate for all H matrices: {:.3f} Bit/Second/

Hertz".format(sumrate_s_F_H))

106

C.2.2 Codes for analyzing the PCNet+ model: For enhanced

generalization capacity

1 import numpy as np

2

3 ## Number of transmitter -receiver pairs

4 K = 8

5

6 ## Minimum rate for the achievable SINR of multiple concurrent

transmissions

7 SINR_P_min = np.array ([0.2 , 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2])

8

9 ## Maximum transmit power

10 p_max = 1.0

1 ## Loading a NumPy array from a CSV file

2 # Loading F_H array from a CSV file

3 from numpy import loadtxt

4

5 ## Reading an array from the file

6 # If we want to read a file from our local drive , we have to first

upload it to Collab ’s session storage.

7 F_H_2D_L_0dB = np.loadtxt(’/content/drive/MyDrive/F_H_2D_0dB.csv’,

delimiter = ’,’, dtype = str)

8 F_H_2D_L_10dB = np.loadtxt(’/content/drive/MyDrive/F_H_2D_10dB.csv’,

delimiter = ’,’, dtype = str)

9 F_H_2D_L_20dB = np.loadtxt(’/content/drive/MyDrive/F_H_2D_20dB.csv’,

delimiter = ’,’, dtype = str)

10 F_H_2D_L_30dB = np.loadtxt(’/content/drive/MyDrive/F_H_2D_30dB.csv’,

delimiter = ’,’, dtype = str)

11 F_H_2D_L_40dB = np.loadtxt(’/content/drive/MyDrive/F_H_2D_40dB.csv’,

delimiter = ’,’, dtype = str)

12

13 # ## Reshaping the array from 2D to 3D

14 F_H_3D_0dB = F_H_2D_L_0dB.reshape(F_H_2D_L_0dB.shape [0], F_H_2D_L_0dB

.shape [1] // K, K)

15 F_H_3D_10dB = F_H_2D_L_10dB.reshape(F_H_2D_L_10dB.shape [0],

F_H_2D_L_10dB.shape [1] // K, K)

16 F_H_3D_20dB = F_H_2D_L_20dB.reshape(F_H_2D_L_20dB.shape [0],

107

F_H_2D_L_20dB.shape [1] // K, K)

17 F_H_3D_30dB = F_H_2D_L_30dB.reshape(F_H_2D_L_30dB.shape [0],

F_H_2D_L_30dB.shape [1] // K, K)

18 F_H_3D_40dB = F_H_2D_L_40dB.reshape(F_H_2D_L_40dB.shape [0],

F_H_2D_L_40dB.shape [1] // K, K)

19

20 F_H_3D_0dB_size = F_H_3D_0dB.shape [0]

21 F_H_3D_10dB_size = F_H_3D_10dB.shape [0]

22 F_H_3D_20dB_size = F_H_3D_20dB.shape [0]

23 F_H_3D_30dB_size = F_H_3D_30dB.shape [0]

24 F_H_3D_40dB_size = F_H_3D_40dB.shape [0]

1 ## Function to convert string data to complex data and to remove the

initial whitespace

2 def cnvrt_2_cmplx_data(F_H_3D_size , F_H_3D):

3 F_H_list = []

4 for k in range(F_H_3D_size):

5 for i in range(K): # Total rows

6 for j in range(K): # Total columns

7 F_H_temp = complex(F_H_3D[k][i][j].strip ())

8 F_H_list.append(F_H_temp)

9 F_H_array = np.array(F_H_list)

10 F_H = F_H_array.reshape ((F_H_3D_size , K, K)) # H_size X row X

column_count

11 return F_H

1 ## Converting string data to complex data and removing the initial

whitespace

2 F_H_0dB = cnvrt_2_cmplx_data(F_H_3D_0dB_size , F_H_3D_0dB)

3 F_H_10dB = cnvrt_2_cmplx_data(F_H_3D_10dB_size , F_H_3D_10dB)

4 F_H_20dB = cnvrt_2_cmplx_data(F_H_3D_20dB_size , F_H_3D_20dB)

5 F_H_30dB = cnvrt_2_cmplx_data(F_H_3D_30dB_size , F_H_3D_30dB)

6 F_H_40dB = cnvrt_2_cmplx_data(F_H_3D_40dB_size , F_H_3D_40dB)

7

8 print(F_H_0dB.shape)

9 print(F_H_10dB.shape)

10 print(F_H_20dB.shape)

11 print(F_H_30dB.shape)

12 print(F_H_40dB.shape)

13

108

14 F_H_0dB_size = F_H_0dB.shape [0]

15 F_H_10dB_size = F_H_10dB.shape [0]

16 F_H_20dB_size = F_H_20dB.shape [0]

17 F_H_30dB_size = F_H_30dB.shape [0]

18 F_H_40dB_size = F_H_40dB.shape [0]

19

20 # print(F_H_0dB)

21 # print(F_H_10dB)

22 # print(F_H_20dB)

23 # print(F_H_30dB)

24 # print(F_H_40dB)

1 import numba as nb

2

3 ## Function to compute the square of the absolute value of an array

of complex numbers

4 @nb.vectorize ([nb.float64(nb.complex128),nb.float32(nb.complex64)])

5 def cmplx_abs_sqr(cmplx_var):

6 return cmplx_var.real **2 + cmplx_var.imag **2

1 ## Function to generate the matrix A (K x K)

2 def generate_A(F_H_size , K, SINR_P_min , F_H):

3 Aij_list = []

4 F_H_abs_sqr = cmplx_abs_sqr(F_H)

5

6 for k in range(F_H_size):

7 for i in range(K): # Total rows

8 Aj_list =[]

9 for j in range(K): # Total columns

10 if i==j:

11 A = F_H_abs_sqr[k,i,j]

12 else:

13 A = np.multiply(-SINR_P_min[i], F_H_abs_sqr[k,i,j])

14 Aj_list.append(A)

15 Aij_list.append(Aj_list)

16 Aij_array = np.array(Aij_list)

17 Aij = Aij_array.reshape ((F_H_size , K, K)) # H_size X row X column

18 return Aij

1 ## Create matrix A

109

2 A_0dB = generate_A(F_H_0dB_size , K, SINR_P_min , F_H_0dB)

3 A_10dB = generate_A(F_H_10dB_size , K, SINR_P_min , F_H_10dB)

4 A_20dB = generate_A(F_H_20dB_size , K, SINR_P_min , F_H_20dB)

5 A_30dB = generate_A(F_H_30dB_size , K, SINR_P_min , F_H_30dB)

6 A_40dB = generate_A(F_H_40dB_size , K, SINR_P_min , F_H_40dB)

7

8 print(A_0dB.shape)

9 print(A_10dB.shape)

10 print(A_20dB.shape)

11 print(A_30dB.shape)

12 print(A_40dB.shape)

13

14 # print(A_0dB)

15 # print(A_10dB)

16 # print(A_20dB)

17 # print(A_30dB)

18 # print(A_40dB)

1 ## Variances for noise signals

2 sigma_sqr_noise_0dB = np.array ([1e-0, 1e-0, 1e-0, 1e-0, 1e-0, 1e-0, 1

e-0, 1e-0], dtype = float)

3 sigma_sqr_noise_10dB = np.array ([1e-1, 1e-1, 1e-1, 1e-1, 1e-1, 1e-1,

1e-1, 1e-1], dtype = float)

4 sigma_sqr_noise_20dB = np.array ([1e-2, 1e-2, 1e-2, 1e-2, 1e-2, 1e-2,

1e-2, 1e-2], dtype = float)

5 sigma_sqr_noise_30dB = np.array ([1e-3, 1e-3, 1e-3, 1e-3, 1e-3, 1e-3,

1e-3, 1e-3], dtype = float)

6 sigma_sqr_noise_40dB = np.array ([1e-4, 1e-4, 1e-4, 1e-4, 1e-4, 1e-4,

1e-4, 1e-4], dtype = float)

1 ## Function to generate the vector b (K x 1)

2 def generate_b(F_H_size , K, SINR_P_min , sigma_sqr_noise , F_H):

3 bi_list = []

4 for k in range(F_H_size):

5 for i in range(K): # Total rows , i.e., total transmitters

6 b = np.multiply(SINR_P_min[i], sigma_sqr_noise[i])

7 bi_list.append(b)

8 bi_array = np.array(bi_list)

9 bi = bi_array.reshape ((F_H_size , K, 1)) # H_size X row X column

10 return bi

110

1 ## Create vector b

2 b_0dB = generate_b(F_H_0dB_size , K, SINR_P_min , sigma_sqr_noise_0dB ,

F_H_0dB)

3 b_10dB = generate_b(F_H_10dB_size , K, SINR_P_min ,

sigma_sqr_noise_10dB , F_H_10dB)

4 b_20dB = generate_b(F_H_20dB_size , K, SINR_P_min ,

sigma_sqr_noise_20dB , F_H_20dB)

5 b_30dB = generate_b(F_H_30dB_size , K, SINR_P_min ,

sigma_sqr_noise_30dB , F_H_30dB)

6 b_40dB = generate_b(F_H_40dB_size , K, SINR_P_min ,

sigma_sqr_noise_40dB , F_H_40dB)

7

8 print(b_0dB.shape)

9 print(b_10dB.shape)

10 print(b_20dB.shape)

11 print(b_30dB.shape)

12 print(b_40dB.shape)

13

14 # print(b_0dB)

15 # print(b_10dB)

16 # print(b_20dB)

17 # print(b_30dB)

18 # print(b_40dB)

1 ## Create matrix A_inv , i.e., the pseudo inverse of matrix A

2 A_inv_0dB = np.linalg.pinv(A_0dB)

3 A_inv_10dB = np.linalg.pinv(A_10dB)

4 A_inv_20dB = np.linalg.pinv(A_20dB)

5 A_inv_30dB = np.linalg.pinv(A_30dB)

6 A_inv_40dB = np.linalg.pinv(A_40dB)

7

8 A_inv_0dB[A_inv_0dB <0] = 0

9 A_inv_10dB[A_inv_10dB <0] = 0

10 A_inv_20dB[A_inv_20dB <0] = 0

11 A_inv_30dB[A_inv_30dB <0] = 0

12 A_inv_40dB[A_inv_40dB <0] = 0

13

14 print(A_inv_0dB.shape)

15 print(A_inv_10dB.shape)

111

16 print(A_inv_20dB.shape)

17 print(A_inv_30dB.shape)

18 print(A_inv_40dB.shape)

19

20 # print(A_inv_0dB)

21 # print(A_inv_10dB)

22 # print(A_inv_20dB)

23 # print(A_inv_30dB)

24 # print(A_inv_40dB)

1 ## Create a vector p_hat = (A_inv x b)

2 p_hat_0dB = np.matmul(A_inv_0dB , b_0dB)

3 p_hat_10dB = np.matmul(A_inv_10dB , b_10dB)

4 p_hat_20dB = np.matmul(A_inv_20dB , b_20dB)

5 p_hat_30dB = np.matmul(A_inv_30dB , b_30dB)

6 p_hat_40dB = np.matmul(A_inv_40dB , b_40dB)

7

8 print(p_hat_0dB.shape)

9 print(p_hat_10dB.shape)

10 print(p_hat_20dB.shape)

11 print(p_hat_30dB.shape)

12 print(p_hat_40dB.shape)

13

14 # print(p_hat_0dB)

15 # print(p_hat_10dB)

16 # print(p_hat_20dB)

17 # print(p_hat_30dB)

18 # print(p_hat_40dB)

1 ## Function to split datasets for training , validation , and testing.

2 def split(np_array):

3 # data_size = np_array.shape [0]

4 # train_data_size = int(data_size * 0.8)

5 # valid_data_size = int(data_size * 0.1)

6 # test_data_size = int(data_size * 0.1)

7

8 train_data_size = int (200000)

9 valid_data_size = int (25000)

10 test_data_size = int (25000)

11

112

12 train_e_indx = train_data_size

13 valid_e_indx = train_e_indx + valid_data_size

14 test_e_indx = valid_e_indx + test_data_size

15 test_data_size_n = test_e_indx - valid_e_indx

16

17 row_count = np_array.shape [1]

18 column_count = np_array.shape [2]

19

20 train_data = np.empty ((train_data_size , row_count , column_count),

dtype = complex , order = ’C’)

21 valid_data = np.empty ((valid_data_size , row_count , column_count),

dtype = complex , order = ’C’)

22 test_data = np.empty ((test_data_size_n , row_count , column_count),

dtype = complex , order = ’C’)

23

24 for i in range(train_e_indx):

25 train_data[i] = np_array[i]

26

27 xv = 0

28 for j in range(train_e_indx , valid_e_indx):

29 valid_data[xv] = np_array[j]

30 xv = xv + 1

31

32 xt = 0

33 for k in range(valid_e_indx , test_e_indx):

34 test_data[xt] = np_array[k]

35 xt = xt + 1

36

37 # print(train_data.shape , valid_data.shape , test_data.shape)

38

39

40 ## Training input will be the absolute value

41 train_input = np.absolute(train_data)

42 valid_input = np.absolute(valid_data)

43 test_input = np.absolute(test_data)

44

45 print(train_input.shape , valid_input.shape , test_input.shape)

46

47 return [train_input , valid_input , test_input , test_data]

113

1 ## Split F_H matrix

2 F_H_S_0dB = split(F_H_0dB)

3 train_input_F_H_0dB = F_H_S_0dB [0]

4 valid_input_F_H_0dB = F_H_S_0dB [1]

5 test_input_F_H_0dB = F_H_S_0dB [2]

6 test_data_F_H_0dB = F_H_S_0dB [3]

7

8 F_H_S_10dB = split(F_H_10dB)

9 train_input_F_H_10dB = F_H_S_10dB [0]

10 valid_input_F_H_10dB = F_H_S_10dB [1]

11 test_input_F_H_10dB = F_H_S_10dB [2]

12 test_data_F_H_10dB = F_H_S_10dB [3]

13

14 F_H_S_20dB = split(F_H_20dB)

15 train_input_F_H_20dB = F_H_S_20dB [0]

16 valid_input_F_H_20dB = F_H_S_20dB [1]

17 test_input_F_H_20dB = F_H_S_20dB [2]

18 test_data_F_H_20dB = F_H_S_20dB [3]

19

20 F_H_S_30dB = split(F_H_30dB)

21 train_input_F_H_30dB = F_H_S_30dB [0]

22 valid_input_F_H_30dB = F_H_S_30dB [1]

23 test_input_F_H_30dB = F_H_S_30dB [2]

24 test_data_F_H_30dB = F_H_S_30dB [3]

25

26 F_H_S_40dB = split(F_H_40dB)

27 train_input_F_H_40dB = F_H_S_40dB [0]

28 valid_input_F_H_40dB = F_H_S_40dB [1]

29 test_input_F_H_40dB = F_H_S_40dB [2]

30 test_data_F_H_40dB = F_H_S_40dB [3]

1 ## Split p_hat vector

2 p_hat_S_0dB = split(p_hat_0dB)

3 train_input_p_hat_0dB = p_hat_S_0dB [0]

4 valid_input_p_hat_0dB = p_hat_S_0dB [1]

5 test_input_p_hat_0dB = p_hat_S_0dB [2]

6 test_data_p_hat_0dB = p_hat_S_0dB [3]

7

8 p_hat_S_10dB = split(p_hat_10dB)

114

9 train_input_p_hat_10dB = p_hat_S_10dB [0]

10 valid_input_p_hat_10dB = p_hat_S_10dB [1]

11 test_input_p_hat_10dB = p_hat_S_10dB [2]

12 test_data_p_hat_10dB = p_hat_S_10dB [3]

13

14 p_hat_S_20dB = split(p_hat_20dB)

15 train_input_p_hat_20dB = p_hat_S_20dB [0]

16 valid_input_p_hat_20dB = p_hat_S_20dB [1]

17 test_input_p_hat_20dB = p_hat_S_20dB [2]

18 test_data_p_hat_20dB = p_hat_S_20dB [3]

19

20 p_hat_S_30dB = split(p_hat_30dB)

21 train_input_p_hat_30dB = p_hat_S_30dB [0]

22 valid_input_p_hat_30dB = p_hat_S_30dB [1]

23 test_input_p_hat_30dB = p_hat_S_30dB [2]

24 test_data_p_hat_30dB = p_hat_S_30dB [3]

25

26 p_hat_S_40dB = split(p_hat_40dB)

27 train_input_p_hat_40dB = p_hat_S_40dB [0]

28 valid_input_p_hat_40dB = p_hat_S_40dB [1]

29 test_input_p_hat_40dB = p_hat_S_40dB [2]

30 test_data_p_hat_40dB = p_hat_S_40dB [3]

1 ## Create EsN0 vector

2 EsN0_array_0dB = np.full(shape = F_H_0dB_size , fill_value = 0, dtype

= int)

3 EsN0_array_10dB = np.full(shape = F_H_10dB_size , fill_value = 10,

dtype = int)

4 EsN0_array_20dB = np.full(shape = F_H_20dB_size , fill_value = 20,

dtype = int)

5 EsN0_array_30dB = np.full(shape = F_H_30dB_size , fill_value = 30,

dtype = int)

6 EsN0_array_40dB = np.full(shape = F_H_40dB_size , fill_value = 40,

dtype = int)

7

8 EsN0_vector_0dB = EsN0_array_0dB.reshape ((F_H_0dB_size , 1)) # row X

column

9 EsN0_vector_10dB = EsN0_array_10dB.reshape ((F_H_10dB_size , 1)) # row

X column

115

10 EsN0_vector_20dB = EsN0_array_20dB.reshape ((F_H_20dB_size , 1)) # row

X column

11 EsN0_vector_30dB = EsN0_array_30dB.reshape ((F_H_30dB_size , 1)) # row

X column

12 EsN0_vector_40dB = EsN0_array_40dB.reshape ((F_H_40dB_size , 1)) # row

X column

13

14 print(EsN0_vector_0dB.shape)

15 print(EsN0_vector_10dB.shape)

16 print(EsN0_vector_20dB.shape)

17 print(EsN0_vector_30dB.shape)

18 print(EsN0_vector_40dB.shape)

1 ## Function to split EsN0 vector for training , validation , and

testing.

2 def split_EsN0(np_vector):

3 # data_size = np_vector.shape [0]

4 # train_data_size = int(data_size * 0.8)

5 # valid_data_size = int(data_size * 0.1)

6 # test_data_size = int(data_size * 0.1)

7

8 train_data_size = int (200000)

9 valid_data_size = int (25000)

10 test_data_size = int (25000)

11

12 train_e_indx = train_data_size

13 valid_e_indx = train_e_indx + valid_data_size

14 test_e_indx = valid_e_indx + test_data_size

15 test_data_size_n = test_e_indx - valid_e_indx

16

17 row_count = np_vector.shape [1]

18 column_count = 1

19

20 train_data = np.empty ((train_data_size , row_count , column_count),

dtype = int , order = ’C’)

21 valid_data = np.empty ((valid_data_size , row_count , column_count),

dtype = int , order = ’C’)

22 test_data = np.empty ((test_data_size_n , row_count , column_count),

dtype = int , order = ’C’)

116

23

24 for i in range(train_e_indx):

25 train_data[i] = np_vector[i]

26

27 xv = 0

28 for j in range(train_e_indx , valid_e_indx):

29 valid_data[xv] = np_vector[j]

30 xv = xv + 1

31

32 xt = 0

33 for k in range(valid_e_indx , test_e_indx):

34 test_data[xt] = np_vector[k]

35 xt = xt + 1

36

37 # print(train_data.shape , valid_data.shape , test_data.shape)

38

39

40 ## Training input will be the absolute value

41 train_input = np.absolute(train_data)

42 valid_input = np.absolute(valid_data)

43 test_input = np.absolute(test_data)

44

45 print(train_input.shape , valid_input.shape , test_input.shape)

46

47 return [train_input , valid_input , test_input , test_data]

1 ## Split EsN0 vector

2 EsN0_S_0dB = split_EsN0(EsN0_vector_0dB)

3 train_input_EsN0_0dB = EsN0_S_0dB [0]

4 valid_input_EsN0_0dB = EsN0_S_0dB [1]

5 test_input_EsN0_0dB = EsN0_S_0dB [2]

6 test_data_EsN0_0dB = EsN0_S_0dB [3]

7

8 EsN0_S_10dB = split_EsN0(EsN0_vector_10dB)

9 train_input_EsN0_10dB = EsN0_S_10dB [0]

10 valid_input_EsN0_10dB = EsN0_S_10dB [1]

11 test_input_EsN0_10dB = EsN0_S_10dB [2]

12 test_data_EsN0_10dB = EsN0_S_10dB [3]

13

117

14 EsN0_S_20dB = split_EsN0(EsN0_vector_20dB)

15 train_input_EsN0_20dB = EsN0_S_20dB [0]

16 valid_input_EsN0_20dB = EsN0_S_20dB [1]

17 test_input_EsN0_20dB = EsN0_S_20dB [2]

18 test_data_EsN0_20dB = EsN0_S_20dB [3]

19

20 EsN0_S_30dB = split_EsN0(EsN0_vector_30dB)

21 train_input_EsN0_30dB = EsN0_S_30dB [0]

22 valid_input_EsN0_30dB = EsN0_S_30dB [1]

23 test_input_EsN0_30dB = EsN0_S_30dB [2]

24 test_data_EsN0_30dB = EsN0_S_30dB [3]

25

26 EsN0_S_40dB = split_EsN0(EsN0_vector_40dB)

27 train_input_EsN0_40dB = EsN0_S_40dB [0]

28 valid_input_EsN0_40dB = EsN0_S_40dB [1]

29 test_input_EsN0_40dB = EsN0_S_40dB [2]

30 test_data_EsN0_40dB = EsN0_S_40dB [3]

1 ## Creating datasets for training

2 train_input_F_H = np.concatenate ((train_input_F_H_0dB ,

3 train_input_F_H_10dB , train_input_F_H_20dB , train_input_F_H_30dB ,

4 train_input_F_H_40dB ,), axis =0)

5

6 train_input_EsN0 = np.concatenate ((train_input_EsN0_0dB ,

7 train_input_EsN0_10dB , train_input_EsN0_20dB ,

8 train_input_EsN0_30dB , train_input_EsN0_40dB), axis =0)

9

10 print(train_input_F_H.shape)

11 print(train_input_EsN0.shape)

1 ## Creating datasets for validation

2 valid_input_F_H = np.concatenate ((valid_input_F_H_0dB ,

3 valid_input_F_H_10dB , valid_input_F_H_20dB , valid_input_F_H_30dB ,

4 valid_input_F_H_40dB ,), axis =0)

5

6 valid_input_EsN0 = np.concatenate ((valid_input_EsN0_0dB ,

7 valid_input_EsN0_10dB , valid_input_EsN0_20dB ,

8 valid_input_EsN0_30dB , valid_input_EsN0_40dB), axis =0)

9

10 print(valid_input_F_H.shape)

118

11 print(valid_input_EsN0.shape)

1 ## Shuffling the training datasets

2 train_shuffler = np.random.permutation(len(train_input_F_H))

3 train_input_F_H_shuffled = train_input_F_H[train_shuffler]

4 train_input_EsN0_shuffled = train_input_EsN0[train_shuffler]

1 ## Shuffling the validation datasets

2 valid_shuffler = np.random.permutation(len(valid_input_F_H))

3 valid_input_F_H_shuffled = valid_input_F_H[valid_shuffler]

4 valid_input_EsN0_shuffled = valid_input_EsN0[valid_shuffler]

1 ## Reshaping train_input_F_H_shuffled and adding

train_input_EsN0_shuffled

2 const = K*K

3 len1 = train_input_F_H_shuffled.shape [0]

4 train_input_F_H_shuffled_reshaped = train_input_F_H_shuffled.reshape

((len1 , 1, const)) # size X row X column

5 train_y_true = np.concatenate ((train_input_F_H_shuffled_reshaped ,

train_input_EsN0_shuffled), axis =2)

6 print(train_y_true.shape)

1 ## Reshaping train_input_F_H_shuffled and adding

train_input_EsN0_shuffled

2 len2 = valid_input_F_H_shuffled.shape [0]

3 valid_input_F_H_shuffled_reshaped = valid_input_F_H_shuffled.reshape

((len2 , 1, const)) # size X row X column

4 valid_y_true = np.concatenate ((valid_input_F_H_shuffled_reshaped ,

valid_input_EsN0_shuffled), axis =2)

5 print(valid_y_true.shape)

1 ## Define the DNN model - The Functional API

2 import tensorflow as tf

3 from tensorflow import keras

4 ## from tensorflow.keras import layers # shows warning

5 from keras.api._v2.keras import layers

6 from keras.layers import Input , concatenate

7 from keras.models import Model

8

9 hij_inputs = keras.Input(shape =(K,K), name = "hij_inputs")

10 f1 = layers.Flatten(name = "flatten_layer_hij")(hij_inputs)

119

11

12 EsN0_inputs = keras.Input(shape =(1 ,1), name = "EsN0_inputs")

13 f2 = layers.Flatten(name = "flatten_layer_EsN0")(EsN0_inputs)

14

15 concat_layers = concatenate ([f1, f2])

16

17 d1 = layers.Dense (2*K*K, activation="relu", name = "dense_layer_1")(

concat_layers)

18 b1 = layers.BatchNormalization(name = "batch_norm_layer_1")(d1)

19

20 d2 = layers.Dense(K*K, activation="relu", name = "dense_layer_2")(b1)

21 b2 = layers.BatchNormalization(name = "batch_norm_layer_2")(d2)

22

23 # meu = layers.Dense(K, activation ="relu", name = "meu")(b2)

24 P_hat = layers.Dense(K, activation="sigmoid", name = "P_hat")(b2)

25

26 model = keras.Model(inputs = [hij_inputs , EsN0_inputs], outputs =

P_hat , name = "functional_api")

27 model.summary ()

1 ## Plot the model as a graph

2 keras.utils.plot_model(model , "Functional_API_Model.png")

1 ## Display the input and output shapes of each layer

2 keras.utils.plot_model(model , "Functional_API_Model_with_shape_info.

png", show_shapes=True)

1 ## Convert SINR_P_min from numpy array to tensor

2 SINR_P_min_t = tf.convert_to_tensor(SINR_P_min , dtype = float)

3 tf.print(SINR_P_min_t)

1 ## The customized loss function that penalizes the constraint

violation

2 def custom_loss(y_true , y_pred):

3 # p = y_pred

4 p = tf.math.multiply(p_max , y_pred)

5

6 mtrx_elmnt = K*K

7 EsN0_val = y_true [0][0][mtrx_elmnt]

8 y_true_updt = y_true [:,:,:-1]

9

120

10 if EsN0_val < 10:

11 sigma_sqr_noise_lf = 1e-0

12 elif EsN0_val >= 10 and EsN0_val < 20:

13 sigma_sqr_noise_lf = 1e-1

14 elif EsN0_val >= 20 and EsN0_val < 30:

15 sigma_sqr_noise_lf = 1e-2

16 elif EsN0_val >= 30 and EsN0_val < 40:

17 sigma_sqr_noise_lf = 1e-3

18 else:

19 sigma_sqr_noise_lf = 1e-4

20

21 hij = tf.reshape(y_true_updt [:,0:K*K], (-1,K,K))

22 hij_abs_sqr = tf.math.square(tf.math.abs(hij))

23

24 lambda_l = 5.0

25 R_P = 0.0

26 pnlty_f_CV = 0.0

27

28 for i in range(K): # Total rows

29 ph = 0.0

30 for j in range(K): # Total columns

31 ph_j = tf.math.multiply(p[:,j], hij_abs_sqr [:,i,j])

32 ph = tf.math.add(ph , ph_j)

33

34 numr = tf.math.multiply(p[:,i], hij_abs_sqr [:,i,i])

35 dnumr = tf.math.add(sigma_sqr_noise_lf , tf.math.subtract(ph, numr

))

36 SINR_i = tf.math.divide(numr , dnumr)

37 R_P = tf.math.add(R_P , (tf.math.log(1 + SINR_i)/tf.math.log (2.0))

)

38 pnlty_f_CV = tf.math.add(pnlty_f_CV ,

39 tf.nn.relu((tf.math.log(1 + SINR_P_min_t

[i])/tf.math.log (2.0))

40 - (tf.math.log(1 + SINR_i)/tf.

math.log (2.0))))

41

42 loss = tf.math.add(-R_P , tf.math.multiply(lambda_l , pnlty_f_CV))

43 loss = tf.reduce_mean(loss) # batch mean

44 return loss

121

1 ## Build and compile the DNN model

2 ## Training and Testing

3 import matplotlib.pyplot as plt

4

5 optA = tf.keras.optimizers.Adam(learning_rate = 0.0001)

6 model.compile(optimizer = optA , loss = custom_loss)

7

8 train_input = [train_input_F_H_shuffled , train_input_EsN0_shuffled]

9 valid_input = [valid_input_F_H_shuffled , valid_input_EsN0_shuffled]

10

11 history = model.fit(train_input , train_y_true , epochs = 50,

12 validation_data = (valid_input , valid_y_true),

batch_size = 1000)

13

14 plt.plot(history.epoch , history.history[’loss’], color = "blue",

label = "Training")

15 plt.plot(history.epoch , history.history[’val_loss ’], color="black",

label = "Validation")

16 plt.xlabel("epochs")

17 plt.ylabel("loss")

18 plt.legend ()

19 plt.show()

1 ## Constraint violation probability and

2 ## finding indexes of test_input_F_H matrix with the hij set that do

not satisfy

3 ## constraint on the minimum SINR_P_min rate but satisfy the maximum

transmit

4 ## power p_max

5

6 test_input = [test_input_F_H_0dB , test_input_EsN0_0dB]

7 # output_P_hat_temp = model.predict(test_input)

8 output_P_hat_temp = np.multiply(p_max , model.predict(test_input))

9 output_P_hat = output_P_hat_temp.reshape ((output_P_hat_temp.shape[0],

output_P_hat_temp.shape [1], 1)) # test_input_F_H_size X row X

column

10 output_P_hat_size = output_P_hat.shape [0]

11 test_data_F_H_abs_sqr = cmplx_abs_sqr(test_data_F_H_0dB)

12

122

13 indx_n = []

14 count_v = 0

15

16 for k in range(output_P_hat_size):

17 for i in range(K): # Total rows

18 ph = 0

19 for j in range(K): # Total columns

20 ph_j = np.multiply(output_P_hat[k,j], test_data_F_H_abs_sqr[k,i

,j])

21 ph = ph + ph_j

22

23 numr = np.multiply(output_P_hat[k,i], test_data_F_H_abs_sqr[k,i,i

])

24 dnumr = sigma_sqr_noise_0dB[i] + ph - numr

25 SINR_out = np.divide(numr , dnumr)

26

27 if np.round(SINR_out , decimals= 3) < SINR_P_min[i]:

28 indx_n.append(k)

29 count_v = count_v + 1

30 # print(SINR_out)

31 break

32

33 violation_prb = (count_v / output_P_hat_size) * 100

34 print("Constraints Violation Probability: {:.2f}%".format(

violation_prb))

35 # print(len(indx_n))

36 # print(indx_n)

1 ## Function to calculate the average sum rate

2 # Here , p_model is the output of DNN , and it is a 2D array.

3 import math

4

5 def average_sum_rate(hij , p_model , sigma_sqr_noise , K):

6 R = 0

7 hij_size = hij.shape [0]

8 hij_abs_sqr = cmplx_abs_sqr(hij)

9

10 for k in range(hij_size):

11 for i in range(K): # Total rows

123

12 phn = 0

13 for j in range(K): # Total columns

14 phn_j = np.multiply(p_model[k,j], hij_abs_sqr[k,i,j])

15 phn = phn + phn_j

16

17 numr_s = np.multiply(p_model[k,i], hij_abs_sqr[k,i,i])

18 dnumr_s = sigma_sqr_noise[i] + phn - numr_s

19 R_temp = math.log2(1 + np.divide(numr_s , dnumr_s))

20 R = R + R_temp

21

22 return (R/hij_size)

1 # Calculating the curated power vector p_tilda

2 # p_tilda = test_input_p_hat when SINR_P_min is not met

3 # p_tilda = output_P_hat when SINR_P_min is met

4

5 p_tilda = np.empty((output_P_hat_size , K, 1), dtype = float , order =

’C’)

6

7 i = 0

8 for j in range(output_P_hat_size):

9 if (i < len(indx_n)) and (j == indx_n[i]):

10 p_tilda[j] = (test_input_p_hat_0dB[j] * p_max) / np.amax(

test_input_p_hat_0dB[j])

11 i = i + 1

12 else:

13 p_tilda[j] = output_P_hat[j]

14

15 print(p_tilda.shape)

16 # print(p_tilda)

1 ## Checking p_tilda , i.e., the power for test_data_F_H for negative

values

2 ## and Hit Rate i.e. percentage for 0 <= p_tilda <= p_max

3 count_p_t = 0

4 count_n_t = 0

5

6 for n in range(output_P_hat_size):

7 P_max = np.amax(p_tilda[n])

8 if np.round(P_max , decimals = 3) <= 1:

124

9 count_p_t = count_p_t + 1

10

11 if np.any(p_tilda[n] < 0):

12 count_n_t = count_n_t + 1

13 print(n,’\n’)

14 print(p_tilda)

15

16 p_tilda_hit_rate = (count_p_t / output_P_hat_size) * 100

17 print("Hit Rate for Power p_tilda: {:.2f}%".format(p_tilda_hit_rate))

18 print("Negative power count: ", count_n_t)

1 ## Constraint violation probability for p_tilda on the SINR_P_min

2 # indx_t = []

3 count_v_t = 0

4

5 for k in range(output_P_hat_size):

6 for i in range(K): # Total rows

7 ph = 0

8 for j in range(K): # Total columns

9 ph_j = np.multiply(p_tilda[k,j], test_data_F_H_abs_sqr[k,i,j])

10 ph = ph + ph_j

11

12 numr = np.multiply(p_tilda[k,i], test_data_F_H_abs_sqr[k,i,i])

13 dnumr = sigma_sqr_noise_0dB[i] + ph - numr

14 SINR_out_t = np.divide(numr , dnumr)

15

16 if np.round(SINR_out_t , decimals = 2) < SINR_P_min[i]:

17 # indx_t.append(k)

18 count_v_t = count_v_t + 1

19 break

20

21 violation_prb_t = (count_v_t / output_P_hat_size) * 100

22 print("SINR_P_min Constraints Violation Probability for p_tilda: {:.2

f}%".format(violation_prb_t))

1 ## DNN Sum Rate for test_data_F_H

2 sumrate_F_H = average_sum_rate(test_data_F_H_0dB , p_tilda ,

sigma_sqr_noise_0dB , K)

3 print("Average Sum Rate for all H matrices: {:.3f} Bit/Second/Hertz".

format(sumrate_F_H))

125

C.3 Codes for analyzing the Proposed Model

C.3.1 For training with a given background noise power

1 import numpy as np

2

3 ## Number of transmitter -receiver pairs

4 K = 5

5

6 ## Variances for noise signals

7 sigma_sqr_noise = np.array ([1e-0, 1e-0, 1e-0, 1e-0, 1e-0], dtype =

float)

8

9 ## Minimum rate for the achievable SINR of multiple concurrent

10 ## transmissions

11 SINR_P_min = np.array ([0.5 , 0.5, 0.5, 0.5, 0.5])

12

13 ## Maximum transmit power

14 p_max = 1.0

1 ## Loading a NumPy array from a CSV file

2 # Loading F_H array from a CSV file

3 from numpy import loadtxt

4

5 ## Reading an array from the file

6 # If we want to read a file from our local drive , we have to first

7 # upload it to Collab ’s session storage.

8 F_H_2D_L = np.loadtxt(’F_H_2D.csv’, delimiter = ’,’, dtype = str)

9

10 ## Reshaping the array from 2D to 3D

11 F_H_3D = F_H_2D_L.reshape(F_H_2D_L.shape[0], F_H_2D_L.shape [1] // K,

K)

12 F_H_3D_size = F_H_3D.shape [0]

1 ## Converting string data to complex data and removing the initial

2 ## whitespace

3 F_H_list = []

4 for k in range(F_H_3D_size):

126

5 for i in range(K): # Total rows

6 for j in range(K): # Total columns

7 F_H_temp = complex(F_H_3D[k][i][j].strip ())

8 F_H_list.append(F_H_temp)

9 F_H_array = np.array(F_H_list)

10 F_H = F_H_array.reshape ((F_H_3D_size , K, K)) # H_size X row X

column_count

11 print(F_H.shape)

12 F_H_size = F_H.shape [0]

13 # print(F_H)

1 import numba as nb

2

3 ## Function to compute the square of the absolute value of an array

4 ## of complex numbers

5 @nb.vectorize ([nb.float64(nb.complex128),nb.float32(nb.complex64)])

6 def cmplx_abs_sqr(cmplx_var):

7 return cmplx_var.real **2 + cmplx_var.imag **2

1 ## Function to generate the matrix A (K x K)

2 def generate_A(F_H_size , K, SINR_P_min , F_H):

3 Aij_list = []

4 F_H_abs_sqr = cmplx_abs_sqr(F_H)

5

6 for k in range(F_H_size):

7 for i in range(K): # Total rows

8 Aj_list =[]

9 for j in range(K): # Total columns

10 if i==j:

11 A = F_H_abs_sqr[k,i,j]

12 else:

13 A = np.multiply(-SINR_P_min[i], F_H_abs_sqr[k,i,j])

14 Aj_list.append(A)

15 Aij_list.append(Aj_list)

16 Aij_array = np.array(Aij_list)

17 Aij = Aij_array.reshape ((F_H_size , K, K)) # H_size X row X column

18 return Aij

1 ## Create matrix A

2 A = generate_A(F_H_size , K, SINR_P_min , F_H)

127

3 print(A.shape)

4 # print(A)

1 ## Function to generate the vector b (K x 1)

2 def generate_b(F_H_size , K, SINR_P_min , sigma_sqr_noise , F_H):

3 bi_list = []

4 for k in range(F_H_size):

5 for i in range(K): # Total rows , i.e., total transmitters

6 b = np.multiply(SINR_P_min[i], sigma_sqr_noise[i])

7 bi_list.append(b)

8 bi_array = np.array(bi_list)

9 bi = bi_array.reshape ((F_H_size , K, 1)) # H_size X row X column

10 return bi

1 ## Create vector b

2 b = generate_b(F_H_size , K, SINR_P_min , sigma_sqr_noise , F_H)

3 print(b.shape)

4 # print(b)

1 ## Create matrix A_inv , i.e., the pseudo inverse of matrix A

2 A_inv = np.linalg.pinv(A)

3 A_inv[A_inv <0] = 0

4 print(A_inv.shape)

5 # print(A_inv)

1 ## Create a vector p_hat = (A_inv x b)

2 p_hat = np.matmul(A_inv , b)

3 print(p_hat.shape)

4 # print(p_hat)

1 ## Convert p_max_array to (K x 1) vector

2 p_max_array = np.array ([1.0, 1.0, 1.0, 1.0, 1.0], dtype = float)

3 p_max_vector = p_max_array.reshape ((K, 1)) # row X column

4 print(p_max_vector)

1 ## Create a vector X = (p_max_vector - p_hat)

2 X = p_max_vector - p_hat

3 print(X.shape)

4 # print(X)

1 ## Create a vector beta = MIN[(p_max_vector - p_hat) / A_inv_cv]

2 beta_list = []

128

3

4 for k in range(F_H_size):

5 for i in range(K): # Total columns

6 ak = A_inv[k,:,i]

7 akr = ak.reshape ((K, 1)) # row X column

8 with np.errstate(divide=’ignore ’):

9 beta_w = np.where(akr != 0.0, np.divide(X[k], akr), np.inf)

10 # beta_w = np.divide(X[k], akr)

11 # beta_w = np.divide(X[k], akr)

12 beta_min = np.amin(beta_w)

13 beta_list.append(beta_min)

14

15 beta_array = np.array(beta_list)

16 beta = beta_array.reshape ((F_H_size , K, 1)) # H_size X row X

column_count

17 print(beta.shape)

18 beta_size = beta.shape [0]

19 # print(beta)

1 ## Function to split datasets for training , validation , and testing.

2 def split(np_array):

3 # data_size = np_array.shape [0]

4 # train_data_size = int(data_size * 0.8)

5 # valid_data_size = int(data_size * 0.1)

6 # test_data_size = int(data_size * 0.1)

7

8 train_data_size = int (200000)

9 valid_data_size = int (25000)

10 test_data_size = int (25000)

11

12 train_e_indx = train_data_size

13 valid_e_indx = train_e_indx + valid_data_size

14 test_e_indx = valid_e_indx + test_data_size

15 test_data_size_n = test_e_indx - valid_e_indx

16

17 row_count = np_array.shape [1]

18 column_count = np_array.shape [2]

19

20 train_data = np.empty ((train_data_size , row_count , column_count),

129

dtype = complex , order = ’C’)

21 valid_data = np.empty ((valid_data_size , row_count , column_count),

dtype = complex , order = ’C’)

22 test_data = np.empty ((test_data_size_n , row_count , column_count),

dtype = complex , order = ’C’)

23

24 for i in range(train_e_indx):

25 train_data[i] = np_array[i]

26

27 xv = 0

28 for j in range(train_e_indx , valid_e_indx):

29 valid_data[xv] = np_array[j]

30 xv = xv + 1

31

32 xt = 0

33 for k in range(valid_e_indx , test_e_indx):

34 test_data[xt] = np_array[k]

35 xt = xt + 1

36

37 # print(train_data.shape , valid_data.shape , test_data.shape)

38

39

40 ## Training input will be the absolute value

41 train_input = np.absolute(train_data)

42 valid_input = np.absolute(valid_data)

43 test_input = np.absolute(test_data)

44

45 print(train_input.shape , valid_input.shape , test_input.shape)

46

47 return [train_input , valid_input , test_input , test_data]

1 ## Split F_H matrix

2 F_H_S = split(F_H)

3 train_input_F_H = F_H_S [0]

4 valid_input_F_H = F_H_S [1]

5 test_input_F_H = F_H_S [2]

6 test_data_F_H = F_H_S [3]

1 ## Split A_inv matrix

2 A_inv_S = split(A_inv)

130

3 train_input_A_inv = A_inv_S [0]

4 valid_input_A_inv = A_inv_S [1]

5 test_input_A_inv = A_inv_S [2]

6 test_data_A_inv = A_inv_S [3]

1 ## Split b vector

2 b_S = split(b)

3 train_input_b = b_S[0]

4 valid_input_b = b_S[1]

5 test_input_b = b_S [2]

6 test_data_b = b_S [3]

1 ## Split X vector

2 X_S = split(X)

3 train_input_X = X_S[0]

4 valid_input_X = X_S[1]

5 test_input_X = X_S [2]

6 test_data_X = X_S [3]

1 ## Split beta vector

2 beta_S = split(beta)

3 train_input_beta = beta_S [0]

4 valid_input_beta = beta_S [1]

5 test_input_beta = beta_S [2]

6 test_data_beta = beta_S [3]

1 ## Split p_hat vector

2 p_hat_S = split(p_hat)

3 train_input_p_hat = p_hat_S [0]

4 valid_input_p_hat = p_hat_S [1]

5 test_input_p_hat = p_hat_S [2]

6 test_data_p_hat = p_hat_S [3]

1 ## Define the DNN model - The Functional API

2 import tensorflow as tf

3 from tensorflow import keras

4 ## from tensorflow.keras import layers # shows warning

5 from keras.api._v2.keras import layers

6 from keras.layers import Input , Lambda

7 from keras.models import Model

8

131

9

10 hij_inputs = keras.Input(shape =(K,K), name = "hij_inputs")

11 f1 = layers.Flatten(name = "flatten_layer_hij")(hij_inputs)

12

13 d1 = layers.Dense (2*K*K, activation="relu", name = "dense_layer_1")(

f1)

14 b1 = layers.BatchNormalization(name = "batch_norm_layer_1")(d1)

15

16 d2 = layers.Dense(K*K, activation="relu", name = "dense_layer_2")(b1)

17 b2 = layers.BatchNormalization(name = "batch_norm_layer_2")(d2)

18

19 # meu = layers.Dense(K, activation ="relu", name = "meu")(b2)

20 meu = layers.Dense(K, activation="sigmoid", name = "meu")(b2)

21

22 A_inv_inputs = keras.Input(shape=(K,K), name = "A_inv_inputs")

23 f2 = layers.Flatten(name = "flatten_layer_A_inv")(A_inv_inputs)

24

25 X_inputs = keras.Input(shape =(K,1), name = "X_inputs")

26 f3 = layers.Flatten(name = "flatten_layer_X")(X_inputs)

27

28 beta_inputs = keras.Input(shape =(K,1), name = "beta_inputs")

29 f4 = layers.Flatten(name = "flatten_layer_beta")(beta_inputs)

30

31 p_hat_inputs = keras.Input(shape=(K,1), name = "p_hat_inputs")

32 f5 = layers.Flatten(name = "flatten_layer_p_hat")(p_hat_inputs)

33

34 def custom_layer(tensor):

35 t_A_inv = tensor [0]

36 t_X = tensor [1]

37 t_beta = tensor [2]

38 t_p_hat = tensor [3]

39 t_meu = tensor [4]

40

41 A_inv_cl = tf.reshape(t_A_inv [:,0:K*K], (-1,K,K))

42 X_cl = tf.reshape(t_X[:,0:K*1], (-1,K,1))

43 beta_cl = tf.reshape(t_beta [:,0:K*1], (-1,K,1))

44 p_hat_cl = tf.reshape(t_p_hat [:,0:K*1], (-1,K,1))

45 meu_cl = tf.reshape(t_meu [:,0:K*1], (-1,K,1))

46

132

47 meu_ewm = tf.math.multiply(beta_cl , meu_cl)

48

49 alpha_dnumr = tf.matmul(A_inv_cl , meu_ewm)

50 alpha_whole = tf.divide(X_cl , alpha_dnumr)

51 alpha = tf.reduce_min(alpha_whole , axis = 1, keepdims = True)

52 max_p = tf.constant ([1.0])

53 alpha = tf.math.minimum(max_p , alpha)

54 meu_P = tf.multiply(meu_ewm , alpha)

55

56 Z_cl = tf.matmul(A_inv_cl , meu_P)

57 P_hat_cl = tf.add(p_hat_cl , Z_cl)

58 P_hat_cl_Norm = tf.math.divide(P_hat_cl , tf.reduce_max(P_hat_cl ,

axis = 1, keepdims = True))

59

60 # return P_hat_cl

61 return P_hat_cl_Norm

62

63 lambda_layer = tf.keras.layers.Lambda(custom_layer , name="

lambda_layer")([f2 , f3 , f4 , f5 , meu])

64 f6 = layers.Flatten(name = "flatten_layer_output")(lambda_layer)

65

66 model = keras.Model(inputs = [hij_inputs , A_inv_inputs , X_inputs ,

beta_inputs , p_hat_inputs], outputs = f6 , name = "functional_api"

)

67 model.summary ()

1 ## Plot the model as a graph

2 keras.utils.plot_model(model , "Functional_API_Model.png")

1 ## Display the input and output shapes of each layer

2 keras.utils.plot_model(model , "Functional_API_Model_with_shape_info.

png", show_shapes=True)

1 ## Convert sigma_sqr_noise from numpy array to tensor

2 sigma_sqr_noise_t = tf.convert_to_tensor(sigma_sqr_noise , dtype =

float)

3 tf.print(sigma_sqr_noise_t)

1 ## The customized loss function

2

3 def custom_loss(y_true , y_pred):

133

4 # p = y_pred

5 p = tf.math.multiply(p_max , y_pred)

6 hij = tf.reshape(y_true [:,0:K*K], (-1,K,K))

7 hij_abs_sqr = tf.math.square(tf.math.abs(hij))

8

9 R_P = 0.0

10 for i in range(K): # Total rows

11 ph = 0.0

12 for j in range(K): # Total columns

13 ph_j = tf.math.multiply(p[:,j], hij_abs_sqr [:,i,j])

14 ph = tf.math.add(ph , ph_j)

15

16 numr = tf.math.multiply(p[:,i], hij_abs_sqr [:,i,i])

17 dnumr = tf.math.add(sigma_sqr_noise_t[i], tf.math.subtract(ph,

numr))

18 SINR_i = tf.math.divide(numr , dnumr)

19 R_P = tf.math.add(R_P , (tf.math.log(1 + SINR_i)/tf.math.log (2.0))

)

20

21 loss = -R_P

22 loss = tf.reduce_mean(loss) # batch mean

23 return loss

1 ## Build and compile the DNN model

2 ## Training and Testing

3 import matplotlib.pyplot as plt

4

5 optA = tf.keras.optimizers.Adam(learning_rate = 0.0001)

6 model.compile(optimizer = optA , loss = custom_loss)

7

8 train_input = [train_input_F_H , train_input_A_inv , train_input_X ,

train_input_beta , train_input_p_hat]

9 valid_input = [valid_input_F_H , valid_input_A_inv , valid_input_X ,

valid_input_beta , valid_input_p_hat]

10

11 history = model.fit(train_input , train_input_F_H , epochs = 50,

validation_data = (valid_input , valid_input_F_H), batch_size =

1000)

12

134

13 plt.plot(history.epoch , history.history[’loss’], color = "blue",

label = "Training")

14 plt.plot(history.epoch , history.history[’val_loss ’], color="black",

label = "Validation")

15 plt.xlabel("epochs")

16 plt.ylabel("loss")

17 plt.legend ()

18 plt.show()

1 ## Constraint violation probability and

2 ## finding indexes of test_input_F_H matrix with the hij set that do

3 ## not satisfy constraint on the minimum SINR_P_min rate but satisfy

4 ## the maximum transmit power p_max

5

6 test_input = [test_input_F_H , test_input_A_inv , test_input_X ,

test_input_beta , test_input_p_hat]

7 # output_P_hat_temp = model.predict(test_input)

8 output_P_hat_temp = np.multiply(p_max , model.predict(test_input))

9 output_P_hat = output_P_hat_temp.reshape ((output_P_hat_temp.shape[0],

output_P_hat_temp.shape [1], 1)) # test_input_F_H_size X row X

column

10 output_P_hat_size = output_P_hat.shape [0]

11 test_data_F_H_abs_sqr = cmplx_abs_sqr(test_data_F_H)

12

13 indx_n = []

14 count_v = 0

15

16 for k in range(output_P_hat_size):

17 for i in range(K): # Total rows

18 ph = 0

19 for j in range(K): # Total columns

20 ph_j = np.multiply(output_P_hat[k,j], test_data_F_H_abs_sqr[k,i

,j])

21 ph = ph + ph_j

22

23 numr = np.multiply(output_P_hat[k,i], test_data_F_H_abs_sqr[k,i,i

])

24 dnumr = sigma_sqr_noise[i] + ph - numr

25 SINR_out = np.divide(numr , dnumr)

135

26

27 if np.round(SINR_out , decimals= 3) < SINR_P_min[i]:

28 indx_n.append(k)

29 count_v = count_v + 1

30 # print(SINR_out)

31 break

32

33 violation_prb = (count_v / output_P_hat_size) * 100

34 print("Constraints Violation Probability: {:.2f}%".format(

violation_prb))

35 # print(len(indx_n))

36 # print(indx_n)

1 ## Function to calculate the average sum rate

2 # Here , p_model is the output of DNN , and it is a 2D array.

3 import math

4

5 def average_sum_rate(hij , p_model , sigma_sqr_noise , K):

6 R = 0

7 hij_size = hij.shape [0]

8 hij_abs_sqr = cmplx_abs_sqr(hij)

9

10 for k in range(hij_size):

11 for i in range(K): # Total rows

12 phn = 0

13 for j in range(K): # Total columns

14 phn_j = np.multiply(p_model[k,j], hij_abs_sqr[k,i,j])

15 phn = phn + phn_j

16

17 numr_s = np.multiply(p_model[k,i], hij_abs_sqr[k,i,i])

18 dnumr_s = sigma_sqr_noise[i] + phn - numr_s

19 R_temp = math.log2(1 + np.divide(numr_s , dnumr_s))

20 R = R + R_temp

21

22 return (R/hij_size)

1 # DNN Sum Rate for test_data_F_H

2 sumrate_F_H = average_sum_rate(test_data_F_H , output_P_hat ,

sigma_sqr_noise , K)

3 print("Average Sum Rate for all H matrices: {:.3f} Bit/Second/Hertz".

136

format(sumrate_F_H))

1 ## Checking (A_inv x b), i.e., the power for negative values

2 count_n = 0

3 for c in range(output_P_hat_size):

4 p_temp = np.matmul(test_input_A_inv[c], test_input_b[c])

5 if np.any(p_temp < 0):

6 count_n = count_n + 1

7 print(c,’\n’)

8 print(p_temp)

9

10 print(count_n)

1 ## Checking P_hat , i.e., the power for test_data_F_H for negative

2 ## values and Hit Rate i.e. percentage for 0 <= P_hat <= p_max

3 count_p = 0

4 count_n = 0

5

6 for n in range(output_P_hat_size):

7 P_max = np.amax(output_P_hat[n])

8 if np.round(P_max , decimals = 3) <= 1:

9 count_p = count_p + 1

10

11 if np.any(output_P_hat[n] < 0):

12 count_n = count_n + 1

13 print(n,’\n’)

14 print(output_P_hat)

15

16 p_hit_rate = (count_p / output_P_hat_size) * 100

17 print("Hit Rate for Power : {:.2f}%".format(p_hit_rate))

18 print("Negative power count: ", count_n)

137

C.3.2 For enhanced generalization capacity

1 import numpy as np

2

3 ## Number of transmitter -receiver pairs

4 K = 8

5

6 ## Minimum rate for the achievable SINR of multiple concurrent

transmissions

7 SINR_P_min = np.array ([0.2 , 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2])

8

9 ## Maximum transmit power

10 p_max = 1.0

1 ## Loading a NumPy array from a CSV file

2 # Loading F_H array from a CSV file

3 from numpy import loadtxt

4

5 ## Reading an array from the file

6 # If we want to read a file from our local drive , we have to first

upload it to Collab ’s session storage.

7 F_H_2D_L_0dB = np.loadtxt(’/content/drive/MyDrive/F_H_2D_0dB.csv’,

delimiter = ’,’, dtype = str)

8 F_H_2D_L_10dB = np.loadtxt(’/content/drive/MyDrive/F_H_2D_10dB.csv’,

delimiter = ’,’, dtype = str)

9 F_H_2D_L_20dB = np.loadtxt(’/content/drive/MyDrive/F_H_2D_20dB.csv’,

delimiter = ’,’, dtype = str)

10 F_H_2D_L_30dB = np.loadtxt(’/content/drive/MyDrive/F_H_2D_30dB.csv’,

delimiter = ’,’, dtype = str)

11 F_H_2D_L_40dB = np.loadtxt(’/content/drive/MyDrive/F_H_2D_40dB.csv’,

delimiter = ’,’, dtype = str)

12

13 # ## Reshaping the array from 2D to 3D

14 F_H_3D_0dB = F_H_2D_L_0dB.reshape(F_H_2D_L_0dB.shape [0], F_H_2D_L_0dB

.shape [1] // K, K)

15 F_H_3D_10dB = F_H_2D_L_10dB.reshape(F_H_2D_L_10dB.shape [0],

F_H_2D_L_10dB.shape [1] // K, K)

16 F_H_3D_20dB = F_H_2D_L_20dB.reshape(F_H_2D_L_20dB.shape [0],

F_H_2D_L_20dB.shape [1] // K, K)

138

17 F_H_3D_30dB = F_H_2D_L_30dB.reshape(F_H_2D_L_30dB.shape [0],

F_H_2D_L_30dB.shape [1] // K, K)

18 F_H_3D_40dB = F_H_2D_L_40dB.reshape(F_H_2D_L_40dB.shape [0],

F_H_2D_L_40dB.shape [1] // K, K)

19

20 F_H_3D_0dB_size = F_H_3D_0dB.shape [0]

21 F_H_3D_10dB_size = F_H_3D_10dB.shape [0]

22 F_H_3D_20dB_size = F_H_3D_20dB.shape [0]

23 F_H_3D_30dB_size = F_H_3D_30dB.shape [0]

24 F_H_3D_40dB_size = F_H_3D_40dB.shape [0]

1 ## Function to convert string data to complex data and to remove the

initial whitespace

2 def cnvrt_2_cmplx_data(F_H_3D_size , F_H_3D):

3 F_H_list = []

4 for k in range(F_H_3D_size):

5 for i in range(K): # Total rows

6 for j in range(K): # Total columns

7 F_H_temp = complex(F_H_3D[k][i][j].strip ())

8 F_H_list.append(F_H_temp)

9 F_H_array = np.array(F_H_list)

10 F_H = F_H_array.reshape ((F_H_3D_size , K, K)) # H_size X row X

column_count

11 return F_H

1 ## Converting string data to complex data and removing the initial

whitespace

2 F_H_0dB = cnvrt_2_cmplx_data(F_H_3D_0dB_size , F_H_3D_0dB)

3 F_H_10dB = cnvrt_2_cmplx_data(F_H_3D_10dB_size , F_H_3D_10dB)

4 F_H_20dB = cnvrt_2_cmplx_data(F_H_3D_20dB_size , F_H_3D_20dB)

5 F_H_30dB = cnvrt_2_cmplx_data(F_H_3D_30dB_size , F_H_3D_30dB)

6 F_H_40dB = cnvrt_2_cmplx_data(F_H_3D_40dB_size , F_H_3D_40dB)

7

8 print(F_H_0dB.shape)

9 print(F_H_10dB.shape)

10 print(F_H_20dB.shape)

11 print(F_H_30dB.shape)

12 print(F_H_40dB.shape)

13

14 F_H_0dB_size = F_H_0dB.shape [0]

139

15 F_H_10dB_size = F_H_10dB.shape [0]

16 F_H_20dB_size = F_H_20dB.shape [0]

17 F_H_30dB_size = F_H_30dB.shape [0]

18 F_H_40dB_size = F_H_40dB.shape [0]

19

20 # print(F_H_0dB)

21 # print(F_H_10dB)

22 # print(F_H_20dB)

23 # print(F_H_30dB)

24 # print(F_H_40dB)

1 import numba as nb

2

3 ## Function to compute the square of the absolute value of an array

of complex numbers

4 @nb.vectorize ([nb.float64(nb.complex128),nb.float32(nb.complex64)])

5 def cmplx_abs_sqr(cmplx_var):

6 return cmplx_var.real **2 + cmplx_var.imag **2

1 ## Function to generate the matrix A (K x K)

2 def generate_A(F_H_size , K, SINR_P_min , F_H):

3 Aij_list = []

4 F_H_abs_sqr = cmplx_abs_sqr(F_H)

5

6 for k in range(F_H_size):

7 for i in range(K): # Total rows

8 Aj_list =[]

9 for j in range(K): # Total columns

10 if i==j:

11 A = F_H_abs_sqr[k,i,j]

12 else:

13 A = np.multiply(-SINR_P_min[i], F_H_abs_sqr[k,i,j])

14 Aj_list.append(A)

15 Aij_list.append(Aj_list)

16 Aij_array = np.array(Aij_list)

17 Aij = Aij_array.reshape ((F_H_size , K, K)) # H_size X row X column

18 return Aij

1 ## Create matrix A

2 A_0dB = generate_A(F_H_0dB_size , K, SINR_P_min , F_H_0dB)

140

3 A_10dB = generate_A(F_H_10dB_size , K, SINR_P_min , F_H_10dB)

4 A_20dB = generate_A(F_H_20dB_size , K, SINR_P_min , F_H_20dB)

5 A_30dB = generate_A(F_H_30dB_size , K, SINR_P_min , F_H_30dB)

6 A_40dB = generate_A(F_H_40dB_size , K, SINR_P_min , F_H_40dB)

7

8 print(A_0dB.shape)

9 print(A_10dB.shape)

10 print(A_20dB.shape)

11 print(A_30dB.shape)

12 print(A_40dB.shape)

13

14 # print(A_0dB)

15 # print(A_10dB)

16 # print(A_20dB)

17 # print(A_30dB)

18 # print(A_40dB)

1 ## Variances for noise signals

2 sigma_sqr_noise_0dB = np.array ([1e-0, 1e-0, 1e-0, 1e-0, 1e-0, 1e-0, 1

e-0, 1e-0], dtype = float)

3 sigma_sqr_noise_10dB = np.array ([1e-1, 1e-1, 1e-1, 1e-1, 1e-1, 1e-1,

1e-1, 1e-1], dtype = float)

4 sigma_sqr_noise_20dB = np.array ([1e-2, 1e-2, 1e-2, 1e-2, 1e-2, 1e-2,

1e-2, 1e-2], dtype = float)

5 sigma_sqr_noise_30dB = np.array ([1e-3, 1e-3, 1e-3, 1e-3, 1e-3, 1e-3,

1e-3, 1e-3], dtype = float)

6 sigma_sqr_noise_40dB = np.array ([1e-4, 1e-4, 1e-4, 1e-4, 1e-4, 1e-4,

1e-4, 1e-4], dtype = float)

1 ## Function to generate the vector b (K x 1)

2 def generate_b(F_H_size , K, SINR_P_min , sigma_sqr_noise , F_H):

3 bi_list = []

4 for k in range(F_H_size):

5 for i in range(K): # Total rows , i.e., total transmitters

6 b = np.multiply(SINR_P_min[i], sigma_sqr_noise[i])

7 bi_list.append(b)

8 bi_array = np.array(bi_list)

9 bi = bi_array.reshape ((F_H_size , K, 1)) # H_size X row X column

10 return bi

141

1 ## Create vector b

2 b_0dB = generate_b(F_H_0dB_size , K, SINR_P_min , sigma_sqr_noise_0dB ,

F_H_0dB)

3 b_10dB = generate_b(F_H_10dB_size , K, SINR_P_min ,

sigma_sqr_noise_10dB , F_H_10dB)

4 b_20dB = generate_b(F_H_20dB_size , K, SINR_P_min ,

sigma_sqr_noise_20dB , F_H_20dB)

5 b_30dB = generate_b(F_H_30dB_size , K, SINR_P_min ,

sigma_sqr_noise_30dB , F_H_30dB)

6 b_40dB = generate_b(F_H_40dB_size , K, SINR_P_min ,

sigma_sqr_noise_40dB , F_H_40dB)

7

8 print(b_0dB.shape)

9 print(b_10dB.shape)

10 print(b_20dB.shape)

11 print(b_30dB.shape)

12 print(b_40dB.shape)

13

14 # print(b_0dB)

15 # print(b_10dB)

16 # print(b_20dB)

17 # print(b_30dB)

18 # print(b_40dB)

1 ## Create matrix A_inv , i.e., the pseudo inverse of matrix A

2 A_inv_0dB = np.linalg.pinv(A_0dB)

3 A_inv_10dB = np.linalg.pinv(A_10dB)

4 A_inv_20dB = np.linalg.pinv(A_20dB)

5 A_inv_30dB = np.linalg.pinv(A_30dB)

6 A_inv_40dB = np.linalg.pinv(A_40dB)

7

8 A_inv_0dB[A_inv_0dB <0] = 0

9 A_inv_10dB[A_inv_10dB <0] = 0

10 A_inv_20dB[A_inv_20dB <0] = 0

11 A_inv_30dB[A_inv_30dB <0] = 0

12 A_inv_40dB[A_inv_40dB <0] = 0

13

14 print(A_inv_0dB.shape)

15 print(A_inv_10dB.shape)

142

16 print(A_inv_20dB.shape)

17 print(A_inv_30dB.shape)

18 print(A_inv_40dB.shape)

19

20 # print(A_inv_0dB)

21 # print(A_inv_10dB)

22 # print(A_inv_20dB)

23 # print(A_inv_30dB)

24 # print(A_inv_40dB)

1 ## Create a vector p_hat = (A_inv x b)

2 p_hat_0dB = np.matmul(A_inv_0dB , b_0dB)

3 p_hat_10dB = np.matmul(A_inv_10dB , b_10dB)

4 p_hat_20dB = np.matmul(A_inv_20dB , b_20dB)

5 p_hat_30dB = np.matmul(A_inv_30dB , b_30dB)

6 p_hat_40dB = np.matmul(A_inv_40dB , b_40dB)

7

8 print(p_hat_0dB.shape)

9 print(p_hat_10dB.shape)

10 print(p_hat_20dB.shape)

11 print(p_hat_30dB.shape)

12 print(p_hat_40dB.shape)

13

14 # print(p_hat_0dB)

15 # print(p_hat_10dB)

16 # print(p_hat_20dB)

17 # print(p_hat_30dB)

18 # print(p_hat_40dB)

1 ## Convert p_max_array to (K x 1) vector

2 p_max_array = np.array ([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],

dtype = float)

3 p_max_vector = p_max_array.reshape ((K, 1)) # row X column

4 print(p_max_vector)

1 ## Create a vector X = (p_max_vector - p_hat)

2 X_0dB = p_max_vector - p_hat_0dB

3 X_10dB = p_max_vector - p_hat_10dB

4 X_20dB = p_max_vector - p_hat_20dB

5 X_30dB = p_max_vector - p_hat_30dB

143

6 X_40dB = p_max_vector - p_hat_40dB

7

8 print(X_0dB.shape)

9 print(X_10dB.shape)

10 print(X_20dB.shape)

11 print(X_30dB.shape)

12 print(X_40dB.shape)

13

14 # print(X_0dB)

15 # print(X_10dB)

16 # print(X_20dB)

17 # print(X_30dB)

18 # print(X_40dB)

1 ## Function to generate a vector beta = MIN[(p_max_vector - p_hat) /

A_inv_cv]

2 def generate_beta(F_H_size , A_inv , X):

3 beta_list = []

4

5 for k in range(F_H_size):

6 for i in range(K): # Total columns

7 ak = A_inv[k,:,i]

8 akr = ak.reshape ((K, 1)) # row X column

9 with np.errstate(divide=’ignore ’):

10 beta_w = np.where(akr != 0.0, np.divide(X[k], akr), np.inf)

11 # beta_w = np.divide(X[k], akr)

12 # beta_w = np.divide(X[k], akr)

13 beta_min = np.amin(beta_w)

14 beta_list.append(beta_min)

15

16 beta_array = np.array(beta_list)

17 beta = beta_array.reshape ((F_H_size , K, 1)) # H_size X row X

column_count

18 return beta

1 ## Generate a vector beta = MIN[(p_max_vector - p_hat) / A_inv_cv]

2 beta_0dB = generate_beta(F_H_0dB_size , A_inv_0dB , X_0dB)

3 beta_10dB = generate_beta(F_H_10dB_size , A_inv_10dB , X_10dB)

4 beta_20dB = generate_beta(F_H_20dB_size , A_inv_20dB , X_20dB)

5 beta_30dB = generate_beta(F_H_30dB_size , A_inv_30dB , X_30dB)

144

6 beta_40dB = generate_beta(F_H_40dB_size , A_inv_40dB , X_40dB)

7

8 print(beta_0dB.shape)

9 print(beta_10dB.shape)

10 print(beta_20dB.shape)

11 print(beta_30dB.shape)

12 print(beta_40dB.shape)

13

14 beta_0dB_size = beta_0dB.shape [0]

15 beta_10dB_size = beta_10dB.shape [0]

16 beta_20dB_size = beta_20dB.shape [0]

17 beta_30dB_size = beta_30dB.shape [0]

18 beta_40dB_size = beta_40dB.shape [0]

19

20 # print(beta_0dB)

21 # print(beta_10dB)

22 # print(beta_20dB)

23 # print(beta_30dB)

24 # print(beta_40dB)

1 ## Function to split datasets for training , validation , and testing.

2 def split(np_array):

3 # data_size = np_array.shape [0]

4 # train_data_size = int(data_size * 0.8)

5 # valid_data_size = int(data_size * 0.1)

6 # test_data_size = int(data_size * 0.1)

7

8 train_data_size = int (200000)

9 valid_data_size = int (25000)

10 test_data_size = int (25000)

11

12 train_e_indx = train_data_size

13 valid_e_indx = train_e_indx + valid_data_size

14 test_e_indx = valid_e_indx + test_data_size

15 test_data_size_n = test_e_indx - valid_e_indx

16

17 row_count = np_array.shape [1]

18 column_count = np_array.shape [2]

19

145

20 train_data = np.empty ((train_data_size , row_count , column_count),

dtype = complex , order = ’C’)

21 valid_data = np.empty ((valid_data_size , row_count , column_count),

dtype = complex , order = ’C’)

22 test_data = np.empty ((test_data_size_n , row_count , column_count),

dtype = complex , order = ’C’)

23

24 for i in range(train_e_indx):

25 train_data[i] = np_array[i]

26

27 xv = 0

28 for j in range(train_e_indx , valid_e_indx):

29 valid_data[xv] = np_array[j]

30 xv = xv + 1

31

32 xt = 0

33 for k in range(valid_e_indx , test_e_indx):

34 test_data[xt] = np_array[k]

35 xt = xt + 1

36

37 # print(train_data.shape , valid_data.shape , test_data.shape)

38

39

40 ## Training input will be the absolute value

41 train_input = np.absolute(train_data)

42 valid_input = np.absolute(valid_data)

43 test_input = np.absolute(test_data)

44

45 print(train_input.shape , valid_input.shape , test_input.shape)

46

47 return [train_input , valid_input , test_input , test_data]

1 ## Split F_H matrix

2 F_H_S_0dB = split(F_H_0dB)

3 train_input_F_H_0dB = F_H_S_0dB [0]

4 valid_input_F_H_0dB = F_H_S_0dB [1]

5 test_input_F_H_0dB = F_H_S_0dB [2]

6 test_data_F_H_0dB = F_H_S_0dB [3]

7

146

8 F_H_S_10dB = split(F_H_10dB)

9 train_input_F_H_10dB = F_H_S_10dB [0]

10 valid_input_F_H_10dB = F_H_S_10dB [1]

11 test_input_F_H_10dB = F_H_S_10dB [2]

12 test_data_F_H_10dB = F_H_S_10dB [3]

13

14 F_H_S_20dB = split(F_H_20dB)

15 train_input_F_H_20dB = F_H_S_20dB [0]

16 valid_input_F_H_20dB = F_H_S_20dB [1]

17 test_input_F_H_20dB = F_H_S_20dB [2]

18 test_data_F_H_20dB = F_H_S_20dB [3]

19

20 F_H_S_30dB = split(F_H_30dB)

21 train_input_F_H_30dB = F_H_S_30dB [0]

22 valid_input_F_H_30dB = F_H_S_30dB [1]

23 test_input_F_H_30dB = F_H_S_30dB [2]

24 test_data_F_H_30dB = F_H_S_30dB [3]

25

26 F_H_S_40dB = split(F_H_40dB)

27 train_input_F_H_40dB = F_H_S_40dB [0]

28 valid_input_F_H_40dB = F_H_S_40dB [1]

29 test_input_F_H_40dB = F_H_S_40dB [2]

30 test_data_F_H_40dB = F_H_S_40dB [3]

1 ## Split A_inv matrix

2 A_inv_S_0dB = split(A_inv_0dB)

3 train_input_A_inv_0dB = A_inv_S_0dB [0]

4 valid_input_A_inv_0dB = A_inv_S_0dB [1]

5 test_input_A_inv_0dB = A_inv_S_0dB [2]

6 test_data_A_inv_0dB = A_inv_S_0dB [3]

7

8 A_inv_S_10dB = split(A_inv_10dB)

9 train_input_A_inv_10dB = A_inv_S_10dB [0]

10 valid_input_A_inv_10dB = A_inv_S_10dB [1]

11 test_input_A_inv_10dB = A_inv_S_10dB [2]

12 test_data_A_inv_10dB = A_inv_S_10dB [3]

13

14 A_inv_S_20dB = split(A_inv_20dB)

15 train_input_A_inv_20dB = A_inv_S_20dB [0]

147

16 valid_input_A_inv_20dB = A_inv_S_20dB [1]

17 test_input_A_inv_20dB = A_inv_S_20dB [2]

18 test_data_A_inv_20dB = A_inv_S_20dB [3]

19

20 A_inv_S_30dB = split(A_inv_30dB)

21 train_input_A_inv_30dB = A_inv_S_30dB [0]

22 valid_input_A_inv_30dB = A_inv_S_30dB [1]

23 test_input_A_inv_30dB = A_inv_S_30dB [2]

24 test_data_A_inv_30dB = A_inv_S_30dB [3]

25

26 A_inv_S_40dB = split(A_inv_40dB)

27 train_input_A_inv_40dB = A_inv_S_40dB [0]

28 valid_input_A_inv_40dB = A_inv_S_40dB [1]

29 test_input_A_inv_40dB = A_inv_S_40dB [2]

30 test_data_A_inv_40dB = A_inv_S_40dB [3]

1 ## Split b vector

2 b_S_0dB = split(b_0dB)

3 train_input_b_0dB = b_S_0dB [0]

4 valid_input_b_0dB = b_S_0dB [1]

5 test_input_b_0dB = b_S_0dB [2]

6 test_data_b_0dB = b_S_0dB [3]

7

8 b_S_10dB = split(b_10dB)

9 train_input_b_10dB = b_S_10dB [0]

10 valid_input_b_10dB = b_S_10dB [1]

11 test_input_b_10dB = b_S_10dB [2]

12 test_data_b_10dB = b_S_10dB [3]

13

14 b_S_20dB = split(b_20dB)

15 train_input_b_20dB = b_S_20dB [0]

16 valid_input_b_20dB = b_S_20dB [1]

17 test_input_b_20dB = b_S_20dB [2]

18 test_data_b_20dB = b_S_20dB [3]

19

20 b_S_30dB = split(b_30dB)

21 train_input_b_30dB = b_S_30dB [0]

22 valid_input_b_30dB = b_S_30dB [1]

23 test_input_b_30dB = b_S_30dB [2]

148

24 test_data_b_30dB = b_S_30dB [3]

25

26 b_S_40dB = split(b_40dB)

27 train_input_b_40dB = b_S_40dB [0]

28 valid_input_b_40dB = b_S_40dB [1]

29 test_input_b_40dB = b_S_40dB [2]

30 test_data_b_40dB = b_S_40dB [3]

1 ## Split X vector

2 X_S_0dB = split(X_0dB)

3 train_input_X_0dB = X_S_0dB [0]

4 valid_input_X_0dB = X_S_0dB [1]

5 test_input_X_0dB = X_S_0dB [2]

6 test_data_X_0dB = X_S_0dB [3]

7

8 X_S_10dB = split(X_10dB)

9 train_input_X_10dB = X_S_10dB [0]

10 valid_input_X_10dB = X_S_10dB [1]

11 test_input_X_10dB = X_S_10dB [2]

12 test_data_X_10dB = X_S_10dB [3]

13

14 X_S_20dB = split(X_20dB)

15 train_input_X_20dB = X_S_20dB [0]

16 valid_input_X_20dB = X_S_20dB [1]

17 test_input_X_20dB = X_S_20dB [2]

18 test_data_X_20dB = X_S_20dB [3]

19

20 X_S_30dB = split(X_30dB)

21 train_input_X_30dB = X_S_30dB [0]

22 valid_input_X_30dB = X_S_30dB [1]

23 test_input_X_30dB = X_S_30dB [2]

24 test_data_X_30dB = X_S_30dB [3]

25

26 X_S_40dB = split(X_40dB)

27 train_input_X_40dB = X_S_40dB [0]

28 valid_input_X_40dB = X_S_40dB [1]

29 test_input_X_40dB = X_S_40dB [2]

30 test_data_X_40dB = X_S_40dB [3]

1 ## Split beta vector

149

2 beta_S_0dB = split(beta_0dB)

3 train_input_beta_0dB = beta_S_0dB [0]

4 valid_input_beta_0dB = beta_S_0dB [1]

5 test_input_beta_0dB = beta_S_0dB [2]

6 test_data_beta_0dB = beta_S_0dB [3]

7

8 beta_S_10dB = split(beta_10dB)

9 train_input_beta_10dB = beta_S_10dB [0]

10 valid_input_beta_10dB = beta_S_10dB [1]

11 test_input_beta_10dB = beta_S_10dB [2]

12 test_data_beta_10dB = beta_S_10dB [3]

13

14 beta_S_20dB = split(beta_20dB)

15 train_input_beta_20dB = beta_S_20dB [0]

16 valid_input_beta_20dB = beta_S_20dB [1]

17 test_input_beta_20dB = beta_S_20dB [2]

18 test_data_beta_20dB = beta_S_20dB [3]

19

20 beta_S_30dB = split(beta_30dB)

21 train_input_beta_30dB = beta_S_30dB [0]

22 valid_input_beta_30dB = beta_S_30dB [1]

23 test_input_beta_30dB = beta_S_30dB [2]

24 test_data_beta_30dB = beta_S_30dB [3]

25

26 beta_S_40dB = split(beta_40dB)

27 train_input_beta_40dB = beta_S_40dB [0]

28 valid_input_beta_40dB = beta_S_40dB [1]

29 test_input_beta_40dB = beta_S_40dB [2]

30 test_data_beta_40dB = beta_S_40dB [3]

1 ## Split p_hat vector

2 p_hat_S_0dB = split(p_hat_0dB)

3 train_input_p_hat_0dB = p_hat_S_0dB [0]

4 valid_input_p_hat_0dB = p_hat_S_0dB [1]

5 test_input_p_hat_0dB = p_hat_S_0dB [2]

6 test_data_p_hat_0dB = p_hat_S_0dB [3]

7

8 p_hat_S_10dB = split(p_hat_10dB)

9 train_input_p_hat_10dB = p_hat_S_10dB [0]

150

10 valid_input_p_hat_10dB = p_hat_S_10dB [1]

11 test_input_p_hat_10dB = p_hat_S_10dB [2]

12 test_data_p_hat_10dB = p_hat_S_10dB [3]

13

14 p_hat_S_20dB = split(p_hat_20dB)

15 train_input_p_hat_20dB = p_hat_S_20dB [0]

16 valid_input_p_hat_20dB = p_hat_S_20dB [1]

17 test_input_p_hat_20dB = p_hat_S_20dB [2]

18 test_data_p_hat_20dB = p_hat_S_20dB [3]

19

20 p_hat_S_30dB = split(p_hat_30dB)

21 train_input_p_hat_30dB = p_hat_S_30dB [0]

22 valid_input_p_hat_30dB = p_hat_S_30dB [1]

23 test_input_p_hat_30dB = p_hat_S_30dB [2]

24 test_data_p_hat_30dB = p_hat_S_30dB [3]

25

26 p_hat_S_40dB = split(p_hat_40dB)

27 train_input_p_hat_40dB = p_hat_S_40dB [0]

28 valid_input_p_hat_40dB = p_hat_S_40dB [1]

29 test_input_p_hat_40dB = p_hat_S_40dB [2]

30 test_data_p_hat_40dB = p_hat_S_40dB [3]

1 ## Create EsN0 vector

2 EsN0_array_0dB = np.full(shape = F_H_0dB_size , fill_value = 0, dtype

= int)

3 EsN0_array_10dB = np.full(shape = F_H_10dB_size , fill_value = 10,

dtype = int)

4 EsN0_array_20dB = np.full(shape = F_H_20dB_size , fill_value = 20,

dtype = int)

5 EsN0_array_30dB = np.full(shape = F_H_30dB_size , fill_value = 30,

dtype = int)

6 EsN0_array_40dB = np.full(shape = F_H_40dB_size , fill_value = 40,

dtype = int)

7

8 EsN0_vector_0dB = EsN0_array_0dB.reshape ((F_H_0dB_size , 1)) # row X

column

9 EsN0_vector_10dB = EsN0_array_10dB.reshape ((F_H_10dB_size , 1)) # row

X column

10 EsN0_vector_20dB = EsN0_array_20dB.reshape ((F_H_20dB_size , 1)) # row

151

X column

11 EsN0_vector_30dB = EsN0_array_30dB.reshape ((F_H_30dB_size , 1)) # row

X column

12 EsN0_vector_40dB = EsN0_array_40dB.reshape ((F_H_40dB_size , 1)) # row

X column

13

14 print(EsN0_vector_0dB.shape)

15 print(EsN0_vector_10dB.shape)

16 print(EsN0_vector_20dB.shape)

17 print(EsN0_vector_30dB.shape)

18 print(EsN0_vector_40dB.shape)

1 ## Function to split EsN0 vector for training , validation , and

testing.

2 def split_EsN0(np_vector):

3 # data_size = np_vector.shape [0]

4 # train_data_size = int(data_size * 0.8)

5 # valid_data_size = int(data_size * 0.1)

6 # test_data_size = int(data_size * 0.1)

7

8 train_data_size = int (200000)

9 valid_data_size = int (25000)

10 test_data_size = int (25000)

11

12 train_e_indx = train_data_size

13 valid_e_indx = train_e_indx + valid_data_size

14 test_e_indx = valid_e_indx + test_data_size

15 test_data_size_n = test_e_indx - valid_e_indx

16

17 row_count = np_vector.shape [1]

18 column_count = 1

19

20 train_data = np.empty ((train_data_size , row_count , column_count),

dtype = int , order = ’C’)

21 valid_data = np.empty ((valid_data_size , row_count , column_count),

dtype = int , order = ’C’)

22 test_data = np.empty ((test_data_size_n , row_count , column_count),

dtype = int , order = ’C’)

23

152

24 for i in range(train_e_indx):

25 train_data[i] = np_vector[i]

26

27 xv = 0

28 for j in range(train_e_indx , valid_e_indx):

29 valid_data[xv] = np_vector[j]

30 xv = xv + 1

31

32 xt = 0

33 for k in range(valid_e_indx , test_e_indx):

34 test_data[xt] = np_vector[k]

35 xt = xt + 1

36

37 # print(train_data.shape , valid_data.shape , test_data.shape)

38

39

40 ## Training input will be the absolute value

41 train_input = np.absolute(train_data)

42 valid_input = np.absolute(valid_data)

43 test_input = np.absolute(test_data)

44

45 print(train_input.shape , valid_input.shape , test_input.shape)

46

47 return [train_input , valid_input , test_input , test_data]

1 ## Split EsN0 vector

2 EsN0_S_0dB = split_EsN0(EsN0_vector_0dB)

3 train_input_EsN0_0dB = EsN0_S_0dB [0]

4 valid_input_EsN0_0dB = EsN0_S_0dB [1]

5 test_input_EsN0_0dB = EsN0_S_0dB [2]

6 test_data_EsN0_0dB = EsN0_S_0dB [3]

7

8 EsN0_S_10dB = split_EsN0(EsN0_vector_10dB)

9 train_input_EsN0_10dB = EsN0_S_10dB [0]

10 valid_input_EsN0_10dB = EsN0_S_10dB [1]

11 test_input_EsN0_10dB = EsN0_S_10dB [2]

12 test_data_EsN0_10dB = EsN0_S_10dB [3]

13

14 EsN0_S_20dB = split_EsN0(EsN0_vector_20dB)

153

15 train_input_EsN0_20dB = EsN0_S_20dB [0]

16 valid_input_EsN0_20dB = EsN0_S_20dB [1]

17 test_input_EsN0_20dB = EsN0_S_20dB [2]

18 test_data_EsN0_20dB = EsN0_S_20dB [3]

19

20 EsN0_S_30dB = split_EsN0(EsN0_vector_30dB)

21 train_input_EsN0_30dB = EsN0_S_30dB [0]

22 valid_input_EsN0_30dB = EsN0_S_30dB [1]

23 test_input_EsN0_30dB = EsN0_S_30dB [2]

24 test_data_EsN0_30dB = EsN0_S_30dB [3]

25

26 EsN0_S_40dB = split_EsN0(EsN0_vector_40dB)

27 train_input_EsN0_40dB = EsN0_S_40dB [0]

28 valid_input_EsN0_40dB = EsN0_S_40dB [1]

29 test_input_EsN0_40dB = EsN0_S_40dB [2]

30 test_data_EsN0_40dB = EsN0_S_40dB [3]

1 ## Creating datasets for training

2 train_input_F_H = np.concatenate ((train_input_F_H_0dB ,

3 train_input_F_H_10dB , train_input_F_H_20dB , train_input_F_H_30dB ,

4 train_input_F_H_40dB ,), axis =0)

5

6 train_input_EsN0 = np.concatenate ((train_input_EsN0_0dB ,

7 train_input_EsN0_10dB , train_input_EsN0_20dB ,

8 train_input_EsN0_30dB , train_input_EsN0_40dB), axis =0)

9

10 train_input_A_inv = np.concatenate ((train_input_A_inv_0dB ,

11 train_input_A_inv_10dB , train_input_A_inv_20dB ,

12 train_input_A_inv_30dB , train_input_A_inv_40dB), axis =0)

13

14 train_input_X = np.concatenate ((train_input_X_0dB ,

15 train_input_X_10dB , train_input_X_20dB , train_input_X_30dB ,

16 train_input_X_40dB), axis =0)

17

18 train_input_beta = np.concatenate ((train_input_beta_0dB ,

19 train_input_beta_10dB , train_input_beta_20dB ,

20 train_input_beta_30dB , train_input_beta_40dB), axis =0)

21

22 train_input_p_hat = np.concatenate ((train_input_p_hat_0dB ,

154

23 train_input_p_hat_10dB , train_input_p_hat_20dB ,

24 train_input_p_hat_30dB , train_input_p_hat_40dB), axis =0)

25

26 print(train_input_F_H.shape)

27 print(train_input_EsN0.shape)

28 print(train_input_A_inv.shape)

29 print(train_input_X.shape)

30 print(train_input_p_hat.shape)

1 ## Creating datasets for validation

2 valid_input_F_H = np.concatenate ((valid_input_F_H_0dB ,

3 valid_input_F_H_10dB , valid_input_F_H_20dB ,

4 valid_input_F_H_30dB , valid_input_F_H_40dB ,), axis =0)

5

6 valid_input_EsN0 = np.concatenate ((valid_input_EsN0_0dB ,

7 valid_input_EsN0_10dB , valid_input_EsN0_20dB ,

8 valid_input_EsN0_30dB , valid_input_EsN0_40dB), axis =0)

9

10 valid_input_A_inv = np.concatenate ((valid_input_A_inv_0dB ,

11 valid_input_A_inv_10dB , valid_input_A_inv_20dB ,

12 valid_input_A_inv_30dB , valid_input_A_inv_40dB), axis =0)

13

14 valid_input_X = np.concatenate ((valid_input_X_0dB ,

15 valid_input_X_10dB , valid_input_X_20dB ,

16 valid_input_X_30dB , valid_input_X_40dB), axis =0)

17

18 valid_input_beta = np.concatenate ((valid_input_beta_0dB ,

19 valid_input_beta_10dB , valid_input_beta_20dB ,

20 valid_input_beta_30dB , valid_input_beta_40dB), axis =0)

21

22 valid_input_p_hat = np.concatenate ((valid_input_p_hat_0dB ,

23 valid_input_p_hat_10dB , valid_input_p_hat_20dB ,

24 valid_input_p_hat_30dB , valid_input_p_hat_40dB), axis =0)

25

26 print(valid_input_F_H.shape)

27 print(valid_input_EsN0.shape)

28 print(valid_input_A_inv.shape)

29 print(valid_input_X.shape)

30 print(valid_input_p_hat.shape)

155

1 ## Shuffling the training datasets

2 train_shuffler = np.random.permutation(len(train_input_F_H))

3 train_input_F_H_shuffled = train_input_F_H[train_shuffler]

4 train_input_EsN0_shuffled = train_input_EsN0[train_shuffler]

5 train_input_A_inv_shuffled = train_input_A_inv[train_shuffler]

6 train_input_X_shuffled = train_input_X[train_shuffler]

7 train_input_beta_shuffled = train_input_beta[train_shuffler]

8 train_input_p_hat_shuffled = train_input_p_hat[train_shuffler]

1 ## Shuffling the validation datasets

2 valid_shuffler = np.random.permutation(len(valid_input_F_H))

3 valid_input_F_H_shuffled = valid_input_F_H[valid_shuffler]

4 valid_input_EsN0_shuffled = valid_input_EsN0[valid_shuffler]

5 valid_input_A_inv_shuffled = valid_input_A_inv[valid_shuffler]

6 valid_input_X_shuffled = valid_input_X[valid_shuffler]

7 valid_input_beta_shuffled = valid_input_beta[valid_shuffler]

8 valid_input_p_hat_shuffled = valid_input_p_hat[valid_shuffler]

1 ## Reshaping train_input_F_H_shuffled and adding

train_input_EsN0_shuffled

2 const = K*K

3 len1 = train_input_F_H_shuffled.shape [0]

4 train_input_F_H_shuffled_reshaped = train_input_F_H_shuffled.reshape

((len1 , 1, const)) # size X row X column

5 train_y_true = np.concatenate ((train_input_F_H_shuffled_reshaped ,

train_input_EsN0_shuffled), axis =2)

6 print(train_y_true.shape)

1 ## Reshaping train_input_F_H_shuffled and adding

train_input_EsN0_shuffled

2 len2 = valid_input_F_H_shuffled.shape [0]

3 valid_input_F_H_shuffled_reshaped = valid_input_F_H_shuffled.reshape

((len2 , 1, const)) # size X row X column

4 valid_y_true = np.concatenate ((valid_input_F_H_shuffled_reshaped ,

valid_input_EsN0_shuffled), axis =2)

5 print(valid_y_true.shape)

1 ## Define the DNN model - The Functional API

2 import tensorflow as tf

3 from tensorflow import keras

4 ## from tensorflow.keras import layers # shows warning

156

5 from keras.api._v2.keras import layers

6 from keras.layers import Input , concatenate , Lambda

7 from keras.models import Model

8

9

10 hij_inputs = keras.Input(shape =(K,K), name = "hij_inputs")

11 f1 = layers.Flatten(name = "flatten_layer_hij")(hij_inputs)

12

13 EsN0_inputs = keras.Input(shape =(1 ,1), name = "EsN0_inputs")

14 f2 = layers.Flatten(name = "flatten_layer_EsN0")(EsN0_inputs)

15

16 concat_layers = concatenate ([f1, f2])

17

18 d1 = layers.Dense (2*K*K, activation="relu", name = "dense_layer_1")(

concat_layers)

19 b1 = layers.BatchNormalization(name = "batch_norm_layer_1")(d1)

20

21 d2 = layers.Dense(K*K, activation="relu", name = "dense_layer_2")(b1)

22 b2 = layers.BatchNormalization(name = "batch_norm_layer_2")(d2)

23

24 # meu = layers.Dense(K, activation ="relu", name = "meu")(b2)

25 meu = layers.Dense(K, activation="sigmoid", name = "meu")(b2)

26

27 A_inv_inputs = keras.Input(shape=(K,K), name = "A_inv_inputs")

28 f3 = layers.Flatten(name = "flatten_layer_A_inv")(A_inv_inputs)

29

30 X_inputs = keras.Input(shape =(K,1), name = "X_inputs")

31 f4 = layers.Flatten(name = "flatten_layer_X")(X_inputs)

32

33 beta_inputs = keras.Input(shape =(K,1), name = "beta_inputs")

34 f5 = layers.Flatten(name = "flatten_layer_beta")(beta_inputs)

35

36 p_hat_inputs = keras.Input(shape=(K,1), name = "p_hat_inputs")

37 f6 = layers.Flatten(name = "flatten_layer_p_hat")(p_hat_inputs)

38

39 def custom_layer(tensor):

40 t_A_inv = tensor [0]

41 t_X = tensor [1]

42 t_beta = tensor [2]

157

43 t_p_hat = tensor [3]

44 t_meu = tensor [4]

45

46 A_inv_cl = tf.reshape(t_A_inv [:,0:K*K], (-1,K,K))

47 X_cl = tf.reshape(t_X[:,0:K*1], (-1,K,1))

48 beta_cl = tf.reshape(t_beta [:,0:K*1], (-1,K,1))

49 p_hat_cl = tf.reshape(t_p_hat [:,0:K*1], (-1,K,1))

50 meu_cl = tf.reshape(t_meu [:,0:K*1], (-1,K,1))

51

52 meu_ewm = tf.math.multiply(beta_cl , meu_cl)

53

54 alpha_dnumr = tf.matmul(A_inv_cl , meu_ewm)

55 alpha_whole = tf.divide(X_cl , alpha_dnumr)

56 alpha = tf.reduce_min(alpha_whole , axis = 1, keepdims = True)

57 max_p = tf.constant ([1.0])

58 alpha = tf.math.minimum(max_p , alpha)

59 meu_P = tf.multiply(meu_ewm , alpha)

60

61 Z_cl = tf.matmul(A_inv_cl , meu_P)

62 P_hat_cl = tf.add(p_hat_cl , Z_cl)

63 P_hat_cl_Norm = tf.math.divide(P_hat_cl , tf.reduce_max(P_hat_cl ,

axis = 1, keepdims = True))

64

65 # return P_hat_cl

66 return P_hat_cl_Norm

67

68 lambda_layer = tf.keras.layers.Lambda(custom_layer , name="

lambda_layer")([f3 , f4 , f5 , f6 , meu])

69 f7 = layers.Flatten(name = "flatten_layer_output")(lambda_layer)

70

71 model = keras.Model(inputs = [hij_inputs , EsN0_inputs , A_inv_inputs ,

X_inputs , beta_inputs , p_hat_inputs], outputs = f7 , name = "

functional_api")

72 model.summary ()

1 ## Plot the model as a graph

2 keras.utils.plot_model(model , "Functional_API_Model.png")

1 ## Display the input and output shapes of each layer

2 keras.utils.plot_model(model , "Functional_API_Model_with_shape_info.

158

png", show_shapes=True)

1 ## The customized loss function

2

3 def custom_loss(y_true , y_pred):

4 # p = y_pred

5 p = tf.math.multiply(p_max , y_pred)

6

7 mtrx_elmnt = K*K

8 EsN0_val = y_true [0][0][mtrx_elmnt]

9 y_true_updt = y_true [:,:,:-1]

10

11 if EsN0_val < 10:

12 sigma_sqr_noise_lf = 1e-0

13 elif EsN0_val >= 10 and EsN0_val < 20:

14 sigma_sqr_noise_lf = 1e-1

15 elif EsN0_val >= 20 and EsN0_val < 30:

16 sigma_sqr_noise_lf = 1e-2

17 elif EsN0_val >= 30 and EsN0_val < 40:

18 sigma_sqr_noise_lf = 1e-3

19 else:

20 sigma_sqr_noise_lf = 1e-4

21

22 hij = tf.reshape(y_true_updt [:,0:K*K], (-1,K,K))

23 hij_abs_sqr = tf.math.square(tf.math.abs(hij))

24

25 R_P = 0.0

26 for i in range(K): # Total rows

27 ph = 0.0

28 for j in range(K): # Total columns

29 ph_j = tf.math.multiply(p[:,j], hij_abs_sqr [:,i,j])

30 ph = tf.math.add(ph , ph_j)

31

32 numr = tf.math.multiply(p[:,i], hij_abs_sqr [:,i,i])

33 dnumr = tf.math.add(sigma_sqr_noise_lf , tf.math.subtract(ph, numr

))

34 SINR_i = tf.math.divide(numr , dnumr)

35 R_P = tf.math.add(R_P , (tf.math.log(1 + SINR_i)/tf.math.log (2.0))

)

159

36

37 loss = -R_P

38 loss = tf.reduce_mean(loss) # batch mean

39 return loss

1 ## Build and compile the DNN model

2 ## Training and Testing

3 import matplotlib.pyplot as plt

4

5 optA = tf.keras.optimizers.Adam(learning_rate = 0.0001)

6 # optA = tf.keras.optimizers.Adam(learning_rate = 0.0001 , clipnorm

=0.92)

7 model.compile(optimizer = optA , loss = custom_loss)

8

9 train_input = [train_input_F_H_shuffled , train_input_EsN0_shuffled ,

train_input_A_inv_shuffled ,

10 train_input_X_shuffled , train_input_beta_shuffled ,

train_input_p_hat_shuffled]

11

12 valid_input = [valid_input_F_H_shuffled , valid_input_EsN0_shuffled ,

valid_input_A_inv_shuffled ,

13 valid_input_X_shuffled , valid_input_beta_shuffled ,

valid_input_p_hat_shuffled]

14

15 history = model.fit(train_input , train_y_true , epochs = 50,

16 validation_data = (valid_input , valid_y_true),

batch_size = 1000)

17

18 plt.plot(history.epoch , history.history[’loss’], color = "blue",

label = "Training")

19 plt.plot(history.epoch , history.history[’val_loss ’], color="black",

label = "Validation")

20 plt.xlabel("epochs")

21 plt.ylabel("loss")

22 plt.legend ()

23 plt.show()

1 ## Constraint violation probability and

2 ## finding indexes of test_input_F_H matrix with the hij set that do

not satisfy

160

3 ## constraint on the minimum SINR_P_min rate but satisfy the maximum

transmit

4 ## power p_max

5

6 test_input = [test_input_F_H_0dB , test_input_EsN0_0dB ,

test_input_A_inv_0dB ,

7 test_input_X_0dB , test_input_beta_0dB ,

test_input_p_hat_0dB]

8 # output_P_hat_temp = model.predict(test_input)

9 output_P_hat_temp = np.multiply(p_max , model.predict(test_input))

10 output_P_hat = output_P_hat_temp.reshape ((output_P_hat_temp.shape[0],

output_P_hat_temp.shape [1], 1)) # test_input_F_H_size X row X

column

11 output_P_hat_size = output_P_hat.shape [0]

12 test_data_F_H_abs_sqr = cmplx_abs_sqr(test_data_F_H_0dB)

13

14 indx_n = []

15 count_v = 0

16

17 for k in range(output_P_hat_size):

18 for i in range(K): # Total rows

19 ph = 0

20 for j in range(K): # Total columns

21 ph_j = np.multiply(output_P_hat[k,j], test_data_F_H_abs_sqr[k,i

,j])

22 ph = ph + ph_j

23

24 numr = np.multiply(output_P_hat[k,i], test_data_F_H_abs_sqr[k,i,i

])

25 dnumr = sigma_sqr_noise_0dB[i] + ph - numr

26 SINR_out = np.divide(numr , dnumr)

27

28 if np.round(SINR_out , decimals= 3) < SINR_P_min[i]:

29 indx_n.append(k)

30 count_v = count_v + 1

31 # print(SINR_out)

32 break

33

34 violation_prb = (count_v / output_P_hat_size) * 100

161

35 print("Constraints Violation Probability: {:.2f}%".format(

violation_prb))

36 # print(len(indx_n))

37 # print(indx_n)

1 ## Function to calculate the average sum rate

2 # Here , p_model is the output of DNN , and it is a 2D array.

3 import math

4

5 def average_sum_rate(hij , p_model , sigma_sqr_noise , K):

6 R = 0

7 hij_size = hij.shape [0]

8 hij_abs_sqr = cmplx_abs_sqr(hij)

9

10 for k in range(hij_size):

11 for i in range(K): # Total rows

12 phn = 0

13 for j in range(K): # Total columns

14 phn_j = np.multiply(p_model[k,j], hij_abs_sqr[k,i,j])

15 phn = phn + phn_j

16

17 numr_s = np.multiply(p_model[k,i], hij_abs_sqr[k,i,i])

18 dnumr_s = sigma_sqr_noise[i] + phn - numr_s

19 R_temp = math.log2(1 + np.divide(numr_s , dnumr_s))

20 R = R + R_temp

21

22 return (R/hij_size)

1 ## DNN Sum Rate for test_data_F_H

2 sumrate_F_H = average_sum_rate(test_data_F_H_0dB , output_P_hat ,

sigma_sqr_noise_0dB , K)

3 print("Average Sum Rate for all H matrices: {:.3f} Bit/Second/Hertz".

format(sumrate_F_H))

1 ## Checking (A_inv x b), i.e., the power for negative values

2 count_n = 0

3 for c in range(output_P_hat_size):

4 p_temp = np.matmul(test_input_A_inv_0dB[c], test_input_b_0dB[c])

5 if np.any(p_temp < 0):

6 count_n = count_n + 1

162

7 print(c,’\n’)

8 print(p_temp)

9

10 print(count_n)

1 ## Checking P_hat , i.e., the power for test_data_F_H for negative

values

2 ## and Hit Rate i.e. percentage for 0 <= P_hat <= p_max

3 count_p = 0

4 count_n = 0

5

6 for n in range(output_P_hat_size):

7 P_max = np.amax(output_P_hat[n])

8 if np.round(P_max , decimals = 3) <= 1:

9 count_p = count_p + 1

10

11 if np.any(output_P_hat[n] < 0):

12 count_n = count_n + 1

13 print(n,’\n’)

14 print(output_P_hat)

15

16 p_hit_rate = (count_p / output_P_hat_size) * 100

17 print("Htt Rate for Power : {:.2f}%".format(p_hit_rate))

18 print("Negative power count: ", count_n)

163

C.4 Codes for analyzing the Model A

1 import numpy as np

2

3 ## Number of transmitter -receiver pairs

4 K = 5

5

6 ## Variances for noise signals

7 sigma_sqr_noise = np.array ([1e-0, 1e-0, 1e-0, 1e-0, 1e-0], dtype =

float)

8

9 ## Minimum rate for the achievable SINR of multiple concurrent

10 ## transmissions

11 SINR_P_min = np.array ([0.5 , 0.5, 0.5, 0.5, 0.5])

12

13 ## Maximum transmit power

14 p_max = 1.0

1 ## Loading a NumPy array from a CSV file

2 # Loading F_H array from a CSV file

3 from numpy import loadtxt

4

5 ## Reading an array from the file

6 # If we want to read a file from our local drive , we have to first

7 # upload it to Collab ’s session storage.

8 F_H_2D_L = np.loadtxt(’F_H_2D.csv’, delimiter = ’,’, dtype = str)

9

10 ## Reshaping the array from 2D to 3D

11 F_H_3D = F_H_2D_L.reshape(F_H_2D_L.shape[0], F_H_2D_L.shape [1] // K,

K)

12 F_H_3D_size = F_H_3D.shape [0]

1 ## Converting string data to complex data and removing the initial

2 ## whitespace

3 F_H_list = []

4 for k in range(F_H_3D_size):

5 for i in range(K): # Total rows

6 for j in range(K): # Total columns

7 F_H_temp = complex(F_H_3D[k][i][j].strip ())

164

8 F_H_list.append(F_H_temp)

9 F_H_array = np.array(F_H_list)

10 F_H = F_H_array.reshape ((F_H_3D_size , K, K)) # H_size X row X

column_count

11 print(F_H.shape)

12 F_H_size = F_H.shape [0]

13 # print(F_H)

1 import numba as nb

2

3 ## Function to compute the square of the absolute value of an array

4 ## of complex numbers

5 @nb.vectorize ([nb.float64(nb.complex128),nb.float32(nb.complex64)])

6 def cmplx_abs_sqr(cmplx_var):

7 return cmplx_var.real **2 + cmplx_var.imag **2

1 ## Function to generate the matrix A (K x K)

2 def generate_A(F_H_size , K, SINR_P_min , F_H):

3 Aij_list = []

4 F_H_abs_sqr = cmplx_abs_sqr(F_H)

5

6 for k in range(F_H_size):

7 for i in range(K): # Total rows

8 Aj_list =[]

9 for j in range(K): # Total columns

10 if i==j:

11 A = F_H_abs_sqr[k,i,j]

12 else:

13 A = np.multiply(-SINR_P_min[i], F_H_abs_sqr[k,i,j])

14 Aj_list.append(A)

15 Aij_list.append(Aj_list)

16 Aij_array = np.array(Aij_list)

17 Aij = Aij_array.reshape ((F_H_size , K, K)) # H_size X row X column

18 return Aij

1 ## Create matrix A

2 A = generate_A(F_H_size , K, SINR_P_min , F_H)

3 print(A.shape)

4 # print(A)

165

1 ## Function to generate the vector b (K x 1)

2 def generate_b(F_H_size , K, SINR_P_min , sigma_sqr_noise , F_H):

3 bi_list = []

4 for k in range(F_H_size):

5 for i in range(K): # Total rows , i.e., total transmitters

6 b = np.multiply(SINR_P_min[i], sigma_sqr_noise[i])

7 bi_list.append(b)

8 bi_array = np.array(bi_list)

9 bi = bi_array.reshape ((F_H_size , K, 1)) # H_size X row X column

10 return bi

1 ## Create vector b

2 b = generate_b(F_H_size , K, SINR_P_min , sigma_sqr_noise , F_H)

3 print(b.shape)

4 # print(b)

1 ## Create matrix A_inv , i.e., the pseudo inverse of matrix A

2 A_inv = np.linalg.pinv(A)

3 A_inv[A_inv <0] = 0

4 print(A_inv.shape)

5 # print(A_inv)

1 ## Create a vector p_hat = (A_inv x b)

2 p_hat = np.matmul(A_inv , b)

3 print(p_hat.shape)

4 # print(p_hat)

1 ## Convert p_max_array to (K x 1) vector

2 p_max_array = np.array ([1.0, 1.0, 1.0, 1.0, 1.0], dtype = float)

3 p_max_vector = p_max_array.reshape ((K, 1)) # row X column

4 print(p_max_vector)

1 ## Create a vector X = (p_max_vector - p_hat)

2 X = p_max_vector - p_hat

3 print(X.shape)

4 # print(X)

1 ## Function to split datasets for training , validation , and testing.

2 def split(np_array):

3 # data_size = np_array.shape [0]

4 # train_data_size = int(data_size * 0.8)

166

5 # valid_data_size = int(data_size * 0.1)

6 # test_data_size = int(data_size * 0.1)

7

8 train_data_size = int (200000)

9 valid_data_size = int (25000)

10 test_data_size = int (25000)

11

12 train_e_indx = train_data_size

13 valid_e_indx = train_e_indx + valid_data_size

14 test_e_indx = valid_e_indx + test_data_size

15 test_data_size_n = test_e_indx - valid_e_indx

16

17 row_count = np_array.shape [1]

18 column_count = np_array.shape [2]

19

20 train_data = np.empty ((train_data_size , row_count , column_count),

dtype = complex , order = ’C’)

21 valid_data = np.empty ((valid_data_size , row_count , column_count),

dtype = complex , order = ’C’)

22 test_data = np.empty ((test_data_size_n , row_count , column_count),

dtype = complex , order = ’C’)

23

24 for i in range(train_e_indx):

25 train_data[i] = np_array[i]

26

27 xv = 0

28 for j in range(train_e_indx , valid_e_indx):

29 valid_data[xv] = np_array[j]

30 xv = xv + 1

31

32 xt = 0

33 for k in range(valid_e_indx , test_e_indx):

34 test_data[xt] = np_array[k]

35 xt = xt + 1

36

37 # print(train_data.shape , valid_data.shape , test_data.shape)

38

39

40 ## Training input will be the absolute value

167

41 train_input = np.absolute(train_data)

42 valid_input = np.absolute(valid_data)

43 test_input = np.absolute(test_data)

44

45 print(train_input.shape , valid_input.shape , test_input.shape)

46

47 return [train_input , valid_input , test_input , test_data]

1 ## Split F_H matrix

2 F_H_S = split(F_H)

3 train_input_F_H = F_H_S [0]

4 valid_input_F_H = F_H_S [1]

5 test_input_F_H = F_H_S [2]

6 test_data_F_H = F_H_S [3]

1 ## Split A_inv matrix

2 A_inv_S = split(A_inv)

3 train_input_A_inv = A_inv_S [0]

4 valid_input_A_inv = A_inv_S [1]

5 test_input_A_inv = A_inv_S [2]

6 test_data_A_inv = A_inv_S [3]

1 ## Split b vector

2 b_S = split(b)

3 train_input_b = b_S[0]

4 valid_input_b = b_S[1]

5 test_input_b = b_S [2]

6 test_data_b = b_S [3]

1 ## Split X vector

2 X_S = split(X)

3 train_input_X = X_S[0]

4 valid_input_X = X_S[1]

5 test_input_X = X_S [2]

6 test_data_X = X_S [3]

1 ## Split p_hat vector

2 p_hat_S = split(p_hat)

3 train_input_p_hat = p_hat_S [0]

4 valid_input_p_hat = p_hat_S [1]

5 test_input_p_hat = p_hat_S [2]

168

6 test_data_p_hat = p_hat_S [3]

1 ## Define the DNN model - The Functional API

2 import tensorflow as tf

3 from tensorflow import keras

4 ## from tensorflow.keras import layers # shows warning

5 from keras.api._v2.keras import layers

6 from keras.layers import Input , Lambda

7 from keras.models import Model

8

9

10 hij_inputs = keras.Input(shape =(K,K), name = "hij_inputs")

11 f1 = layers.Flatten(name = "flatten_layer_hij")(hij_inputs)

12

13 d1 = layers.Dense (2*K*K, activation="relu", name = "dense_layer_1")(

f1)

14 b1 = layers.BatchNormalization(name = "batch_norm_layer_1")(d1)

15

16 d2 = layers.Dense(K*K, activation="relu", name = "dense_layer_2")(b1)

17 b2 = layers.BatchNormalization(name = "batch_norm_layer_2")(d2)

18

19 # meu = layers.Dense(K, activation ="relu", name = "meu")(b2)

20 meu = layers.Dense(K, activation="sigmoid", name = "meu")(b2)

21 # def meu_layer(tensor_meu):

22 # tf.print ("\ nmeu output :\n", tensor_meu)

23 # return tensor_meu

24 # meu_layer = tf.keras.layers.Lambda(meu_layer , name=" meu_layer ")(meu

)

25

26 A_inv_inputs = keras.Input(shape=(K,K), name = "A_inv_inputs")

27 f2 = layers.Flatten(name = "flatten_layer_A_inv")(A_inv_inputs)

28

29 X_inputs = keras.Input(shape =(K,1), name = "X_inputs")

30 f3 = layers.Flatten(name = "flatten_layer_X")(X_inputs)

31

32 p_hat_inputs = keras.Input(shape=(K,1), name = "p_hat_inputs")

33 f4 = layers.Flatten(name = "flatten_layer_p_hat")(p_hat_inputs)

34

35 def custom_layer(tensor):

169

36 t_A_inv = tensor [0]

37 t_X = tensor [1]

38 t_p_hat = tensor [2]

39 t_meu = tensor [3]

40

41 A_inv_cl = tf.reshape(t_A_inv [:,0:K*K], (-1,K,K))

42 X_cl = tf.reshape(t_X[:,0:K*1], (-1,K,1))

43 p_hat_cl = tf.reshape(t_p_hat [:,0:K*1], (-1,K,1))

44 meu_cl = tf.reshape(t_meu [:,0:K*1], (-1,K,1))

45

46 alpha_dnumr = tf.matmul(A_inv_cl , meu_cl)

47 alpha_whole = tf.divide(X_cl , alpha_dnumr)

48 alpha = tf.reduce_min(alpha_whole , axis = 1, keepdims = True)

49 max_p = tf.constant ([1.0])

50 alpha = tf.math.minimum(max_p , alpha)

51 meu_P = tf.multiply(meu_cl , alpha)

52

53 Z_cl = tf.matmul(A_inv_cl , meu_P)

54 P_hat_cl = tf.add(p_hat_cl , Z_cl)

55 P_hat_cl_Norm = tf.math.divide(P_hat_cl , tf.reduce_max(P_hat_cl ,

axis = 1, keepdims = True))

56

57 # return P_hat_cl

58 return P_hat_cl_Norm

59

60 lambda_layer = tf.keras.layers.Lambda(custom_layer , name="

lambda_layer")([f2 , f3 , f4 , meu])

61 f5 = layers.Flatten(name = "flatten_layer_output")(lambda_layer)

62

63 model = keras.Model(inputs = [hij_inputs , A_inv_inputs , X_inputs ,

p_hat_inputs], outputs = f5 , name = "functional_api")

64 model.summary ()

1 ## Plot the model as a graph

2 keras.utils.plot_model(model , "Functional_API_Model.png")

1 ## Display the input and output shapes of each layer

2 keras.utils.plot_model(model , "Functional_API_Model_with_shape_info.

png", show_shapes=True)

170

1 ## Convert sigma_sqr_noise from numpy array to tensor

2 sigma_sqr_noise_t = tf.convert_to_tensor(sigma_sqr_noise , dtype =

float)

3 tf.print(sigma_sqr_noise_t)

1 ## The customized loss function

2

3 def custom_loss(y_true , y_pred):

4 # p = y_pred

5 p = tf.math.multiply(p_max , y_pred)

6 hij = tf.reshape(y_true [:,0:K*K], (-1,K,K))

7 hij_abs_sqr = tf.math.square(tf.math.abs(hij))

8

9 R_P = 0.0

10 for i in range(K): # Total rows

11 ph = 0.0

12 for j in range(K): # Total columns

13 ph_j = tf.math.multiply(p[:,j], hij_abs_sqr [:,i,j])

14 ph = tf.math.add(ph , ph_j)

15

16 numr = tf.math.multiply(p[:,i], hij_abs_sqr [:,i,i])

17 dnumr = tf.math.add(sigma_sqr_noise_t[i], tf.math.subtract(ph,

numr))

18 SINR_i = tf.math.divide(numr , dnumr)

19 R_P = tf.math.add(R_P , (tf.math.log(1 + SINR_i)/tf.math.log (2.0))

)

20

21 loss = -R_P

22 loss = tf.reduce_mean(loss) # batch mean

23 return loss

1 ## Build and compile the DNN model

2 ## Training and Testing

3 import matplotlib.pyplot as plt

4

5 optA = tf.keras.optimizers.Adam(learning_rate = 0.0001)

6 model.compile(optimizer = optA , loss = custom_loss)

7

8 train_input = [train_input_F_H , train_input_A_inv , train_input_X ,

train_input_p_hat]

171

9 valid_input = [valid_input_F_H , valid_input_A_inv , valid_input_X ,

valid_input_p_hat]

10

11 history = model.fit(train_input , train_input_F_H , epochs = 50,

validation_data = (valid_input , valid_input_F_H), batch_size =

1000)

12

13 plt.plot(history.epoch , history.history[’loss’], color = "blue",

label = "Training")

14 plt.plot(history.epoch , history.history[’val_loss ’], color="black",

label = "Validation")

15 plt.xlabel("epochs")

16 plt.ylabel("loss")

17 plt.legend ()

18 plt.show()

1 ## Constraint violation probability and

2 ## finding indexes of test_input_F_H matrix with the hij set that do

3 ## not satisfy constraint on the minimum SINR_P_min rate but satisfy

4 ## the maximum transmit power p_max

5

6 test_input = [test_input_F_H , test_input_A_inv , test_input_X ,

test_input_p_hat]

7 # output_P_hat_temp = model.predict(test_input)

8 output_P_hat_temp = np.multiply(p_max , model.predict(test_input))

9 output_P_hat = output_P_hat_temp.reshape ((output_P_hat_temp.shape[0],

output_P_hat_temp.shape [1], 1)) # test_input_F_H_size X row X

column

10 output_P_hat_size = output_P_hat.shape [0]

11 test_data_F_H_abs_sqr = cmplx_abs_sqr(test_data_F_H)

12

13 indx_n = []

14 count_v = 0

15

16 for k in range(output_P_hat_size):

17 for i in range(K): # Total rows

18 ph = 0

19 for j in range(K): # Total columns

20 ph_j = np.multiply(output_P_hat[k,j], test_data_F_H_abs_sqr[k,i

172

,j])

21 ph = ph + ph_j

22

23 numr = np.multiply(output_P_hat[k,i], test_data_F_H_abs_sqr[k,i,i

])

24 dnumr = sigma_sqr_noise[i] + ph - numr

25 SINR_out = np.divide(numr , dnumr)

26

27 if np.round(SINR_out , decimals= 3) < SINR_P_min[i]:

28 indx_n.append(k)

29 count_v = count_v + 1

30 # print(SINR_out)

31 break

32

33 violation_prb = (count_v / output_P_hat_size) * 100

34 print("Constraints Violation Probability: {:.2f}%".format(

violation_prb))

35 # print(len(indx_n))

36 # print(indx_n)

1 ## Function to calculate the average sum rate

2 # Here , p_model is the output of DNN , and it is a 2D array.

3 import math

4

5 def average_sum_rate(hij , p_model , sigma_sqr_noise , K):

6 R = 0

7 hij_size = hij.shape [0]

8 hij_abs_sqr = cmplx_abs_sqr(hij)

9

10 for k in range(hij_size):

11 for i in range(K): # Total rows

12 phn = 0

13 for j in range(K): # Total columns

14 phn_j = np.multiply(p_model[k,j], hij_abs_sqr[k,i,j])

15 phn = phn + phn_j

16

17 numr_s = np.multiply(p_model[k,i], hij_abs_sqr[k,i,i])

18 dnumr_s = sigma_sqr_noise[i] + phn - numr_s

19 R_temp = math.log2(1 + np.divide(numr_s , dnumr_s))

173

20 R = R + R_temp

21

22 return (R/hij_size)

1 # DNN Sum Rate for test_data_F_H

2 sumrate_F_H = average_sum_rate(test_data_F_H , output_P_hat ,

sigma_sqr_noise , K)

3 print("Average Sum Rate for all H matrices: {:.3f} Bit/Second/Hertz".

format(sumrate_F_H))

1 ## Checking (A_inv x b), i.e., the power for negative values

2 count_n = 0

3 for c in range(output_P_hat_size):

4 p_temp = np.matmul(test_input_A_inv[c], test_input_b[c])

5 if np.any(p_temp < 0):

6 count_n = count_n + 1

7 print(c,’\n’)

8 print(p_temp)

9

10 print(count_n)

1 ## Checking P_hat , i.e., the power for test_data_F_H for negative

2 ## values and Heat Rate i.e. percentage for 0 <= P_hat <= p_max

3 count_p = 0

4 count_n = 0

5

6 for n in range(output_P_hat_size):

7 P_max = np.amax(output_P_hat[n])

8 if np.round(P_max , decimals = 3) <= 1:

9 count_p = count_p + 1

10

11 if np.any(output_P_hat[n] < 0):

12 count_n = count_n + 1

13 print(n,’\n’)

14 print(output_P_hat)

15

16 p_heat_rate = (count_p / output_P_hat_size) * 100

17 print("Heat Rate for Power : {:.2f}%".format(p_heat_rate))

18 print("Negative power count: ", count_n)

174

C.4.1 Codes to calculate the average sum rate for the basic

model

1 # DNN Sum Rate for test_data_F_H

2 output_P_hat = abs(test_data_p_hat)

3 sumrate_F_H = average_sum_rate(test_data_F_H , output_P_hat ,

sigma_sqr_noise , K)

4 print("Average Sum Rate for all H matrices: {:.3f} Bit/Second/Hertz".

format(sumrate_F_H))

175

Special Terms

3G Third Generation of wireless mobile telecommunications technology. 11

4G Fourth Generation of wireless mobile telecommunications technology. 10, 11, 178

5G Fifth Generation of wireless mobile telecommunications technology. 1, 7–12, 16,

71

6G Sixth Generation of wireless mobile telecommunications technology. 11, 16

AI Artificial Intelligence. 23, 28

ASR Average Sum Rate. 42, 53, 64–67

BN Batch Normalization. 42

BS Base Station. viii, 1, 2, 8, 11, 15

CNN Convolutional Neural Network. 28, 29

Colab Google Colaboratory. 43, 67

CSCG Circularly Symmetric Complex Gaussian. 34, 40

CSI Channel State Information. 22, 31, 32

CU Cellular User. 18

CUE Cellular User Equipment. 29, 30

CVP Constraint Violation Probability. 42, 47, 79

D2D Device-to-Device. ii, 1–20, 23, 24, 26–32, 39, 40, 43, 68–70, 72

176

DC-DC D2D Communication with a Device-Controlled link establishment. 14

DC3 Deep Constraint Completion and Correction algorithm. 5, 32

DL Deep Learning. ii, 4, 27

DNN Deep Neural Network. ii, 27, 29–32, 35, 38, 39, 41, 42, 44, 46, 47, 53, 64, 67,

70

DPC Deep Power Control. 29

DR-DC Device Relaying with Device-Controlled link setup. 13

DR-OC Device Relaying with an Operator-Controlled link establishment. 12

DRL Deep Reinforcement Learning. 28, 30

DSL Digital Subscriber Line. 29

DUE Device-to-Device User Equipment. 29, 30

DUL Deep Unsupervised Learning. ii, 5–8, 30, 32, 33, 39, 42–44, 53, 64, 67–70, 72

EE Energy Efficiency. 29

eMBB extreme Mobile BroadBand. 9

eMTC enhanced Machine-Type Communication. 11

ePCNet ensemble Power Control Network. 31

GB GigaByte. 45, 78

GIC Gaussian Interference Channel. 21

gNB Next generation Node B. 11, 12

GPU Graphics Processing Unit. 4, 43

HR Hit Rate. 42, 47, 53, 64, 79

IoT The Internet of Things. 7, 9, 11, 14, 178

177

ITIS Information-Theoretic Independent Set. 18

ITLinQ Information-Theoretic Link scheduling. 18

LTE Long-Term Evolution is a 4G wireless standard. 10

MAPEL The Method for Assigning Priority Levels algorithm. 21

MARL Multi-Agent Reinforcement Learning. 26

MDP Markov Decision Processes. 4

MIMO Multiple-Input and Multiple-Output. 9

MISO Multiple-Input and Single-Output. 21

ML Machine Learning. 23

MScDS Master of Science in Data Science. iii

MSE Mean Squared Error. 24, 25

NB-IoT NarrowBand IoT. 11

NN Neural Network. 4, 5, 32, 44, 53, 64, 67

NP-hard Nondeterministic Polynomial time problem. 18, 30, 31

PAN Personal Area Network. 10

PCA Principal Component Analysis. 25

PCNet Power Control Network. 31, 44, 53, 64, 67, 69, 79

PHY/MAC Physical Layer or medium/ Medium Access Control. 10

QoS Quality of Service. 2, 16, 20, 64, 67

RAM Random-Access Memory. 43

RB Resource Block. 18

ReLU Rectified Linear Unit activation function. 38, 41

178

RL Reinforcement Learning. 4, 26, 27

SE Spectral Efficiency. 29

SIMO Single-Input and Multiple-Output. 21

SINR Signal-to-Interference plus Noise Ratio. x, 19, 21, 35, 40, 42, 45, 46, 53, 64

SIR Signal-to-Interference Ratio. 20

SISO Single-Input and Single-Output. 21

SL Supervised Learning. 4, 24

SP Signal Processing. 28, 29

TPU Tensor Processing Unit. 4, 43

UE User Equipment. 3

UL Unsupervised Learning. ii, 4, 25, 42

URLLC Ultra-Reliable Low-Latency Communication. 8

VANET Vehicular Ad hoc Network. 9

WMMSE Weighted Minimum Mean Square Error. 29–31

WSR Weighted Sum Rate. 21

WTM Weighted Throughput Maximization. 20, 21

179

	Introduction
	Background
	Problem Statement
	Research Objectives
	Research Questions
	Thesis Structure
	Significance of the Study

	Literature Review
	Introduction
	D2D Communication Networks
	Background of D2D Communication
	D2D Architecture
	D2D Communication Classification
	Challenges in D2D Communication

	Sum Rate Optimization for D2D Networks
	Sum Rate Optimization Techniques
	Traditional Methods for Sum Rate Optimization of D2D Networks
	Limitations of Conventional Methods for Sum Rate Optimization of D2D Networks

	Machine Learning (ML) for Optimized Sum Rate in D2D Networks
	Supervised Learning (SL)
	Unsupervised Learning (UL)
	Reinforcement Learning (RL)
	Deep Learning (DL)
	Deep Unsupervised Learning (DUL)

	Conclusion

	Methodology
	The System Model
	Problem Formulation
	Constraint Elimination
	Formulation for The Optimization Problem

	Research Design
	Generating Feasible Datasets for the Transmission Channel Parameters
	Proposed DNN Model
	Evaluation Metrics

	Discussion
	Setup, Training and Testing The DNN Model
	Setup Specification
	Baseline Scheme
	Primary Parameters
	Datasets of Feasible Transmission Channel Parameters
	Tuning Hyperparameters

	Results of the Analysis
	Training with A Given Background Noise Power
	Training with Enhanced Generalization Capacity

	Summary

	Conclusion
	Overview
	Key Findings
	Implications
	Limitations and Future Research
	Final Words

	Feasible Datasets for the Transmission Channel Parameters
	Simulation Results
	Codes on Google Colaboratory
	Codes for generating feasible datasets for the transmission channel parameters
	Codes to calculate the average sum rate for the basic model

	Codes for analyzing the PCNet model
	For training with a given background noise power
	Codes for analyzing the PCNet+ model: For enhanced generalization capacity

	Codes for analyzing the Proposed Model
	For training with a given background noise power
	For enhanced generalization capacity

	Codes for analyzing the Model A
	Codes to calculate the average sum rate for the basic model

	List of terms

