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Abstract

The Classification of Surfaces is one of the problems which gave rise to the modern topology. It
has become one of the signature theorems of the area, which now is called algebraic topology.
It states that any closed connected surface is homeomorphic to the sphere, the connected sum
of tori, or the connected sum of projective planes. In this thesis we are going to go over the
geometric, topological, and algebraic tools necessary for understanding, proving and using the
theorem together with some useful examples of surfaces.

Thesis itself consists of three chapters. The first part talks about homotopy theory
and defines the fundamental group, which is an algebraic invariant between topological spaces.
In addition, we learn some basic ways of calculating the fundamental group for some easy-
to-imagine examples. The second chapter introduces free groups and free products, which
altogether let us calculate the fundamental group in more complex cases. The third and
final chapter introduces the geometric ideas behind the classification theorem, which includes
polygonal regions and labelling schemes together with operations on them. As a result, we
overview the construction of any two-dimensional compact surface and classification theorem
as a main goal.
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Chapter 1

The Fundamental Group

1.1 Homotopy of Paths

Two continuous functions from one topological space to another are called homotopic if one can
be “continuously deformed” into the other. Such a deformation is called a homotopy between
the two functions and that is what this chapter is about.

Definition 1.1.1. Continuous maps fo, fi : X — Y are said to be homotopic, which is
denoted by fy ~ fi, when there is a continuous map F': X x I — Y, called a homotopy from
fo to fi, such that for all points x € X we have F(z,0) = fo(z) and F(z,1) = fi(z). With
this, we can define fy,(s) = F(s,tg) to be a path from z( to 21 obtained at ¢t = t.

If f is homotopic to a constant map, i.e., if f ~ const, for some y € Y, then we say that f is
nulhomotopic.

Theorem 1.1.2. The homotopy relation ~ is an equivalence relation on the set Map(X,Y)
of continuous functions from X to'Y.

Proof. Let f, fo, f1, fo : X — Y be continuous maps. We need to check all the conditions of
an equivalence relation:

e Reflexivity (f ~ f):
Take the map F': X x I - Y, F(z,t) = f(x). Since for all t € I and for all z € X we
have F(x,t) = f(z), F is a homotopy from f to f.

e Symmetry(fo ~ f1 = f1 ~ fo):
Let F': X xI — Y be a homotopy from fj to fi1,i.e. F(z,0) = fo(z) and F(z,1) = f1(z).
Take G : X x I — Y such that G(z,t) = F(z,1 —t). This function is continuous since it
is defined as a composition of continuous functions. Moreover, G(x,0) = F(z,1) = fi(z)
and G(z,q) = F(z,0) = fo(z). Thus, G is a homotopy from f; to fo.

e Transitivity(fo ~ f1 and f1 ~ fo = fo ~ fo):
Let Fy : X x I — Y such that Fy(z,0) = fo(z) and Fi(z,1) = fi(z) be a homotopy from
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fo to fi. Also, let Fy : X x I — Y such that Fy(z,0) = fi(x) and Fy(z,1) = fa(z) be a
homotopy from f; to fo. Take

Fy(z,2t) 0<

t<1/2,
Fy(z,2t—1) 1/2<t

< L

Flg(l',t) = {

By pasting lemma A.0.28, its components are continuous and since at ¢t = 1/2 we have
Fi(x,1) = fi(x) and Fo(x,1—1) = Fy(x,0) = fi(x), F12 is well-defined and a homotopy
from fy to fo.

O]

We shall denote the homotopy class of a continuous map f : X — Y by [f]. That is, [f] =
{g€ Map(X,Y) | g ~ f}. Moreover, we shall denote the set of homotopy classes of continuous
maps from X to Y by [X,Y] = Map(X,Y)/ ~.

Example 1.1.3. Let f,g : R - R be any two continuous, real functions. To show that
f ~ g, consider a function F(x,t) = (1 —t)- f(z)+t-g(x). Being a composition of continuous
functions F' is continuous. Moreover, F(z,0) = (1 —0) - f(z) +0-g(z) = f(x) and F(z,1) =
(1-1)- f(z) +1-g(x) = g(z). Thus, F is a homotopy between f and g. In particular, this
example shows that any continuous map f : R — R is nulhomotopic.

Let’s consider the special case in which f is a path in X. Recall that if f:[0,1] > X
is a continuous map such that f(0) = z¢ and f(1) = x1, we say that f is a path in X from xzg
from x1. We call zg the initial point and z; the final point of the path f.

F(0,¢)

F:IxI—->X

Figure 1.0.0: the path f can be continuously deformed into f’
by a continuous deformation F'.
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Definition 1.1.4. Two paths fy and f; from I = [0, 1] to X are path homotopic if they have
the same initial point xy and the final point x1, and if there is a continuous map F : I x I — X
such that Vs e I and Vt e I:

F(S’O) = fO(S)v F(O,t) = Iy,
F(Sal):fl(s)a F(l,t)le.

F in this case is called a path homotopy between fy and f;. If fy is path homotopic to fi,
we write fo ~, f1. See Figure 1.0.0.

Since the path homotopy is a special case of homotopy, one can conduce the following;:

Theorem 1.1.5. The path-homotopy relation ~, is an equivalence relation.

Example 1.1.6. Let fy and f; be any two maps of a
space X into R%. Take F(z,t) = (1 —t)fo(z) + tfi(x)

as in Example 1.1.3. See Figure 1.1.0. We already know

F' is a homotopy map between fy and f;. This specific
description of a homotopy is called a straight-line (lin- =
ear) homotopy since for any p € X it moves the point T
fo(p) to the point fi(p) along the straight line segment. If
fo and f; are both paths, then F' will be a path-homotopy
from fo to f1.

More generally, let A be any convex subset of R?. Recall that a set C is convex if the line
segment between any two points in C lies in C, i.e., Vz1,29 € C, V0 € [0,1], Ox1+ (1 —60)zg € C.
Then any two paths fy and fi; between xg and x1 in A are path-homotopic, since for all s,t € A,
by definition of convex set, we have F'(s,t) € A and

F(s,0) = fo(s), F(0,2) = (1 =) fo(0) + t£1(0) = f0(0),
F(s,1) = f1(s), F(1,t) = (L =) fo(1) + tf1(1) = fo(1).

Definition 1.1.7. Given paths f and g such that f(1) = g(0), the product path f = g (also
called composition or concatenation) is given by

_Jf(2s) 0<s
f*g(s)_{g(Zs—l) 1/2 <

Figure 1.1.0: Straight-line
homotopy between fy and fi.

Intuitively, the composition law is just given by following one path, and then the other with
twice the speed, as shown in Figure 1.1.1.

Because we need the endpoint of one path to be the beginning point for the other for compo-
sition, the set of paths does not form a group. However, if we assume that the paths start and
end at the same point (loops), then they do. We will take a closer look at this group in the
next section!

The operation * can be applied to homotopy classes as well. Once again, let f : I — X be a
path from z( to 21 and let g : I — X be a path from z; to zo. Define [f] = [g] := [f = g].
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Figure 1.1.1: Construction of a concatenation [Mun00].

Theorem 1.1.8. The operation = between homotopy classes is well-defined.

Proof. Let f' € [f] and ¢’ € [g]. Because [f'] = [f] and [¢'] = [g], we need to check if
[f']1#[dg'] = [f]*[g]- Since f and f’" are path-homotopic, there exists a path homotopy F' from
f to f’. Likewise, there exists a path homotopy G from g to ¢’. Define H : [ x I — X such

that:
F(2s,t <
His,t) = (2s,1) 0<s
G(2s—1,¢) 1/2<

Now we show that H is a path homotopy between f * g and f’* ¢/, which are both paths from
o to x9. We know H is continuous by the pasting lemma A.0.28. Let’s check the conditions
from definition of the path-homotopy:

F(2s,0 0<s<1/2,

H(s,0) = (25,0) s<1/ H(0,t) = F(0,t) = o,
G(2s—1,0) 1/2<s<]1,
F(2s,1 0<s<1/2,

H(s,1) = (25,1) s<1/ H(1,t) = G(1,t) = xo.
F2s—1,1) 1/2<s<1,

The function H is therefore a path homotopy between f # g and f’ x ¢’. Thus, [f * g] is inde-
pendent of the class representatives f and g and the operation # is well-defined on equivalence
classes. O

Lemma 1.1.9. Let k£ : X — Y be a continuous function (map) and F' be a path homotopy
in X between paths f and f’. Then ko F' is a path homotopy in Y between paths k o f and
ko f.

Proof. The function k o F' is continuous by being a composition of continuous functions. Let
zo and x1 be respectively the initial and the final point of both f and f’. Then from the
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definition, we get the following:

ko F(s,0) = k(F(s,0)) = k(f(s)) = ko f(s),
ko F(s,1) = k(F(s, 1)) = k(f'(s)) = ko f'(s),
ko F(1,t) = k(F(L,t)) = k(21),

ko F(0,t) = k(F(0,t)) = k(),

which means that k o F' is indeed the required homotopy. ]

Lemma 1.1.10. Let f and g be paths such that f(1) = ¢(0) and k£ : X — Y be a map. Then
ko(fxg)=(kof)x(kog).

Proof. Let’s start with the right side of the equality and use Definition 1.1.7:

ko f(2s,t) 0<

s < 1/2,
kog(2s—1,t) 1/2<s

< L

(ko f)s(kog)(s,t) = {

which is equal to (ko (f = g))(s, ). O

Theorem 1.1.11. Let f : I — X be a path from xg to x1, g : I — X be a path from x1 to xo,
and h : I — X be a path from 3 to x3. Define f : I — X such that f(s) = f(1 —s). Given
x € X, let e denote the constant path e, : I — X carrying all the points of I to one point x
of X. The operation = between homotopy classes has the following properties:

o [dentity Elements: [ez,] * [f] = [f] and [f] * [ex,] = [f]-

o Inverses: [f] * [f] = [ex,] and [f] * [f] = [ex,]-
o Associativity: ([f]) = [g]) = [R] = [f] = ([g] * [R])-

Proof. Let’s prove separately all the parts of the theorem:

Identity elements: We want to show (ey, * f) ~, f. Let eg : I — I be the constant path at
0 and let ¢ : I — I be the identity path. Because [ is convex and both paths ep * ¢ and ¢ are
paths from 0 to 1 by Example 1.1.6 these two paths are path-homotopic with homotopy F'.
By Lemma 1.1.10, we know fo(eg#i) = (foep)* (foi)= ey * f. Then F o f is a homotopy
between f oi and ey, * f. Similar argument can be done to show the argument towards the
right identity. It follows similarly [f] * [ex, ] = [f]-

Inverses: We want to show (f * f) ~, e;,. Given a path f in X from xg to 1, let f be a
path from 1 to xg such that f(s) = f(1 —s). We know f* f = (foi)* (foi) = fo(ixi).
Similarly, we know e;, = f * eg. Since i * i and ey are loops in I based at 0 and I is convex,
there exists the straight line path homotopy F between i * i and eg. Then by Lemma 1.1.9,
f o F is a path homotopy between fo (i*i) = f* f and f * ey = e,,. Therefore, as before, we

find [f] * [f] = [ex,]- By similar reasoning, [f] = [f] = [ez,]-
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Associativity: By the definition of the concatenation one can write

fl4s) 0<s<1/4, f(2s) 0<s<1/2,
(fxg)xh=1{g(4s) 1/4<s<1/2 fx(gxh)=1g(s) 1/2<s<3/4,
h(2s) 1/2<s<1, h(ds) 3/4<s<1.
5/2 0<s<1/2
Let k: 1 — I beamap: k(s) =<s—1/4 1/2<s<3/4,
2s—1 3/4<s<l.

Then ((f*g)*h)ok = f=(g*h) = (f=*(g=h))oi Because k and i are both paths from 0
to 1 in the convex space I, k and ¢ are both path-homotopic by Example 1.1.6. Let F be a
path homotopy from k to i spoken of earlier. Then, ((f % g) * h) o F' is a path homotopy from
(f*g)xh)ok = fx(g=h)to((f*xg)*h)oi= (f*g)=*h. Thus, f=*(g*h) ==, (f*g)*hand
Lf1# (Lg] = [R]) = (Lf] = [g]) = [A]. O

Now that we know = is associative, we know [ f1]#[fa] #... % [ f,] is well-defined. In other words,
no matter how you chop the path, you have the product of all the pieces will give you the same
result. And one can use a very smart chopping in some cases!

1.2 The Fundamental Group

Definition 1.2.1. A path f : [0,1] — X is called a loop if f(0) = f(1). It is said to be based
at x if f(0) = f(1) = x. Moreover, a loop is nulhomotopic if it is homotopic to the constant
loop, i.e., the loop f: I — X given by f(t) = x¢ for all ¢.

With the notion of loops, we can now talk about the group defined under the concatenation:

Definition 1.2.2. The fundamental group or the first homotopy group of X, 7 (X; zo),
is the set of equivalence classes of loops f : I — X based at x.

Theorem 1.2.3. The fundamental group is a group under composition of loops.

Proof. Certainly composition is an operation taking loops to loops. We first look to see that
composition is well defined on homotopy classes. If fo ~ f; and gy ~ g1, then by composing
the homotopies we get a homotopy of fo # go to f1 * g1. All other properties of a group come
from Theorem 1.1.11. O

Example 1.2.4. The space 71 (R", z(), where o € R", has trivial fundamental group. To see
this, we have to show every loop is homotopic to the constant loop. For a loop f: 1 — R" at
xg, consider the straight-line homotopy F'(s,t) =t - f(s) + (1 —t) - zp. It defines a homotopy
between f and the trivial loop.

In particular, the unit ball B® in R": B" = {x|2? + 22 + ... + 22 < 1} has trivial
fundamental group since all loops at z, in the ball are nulhomotopic.
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Definition 1.2.5. Let a be a path in X from z¢ to x;. Define a “a-hat” map & : 71 (X, zg) —
m1(X, x1) such that &([f]) = [@] = [f] = [«].

This function is well-defined from Theorem 1.1.8. Then
if f is a loop based at xp then &([f]) is a loop based
at x1. In other words, we now have a way of “mov-
ing” from one points to another using the path between
them, like shown on Figure 1.2.1.

Theorem 1.2.6. The map & is a group isomorphism.

Proof. First, note that & is a homomorphism since
[6] = [f] = [o]) = ([@] = [g] = [o])
= [&] =« [f] = [g] = [a] = &([f] = [g])-

We need to show that & is an isomorphism as well.
Let [h] and [f] be elements of 71 (X, z1) and 71 (X, x0),
respectively. Then

a([h]) = [@] = [h] = [a] = [a] * [h]  [a] and &(@)([A])) = [a] = ([a]  [A] = [@]) « [a] = [A].
Then, as a result, we get:
(@lf]) = [al = [al[f]] = [@] = [o] = ([a] = [f]  [o]) = [a] = [f].
as needed. O

jo)
~
~~
| S—
*
joN
~
<
| S—
Il
~~

Figure 1.2.1: Both loops f1 and fo
which are based at z¢ can be
transformed to be starting at z1.

el

Definition 1.2.7. A space X is path connected if there exists a path joining any two points
(i.e., for all z,y € X there is some path f: I — X with f(0) =z, f(1) = y).

The fundamental group of a path connected space does not depend on the choice of base point.

Theorem 1.2.8. Let X be a path connected space with x,y € X. Then, we have an isomor-
phism of groups T (X, z) = m(X,y).

Proof. We can construct the isomorphism m (X, ) = 71(X, y) as follows. Start by choosing a
path fo from x to y, i.e., fo : I — X with fo(0) = 2, fo(1) = y. Then, send a loop f1 based at
x to the loop &, which is a loop based at y. O

Because of the theorem above, it is not particularly important to keep track of the base point
if one is working with a path-connected space. For this reason, base point is usually omitted
in the definition of a fundamental group of a space and we just write 1 (X).

Note that if a space is not path connected, then for zp in a component of X, m(X,xo)
provides no information about the other components of X. This is the reason for the study of
fundamental groups being usually restricted to path connected spaces.
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Definition 1.2.9. A space is simply-connected if it is path connected and m1 (X, z) = 0 for
all points x € X, i.e., every path between two points can be continuously transformed into any
other such path while preserving the two endpoints.

A simply-connected space is a path connected space that has no “holes” that pass through
the entire space. Such a hole would prevent some loops from being shrunk continuously into a
single point.

Theorem 1.2.10. In a simply-connected space X, any two paths that have the same initial
point xg and endpoint x1 are path homotopic.

Proof. Let o and 3 be two paths from zg to z1. Then a * /3 is defined and is a loop based at
xg. Since X is a simply-connected space, this loop is path-homotopic to the constant loop ey,

at xo. So [a] = [a = B] = [B] = [exo] * [5] = [B]- -

We now develop methods to show that the fundamental group is a topological invariant or, in
other words, a property shared by homeomorphic spaces.

Definition 1.2.11. Let h : X — Y be a continuous map between spaces X and Y with
yo = h(zp). Then for a loop f in X based at xg, ho f : I — Y is a loop in Y based at yp.
We denote this by h : (X, z9) — (Y, yo). Define hy : m1(X, z0) — m1(Y,y0) by h«[f] = [h o f].
Then h, is the homomorphism induced by h relative to the base point zg. In the event
that we consider the homomorphism induced by h relative to different base points, we denote
hy as (hgg)s or (hgy)s, ete.

We need to show that in the definition above the map h, is well-defined and indeed a
homomorphism. The first condition is true since for f, f’ € [f], there is a path homotopy F
between f and f’. Then ho F is a path homotopy between ho f and ho f’ by Lemma 1.1.9.
Moreover, since (ho f)*(hog) = ho(f=g), h is, in fact, a group homomorphism. The induced
homomorphism has two crucial properties.

Theorem 1.2.12. If h : (X,z0) — (Y,y0) and k : (Y,y0) — (Z,20) are continuous, then
(koh)y = kxohy. Ifi: (X,x9) = (X,x0) is the identity map, then iy is the identity
homomorphism.

Proof. Since (ko h)«([f]) = [(koh)o f], we get (kx o hu)([f]) = ku(hu([f])) = ku(ho f) =
[k o (ho f)]. Similarly, i.([f]) = [i o f] = [f]- O

Theorem 1.2.13. If h : (X,z9) — (Y,y0) is a homeomorphism, then hy is an isomorphism
Of 7T1(X, iL'o) with 7T1(Yv, yo).

Proof. Since h is a homeomorphism, it has an inverse k : (Y, yg) — (X, xo). Applying Theorem
1.2.12 we get ky o hy = (ko h)y = iy, where i is an identity map of (X, z¢). The same way,
hyoky = (hok)s = j«, where j is an identity map of (Y, o). Since both ¢ and j are the identity
homomorphisms of the groups 71 (X, zo) and 71 (Y, y0), respectively, k, is an inverse of h,. [
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Theorem 1.2.14. Let h,k: (X, z0) — (Y, y0) be continuous maps. If h and k are homotopic,
and the image of the base point xg € X remains fixed at yo € Y when acted upon by the
homotopy, then the homomorphisms hy and ks are equal.

Proof. Let H : X x I — Y be the homotopy between h and k such that H(zo,t) = yo for all
t € I. Then, by definition, H(z,0) = h(x) and H(x,1) = k(x). Consider a loop f: I — X
based at zp and the compositions ho f, ko fand Ho (f x 17): I x I - Y=

Ix1 M x Ay

H(f(2),0) = ho f(x) H(f(x),1) = ko f(z)

H(f(0),t) = H(f(1),t) = yo,Vt € I

Then Ho (f x 1) :I x I — Y is a homotopy between ho f and ko f. Moreover, hy([f]) =
[ho f]=[ko f]=k«([f]), and, thus, ks = hy : 71 (X, z0) — m1(Y, y0)- O

Definition 1.2.15. A space X is contractible if there is a homotopy between the identity
map X — X and a constant map.

Example 1.2.16. Let’s look at a few facts about contractible spaces:

1. I, R™ and the disk D" are contractible. For the first two spaces, define the homotopy by
F(x,t) = tx. Then f(z,0) =0 and f(z,1) = x, so F' is a homotopy from the constant
map 0 to the identity. To see that the disk is contractible it is enough to consider a
straight-line homotopy from the points of the disk to the origin.

2. A contractible space is also path-connected. Let F' : X x I — X be a homotopy from
a constant map Cy, : X — X to the identity, i.e. F(x,0) = x¢ and F(z,1) = z for all
x € X. For each point x; € X, the function g : I — X such that g(t) = F(z1,t) gives a
path from z1 to xg. Thus, all points of X are in the same path components as xg, so X
itself is path-connected.

3. If Y is contractible, then for any X, the set [X, Y] has a single element. Let F': Y xI - Y
be a homotopy from a constant map to the identity, i.e., F(y,0) = yo and F(y,1) =y
for all y € X. Then any map ¢ : X — Y is homotopic to the constant map ¢'(z) = yo
with a homotopy G : X x I — Y defined by G(z,t) = F(g(z),t). One can check that
G(x,0) = yp and G(x,1) = F(g(x),1) = g(z) as needed.

4. If X is contractible and Y is path connected then [X, Y] has a single element. Define F
as a homotopy from part 2 of this example. For any function g : X — Y, the function
foF is a homotopy between g and a constant map ¢'(x) = g(x¢). If Y is path connected,
then any two constant maps are homotopic and, thus, any two maps from X to Y are
homotopic.
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The fundamental group is a covariant functor from the category Top, of pointed topological
spaces and pointed continuous maps to the category Groups of groups and group homomor-
phisms. For definitions from category theory, the reader is referred to the Appendix B.

1.3 Covering Spaces and the Fundamental Group of a Circle

To explore the fundamental groups of spaces more complex than R”, consider the following
definition.

Definition 1.3.1. Let p: F — B be a continuous onto map. The open set U of B is evenly
covered by p if the inverse image p~!(U) can be written as the union of disjoint open sets
V. € E such that for each «, the restriction of p to V,, is a homeomorphism of V,, onto U. The
collection {V,} is a partition of p~*(U) into slices or fibers.

Definition 1.3.2. Let p : E — B be continuous and onto. If every point b € B has a
neighborhood U, also called trivialized neighbourhood, that is evenly covered by p, then p
is a covering map and F is said to be a covering space of B which is also called the base
space.

A covering map over X is a map that locally
looks like the projection map for some discrete
space as seen on Figure 1.3.1.

Example 1.3.3. The identity map X — X is
always a covering map of X. In this case, we can
take the entire space X to be the neighbourhood
U from the definition. More generally, if F' is a
discrete space, then the projection X x F' — X
is a covering space of X. We will call the map
X x FF — X a trivial cover. Every covering
space looks locally like a trivial cover.

Figure 1.3.1

Note that if p : E — B is a covering map, then for all b € B the subspace p~1(b) of E has the
discrete topology. One can see that since each “slice” V,, which is open in F, intersects the
set p~1(b) in a single point, and so this point must be open in p~1(b).

Theorem 1.3.4. Let p: E — B be a covering map. Then p is an open map.

Proof. Let U be an open set in E. If U = &, then p(U) = p(&) = @ which is always open.
Therefore, assume that U # @&. Let x € p(U). We want to show that x is an interior point
of U. Let V be a neighbourhood of z and let V; be a path component of p~!(V') or, in other
words, a slice containing p~!(x). Then p restricted to Vj is a homeomorphism onto V. Since
Vb is a path-connected component, it is open in F, and since U is open in, Vj n U is open in
Vo. Since p is a homeomorphism from Vj onto V' we have that p(Vy n U) is open in V and is
also open in B. But also x € p(Vo nU) < p(U). So x € Int(p(U)) and, thus, p(U) is open. [
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Theorem 1.3.5. The map p : R — S given by the equation p(x) = (cos2mx,sin2rx) is a
covering map.
Proof. One can imagine the real line R getting
wrapped around the circle with the length of a circle
being 1 as shown on Figure 1.3.2. Then each interval
[n,n + 1] makes exactly one loop around the circle.
Note that p is periodic, so it is enough to discuss in
detail only values of x that lie in (or near) the unit
interval. Consider x € S!, and let zp € R be any point
such that f(xg) = z, i.e., f~1(x) = {wo + k|k € Z}. Let
U < S!' be a small open arc of S' such that z € U.
Then the preimage f~!(U) consists of a disjoint union
of small intervals surrounding the points z¢ + k for Ll l l l
ke Z. Then U is a trivialized neighbourhood of x.

For construction we use four open sets, Uy, Uy, U
U, and Us, described in terms of R2. Take Uy =
{(x,y) € S' : & > 0}. Since cos2mz > 0 in Uy means
that —7/2 < 27z < 7/2, every interval (n—1/4,n+1/4)
is getting mapped to Uy by p. To show that every
such interval is homeomorphic to Uy, note that sin 27z
is a monotonically increasing continuous function on any of the taken intervals as z is in-
creasing. Therefore, we can provide an inverse continuous function p~! : S' — R where
p Nz, y) =n+ % arcsin ¢, which shows that p is homeomorphism on every such interval Uj.
Since for all n € N intervals (n — 1/4,n + 1/4) are disjoint, Uy is evenly covered by p. The
same way it can be shown that U; = {(z,y) € S' : y > 0}, Us = {(z,y) € S' : 2 < 0} and
Us = {(x,y) € S' : y < 0} are all evenly covered by the intervals (n,n +1/2), (n+1/4,n + 3/4)
and (n + 1/2,n + 1), respectively. Since all of U; cover S* and each of them is evenly covered
by p, p is a covering map. ]

(n-1/4,n+1/4)

|
LLLLLL VY

Figure 1.3.2: Visualization of the
covering map of S*.

If p: F — B is a covering map, then p is a local homeomorphism of E with B according
to Definition A.0.10. However, the condition that p is a local homeomorphism is not enough
to claim that p is covering map.

Example 1.3.6. The map p|p+ : RT — St given by the equation p|+ (z) = (cos 27z, sin 27x)
is surjective and a local homeomorphism, but not a covering map. One can see that p is not a
covering map because of the behavior of the point by = p|g+(0) = (1,0) € S'. More specifically,
the point has no neighbourhood which is evenly covered by the map p. From Example 1.3.5
we know that a usual neighbourhood of the point by in S can be written as (by — €,bg + €)
or depending on p it is (p|r+(0) — €, p|r+(0) + €). The pre-image of these neighbourhoods is
the union of disjoint intervals (n — €, n + ¢€), where n € Z. However, for n = 0 it becomes the
disjoint union of the interval (0, €) and intervals (n — e,n + €) for n € N. Each of the intervals
of second kind is evenly covered by the map p as in Example 1.3.5, but the interval (0,¢) is
not. Therefore, p|p+ is not a covering map.
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The preceding example shows that a restriction of a covering map might not be a covering
map itself. However, in case of an additional condition, we get the following result.

Theorem 1.3.7. Letp : E — B be a covering map. If By is a subspace of B and Eq = p~(By),
then the map pg : Eg — By obtained by restricting p is a covering map.

Proof. Let by € By and U be an open set in B such that U is evenly covered by p and by € U.
Let {V,} be a partition of p~1(U) into slices. Then U n By is a neighbourhood of by in By.
Moreover, sets V, N Ey are disjoint open sets in Ey whose union is equal to p~!(U n By), where
each V, n Fy is mapped homeomorphically onto U n By by p. Hence, pg is a covering map. [J

Theorem 1.3.8. Let p: E — B and p' : E' — B’ be covering maps. Then p xp' : E x B/ —
B x B’ is a covering map.

Proof. Take b€ B and V' € B, let U and U’ be neighbourhoods of b and ¥, respectively, that
are evenly covered by p and p’. Also, let {V,,} and {V/} be partitions of p~(U) and p'~}(U"),
respectively, into slices. Then the inverse image under p x p’ of the open set U x U’ is the union
of all the sets V, x V.. These are disjoint open sets of E x E’ where each of them is mapped
homeomorphically onto U x U’ by the map p x p’. Therefore, p x p’ is a covering map. O

Example 1.3.9. Consider the torus 75 = S' x S'. Then the product map p x p: R x R —
S1 x St where p is a covering map from Example 1.3.5, is a covering of the torus by the plane
R2. Since we typically think of S as a subset of R?, this representation of the torus is the
subset of R*. Each of unit squares [n,n + 1] x [m, m + 1] gets wrapped by p x p entirely around
the torus.

Example 1.3.10. Consider the covering map p x p from Example 1.3.9. Let by denote the
point p(0) of S* and let By denote the subspace By = (S x bg) U (by x S1) = S x S*. Then By
is the union of two circles which have the point bg in common. This is what we call the figure-
eight space. Considering the space Ey = p~!(By) which is the infinite grid (R x Z) u (Z x R),
the map pg : Eg — By is a covering map of the figure-eight space by Theorem 1.3.7 since it is
a restriction of the covering map p x p.

The covering spaces are used to prove a classic result in algebraic topology about the funda-
mental group of a circle. The idea behind it is that the fundamental group of S! is generated
by starting at (1,0) and creating loops that wrap around S!' a positive integer number of
times (counterclockwise) and loops that wrap around S' a negative integer number of times
(clockwise). For the full proof the reader is referred to [Mun00] or [Wil04].

Theorem 1.3.11. The fundamental group of S* is isomorphic to the additive group of integers.

Sketch of the proof. Consider a bijection from R to a helix in R? with a parametrisation defined
by (cos 2ms, sin 27s, s). We also identify S! as a circle of unit radius inside R?. Let p : R — S*
be a map, which is also a covering map, such that p(s) = (cos 27z, sin 27rx). This function can
be thought of as a projection map from R3 to R? given by (z,y, z) ~ (z,y). This means that
R is a covering space of S'. Consider the map ¢ : 71(S',by) — Z. One can show that this
map is a group homomorphism, which gives an isomorphism between 1 (S*, bg) and Z. O
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1.4 Retractions and Deformation Retracts

Definition 1.4.1. If A c X, a retraction of X onto A is a continuous map r : X — A such
that 7|4 is the identity map of A. If such a map r exists, we say that A is a retract of X.

Lemma 1.4.2. If ap € A and r : X — A is a retraction, then r, : m(X,a9) — m(A4,ap) is
surjective.

Proof. Let + : A — X be the inclusion map. Then r ot = 14 by construction. Then
Te Oty = (T0t)s = La, =17 (4

by Theorem 1.2.12. Since the right side is an isomorphism r, has to be a surjection, while ¢
has to be an injection. O

Theorem 1.4.3 (No-retraction Theorem). There is no retraction of B? onto S*.

Proof. If S was a retract of B2, then the homomorphism induced by the inclusion ¢ : S* — B2
would be injective. However, the fundamental group of S is non-trivial while the fundamental
group of B? is trivial. O

Example 1.4.4. There is a retraction r of R?\{0} onto S given by equation r(z) = z/||z||.
Therefore, 14, where ¢ : S — R?\{0} is the inclusion map, has to be injective, and, hence, non-
trivial or, in other words, not nulhomotopic. Similarly, 4., where i : S — S is the identity
map, is the identity homomorphism, and hence non-trivial or not nulhomotopic.

Definition 1.4.5. Let A < X. We call A a deformation retract of X if the identity map
of X is homotopic to a map that carries X into A. In other words, there exists a continuous
map H : X x I — X such that H(z,0) =z, H(z,1) € A for all x € X and H(a,t) = a for all
a € A. In this case, we call the homotopy H a deformation retraction of X onto A.

Note that the map r : X — A defined as r(x) = H(x,1) is a retraction of X onto A, and H is a
homotopy between the identity map of X and the map j or, where j : A — X is the inclusion
map.

Theorem 1.4.6. Let A be a deformation retract of X and let g € A. Then the inclusion map
L: (A, x0) — (X, o) induces an isomorphism of fundamental groups.

Proof. Let r : X — A be the retraction between noted spaces. Then r o ¢ is the identity map
of A, and by Theorem 1.2.12, 74 o ¢4 is the identity homomorphism of 71 (A4, by), where by € A.

Consider the composition ¢ o7 : X — X, which maps X to itself, but is not the
identity map. It is homotopic to the identity map via a homotopy fixing the points of A, i.e.,
a homotopy H : X x [ — X with H(z,0) = vor(x), H(z,1) = z, and H(zo,t) = zo for all
t € I. By Theorem 1.2 since a deformation retraction gives a base-point preserving homotopy
between cor and 1x, we have (Lx)s = tx0ry : m1 (X, o) — m1(X, o). We know ¢ is injective.
It is also surjective since for any class [f] in 71(X, zg), we have [f] = tx(r«([f])). Therefore,
it is an isomorphism. ]
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Example 1.4.7. From the theorem above, one can induce that the inclusion map ¢ : S™ —
R™*1\{0} induces an isomorphism of fundamental groups. Thus, 71(S™) = 71 (R"*1\{0}).

-~ 9-00-c
(S E-cs

Figure 1.4.1: Deformation retractions following R?\{p, ¢} above and the punctured torus
below, both resulting in the figure-eight.

Example 1.4.8. Consider R?\{p, ¢}, where p, ¢ € R?, the doubly punctured plane, which
has the figure-eight (recall Example 1.3.10) as a deformation retract. Another space which
has the figure-eight as a deformation retract is the punctured torus, i.e. T2\p for some point
p € T?. The deformations from this example can be seen in the Figure 1.4.1.

1.5 Homotopy Type

Definition 1.5.1. Let f : X — Y and g : Y — X be continuous maps. Suppose that the map
go f: X — X is homotopic to the identity map of X, and the map fog:Y — Y is homotopic
to the identity map of Y. Then maps f and ¢ are called homotopy equivalences, and each
of them is said to be a homotopy inverse of the other. Topological spaces X,Y are said to
be homotopy equivalent or of the same homotopy type, where we denote it by X ~ Y,
when there are homotopy equivalences between the spaces.

Note that every homeomorphism f : X — Y is a homotopy equivalence since we can take
g := f~1. Then if there are spaces X and Y such that X =~ Y, it would also mean that X ~ Y.
However, the converse of the statement is not true: consider R and {0}, which are homotopy
equivalent but not homeomorphic. In the Section 2.1.3 we have proved that the relation of
path-homotopy equivalence is an equivalence relation. The same can be done for more general
type of homotopy to show that the relation of homotopy equivalence is an equivalence relation.

Example 1.5.2. If A is a deformation retract of X, then A has the same homotopy type as
X. To show this, take the inclusion map ¢ : A — X and the retraction map r : X — A. Then
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the composition ot : X — X is the identity map of A, and the composition ¢tor is supposed to
be homotopic to the identity map of X by the definition of the deformation retraction. With
this example, one can think of contractible spaces as spaces that have the homotopy type of a
one-point space.

Example 1.5.3. Consider the figure-eight space X and the
theta space, defined as § = S' U (0 x [-1,1]). The theta
space is also a deformation retract of R?\{p, ¢}, but it is not a
deformation retract of the figure-eight-space. To see that note
that the “bar” (0 x [—1,1]) in the theta space would need to
remain unchanged during the deformation, but it is not a sub-
space of the figure eight.

However, we can describe the homotopy equivalences between
them. Consider the figure-eight to be two congruent, tangent
circles and the 6 space to be a circle with a diameter drawn.
Then the map g : Y — X can be described as contracting the circle along the diameter to the
center of the circle. Similarly, the map f: X — Y can be described as stretching each tangent
circle to fit into a half of the 8 space.

Figure 1.5.1: Theta space.

Note that spaces being homotopy equivalent does not mean that they have isomorphic funda-
mental groups yet. To show this, we need to look at the case when the base point does not
remain the same during the homotopy.

Lemma 1.5.4. Let h,k : X — Y be continuous maps with (X, o) L) (Y, o)
yo = h(zg) and y1 = k(xg). If h and k are homotopic, then o A
there exists a path o in Y from yg to y; such that k, = &oh, ks Ty ia
or, in other words, the following diagram commutes. m1 (Y, 91)

Proof. Let H : X x I — Y be the homotopy between h and k. Define the required path «
from yo to y1 as a(t) = H(zg,t). Consider an element f : I — X of m(X,zp), a path ¢ in
X x I given as ¢(t) = (zo,t) and loops fy and f; in the space X x I given as fo(s) = (f(s),0)
and f1(s) = (f(s),1). Then Ho fo =ho f and Ho f; = ko f, while Hoc = a.

Consider a map F : I x I — X x I, such that F(s,t) = (f(s),t) and the following paths in
I x I, which run along the four edges of I x I:

Bo(s) = (s,0) and B1(s) = (s,1),

’YO(t) = (Oat) and ’Yl(t) = (17t)'
Then F oy = fop and F o1 = f1, while Foy =Foy =c.
The broken-line paths 3y *y; and g * 51 are both paths in I x I from (0,0) to (1,1) and since
I x I is convex, there is a path homotopy between them by Example 1.1.6. Then F o G is a
path homotopy in X x I between fy* c and c* fi. Therefore, H o (F' o G) is a path homotopy
in Y between

(Ho fo)* (Hoc))=(ho f)*« and (Hoc)«(Ho f1)=a=(kof),
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which would mean that
[k o f]=[a]x[ho f]=[a]
or

kx([f]) = &(ha([f])),
as needed. ]

The immediate consequence of the Lemma above is that in case of h, being injective, surjective
or trivial, k, has the same property. Moreover, if h : X — Y is nulhomotopic, then h, is the
trivial homomorphism. The most important result of this lemma allows us to extend the idea
of fundamental group to spaces of the same homotopy type.

Theorem 1.5.5. Let f : (X, z9) — (Y,y0) be a continuous map. If f is a homotopy equivalence
then fy : m(X,x0) = m1(Y,y0) is an isomorphism.

Proof. Consider g : Y — X be a homotopy inverse for f and maps

fa fa
(X7'T0) *0> (Yvyﬂ) % (Xaxl) *1> (Yvyl)’

where 1 = g(yp) and y; = f(z1). Then we have induced homomorphisms as follows:

m1 (X, xp) M (Y, y0) —2 1 (X, 21) M m1 (Y, y1).
By assumption, go f : (X,x9) — (X, 1) is homotopic to the identity map, so there is a path
a in X such that (go f)x = @o(1x)s = & It follows that (g o f)x = g« © (fu,)x Is an
isomorphism and g, is surjective. Similarly, since f o g is homotopic to the identity map 1y,
the homomorphism (f o g)x = (fz, )« © g« is an isomorphism and g, is injective. Therefore, g,
is an isomorphism. Moreover, we can conclude that (fz,)« = (g9x) ' o & and, thus, (fs)s« is
also an isomorphism. O

1.6 Fundamental Groups of Other Surfaces

Theorem 1.6.1. Suppose X = UV, where both U and V' are open sets of X. Suppose UnV
is path-connected, and that xo € U n' V. Let i and j be the inclusion mappings of U and V,
respectively, into X. Then the images of the induced homomorphisms

is 2 m (U, xg) = m (X, 20) and ju : m1(V,20) — m1(X, 20)

generate m (X, xo). In other words, given any loop f in X based at xg, it is path homotopic
to a product of the form gy = go * ... * g,, where each g; is a loop in X based at xo which lies
entirely either in U or V.
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Proof. First, use the Lebesgue number Lemma A.0.30 to choose a subdivision {b;} of I such
that for all ¢ the set f([bi—1,b;]) is contained in either U or V. If for all ¢, the set f([bi—1,b:])
is contained in U NV, pick this division. Otherwise, let i be an index such that f(b;) ¢ U V.
Both of the sets f([bi—1,b;i]) and f([bi, bi+1]) lie fully in either U or V. If f(b;) € U then both
of the sets must lie in U, otherwise, they both must belong to V. In both cases, consider
the same division of I but without b; - let’s call it {¢;}. This subdivision satisfies the main
condition - for all ¢ the set f([c;—1,¢;i]) belongs to either U or V - therefore, we can do this
operation until we reach the desired subdivision. Let {a;} be the subdivision of I obtained,
i.e., for all i we have f([ai—1,a;]) is either in U or V and f(a;) e U n'V.

Now, define f; to be the path in X that equals the linear map of I onto [a;—1,a;] followed
by f. Then f; is a path that lies either in U or V, and [f] = [f1] # ... = [fn]. For each i,
since U n V is path-connected, we can choose a path «; in U n' V' from zy to f(a;). Since
flag) = f(an) = xp, we can choose oy and «, to be constant paths at xg. Now for each ¢ we
have g; = a;_1 * f; # az. This means that g; is a loop in X based at xg whose image lies either
in U or in V. Then we have

[91] %+ % [gn] = [ao] = [fol » [ax] = [an] = [fi] # [a2] * ... * [ana] * [fu] * [] =

[oo] # [f1] - [fn] = [om] = [fa] % [fa],
as needed. ]

Corollary 1.6.2. Suppose X = U u V', where both U and V are open sets of X. Suppose
U NV is path-connected and non-empty. If U and V' are simply-connected, then X is simply-
connected.

Proof. Since U n'V is non-empty, there exists a point zg € U n V. Both U and V are simply-
connected, so m1 (U, zg) and 71 (V, xo) are trivial. Then both of the induced homomorphisms of
the inclusion mappings i, and j, are trivial homomorphisms, and, thus, 71 (X, o) is trivial. [

Theorem 1.6.3. The n-sphere S™ is simply-connected for n = 2.

Proof. First, note that for n > 1, the punctured sphere S™\{p} is homeomorphic to R", since
we can define the stereographic projection as a homeomorphism between them. Firstly, let’s
show that for n > 1, the punctured sphere S™\{p} is homeomorphic to R™. For a point
p=1(0,...,0,1) € S™ define a map [ : (S™\{p}) — R" as stereographic projection:

1

m(fﬁl,---,l‘n)-

f(l') = f($17$27' "a$n+1) =

To show that this map is a homeomorphism, we can check that the map g : R" — (S™"\{p}),
defined by

9(y) = g1, yn) = EWY1, -, HY)Yn, 1 — t(y)),

where t(y) = 2/(1 + ||y||?), is both right and left inverse for f. Another way of thinking
about it is understanding what it is doing: if we take a line passing through p and the point
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r € (S"\{p}), it would intersect the plane R" x {0} = R"*! in only one point f(x) x {0}.
Note that the reflection map (x1,...,Zp4+1) — (21,...,Zpn, —Tn41) defines a homeomorphism
of S™\p with S™\{¢}, where ¢ = (0,...,0,—1) € S™ is the south pole of the sphere, so the latter
space is also homeomorphic to R™.

Now take U = S™\{p} and V = S™\{q} be open sets of S™. For n > 1, the sphere
S™ is path-connected since both U =~ R™ and V =~ R" are path-connected and have the point
(1,0,...,0) in common. To show that S™ is simply-connected, note that U n V' = S™\{p, ¢}
which is homeomorphic to R™\{0}. The latter space is path-connected and, thus, U n V is
path-connected. Therefore, by Corollary 1.6.2, U U V = S™ is simply-connected. O

Definition 1.6.4. A topological space M is a topological manifold of dimension n (or
topological n-manifold) if

e M is Hausdorff (recall A.0.24),
e M is second-countable (recall A.0.25), and

e M is locally Euclidean: for all points m € M there exists an open neighbourhood in
which is homeomorphic to an open subset of R".

A topological 2-manifold is called a surface.
Theorem 1.6.5. 7 (X X Y,zo X yo) is isomorphic with w1 (X, z¢) x m (Y, o).

Proof. Let p: X xY — X and ¢ : X xY — Y be the projection maps. Using the induced
homomorphisms of given maps, define a homomorphism

O m (X x Y,z X yo) = m (X, z0) x (Y, 0)

by the equation
([f]) = (p«([f1), ¢=([F]) = ([po fl.[a o f]).

To show that the map ® is an isomorphism we need to show that it is bijective. To show that
the map is surjective, let g : U — X be a loop based at x¢ and let h: I — Y be a loop based
at yo. Also, define f: I — X x Y such that f(s) = g(s) x h(s). Then f is a loop in X x Y
based at xg x yo with

O([fD) = (Ipe fllae 1) = (9], [A]),

which means that the element ([g], [h]) lies in the image of ®. More intuitively, if f is a loop
based at (z9,¥p), it is nothing more than a pair of loops in X and Y based at xy and yp.
Similarly, homotopies of loops are nothing but pairs of homotopies of pairs of loops.

To show that ® is one-to-one, define f : I — X x Y as a loop in X x Y based at
o X yo with an identity element being ®([f]) = ([po f],[go f]), which means that po f ~, ez,
and go f ~, e,,. Let G and H be the respective homotopies in X and Y. Then the map
F:IxI— X xY defined by F(s,t) = G(s,t) x H(s,t) is a path homotopy between f and a
constant loop based at xg x yp. ]
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Note that the preceding theorem can be extended to a finite product of spaces. More-
over, if any of the spaces end up being contractible, they can be dropped from the product.

Example 1.6.6. A natural example to consider, given that 7 (S') = Z, is the torus T2 =
St x S1. Then m (T?) = Z x Z.



Chapter 2

Free Groups

So far in the previous sections we were able to compute the fundamental group in some basic
cases. For more complicated cases, we need to develop a few more strategies and skills to be
able to describe the structure of the group itself.

Recall the definition of the direct product G = G x G5 x ... x G, of a finite number
of groups {G;}_,. The elements of G are ordered n-tuples g = (g1,...,9n), where g; € G;,
with the operation of multiplication denoted by

(glv v 7gn)(hla .. '7hn) = (glhla e 7gnhn)

This idea can be extended to a case with infinitely many groups: consider an infinite collection
of groups {G,}icr, where I is an index set. The direct product in this case is defined as [ [,.; G;.
Its elements are functions which assign to each index i € I an element g; € GG; with the similar
definition for the multiplication.

2.1 Free Groups

Given a non-empty set X, we would like to construct a free group on this set. There are
different ways to describe free groups and products, and we are going to follow the idea from
[Hun12]. If X = @, then the free group is going to be the trivial group {e). Otherwise, let X !
be a set disjoint from X such that |X| = |X~!|. Choose a bijection X — X! and denote an
image of x € X by 27!'. Choose an element I disjoint from X u X 1.

Definition 2.1.1. In this context, a word on X is a sequence (a1, asg,...) such that a; € X
for j € N and for some n € N, a5 = 1 for all integer k = n. Define I = (1,1,1,...) to be the
empty word.

There are infinitely many such words we can construct on a set, although, some of them seem
to be equivalent. To deal with this problem there are a few reduction operations we can do
to get the reduced word:

1. if we have adjacent = and ™!, we can delete both,

20
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2. if ap = 1 for some k € N, then a; = 1 for all i > k.

Notice that every reduced word is of the form (:ci‘l,xé\Q, oo 1,10, where 2; € X and

A = £1. We will denote such word by xi‘le‘Q ...z For simplicity, one can also combine the
adjacent identical elements z and z to write 22 and so on for higher powers.

Example 2.1.2. The empty word I is reduced without any reduced operations applied.
Consider a set X = {x,9,2}. Let wy = (z,2) and wo = (z7 4 y,y,y, 27 L, o7 2, 2,271) be
words. Their juxtaposition is the sequence w = (z,z,2 ', y,y,y,2~ 1, 27!, 2, 2,27 1), which

can be reduced to (z,y,y,y,v7 1) = xydz~ L

Two reduced words xi‘lx§‘2 ...z and y‘fl,ygz, ces ,yfnm with A\;,0; = +1 are equal if and only

if both are I or m = n and for all 1 < i < n we have z; = y; and \; = §;. With this definition
denote the set of all reduced words on a set X as F(X).
To make this a group we need to add an identity and a binary operation to it.

Definition 2.1.3. Consider juxtaposition of two words

A A An 1 13 Om\ _ A A A 1 13
rxy = (27,257, ) k(Y ysS, ) = (@7 x5 T Y Y e Y ),

both taken on a given set X.

Intuitively, the empty word I behaves like an identity element, i.e., I+ w = w I = w, for any
non-empty word w € F(X). Also, note that the juxtaposition of two reduced words might not
be reduced, but one can reduce it using the reduction operations.

Theorem 2.1.4. If X is a nonempty set and F = F(X) is the set of all reduced words on X,
then F' is a free group under juxtaposition and it is denoted by F = (X ) instead.

Proof. To verify that F' is a group we need to check all properties of a group. We know that the
empty word is an identity and a word (:ci\l , x%Q, ..., o)) has an inverse (x,; ", x;i’f_l, . ,xl_’\l).
To verify associativity, note that we do not need to reduce the juxtaposition until the very

end. With this, one gets the products of three reduced words z,y, z € X equal to

(zy) s z=((x}ran? . apm)« (002 ylm)) « (21207 ... Z%)
= (a0 Y y) * (2127 2
= aMay? oy ylm ) 2k
= (@2 ) (s ) * (12372 =@ (y w2,

O

Here, we mention some properties of free groups. If | X| > 2, then the free group on X is not
abelian since for z,y € X, such that x # y, we have words zy and yx being both reduced but
not equal to each other. Also, every element of such a group except the identity has infinite
order. This being said, if X = {a}, then F is an infinite cyclic group.
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Theorem 2.1.5 (Universal Mapping Property). Let F' be the free

group on a set X and v : X — F an inclusion map. If G is a r 3
group and ¢ : X — G a map of sets, then there exists a unique L]\ \\\J
homomorphism of groups ¢ : I — G such that ¢ o1 = ¢, i.c., the X — 3@

following diagram commutes.

Proof. Define ¢(1) = e and for a non-empty reduced word on X, define

S@ad ..aln) = plen) M d(a2)® ... blan) ™.

Since G is a group and A; = +1 for all 1 < i < n, the product above is well-defined in G. Such
a definition of ¢ automatically results in ¢ being a homomorphism such that ¢ ot = ¢. To
show that ¢ is indeed unique, consider a homomorphism ¢ : F' — G such that got = ¢. Then

9@ wy? . oay) = g(w) M g(w2)*2 . g(an)™
= g(u(@)M)g(e(22)*2) ... g(e(zn)™)
= ¢(@) 1 p(w2) . G(xn) " = Py w5 ),
which means ¢ is unique. O

The theorem above shows that F' is a free object on the set X in the category of groups
according to the Definition B.0.15. This being said, if F’ is another free object on the same
set X with A : X — F’ in the category of groups, then there is an isomorphism ¢ : F' — F’
such that ¢ ot = A

Corollary 2.1.6. Every group G is the homomorphic image of a free group.

The free group on X is also said to be the freest group generated on a set X. To see why
note that in an arbitrary group there are different products of elements, which give an identity
element as a result. For example,

1

1. zxxz7" = e for any element of any group;

2. in a cyclic group of order n, ™ = e.

Any such product is called a relation on a group X. Relations of type (1), which come from
properties of a group, are said to be trivial, while all other ones, like type (2), are said to be
non-trivial. The other way to define a free group on a set is to take a set X with only trivial
relations between its elements.

Definition 2.1.7. Let X be a set and R be a set of reduced words on X. A group G is said to
be the group defined by the generators z € X and relations w = e for w € R provided
G ~ F/N, where F' is a free group on X and N the normal subgroup of F' generated by R. In
this case, we call G = (X|R) a presentation of G.
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These notions also lead to the idea that one can completely describe a group G with
its generating set X and relations set R between them. Note that a presentation of a group
is not unique. To see this, consider a cyclic group Zg with presentations {(a|a®) and (a,b|a? =
b® =a'b"tab).

There is a relation between free groups and free abelian groups. For that recall that if x and y
are elements of a group G, then the element [x,y] = zyz~'y~! € G is called the commutator
of z and y. The notation [G, G] denotes the subgroup of G generated by all commutators - the
commutator subgroup. Commutators are, in a sense, a measure how much of G fails to be
commutative. In particular, the commutator subgroup is trivial if and only if all commutators

are the identities. We know a few facts about this subgroup:

Theorem 2.1.8. Given a group G, the commutator subgroup [G,G] is a normal subgroup and
the quotient group G/|G, G| is abelian. Moreover, if h : G — H is a homomorphism from G to
an abelian group H, then the kernel of h contains |G, G|, and hence h induces a homomorphism
k:G/|G,G] - H.

Proof. The theorem consists of 3 different facts, each of which is going to proved in a separate
step.

Step 1. To show that [G, G] is normal, first, we need to show that any conjugate of a
commutator is in [G, G] as well:

(g2)y(g9z) "'y gy 'g™")

(
= (gzyz (g 'y yg) v g
(
= [9z,y]ly, 9],

which is known to be in [G, G]. Now, consider an arbitrary element z of [G, G]. This element
is a product of commutators and their inverses. Since

1 1

[2,9]7" = (aya™y ™) = yay 2T = [y, 2]
or, in other words, every inverse of a commutator is a commutator itself, z is just a product of

commutators z1, zo, ..., z,. Then its conjugate is

-1 1

9297 = gz1z0. . zng = g21(97 ) 22(97 L 9)ang Tt = (9219 ) (92297 ) - (gTng ),

which is a product of commutators’ conjugates, which we know is in [G, G], as well. Therefore,
the group [G, G] is normal.
Step 2. For this step let G’ = [G, G]. To show that G/[G, G] is abelian, we need

(aG"(bG") = (bG")(aG"),

which is equivalent to
abG’ = bal’,
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which is equivalent to
a b labG = G'.

Since a~'b~lab is a commutator on its own, it belongs to G’ and the last statement follows.
Step 3. Since H is abelian by assumption, h carries each commutator to the identity

element of H. Hence, the kernel of h contains the whole commutator subgroup [G,G], so h

induced the desired homomorphism k. O

Hence, using this we can transform any free group F' to a free abelian group F/[F, F],
which is called the abelianization, using the natural projection 7 : F' — F/[F, F1.

Definition 2.1.9. If G is a free abelian group, the rank of G is the number of elements in
the generating set of G.

Since for any free group G with n generators the free abelian group G/[G, G] has rank
n, any system of free generators for G would have n elements.

Theorem 2.1.10. If F and F' are free groups on finite sets S and S’, then F and F' are
isomorphic if and only if S and S’ have the same rank.

Since now we are dealing with finitely generated abelian groups, we need some prop-
erties of such groups. First, recall that the set of all elements of an arbitrary abelian group
A that have finite order is called the torsion subgroup. If we denote the torsion subgroup
by T, then the quotient group A/T is going to be torsion free. In case groups A and A’ are
isomorphic, their torsion subgroups and quotients mod torsion subgroups are also isomorphic.
The converse is true, however, only for finitely generated abelian groups.

Theorem 2.1.11 ([Mas91],[Hunl2]). Consider only finitely generated abelian groups. Then
we have the following:

1. Let A be a finitely generated abelian group and let T be its torsion subgroup. Then, T
and A/T are also finitely generated, and A is isomorphic to the direct product T x A/T.
Hence, the structure or A is completely determined by its torsion subgroup T and its
torsion-free subgroup A/T.

2. Every finitely generated torsion-free abelian group is a free abelian group of finite rank.

3. Every finitely generated abelian group G is isomorphic to a product
24, ®..®Zg L = (Z)d1Z) D ... ® (Z/dyZ) ® Z®",

where ZO™ means the direct product of n copies of the group Z. Moreover, k,n and d;
are all uniquely determined and they completely determine the structure of the group G.

However, how do we extract information about a group from its presentation? This
question is answered in, for instance, [D L97]. The reader is welcome to familiarize themselves
with the topic, but here we are going to state the needed theorem and use of it for the finite
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X. Consider a presentation P = (X|R) of a group G with abelianization Gg,. Let us fix the
notation
X = {xlax%" . 7xT}7C = {[%7333“1 <i1<J< 7”},7“ eN,

where C might be regarded as a subset of any group presented on generators X.
Proposition 2.1.12 ([D L97]). If G = (X|R), then Gy = (X|R, C).

Now, in terms of presentations, part (3) of Theorem 2.1.11 means that every such group
G has a unique presentation of the form

<x1,...,x7«]mfl,...,xZ’“,C),

where k < r and the d; satisfy the conditions of the theorem.

2.2 Free Product

With the idea from the previous section, one can define the free product of groups. Given a
family of mutually disjoint groups {G;|i € I}, let X = |J,.; G;i and let I be a one-element set
disjoint from X.

el

Definition 2.2.1. A word is a sequence (a1, as,...) such that a; € X Ul and for some n € N,
a; =1 for all i = n.

A word in this case also can get reduced:
1. if a; € X is the identity element of some G, then we can delete a;,

2. if a; and a;11 belong to the same G, we can substitute it with their composition a; *¢;
Aj+1, and

3. if ap = 1, then a; = 1 for all 7 > k.

With this reduction operation, the empty word I, represented by the sequence (1,1,...,1), is
already reduced. Every non-empty reduced word can also be written uniquely as aias...a, =
(a1,a9,...,an,1,1,...), where a; € X. Considering the same binary operation, the juxtaposi-
tion, we are able to define the set of all reduced words on X and denote it by [[%; G;.

Theorem 2.2.2. [[; G; forms a group, free product of the family {G;|i € I}, under the
Juxtaposition.

We can identify G; with its isomorphic image in [ [},

Theorem 2.2.3 (Characteristic Property of Free Product). Let {G;|i € I} be a family of groups
with free product | [i; Gi and family of inclusions v; : G; — [ [, Gi. If {i : G; — H|i € I} is
a family of group homomorphisms onto a group H, then there exists a unique homomorphism
Y [T, Gi = H such that ¢ o = ; for allie 1.
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Similarly to the free groups, the free product of groups represents the coproduct in the
category of groups.

Theorem 2.2.4. Consider a group G = [[i;
respective systems of free generators with ﬂ
as a system of free generators.

GZ, where all G are free groups with {aq}ae; as
= @. Then G is a free group with {aa}aeJ,_, J;

zel

The theorem above can be extended to a free product of any finite number of free groups.

Example 2.2.5. If G is a group defined by generators a,b and relations a®> = I and b® = I,
then G =~ Zy = Z3. Generally, the group defined by the generator ¢ and the relation ¢ = 1 for
some m € N is the cyclic group Zy,.

2.3 The Seifert-van Kampen Theorem

In this section, let X = U u V be a topological space, where both U and V are open in X.
Moreover, suppose that X, U, V, and U n'V are all path-connected and that the fundamental
groups of U and V' are known. There are two versions of the main theorem in this section.

Theorem 2.3.1 (Seifert-van Kampen Theorem, modern version). Let g € U n'V and let
o1 m(U,zg) — H and ¢ : m(V,x9) — H be homomorphisms. Let i1,i2,71,j2 be the
homomorphisms indicated below, each induced by inclusion.

1(U, xo)
/ l’l\
m (U nV,xo) *>7T1X:E0 ————— s 0
\ JzT
m1(V, x0)

If ¢1 011 = ¢g 0 g, then there exists a unique homomorphism ® : m(X,x9) — H such that
(I>Oj1 Z(Z)l and@ojz =¢2.

Proof. First, we will show uniqueness of ®. By Theorem 1.6.1 71(X, zg) is generated by the
images of the induced homomorphisms j; and js. Because ® is determined by ¢; and ¢ on
these images, it follows that it is determined on every product of the elements from these
images. However, these products include all of the elements, and so ® is determined by ¢ and
¢9 and, therefore, is unique.

To show the existence, consider a path f in X together with its path-homotopy class [f] in
X. If fliesin U, VorUnV,let [flu, [flv and [f]u~v denote its path-homotopy class in
U,V and U n V, respectively. The plan is to define several different maps, each building on
the previous, and, for that, consider the steps below.

Step 1. Let’s define a map p which assigns an element of the group H to each loop f based
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at xg that lies in U or in V. In other words, we want to extend both ¢; and ¢2 to a set map
p defined on all loops in X, which are contained in either U or V. Define an element of the
group H by
) a([flo) if f liesin U,
D= o) it Fliesin v,

Note that p is well-defined because for f lying in both U and V we have ¢1 ([ f]v) = o161 ([flu~v))
and ¢2([f]lv) = d2(i2([f]lu~v)). Moreover, since by assumption ¢ 0 i1 = ¢ o ig, we also have
o1([flv) = ¢2([f]v). This makes up two facts about our map p:

L. If [flv = [g]u or [f]v = [g]v, then p(f) = p(g) (by the initial definition of p).

2. If both f and g lie in U or both of them lie in V', then p(f % g) = p(f) =g p(g) since ¢;
and ¢2 are homomorphisms.

Step 2. Let’s extend p to a map o, which assigns an element of H to each path f lying in U or
in V such that the map o also satisfies the condition (1) of p and condition (2), when possible,
i.e., when f * g is defined. This makes any path be workable as any other closed loop.

For each z € X, choose a path a, from zg to = as follows:

o If z = xg, let o, be a constant path at xzg.
e lfxeUnV, let ap beapathinUnV.

elfrelUorxeV withaxéeUnV,let a,
be a path in U or V, respectively.

This way for any path f in U or in V from x to
y, we define a loop L(f) based at zy such that

L(f) = g = (f =)

Note that because of our choice of o, and ay, if
f was a path in U, then L(f) would be a loop in
U as shown on Figure 2.3.0. The same follows Figure 2.3.0: Construction of a loop.

if f was a path in V.
Now, define o(f) = p(L(f)). To show that this map works for us, we need to show that o is

indeed an extension of p and that the properties given hold. If f is a loop based at zq lying in
either U or V, then we have

L(f) = g * (f # @),

where ag, is a constant path at xp. Then L(f) is path-homotopic to f in either U or V, so
p(L(f)) = p(f) by property (1) of p. Hence, o(f) = p(f). To check condition (1), let f and
g be paths which are path homotopic in U or V. If F'is a path homotopy in U from f to g,
then the homotopy L(F') is a path homotopy in U from L(f) to L(g). Thus, L(f) and L(g)
are path-homotopic in U and so the condition (1) applies. The same can be done for the case
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when f and ¢ are path homotopic in V. To check condition (2), let f and g be arbitrary paths
in U or V such that f(0) =z, f(1) = g(0) = y and g(1) = 2z so f * g is well-defined. Then we
have

L(f) # L(g) = (az * (f * @) = (o * (9 % @) =p g+ (( * 9) * @),
which means that L(f) = L(g) is path homotopic to L(f * g). Therefore,

p(L(f # 9)) = p(L(f) * L(9)) = p(L(f)) *m p(L(g))

by condition (2) for p. Hence, o(f = g) = o(f) *g 0(g) and so property (2) is satisfied.

Step 3. Finally, let’s extend o to a set map 7 which assigns an element of H to an arbitrary
path f of X. Given any path f in X, using the Lebesgue Number Lemma A.0.30, we can
choose a subdivision 0 = sg < 1 < ... < s, = 1 of the interval I such that f maps each of
the sub-intervals [s;_1, s;| into U or V. Let f; denote the path obtained by restricting f to the
sub-interval [s;_1, s;]. Then f; is a path in U or V with [f] = [f1] * ... = [fn]. Define 7 as

7(f) =0c(f1) *m5 ... xg o(fn).
This map will satisfy the similar conditions to p and o:

L IE[f] = [g], then 7(f) = 7(g)-
2. If f = g is well-defined, then 7(f = g) = 7(f) *u 7(g).

But before we show that the map actually satisfies these claims, let’s show that this definition
of 7 is actually independent of the choice of subdivision. For this we need to show that the
value of 7(f) remains the same if we add one additional point p to the subdivision. Let i be
the index such that s;—1 < p < s; with p being a new point. If we compute 7(f) using the new
subdivision, the only change in the the value is the change of o(f;) to o(f!) *m o(f!'), where f!
and f/' are paths obtained by restricting f to [s;—1,p] and [p, s;], respectively. However, since
fi is path homotopic to f!* f/ in U or V', we have 7(f;) = 7(f!) *m 7(f!") by conditions (1) and
(2) which we know work for 7. Therefore, 7 is indeed independent of our choice of subdivision
and hence well-defined.

It immediately follows that 7 is an extension of ¢: if f is already in U or V', then we can use
the trivial partition [0, 1] = {{0}, (0,1),{1}} to define 7(f) and so 7(f) = o(f) by definition.
Now, let’s show that 7 satisfies the condition (1): if [f] = [g], then 7(f) = 7(g). Let f and g be
paths in X from x to y and let F' be the path homotopy between them. Using the compactness
of [0,1]? for the Lebesgue number lemma A.0.30, we can choose subdivisions sp < ... < s,
and tg < ... <ty of [0,1] such that F maps each sub-rectangle [s;_1, s;] % [t;—1,t;] into U or
V. Let f; be the path fj(s) = F(s,tj). Then fy = f and f,, = g. Note that for all pairs of
paths fj_1 and f; there exists a subdivision s, ..., s, of I such that F' carries each rectangle
R; = [si—1,si] x [0,1] into either U or V. Given ¢, consider the linear map of I onto [s;_1, s;]
followed by f or by g - let’s call these maps f; and g;, respectively. The restriction of F' to
the rectangle R; gives a homotopy between f; and g; which is fully happening in either U or
V. However, it is not path-homotopy since the end-points of these restrictions do not have to
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match. Consider the paths which represent the way of these end points during the homotopy,
i.e., define B;(t) = F'(s;,t). This way 5; is the path in X from f(s;) to g(s;) with both Sy and
Bn bemg constant paths at x and y, respectively. We would like to show that for all 4,

fi* Bi ~p Bic1* gi-

For this consider the broken-line path along the bottom and right edges of R; from s;_1 x 0
to s; x 1, as shown on Figure 2.3.1. The composition of F' with this path is equal to the path

Figure 2.3.1

fi#P;. A similar thing happens when we take the broken-line path along the left and top edges
of R; and follow it by F' - we obtain the path ;1 * g;. Since R; is convex, by Example 1.1.6
there is a path homotopy in R; between two broken-line paths and by Lemma 1.1.9 if we follow
by F, we obtain a path homotopy between f; * 8; and [3;_1 * g; which takes place in either U
or V. Using the conditions (1) and (2) for o, we get that

o(fi) *n o (Bi) = 0(Bi=1) *m 0(9s)
and, thus, we have
o(f;) = o(Bi—1) *m 0(g:) *m o(B;) "

Similarly, since 5y and ,, are constant maps, and identity elements get mapped to the identity
elements, we have o(fy) = o(5,) = eg. Now, we can compute using the definition

7(f) = o(f1) *u o(f2) *m - .. *m o(fn)

a(Bo) *m o(g )*H...*Ha(gn)*Ha(Bn)_l
=0(g1) *g - .. *m 0(gn) = 7(9).

Therefore, we can deduce that 7(fj—1) = 7(f) for each j and so 7(f) = 7(9).
Finally, let’s show that 7 satisfies the condition (2). Suppose we have a composition of paths
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f=gin X. Choose a subdivision sy < ... < s, of [0, 1] containing the point 1/2 as a subdivision
point s, such that f = g carries each sub-interval into either U or V. For ¢ = 1,...,k, the
increasing linear map of I to [s,_1,s;]| followed by f * g is the same as the increasing linear
map from I to [2s,-1,2s;] followed by f; let’s call the latter f;. Similarly, fori =k+1,...,n,
the linear map of I to [s;_1, s;] followed by f * g is the same as the increasing linear map of [
to [2si—1 — 1,2s; — 1] followed by g - let’s call this map g;_x. Using the subdivision sy, ..., s,
of f g from before, we have

T(fxg9)=0(f1) *u ... xg o(fr) *m 0(g1) *H - - - %1 T(Gn—k)-

Using the subdivision 2sq, . .., 2s; of the path f we have

7(f) =o(f1) *m ... *z o(fr)-

Similarly, using the subdivision 2s; — 1,...,2s, — 1 of the path g we have

7(9) =0(g1) *1 - - *5 0(Gn—tk)-

Therefore, (2) clearly holds since 7(f = g) = 7(f) *m 7(g).

Step 4. For each loop f in X based at z¢ define ®([f]) = 7(f). The conditions (1) and (2)
from above show that ® is a well-defined homomorphism. To show that ® o j; = ¢ consider
a loop f in U. Then

(1 ([flv)) = @([f]) = 7(f) = p(f) = &1 ([f]v)-

Similarly, for a loop ¢g in V' we have

®(j2([glv)) = @([g]) = 7(9) = p(g9) = 2([g]v)-

O
The classical version of the same theorem assumes the modern version.

Theorem 2.3.2 (Seifert-van Kampen Theorem, classical version). Assume the hypotheses of
the modern version of the theorem. Let xo € U nV. Consider j : m(U,xg) * m(V,z9) —
m1(X,xy) be the homomorphism of the free product that extends the homomorphisms j1 and
jo. Then, j is surjective, and its kernel is the least normal subgroup N of w1 (U, xo) * m1(V, x¢)
that contains all elements represented by words of the form i1(g) Yia(g) for g € m (U NV, x0).

The least normal subgroup of the noted product can also be described as a group
generated by all elements of the form i1(g)~'i2(g) for g € 71 (U n V, ) and their conjugates.

Proof. Note that by Theorem 1.6.1, m1(X,zo) is generated by the images of j; and js and,
thus, j is surjective. For the second part of the theorem, we will firstly show that N < ker(j).
Recall that the kernel of j is a normal subgroup of 71 (U, zg) * 71 (V, x0). Note that it suffices to
show that i1 (g)'i2(g) belongs to the kernel for all g € w1 (U NV, o). To the contrary, if there
was an element of N which does not belong to the kernel, it would still belong to all normal
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subgroups of 71 (U, zg) * w1 (V, x0), one of which is the kernel itself. Take an inclusion mapping
i1:UnV — X, then

Ji1(g) = jii1(g) = ix(g) = jaia(g) = jiz(9),
which implies that ji;(g) = ji2(g) and so ifl(g)iz(g) is getting mapped to the identity element.
Thus, i; ' (g)i2(g) belongs to the kernel of j. Moreover, j induces an epimorphism

k:mi(U,xo) *m(V,20)/N — m1 (X, 20)

since it is a composition of a homomorphism and an epimorphism. To show that N equals
ker(j), we need to show that k is injective since N is trivial. For that, it is enough to show
that k has a left inverse.

Let H denote the group 71 (U, xg) * w1 (V, x¢)/N. Also, let ¢ : w1 (U, x9) — H be the inclusion
map from 71 (U, o) to the free product followed by the projection of the free product onto its
quotient by N. Let ¢y : m1(V,z9) — H be defined similarly. Consider the diagram

7T1U330

T

(U nV,zg) —— m (X, z0) <:>H

T

7T1 V ZCo)

Note that from the diagram we can see that ¢ 091 = ¢a0ia. Moreover, if g € 71 (U "V, x(), then
#1(i1(g)) is the coset i1(g)N in H, and ¢2(i2(G)) is the coset i2(g)N. Since i1(g) ti2(g) € N,
these two cosets are actually equal.

From the modern version of the Seifert-van Kampen Theorem we know that there exists a
homomorphism ® : 71(X,z9) — H such that ® o j; = ¢; and ® o jo = ¢o. Let’s show
that @ is the left inverse for k. For this to be true we need ® o k to act as an identity on
any generator of H, i.e., on any coset of the form gN, where g € m (U, zg) or g € m(V, x0).
Suppose g € 71 (U, z¢), then we have

k(gN) = j(g) = j1(9),
and so it follows that
®(k(gN)) = 2(j1(9)) = ¢1(9) = gN,

which is exactly what we need. Similarly, one can show the same thing if g € w1 (V, z¢). O

With Seifert-van Kampen’s Theorem, we can get an exact formula for the fundamental
group of a space X if we know the fundamental groups of a decomposition of X into U, V, and
their intersection U n V. This theorem often is used when “gluing” familiar spaces together
along a common and familiar subspace since instead of U and V we can take the covering
{Uala € A} of X by path-connected open sets such that the family is closed under finite
intersection and all of its elements include the common point xg.

Assuming the hypotheses of the Seifert-Van Kampen Theorem.
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Corollary 2.3.3. If U n V is simply-connected, then there is an isomorphism
kE:mi(U,xo) *m(V,20) = 71 (X, zo).
Corollary 2.3.4. If V is simply-connected, then there is an isomorphism
k:mi(U,x0)/N — m (X, o),

where N is the least normal subgroup of m1 (U, zg) containing the image of the homomorphism
i1 :m (U n V,z0) — m(U, 20)

Definition 2.3.5. The real projective plane RP? is a quotient space obtained from S! by
identifying each point x with its antipode —zx.

Theorem 2.3.6. The projective plane RP? is a compact surface with fundamental group iso-
morphic to Z/27.

Proof. To show that RP? is a compact surface, we need to show that it is compact, Hausdorff,
locally Euclidean and second countable. It is second countable since if S? has a countable basis
{U,}, the space RP? would have a countable basis {p(U,)}, where p : S — RP? is a quotient
map. The image space is clearly Hausdorff and locally Euclidean. Moreover, the space RP? is
compact as an image of a compact space S? under a continuous map p.

To calculate the fundamental group, consider S' = U u V with U = S'\{z} for some point
x ¢ S' and V being an open neighbourhood around z. Then U n V is an open disk around
xz. Note that the fundamental group of any open neighbourhood is 0, since it is a simply-
connected space, so m1(V) = 0. The open disk U is a deformation retraction of S!, and,
therefore, 71 (U) = Z. Using Corollary 2.3.4, 71 (RP?) = {a)/{a|a®) = Z/27. O

2.4 The Fundamental Group of a Wedge of Circles

Definition 2.4.1. Consider a Hausdorff space X = [Ji_; S,
where each of S; is homeomorphic to the unit circle S'. If there
is a point p € X such that S; N S; = {p} whenever i # j, then we
call the space X the wedge (bouquet) of the circles {S;}]" ;.

Note that each space S; is compact and, hence, closed
in X. Moreover, since each S; can be imbedded in the plane,
the same can be said about the space X. In other words, if C;
denotes a circle of radius i in R? with center at (i,0), then X is Figure 2.4.1: Example of

homeomorphic to | J;~, C;. the wedge of five circles.

Theorem 2.4.2. Let X be the wedge of the circles S, ..., S, with the common point p. Then
m1(X,p) is a free group. Moreover, if f; is a loop in S; that represents a generator of w1 (S;, p),
then the loops f1,..., fn represent a system of free generators for m (X, p).
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Let’s prove a more general result than this for a space X which is a union of infinitely many
circles, which all have a point in common.

Definition 2.4.3. Consider a space X, which is a union of the subspaces X, for a € J. The
topology of X is said to be coherent with the subspaces X, provided a subset C' of X is
closed in X if C' n X, is closed in X, for each «. An equivalent definition can be obtained
with open sets instead.

In other words, a topological space is coherent with a family of subspaces if it is a
topological union of those subspaces. In case of a finite collection of circles like before, X is
the union of finitely many closed subspaces {X;}7 ; and so the topology of X is automatically
coherent with these subspaces, since if C' n X; is closed in Xj, it is also closed in X and, thus,
C is the finite union of the sets C n Xj.

Definition 2.4.4. Let X be a space which is a union of the subspaces S,, « € J, each of which
is homeomorphic to S*. If there is a point p € X such that for all @ # 8 we have S, NSz = {p}
and the topology of X is coherent with the subspaces S,, then X is called the wedge of the
circles S,.

Note that the Hausdorfl condition, which is included in Definition 2.4.1, is not included
in the infinite case. But it is still required, it just follows from the coherent condition.

Lemma 2.4.5. Let X be the wedge of the circles {Sy}aes. Then X is normal, and any compact
subspace of X is contained in the union of finitely many circles S,.

Proof. Firstly note that one-point sets are closed in X. Consider disjoint closed subsets A
and B of the space X such that B does not contain the point p. Choose disjoint subsets U,
and V,, of S, that are open in S, and contain {p} U (A " S,) and B n S,, respectively. Let
U = UaeJ Uy,and V = Uae] Va. Then U and V' are disjoint. Now, since all sets U, contain p
we have that U n S, = U,. Similarly, since none of the sets V,, contain p, we have VnS, = V.
Hence, U and V' are open in X, and, thus, X is normal.

Consider a compact subspace C' of X. Choose a point 2, € C'n (S, \{p}) if C' N (Sa\{p})
is not empty. The set D = {z,} is closed in X, since its intersection with each space S, is
either empty or a one-point set, which is closed in a Hausdorff space X. For the same reason,
each subset of D is closed in X. Thus, D is a closed discrete subspace of X contained in C
and since C' is limit point compact, D must be finite. O

Theorem 2.4.6. Let X be the wedge of circles {Sa}aes with the common point p. Then
m1(X,p) is a free group. Moreover, if fo is a loop in S, representing a generator of w1 (Sq, D),
then the loops { fa} represent a system of free generators for m (X, p).

Proof. Let iq : m1(Sa,p) — 71 (X, p) be the homomorphism induced by inclusion and let G, be
the image of i,,. Note that if f is any loop in X based at p, then the image set of f is compact
and so f lies in some finite union of subspaces S,. Moreover, if f and g are two path-homotopic



ADJOINING A TWO-CELL 34

loops in X, then they are path-homotopic in some finite union of the subspaces of S, by the
preceding lemma.

To see that the groups {G,} generate w1 (X, p), consider a loop f in X. It must lie in
Sy U ... U Sy, for some finite set of indices. By Theorem 2.4.2, we have [f] as a product of
elements of the groups Gg,,...,Gq,. It follows that ig is a monomorphism. In the case f is
nulhomotopic in X, f must be path homotopic to a constant in some finite union of spaces
Sa, 50 by Theorem 2.4.2, f is path homotopic to a constant in Sg.

Suppose there exists a reduced nonempty word w = (gq, - - - Ja,) in the elements of
the groups G, which represents the identity element of 71 (X, p). Let f be a loop in X whose
path-homotopy class is represented by w. Then f is path homotopic to a constant in X and so
it is path homotopic to a constant in some finite union of subspaces S,, which is not possible
according to Theorem 2.4.2. O

Definition 2.4.7. Given two topological spaces X and Y with points xg € X and yp € Y, the
wedge X v Y of X and Y is defined as the quotient space of their disjoint union where two
copies of the base points (one in X and one in Y') are identified.

Example 2.4.8. Consider the wedge X of the spaces X1,..., X,. Let’s show that if for each
i, the common point p is a deformation retract of an open set W; of Xj, then m1(X,p) is the
free product of the groups 71 (X, p) relative to the monomorphisms induced by inclusion.
Consider the problem for the case when X = X7 v X5. We can assume that both X7 and X,
are path-connected since if C; are the path components containing p in X;, then 71 (Cj, p) =
m1(X;,p). Let U = X7 U Wy and let V = Xy u Wi. Then both U and V are path-connected
since their deformation retracts are X; and Xs, respectively, and U n'V = W1 u Wy is simply-
connected since its deformation retract is just the point p. Therefore, by Theorem 2.3.3, there
is an isomorphism 71 (X1, p) * 71 (X2, p) = 71 (X, p).

2.5 Adjoining a Two-Cell

Theorem 2.5.1. Let X be a Hausdorff space and let A be a closed path-connected subspace
of X. Suppose there is a continuous map h : B> — X which maps Int(B?) bijectively onto
X\A and maps S' = Bd(B?) onto A. Let pe S', a = h(p) and let k : (S',p) — (A,a) be the
restriction of h. Then the homomorphism

ix :m1(A,a) > m (X, a)

induced by the inclusion is surjective, and its kernel is the least normal subgroup of 7 (A, a)
containing the image of ky : m1(S*, p) — m1 (A, a).

Proof. Step 1. Consider the origin 0 of B2, its image x9 = h(0) in X and an open set U =
X\{xo} of X. Let’s show that A is the deformation retract of U.
Let C = h(B?) and let 7 : B> — C be the restriction of h. Consider the map

ax1:B*>xT—CxI.
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A > U =X\ {x)
I
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Figure 2.5.1: Representation of the construction discussed in Step 1.

Since B? x I is compact and C x I is Hausdorff, the map 7 x I is closed. Since it is closed and
surjective, it is a quotient map by definition. Its restriction

7 (BA\{0}) x T — (C\{zo}) x I

is a quotient map as well, since its domain is open in B? x I and is saturated with respect
to m x I. Tt is known that there is a deformation retraction of B?\{0} onto S!, and so using
the quotient map 7’ it can induce a deformation retraction of C\{zo} to m(S'). We extend
this deformation retraction to all U x I by letting each point of A remain fixed during the
deformation. Therefore, A is a deformation retract of U.

Then by Theorem 1.4.6 the inclusion of A into U induces an isomorphism of funda-
mental groups and what we need to prove can be reduced to the following:

Let f be a loop whose class generates m1(S*,p). Then the inclusion of U into X
induces an epimorphism 71 (U, a) — w1 (X, a) whose kernel is the least normal
subgroup containing the class of the loop g = ho f.

Step 2. In order to prove the reduced statement, consider the homomorphism (U, ,b) —
m1(X, b) induced by inclusion relative to the base point b which does not belong to A.

Let b be any point of U\A. Now, X is the union of the open sets U and V = X\A4 =
7(Int(B?)). We know U is path-connected, since A is its deformation retraction. Because 7 is
a quotient map, its restriction to Int(B?) is also a quotient map and hence homeomorphism.
Thus, V is simply-connected. The set U nV = V\{xo} is homeomorphic to Int(B?)\{0}, so it
is path connected and its fundamental group is infinite cyclic. Since b is a point of U n V', by
Theorem 2.3.4 the homomorphism 71 (U, b) — 71(X,b) induced by the inclusion is surjective,
and its kernel is the least normal subgroup containing the image of the infinite and cyclic group
7T1(U N ‘/, b)
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Step 3. Now, let’s prove the result for a
point a. Let ¢ be the point of B? which
is the midpoint of the line segment from 0
to p. Also, let b = h(q) so b is a point in
UnV. Let fo be a loop in Int(B?)\{0}
based at ¢ that represents a generator of
the fundamental group of this space. Then
go = hofyisaloopin UnV based at b that
represents a generator of the fundamental
group of U n' V. By Step 2 we know that
the homomorphism 7; (U, b) — m1 (X, b) in-
duced by the inclusion is surjective and its

kernel is the least normal subgroup con-
taining the class of the loop go = h o fo. Figure 2.5.2: The situation described in Step 3.

To obtain the similar result for the point a, consider 7 as the straight line path in B? from q
to p and a path 6 = ho~ in U from b to a. The isomorphism induced by the path § commute
with the homomorphisms, both denoted &y, induced by inclusion in the diagram:

71’1(U,b) Em— 7T1(X,b)

oo s

m1(U,a) —— m1(X, a)

Therefore, the homomorphism of 71 (U, a) into 71 (X, a) induced by inclusion is surjective and
its kernel is the least normal subgroup containing the element do([go])-

The loop fo represents a generator of the fundamental group of Int(B?)\{0} based at
q. Then the loop 7 * (fo * ) represents a generator of the fundamental group of B%\{0} based
at p. Therefore, it is path homotopic to either f or its inverse. Suppose the latter: following
the path homotopy by the map &, we note that 6 # (go * §) ~,, g in U. Then 6([go]) = [g] and
the theorem follows. O

Note that the unit ball in the Theorem above can be replaced with any space B which
is homeomorphic to B?. We call such space a 2-cell. Then the space X in the Theorem
is obtained by ”adjoining” a 2-cell to A. In other words, the theorem above states that the
fundamental group of X is obtained from the fundamental group of A by killing off the class
k«[f], where [f] generates 71 (S, p).



Chapter 3

Classification of Surfaces

By now, we have built all the skills we need to be able to classify all the compact surfaces
up to homeomorphism. This problem is more or less trivial for smaller dimensions, i.e., 0
and 1. For the smallest dimension, 0-dimensional connected manifold is just a point, which
means that any 0-dimensional disconnected manifold is just a discrete set. In the case of 1
dimension, we would have a manifold homeomorphic to either a circle or a closed interval in
case of compactness, otherwise, it has to be homeomorphic to the real line R. The reader is
welcome to read more about the one-dimensional case in [Dav87]. In this chapter, though, we
would like to handle the case of compact two-dimensional manifolds.

3.1 Fundamental Groups of Surfaces

We would like to start with some construction. Let’s look at surfaces which can be constructed
as quotient spaces from a polygonal region in a plane.

Consider a point ¢ of R? and a number a > 0. Construct a circle in R? with the center at
c and with the radius a. Given a finite sequence 6y < 61 < ... < 6, of real numbers, where
n = 3 and 6,, = 0y + 27, consider the points p; = ¢ + a(cos §;,sin 6;), which all lie on the circle
described. They also are numbered in counterclockwise order around the circle with p,, = pg.
The line through p;—1 and p; splits the circle and, as a result, the plane into two closed pieces.
Let H; be the one that contains all the points {p;}?_;, which we call vertices. Then the space
P = (), H; is what we call the polygonal region determined by the points {p;}}" ;. The
line segments p;p;+1 for all ¢ = 0,1,...,n — 1 with p, = pg are called the edges of P. The
union of all edges is what we call the boundary of P and, thus, the region P\Bd(P) = Int(P)
is the interior.

Given a line segment L of R?, an orientation of L is the ordering of its end points:
initial point a and final point b. In this case, we say that L is oriented from a to b. If
L' is another line segment, oriented from c to d, then the order-preserving linear map of L
onto L’ is the homeomorphism h that carries the point = (1 — s)a + sb of L to the point
h(z) = (1 — s)c+ sd of L'. Note that h is the straight-line homotopy between straight paths.

37
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Using this, if two polygonal regions P and @ have the same number of vertices, pg, ..., Pn
and qo, ..., gn, respectively, with py = p,, and gy = g5, then combining all the separate homeo-
morphisms using the pasting lemma, we get a homeomorphism h of Bd(P) with Bd(Q) that
carries the line segment from p;_; to p; by a linear map onto the line segment from ¢;_1 to ¢;
as shown on Figure 3.1.1. If p and ¢ are fixed points of Int(P) and Int(Q), respectively, then
this homeomorphism may be extended to a homeomorphism of P with ) which linearly maps
a perpendicular from p to a point z € Bd(P) to a perpendicular from ¢ to h(z).

Il G

[s

Figure 3.1.1

Definition 3.1.1. A labelling of the edges of a polygonal region P in the plane is a map
from the set of edges of P to a set S called the set of labels. Given an orientation of each
edge of P, and given a labelling of the edges of P, define an equivalence relation on the points
of P as follows:

x, if x € Int(P),
€T ~
h(zx), if x € Bd(P) and both z and h(x) belong to edges with the same label.

The quotient space X obtained from this equivalence relation is said to have been obtained by
pasting the edges of P together according to the given orientations and labelling.

Definition 3.1.2. Let n € N\{1} and let r : S* — S! be rotation through the angle 27 /n.
Form a quotient space X from the unit ball B? by identifying each point x of S' with the
points 7(x),r%(z),...,r" }(x). In this case, X is called the n-fold dunce cap and we will
denote it as D,,.
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Example 3.1.3. Consider the orien-
tations and labelling of the edges of
the triangular region pictured in Fig-

ure 3.1. All different orientations and & a = ~ b
labellings can give us different quo-
tient spaces. Note that the provided
labellings do not give a full list of all
possible labellings for a triangle. o o = - Lold
= e Dunce
However, we would like to describe Cep
a method for specifying orientations o

and labels for the edges of a polygo-

Figure 3.1: Different labellings for a triangle.
nal region without drawing a picture.

Definition 3.1.4. Let P be a polygonal region with vertices py, ..., pn, Where pg = p,. Given
orientations and a labelling of the edges of P, let ay,...,a, be the distinct labels that are
assigned to the edges of P. For each k, let a;, be the label assigned to the edge pr_1pr , and
let € be equal +1 or —1 according to the orientation assigned to this edge, i.e., if it goes from
Pr—1 to pr or the reverse. Then the number of edges of P, the orientations of the edges, and
the labelling are completely specified by the symbol

w = (ai;)" (ai,)? .. (ai,)",
which is called a labelling scheme for the edges of P.

We can omit the positive exponents in the labelling scheme to get the scheme to be
looking like words which we have been working with in the previous chapter. Recall the
first figure in Example 3.1.3: the labelling scheme there can be written as a~'ba if we take
po to be a top vertex of the triangle. If we decide to switch py we would get the schemes
baa~!' and aa~'b. It is clear that a cyclic permutation of the terms of the labelling scheme
will change the end space X formed by using the scheme only up to homeomorphism.

o

Example 3.1.5. A sphere can be con-

structed by pasting the edges of a square '
with the labelling scheme aa~'bb~!. L b = 5[2%5 ~ @
Torus T3 can also be constructed by _—

pasting the edges of a square, but with
the labelling scheme aba~'b~! as shown

[e®

on Figure 3.1.2. Figure 3.1.2: Construction of a torus using a
square labelling.
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Example 3.1.6. Recall that we defined the projective plane to be homeomorphic to the
quotient space of the unit ball B? obtained by identifying every point of the boundary with
its antipode. Since the unit square is homeomorphic to the unit ball, we can specify the same
space by the labelling scheme abab.

Theorem 3.1.7. Let X be the space obtained from a finite collection of polygonal regions by
pasting edges together according to some labelling scheme. Then X is a compact Hausdorff
space.

Proof. We will prove the case where X is obtained from a single polygonal region. This can be
extended to an arbitrary collection of polygonal regions. Firstly, note that since the image of
a compact space under a continuous map is compact and the quotient map is continuous, X is
compact. To show that X is also Hausdorff, let’s use the Lemma A.0.27 and instead show that
the quotient map 7 is a closed map. For this, we need to show that for each closed set C' of
P, the set 71 (7(C)) is closed in P. Now, the set 7~ 1(7(C)) consists of all points of C' and all
points of P which are pasted to points of C' by the map 7. To determine these points consider
the compact subspaces C' n e of P for each edge e. If ¢; is an edge that gets pasted to e, and
if h; : e; — e; is the pasting homeomorphism, then the set D, = 7~ (7(C)) N e contains the
space h;(Ce,). Thus, D, equals the union of C. and the spaces h;(C¢,), as e; ranges through
all the edges of P which are pasted to e. Since this union is compact, it is closed in e and in
P. Since 7= (m(C)) is the union of the set C' and sets D, as e ranges over all edges of P, it
is closed in P, as needed. O

Note that if X is obtained by pasting the edges of a polygonal region together, the
quotient map 7 may map all the vertices of the polygonal region to a single point of X, or it
may not. In the case of the torus, the quotient map does satisfy this condition, while in the
case of the sphere, it does not.

Theorem 3.1.8. Let P be a polygonal region; let
w = (a/il)el (0/2'2)62 te (a/in)ﬁn

be a labelling scheme for the edges of P. Let X be the resulting quotient space and let w: P — X
be the quotient map. If m maps all the vertices of P to a single point xg of X, and if ay,...,ax
are the distinct labels that appear in the labelling scheme, then m (X, xo) is isomorphic to the
quotient of the free group on k generators aq,...,ax by the least normal subgroup containing
the element
(i, ) (o) - (0, )

Proof. The map 7 sends all vertices of P to a single point of X. Therefore, the space A =
m(Bd(P)) is a wedge of k circles. For each i, choose an edge of P which is labelled a;. Consider
the linear map f; of I onto the chosen edge oriented counterclockwise and let g; = wo f;. Then
the loops g1, . . ., gr represent the set of free generators for 71 (A, z9). The loop f going around
Bd(P) once in the clockwise direction generates the fundamental group of Bd(P) and, thus,
the loop 7o f equals the loop (gi;,)' ... (gs,)". Now, the needed result follows from Theorem
2.5.1. O
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Definition 3.1.9. Consider the space T, obtained from a 4n-sided polygonal region P with
the labelling scheme
(arbray o7 Y) (agbaay byt . .. (anbnay, b, 1),

This space is called the n-fold connected sum of tori or n-torus.

In other words, to construct the 2-fold torus, we can consider the polygonal region P.
See Figure 3.1.3. If we split the polygonal region P along the indicated line ¢, each of the
resulting pieces represents a torus with an open disc removed. Another way to construct such
surface would be taking two copies of the torus 72, deleting a small open disk from each of
them, and pasting the remaining pieces together along their edges. A similar argument for
both of construction techniques shows the construction of the 3-fold torus T#T#7T and so on.
See Figure 3.1.4.

a, b,
a,
b, a,

Figure 3.1.3: Construction of T#T from a polygonal region [Mun00)].

SRS 0

Figure 3.1.4: Construction of T#T#T from a polygonal region.

Theorem 3.1.10. Let X denote the n-fold torus. Then 1 (X, zg) is isomorphic to the quotient
of the free group on the 2n generators oy, B1, .. ., Gn, By by the least normal subgroup containing
the element

[a1, B1][az, B2] - - - [an, Bn];
where [a, B] = apa=1571.

Proof. To be able to use Theorem 3.1.8 we need to show that the quotient map sends all the
vertices of the space X to a single point zg of X since all the labels are distinct by definition.
Note that every n-fold torus can be split up into n separated tori, which means that it is
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Figure 3.1.5: Generators for Ty, T» and T3, respectively [Hat02].

enough to show that all vertices of a single torus get mapped to a single point. That is true by
construction. For instance, consider a double torus with its generators, all represented in the
middle of Figure 3.1.5. Loops a and b, which are generated from one of the tori, get combined
with loops ¢ and d from the construction of the second tori. All together these four generators
can make up any loop on the double torus. ]

Definition 3.1.11. Let m > 1. Consider the space obtained from a 2m-sided polygonal region
P in the plane by means of the labelling scheme

(ar1a1)(aga2) ... (amam).

This space is called the m-fold connected sum of projective planes, or simply the m-fold
projective plane, and denoted by RP,, = RP?# ... #RP?.

Similarly to Theorem 3.1.10, we get the following result for RP,,.

Theorem 3.1.12. Let X denote the m-fold projective plane. Then 71(X,xzg) is isomorphic
to the quotient of the free group on m generators ai,...,q;, by the least normal subgroup
containing the element

(041)2(042>2 e (Ozm)g.

Example 3.1.13. The Klein bottle K is
the space obtained from a square by means
of the labelling scheme aba~'b as shown on
Figure 3.1.6. Moreover, by Theorem 3.1.8
we know the presentation of its fundamental
group: m1(K) = {a,blaba~'b).

b b

Figure 3.1.6: Construction of the Klein Bottle
[Mun00].
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3.2 Homology of Surfaces

By this point we know how to construct a surface or get a presentation of a surface, but we
do not know yet how to compare its fundamental group to a fundamental group of another
surface. This is what we are going to explore in this section.

Definition 3.2.1. Let X be a path-connected space with xg € X. Define the first homology
group of X as
Hy (X, wo) = mi(X, zo)/[m1 (X, o), m1 (X, 20)].

We know that if X is a path-connected space, and if « is a path in X from zg to z1,
then there is an isomorphism & of m (X, zg) with w1 (X, x1), but the isomorphism depends on
the choice of the path o. We would like to verify a stronger result for the group H;(X). In
this case, the isomorphism of the “abelianized fundamental group” based at xy with one based
at x1, induced by the path «, is independent of the choice of the path a.

To verify the independence, it suffices to show that if o and § are two paths from zq to
x1, then the path a * 8 induced the identity isomorphism of 71 (X, zq)/[71(X, z0), 71 (X, z0)]
with itself. Indeed, if [f] € m1 (X, z¢), then we have

glfl=1lg= f =gl =gl *[f] = [g].
When we pass to the cosets in the abelian group m1 (X, zo)/[m1(X, z0), 71 (X, 20)], we see that
g induces the identity map.

One can show that the base point is not relevant in the notation of this group similarly
to the fundamental group of a path-connected space. This being said, we will denote it by
H,(X) instead.

Showed independence of the base point and a path shows that to differentiate between
two surfaces one can compute their homology groups instead of fundamental groups. To do
this we need the following result.

Theorem 3.2.2. Let F be a group with N being a normal subgroup of F. Consider the
projection q : F — F/N. Then the projection homomorphism p : F — F/[F, F] induces an
1somorphism

¢ q(F)/[a(F),q(F)] — p(F)/p(N).
In other words, if one divides F by N and abelianizes the quotient, they would obtain the same
result as if we abelianize F' first and then divide by the image of N in this abelianization.

Proof. Consider the projection homomorphisms p,q,r,s as given in the following diagram,
where ¢(F) = F/N and p(F) = F/|F, F1].

q(F) ——
N
K v

q(F)/la(F), q(F)]

¢ |

N

p(F) ——— p(F)/p(N)
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Since 7 o p maps N to the identity, it induces a homomorphism u : ¢(F) — p(F)/p(N).
Now, since the image group is abelian, the homomorphism u induces a homomorphism ¢ :
q(F)/|g(F),q(F)] — p(F)/p(N). On the other hand, since s o ¢ maps F onto an abelian
group, it also induces a homomorphism v : p(F) — q(F)/[q(F),q(F)]. Because s o ¢ maps
N to the identity, the same thing is done by v o p and, thus, v induces a homomorphism
¢ p(F)/p(N) — q(F)/[q(F), q(F)].

We can describe the homomorphisms ¢ and @ in a similar way such that they are
inverses of each other. For instance, for a given y in ¢(F)/[¢(F), ¢(F)], choose an element z of
F such that soq(z) = y. Then ¢(y) = r(p(x)). O

Corollary 3.2.3. Let F be a free group with free generators ay,as,...,a,. Let N be the
least normal subgroup of F' containing the element x of F' and let G = F/N. Consider the
projection p : F — F/[F, F|. Then G/[G,G] is isomorphic to the quotient of F/[F, F'], which
is free abelian with basis p(aq),...,p(ay), by the subgroup generated by p(x).

Proof. The group N is generated by z and all of its conjugates. Also, the group p(NV) is
generated by p(z) since p is a projection. Therefore, by the preceding theorem, the corollary
follows. O

Theorem 3.2.4. If X is the n-fold connected sum of tori, then H1(X) is a free abelian group
of rank 2n.

Proof. By Theorem 3.1.10, the fundamental group of the n-fold tori is isomorphic to the
quotient of the free group on the 2n generators ay, 81, ..., an, By by the least normal subgroup
containing the element

[a1, 1][az, Ba] - . . [an, Bul,

where [a, 8] = apfa~!371. Now, using Corollary 3.2.3, H1(X) is isomorphic to the quotient of
the free abelian group F” on the set of generators aq, 31, ..., an, 8, by the subgroup generated
by the element [aq, 51] ... [an, Bn]. Since the group F’ is abelian, the element equals to the
identity element. Using presentations we can write the following:

Hi(Ty,) = (71(T0))ap = {1, Br, - - - am, Bal[a, B1] - - - [ans Brldar = ZE*™.
O

Theorem 3.2.5. If X is the m-fold connected sum of projective planes, then the torsion
subgroup T'(X) of Hi(X) has order 2, and H1(X)/T(X) is a free abelian group of rank m — 1.

Proof. By Theorem 3.1.12, 71 (X)) is isomorphic to the quotient of the free group F’ on the set
of generators o, ..., a, by the subgroup generated by (a1)?... ()% Let B =ai ...  an.
The torsion subgroup T'(X) is generated by 32 and, thus, the order of it is 2. Moreover, the
elements aq, ..., a1, form a basis for F’. Now, by Corollary 3.2.3, H;(X) is isomorphic
to a quotient of a free abelian group generated by m elements by the subgroup generated by
the image of 2. Then H;(X) is isomorphic to the quotient of the m-fold Cartesian product
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7 x ... x Z by the subgroup 0 x ... x 0 x 2Z, which is the same as Z™ ! @ Zy. By Theorem
2.1.11, both Hy(X)/T(X) and T(X) are free abelian. Thus, T(X) is isomorphic to Z and so
H1(X)/T(X) is isomorphic to Z™~ 1. As a result, H;(X)/T(X) is a free abelian group of rank
m — 1, as required. O

Now, as we have computed the first homology groups for the connected sum of tori and
the connected sum of projective planes, we get the following.

Corollary 3.2.6. Let 7;, and RP,, denote the n-fold connected sum of tori and the m-fold
connected sum of projective planes, respectively. The the surfaces S2, Ty, Ts, ..., RP;, RP,, ...
are all topologically distinct.

3.3 Cutting and Pasting

Now, as we have developed some algebraic techniques, we also need to catch up on some ge-
ometric techniques for computing the fundamental group. These “cut-and-paste” techniques
let us see how a space X can be represented by different collections of polygonal regions and
different labelling schemes.

First, let’s consider cutting. Let P be a polygonal region with successive vertices pg, p1,...,Pn =
po. Given k with 1 < k < n — 1, consider the polygonal regions )1 with successive vertices
D0, P15 - -+ Pk, Po, and Qo with successive vertices pg, pg,...,Pn = po. These regions have the
edge popr in common and the region P is their union.

Now, let’s move (by a translation in R?) one of the regions, for instance, Q,, away
from the region Q2 to obtain two polygonal regions with empty intersection. Call this new
region Q). Then the regions Q] and Q2 are said to have been obtained by cutting P apart
along the line from pg to pg. See Figure 3.3.1 from right to left. Note that the region P is
homeomorphic to the quotient space of @} and ()2 obtained by pasting the edge of Q) going
from qg to g to the edge of Qo going from py to pi, by a linear map of one edge onto the
other. For the reverse operation, suppose we are given two disjoint polygonal regions @)} with

D) P

Fs

Figure 3.3.1: Visualization of the pasting operation for a polygonal region P with 7 vertices.

successive vertices qo, ..., qk, qo, and (2, with successive vertices pg, pg,...,pn = po. Also,



CUTTING AND PASTING 46

suppose we form a quotient space by pasting the edge of @} from ¢o to g onto the edge of Q2
from pg to pg, by a order-preserving linear map of one edge onto the other.

The points of Q)2 lie on a circle and are arranged in counterclockwise fashion. Let us
choose points p1, ..., pr_1 on the same circle in such a way that pg, p1, ..., Pr_1, Pr are arranged
in counterclockwise order, and let (1 be the polygonal region with these as successive vertices.
There is a homeomorphism of @) onto Q1 that carries ¢; to p; for each i and maps the edge qogx
of @ linearly onto the edge popy of Q2. Therefore, the quotient space before is homeomorphic
to the region P which is the union of @J1 and (2. We say that P is obtained by pasting
Q) and Q2 together along the indicated edge. See Figure 3.3.1 from left to right. We can
summarize this as a theorem.

Theorem 3.3.1. Suppose X is the space obtained by pasting the edges of m polygonal regions
together according to the scheme

Yoy1, w2, ..., Wn.
Let ¢ be a label not appearing anywhere in the scheme above. If both yy and y1 have length at

least two, then X can also be obtained by pasting the edges of m+ 1 polygonal regions according
to the scheme

-1
YoC ,CY1, W2, ..., Wm.

Note that the converse of this statement also holds due to the nature of cutting.

We can make a list of elementary scheme operations which we are allowed to perform
without affecting the resulting space X.

1. Cut: replacing the scheme w; = yoy; with schemes yoc™! and cy;, provided that ¢ does
nor appear elsewhere in the wy and both yy and y; have length at least two.

2. Paste: replacing the scheme yoc™! and cy; by the scheme 1y, provided ¢ does not
appear elsewhere in the total scheme.

3. Relabel: replacing all occurrences of any given label by some other label which does not
appear anywhere in the total scheme. Similarly, one can change the sign of the exponent
of all occurrences of a label.

4. Permute: replacing one of the schemes w; by a cyclic permutation of w;. In other words,
the scheme now begins with a different vertex without changing anything else.

5. Flip: replacing the scheme (a;,) ... (a;,) with its formal inverse (a;, )" ... (a; ).

6. Cancel: deleting pairs aa™! in the scheme ypaa~'y; given that a does not appear else-
where in the total scheme and both yy and y; have the length at least two. To see the
geometric meaning of this operation, consider Figure 3.3.2.

7. Uncancel: the reverse operation of the previous operation.
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| =l

‘aaob and %1b_a \_%aC QJ\C‘ Cta’\ a06|

Figure 3.3.2: Visualization of the cancel operation.

Definition 3.3.2. Two labelling schemes for collections of polygonal regions are equivalent
if one can be obtained from the other by a sequence of elementary scheme operations.

Note that since each elementary operation has its inverse operation also on the list
of the elementary operations, the notion of equivalence, which was introduced above, is an
equivalence relation.

Example 3.3.3. Going back to Example 3.1.13, we already know that the Klein bottle K
is the space obtained from the labelling scheme aba~'b. It is homeomorphic to the 2-fold
projective plane RP?#RP?, which can be seen through the following elementary operations
and visualized as shown on Figure 3.3.3.

aba™'b ~ abe ! and catb cutting

~c tab and b lac?

1

permuting and flipping

~ ¢ taac™ pasting

~ aacc permuting and relabelling

-

-1
C
a
> b »
cu’[ 2 b g\l?@ W‘a a\uQ \ ) N
\ANC g C4%N c-1 / IR Ad

Figure 3.3.3: Klein Bottle transformed into RP?#RP?.
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3.4 The Classification Theorem

First we would like to show that every space obtained by pasting the edges of the polygonal
region together in pairs is homeomorphic either to S2, T}, or RP,),.

Consider polygonal regions Pi,..., P, with labelling schemes wi,...,w;. We call a scheme
proper if each label appears exactly twice in a labelling scheme. Note that a proper scheme
remains proper after any elementary operation from the previous section.

Definition 3.4.1. Let w be a proper labelling scheme for a single polygonal region. We call
w of torus type if each label in it appears exactly twice, each time with a different exponent.
Otherwise, we call w of projective type.

Consider a scheme w of projective type. This being said w has either a label not
appearing twice or a label appearing twice but with the same exponent. Consider the latter
case, i.e., w = [yolaly1]alyz], where writing [y;] means that y; may be empty.

Lemma 3.4.2. Consider a proper scheme w = [yo]a[y1]alyz2], where some of the y; for i =
0,1,2 may be empty. Then w ~ aa[yoy; ‘y2].

3o 3
7
o 7/
S —_— - /ZL
al

(a) Case where yp is empty. (b) General case.

Figure 3.4.1: Labelling schemes operations following the proof of the Lemma 3.4.1.

Proof. Let’s first assume that yo is empty. In this case we need to show that al[y;]a[ya] ~
aaly; *][y2]. In case of y; being empty as well, we have an automatic equality. Otherwise, in
case of y2 being empty, one has a[y; Ja being equal to a=*[y; *]a~!, then a='a~*[y; '], which is
also equal to aaly; 1. Now, if neither of [y] or [y2] is empty, one has to do a similar sequence
of operations to show the same thing. Consider operations shown on Figure 3.4.1a:

a[y1]a[y2] ~ a[y1]c and ¢ La[ys] cutting
~ a[y1]c and ¢y, a™! permuting and flipping
~ [yi]ecly; '] pasting
~ aaly; [ye] permuting and relabelling.

Now we can consider the general case with yg not being empty. In case of both y; and s
being empty, one can permute the scheme and get the wanted result. Otherwise, consider the
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sequence of operations shown on Figure 3.4.1b:

[yolaly1]alyz] ~ [yo]ab™" and blyi]alys] cutting
~ b yola and [y; 10 [yy a ™! permuting and flipping
~ b_l[yo] [yfl]b_l[ygl] pasting
~ bly2]bly1yy 1] permuting and relabelling
~ bbly, 1y1y0_ 1 by the case prior when 7 is empty
~ [yoy; 'y2]b~ 07! flipping
~ (w[yoyf 1y2] permuting and relabelling.
]

Corollary 3.4.3. If w is a scheme of projective type, then it is equivalent to a scheme of the
same length and of the form (ajaq)(azaz) ... (arar)wi, where k > 1 and w; is either of torus
type or empty.

Proof. The scheme w can be written as [yo]a[y1]a[y2], which by Lemma 3.4.2 is equivalent to
w’ = aaw; with the same length as w. If wy is of torus type, we are done. Otherwise, rewrite
w' as aalz0]b[21]b[22] = [aazo]b[z1]b[22]. By the same Lemma, this scheme is equivalent to
w" = bb[aazozflzg] = bbaawy with the same length as w. If wy is of torus type, we are done.
Otherwise, the argument can be continued until we reach the torus type scheme. O

Lemma 3.4.4. Consider a proper scheme w = wywy, where wi is a scheme of torus type
which does not contain two adjacent terms having the same label. Then w is equivalent to a
scheme w’ = wows, where wy has the same length as w; and has the form wy = aba™ b~ lws,
where ws is either of torus type or empty.

Proof. Step 1. First, let’s show that w can be written in the form

w = wolyi]aly2]blyz]a™ [ya]b™ [ys], (3.4.1)

where some of the y; might be empty. Let a be the label whose occurrences with opposite
exponents are the close together as possible. Since these occurrences are non-adjacent, there
is at least one other label in between - call this label b. We can, without loss of generality,
assume that b and a appear with positive exponent first. Otherwise, we just need to switch
the labels. Now, since a and a~! are the closest to each other such labels, the label b~ cannot
appear before a~!. Thus, it has to come after a~! or before a. In the first case, we are finished.
The second scheme is the same if one switch the label a to b~! and b to a.

Step 2. Consider the form 3.4.1 of w and rewrite it as

w = woly1]alyabys]a™ [yab tys].
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b c
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b b 1) <
(a) Step 2 operation. (b) Step 3, second case.
+\ <
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(¢c) Step 4, second case.

Figure 3.4.2: Labelling schemes operations following the proof of the Lemma 3.4.2.

Now, consider the cutting and pasting operation represented in Figure 3.4.2a. We have the
following result.

w ~wocly2bys]e [y1yab~ ys)
~woalya]blysla” [yryalb™ [ys] = v’ relabelling.

Step 3. If all the schemes y1, y4, y5 and wg are empty, then one gets

w' = aly2]b[ys]a= b7
~ blysla~ b afya] permuting
~ alyslba” b~ [y2] = w" relabelling.

Otherwise, we can apply the operations represented in

w' = woaly2]blys]a [y1ya]b™ [ys]
~ wocly1yaysla” ¢ alyays) Figure 3.4.2b
~ woa[y1yayslba~ b~ [yays] relabelling.

Both times end scheme can be put as w” = woa[y1y4ys]ba= b~ [yays].
Step 4. Similar to the previous step, if the schemes wyp, y; and yo are empty, one gets

w' = a[y1ysys]ba”b~"
~ ba ' aly1yays) permuting

4

~ aba 0 yryays]) = w relabelling.
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Otherwise, we can apply the operations

w” = woaly1yays]ba b y2ys]

~ woca” e raly1yaysyoys) Figure 3.4.2¢

~ woaba 07 y1yaysyays] relabelling.
]

Now, the only thing left to show is that a connected sum of projective planes and tori
is equivalent to a connected sum of projective planes.

Lemma 3.4.5. Any proper scheme w of the form wq(cc)(aba='b~1)wy is equivalent to the
scheme w' = wp(aabbce)w;.

Proof. Consider the sequence of operations:

wo(ce)(aba b wy ~ ecfab][a b [wywo] permuting
~ cclab][ba ] Hwiwo] inverse substitution
~ [ab]c[ba]c[wiwy] Lemma 3.4.2
= [a]b[c]blacwiwy]
~ bb[ac_lacwlwo] Lemma 3.4.2
= [bb]alc] " alcwiwo]
~ aa|bbccwiwy] Lemma 3.4.2
~ woaabbccwy permuting.

O]

In particular the theorem above states that the space X = T1#RP? is homeomorphic
to RP3 = RPQ#R]P’2#RIF’2. We can visualize it as on Figure 3.4.3.

AT\ & G

f'

Figure 3.4.3: Elementary scheme operations showing that T?#RP? ~ RPs.
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Theorem 3.4.6 (The Classification Theorem). Let X be the quotient space obtained from a
polygonal region in the plane by pasting its edges together in pairs. Then X is homeomorphic
either to S?, to the n-fold torus Ty,, or to the m-fold projective plane RP,,.

Proof. Let w be a proper labelling scheme of length at least 4 for the quotient space X from
the polygonal region P. We would like to show that w is equivalent to one of the schemes:

1. aa~'bb~!, which produces a 2-sphere;

2. (arbra; by ) (agboas '3 Y) .. (anbpag *b; ) with n > 1, which produces Tj;
3. abab, which produces RP;

4. (ara1)(agas) ... (amay) with m > 2, which produces RP,,.

Let’s consider w to be a proper scheme of torus type. Using the method of mathematical
induction, we will show that w is equivalent either to the scheme (1) or to the scheme (2). If
w has length 4, then it has to be either aa='bb~! or aba~'b~!, where the first one is a scheme
of type (1) and the second one is of type (3). Assume w has length greater than 4. If w is
equivalent to a shorter scheme of torus type, then by induction hypothesis, it is equivalent
either to the scheme (1) or to the scheme (2). Otherwise, w cannot contain two adjacent
elements having the same label. By Lemma 3.4.4 (taken with empty wy), w is equivalent to
a scheme having the same length as w but of the form aba~'b~'ws, where ws is a non-empty
scheme of torus type. Similarly to w, w3 cannot contain any two adjacent terms having the
same label. Thus, we can use Lemma 3.4.4 again with wy = aba~'b~! and, as a result, w has
to be equivalent to the scheme of the form

(aba= b7 1) (ede™rd ™ wy,

where wy is a either empty or of torus type. If it is empty, we are finished and the scheme is
of type (2). Otherwise, we can apply the lemma again until we reach an empty scheme.

Now, let’s consider w to be a proper scheme of projective type. Similarly, we are going to use
induction to show that w is equivalent either to the scheme (3) or to the scheme (4). If w has
length 4, it must be either aabb, which is a scheme of type (4), or aab~'b, which by Lemma
3.4.2 is equivalent to the scheme abab, which is a scheme of type (3). Now, assume the length
of w is greater than 4. By Corollary 3.4.3, w has to be equivalent to the scheme of the form

w' = (araq) ... (agay)ws,

where £ > 1 and w; being either empty or of torus type. In case it is empty, we are done.
Otherwise, if wy has two adjacent terms with the same label, then w’ is equivalent to a shorter
scheme of projective type and we can apply the induction hypothesis. Otherwise, by Lemma
3.4.4, w' is known to be equivalent to a scheme of the form

w” = (aray) ... (agag)aba™ b wsy,
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where ws is either empty or of torus type. By Lemma 3.4.5, w” is equivalent to the scheme
(araq1) ... (agag)aabbwsy, which is a scheme of type (4). Continuing the same process, we reach
the empty scheme since w is finite, and so it has to be equivalent to the scheme of type (4). O

Example 3.4.7. Consider X to be a quotient space obtained from an 8-sided polygonal region
P by means of the labelling scheme abcdad'cb™!. See Figure 3.4.4. Let 7 : P — X be the
quotient map. We can not use Theorem 3.1.8 since we do not have all vertices mapped to a
single point. Instead, we end up with 2 points g and x;.

In this case we can still calculate the fundamental group of the boundary of X. We can see
that a connects x1 to itself, ¢ connects xg to itself, while b and d are paths between zy and
x1 of opposite direction. We now want to calculate its fundamental group. Note that we can
retract the segment d into the point xy, making the point coincide with x;. The resulting
deformation retract ends up being the wedge of three circles. Thus, m(A,x0) = Z+Z % 7
by Theorem 2.4.2. One can also show it using labelling schemes, where [ | denotes an empty
scheme, with the following operations.

[Ja[bed]a[d ' cb™] ~ aad e o d e ™! by Lemma 3.4.2

~ [aa)d e o™ d [eb™!] ~ drd L aabech™! by Lemma 3.4.2
~ b ted rd taabe permuting

~ [ Ye[d  d raable[ ] ~ ccb b aT e d T d ! Lemma 3.4.2

~ aabbcedd relabelling.

Therefore, X is homeomorphic to RP3.

Figure 3.4.4: Polygonal region in Example 3.4.7.
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3.5 Construction of Compact Surfaces

So far we have proved that every compact connected surface is homeomorphic to a surface
from the list in the Theorem 3.4.6, but we have not clearly showed that every surface can be
obtained by pasting together in pairs the edges of a polygonal region.

Definition 3.5.1. Let X be a compact Hausdorff space. A curved triangle in X is a subspace
A of X and a homeomorphism h : T'— A, where T is a closed triangular region in the plane.
If e is an edge of T, we say that h(e) is an edge of A. Similarly, h(v) is a vertex of A if v is a
vertex of T'. A triangulation of X is a collection of curved triangles {A4;}? ; in X such that
Ui, Ai = X and for ¢ # j the intersection A; N A; is either empty or a vertex or edge of A4;
and A;. If X has a triangulation, we say that X is triangulable.

Note that if h; : T; — A; is the associated homeomorphism, then if A; n A; is an edge
e of both A; and A;, then the map hj_lhi defines a linear homeomorphism hj_lhi|e of the edge

h;'(e) of T; with the edge hj_l(e) of Tj.
Theorem 3.5.2. Every compact surface is triangulable.

The proof of the theorem above is a well-known result of topology. It uses Jordan
curves and the interested reader can find it in [Tho92] or in [AS60]. Prior to proving the main
result, we outline a few propositions to make the main proof easier.

Proposition 3.5.3. If X is a triangular region in the plane and if = is an interior point of one
of the edges of X, then x does not have a neighborhood in X homeomorphic to an open 2-ball.

Proof. Suppose there is a neighbourhood U of x which is homeomorphic to an open ball B in
R? with the homeomorphism carrying x to 0. Note that the space X\{z} is homeomorphic to
a circle. Let V' be an open neighbourhood of 0 contained in B. Choose € such that the open
ball B, of radius € centered at 0 lies in V. Consider the inclusion mappings:

B\{0} i B\{0}

The inclusion ¢ is homotopic to the homeomorphism h(z) = z/e, which is scaling the circle,
so by Theorem 1.4.6 it induces an isomorphism of fundamental groups. Therefore, k, must be
surjective and so V\{0} cannot be simply-connected. However, a point x on the edge, which
is a part of the boundary of the trianglular region, has arbitrary small neighbourhood W for
which W\{x} is simply-connected. Thus, we reached a contradiction and, as a result, = does
not have a neighborhood in X homeomorphic to an open 2-ball. O

Proposition 3.5.4. Let X be the union of k triangles in R3, each pair of which intersect
in the common edge e. If k > 3, then a point = of e does not have a neighborhood in X
homeomorphic to an open 2-ball.
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Proof. We would like to show that there is no neighbourhood W of z in X such that W\{z}
has abelian fundamental group (since an open 2-ball without an interior point is homotopic
to a circle and has fundamental group Z). Consider a union A of all the edges of triangles
of X which are different from e. The space A is a collection of k “arcs”, each pair of which
intersects in their endpoints. If B is the union of three of the arcs that make up A, then there
is a retraction r of A onto B, obtained by mapping each of the arcs not in B homeomorphically
onto one of the arcs in B, keeping the end points fixed. Then r, is an epimorphism by Lemma
1.4.2. Since the fundamental group of B is not abelian, neither is the fundamental group of A
by Theorem 1.4.6. It follows that the fundamental group of X\{z} is not abelian since A is a
deformation retract of X\{z}.

Assume z is the origin in R3. If W is an arbitrary neighbourhood of 0, we can find a
scaling map f(z) = ex which carries X into W. The image X, = f(X) is a copy of X lying
inside of W. Consider the inclusion mappings:

Xe\{0} i X\{0}

W -0

Similarly to the proof of Proposition 3.5.3, k. is surjective, and so the fundamental group of

W\{0} cannot be abelian. O

Theorem 3.5.5. If X is a compact surface, then X is homeomorphic to the quotient space
obtained from a collection of disjoint triangular regions in the plane by pasting their edges
together in pairs.

Proof. Since the surface is compact, by Theorem 3.5.2, X is triangulable. Let A1, Ao, ..., A,
be a triangulation of X with corresponding homeomorphisms h; : T; — A;. One can get any
triangulation to be disjoint, thus, consider the case when the triangles 7; are already disjoint.
Then the maps h; can be combined to form a map h: Ty v1To u...u T, — X. Note that this
map is a quotient map since the space E =11 vy u...u T, is compact and X is Hausdorff.
Moreover, because the map hj_l o h; is linear when A; n A; is an edge, h pastes the edges of T;
and T} together by a linear homeomorphism.

First, we need to show that for each edge e, which belongs to the triangulation triangle
Aj;, there is exactly one other triangle A; such that A;nA; = e. Note that by Proposition 3.5.3,
there is at least one additional triangle A; having e as an edge and by Proposition 3.5.4 there
is only one such triangle. Therefore, the quotient map actually pastes the edges of triangles
together in pairs, since each edge appears exactly twice in a scheme.
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Now, we would like to show that if the inter-
section A; N A; equals a vertex v, then there is
a sequence, as visualized in Figure 3.5.0, start- AL
ing with A; and ending with Aj;, of triangles
having v as a vertex such that the intersection
of each triangle of the sequence with its suc-
cessor is an edge of each. In other words, we [}
cannot have a case of the wedge of multiple
surfaces. To show that such situation is not
possible, given a common vertex v, define two
triangles A; and A; such that v e A; " A; to be
equivalent if there exists a sequence of triangles
as mentioned above.

Figure 3.5.0: Visualization of the triangle
sequence with a common vertex v.
Suppose there are two equivalence classes of triangles, and let B and C' be the unions
of the triangles in two different equivalence classes. Intersection of the sets B and C consists
of v alone since no triangle in B that has a common edge with a triangle in C'. Therefore, for
every sufficiently small neighbourhood W of v in X, the space W\{v} is disconnected, which
contradicts the locally Euclidean property of the surface X. ]

Theorem 3.5.6. If X is a compact connected triangulable surface, then X is homeomorphic to
the quotient space obtained from a polygonal region in the plane by pasting their edges together
M pairs.

Proof. From the previous theorem there is a collection {T;}]" ; of disjoint triangular regions in
the plane such that X is homeomorphic to the quotient space obtained from the collection by
pasting their edges together in pairs. To extend the previous theorem, we paste the edges of
triangles with the same label together. If two triangular regions have edges with the same label,
we can paste the regions together along these two edges. The result would be one four-sided
region with still proper orientations and labels instead of two triangular regions. Continue
similarly as long as there are two regions having edges bearing the same label. Eventually, one
reaches the situation with either a region with all different labels (exactly what we need) or
with multiple polygonal regions, no two of which have edges bearing the same label. In such
case the space ends up not being connected, which is not possible by the assumption. O
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Appendix A

Topology

The following chapter is using materials from the textbooks Topology[Mun00] and General
Topology[Wil04]. As any other axiomatic branch of mathematics, we would like to start with
a set of definitions and axioms, which later would develop theorems and propositions.

Definition A.0.1. A topology on a non-empty set X is a collection 7 of subsets of X, called
open sets, satisfying

e Both X and & are open, i.e., X €7 and @ € T.
e The union of any family of open subsets is open.
e The intersection of any finite family of open subsets is open.

A pair (X, T) consisting of a set X together with a topology 7 on X is called a topological
space.

Example A.0.2. Let X = {a,b,c,d,e, f} and T; = {X, 9, {a},{c,d},{a,c,d}, {b,c,d e, f}}.
Then 77 is a topology on X as it satisfies all the conditions from the definitions. On the
other hand, the collection T = {X, &, {a}, {a,c,d},{b,c,d, e, f}} is not a topology on X since
{b,c,d,e, f} n{a,c,d} = {c,d}, which does not belong to 7.

Example A.0.3. Define 7 as a collection of all subsets of X. It clearly satisfies all the
conditions for a topology. We call this topology discrete on the set X. In this case, we
call (X,7) a discrete space. We can also define the topology with the smallest number of
elements 7 = {@&, X} for a set X. This topology is called indiscrete and the pair (X,7T) is
called indiscrete space.

Definition A.0.4. Let (X, 7T) be a topological space. A subset S of X is said to be a closed
set in (X, 7T) if its complement X\S is open in (X, T).

One can define a topology based on closed sets instead of open sets. Then the words
“intersection” and “union” in the definition flip: we would have the intersection of any number
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of closed sets is a closed set together with the union of any finite number of closed sets being
a closed set.

Note that despite the names, open and closed sets are not mutually exclusive. For instance,
in discrete space every set is both open and closed - we call such sets clopen - while in an
indiscrete space (X, 7) all subsets of X except X and & are neither open or closed.

Definition A.0.5. A collection B of open subsets of X is a basis for the topology of X if
every open subset of X is the union of some collection of elements of B.

In other words, if B is a basis for a topology T on a set X, then a subset U of X is in
T if and only if it is a union of elements of B.

Definition A.0.6. Let Y be a non-empty subset of a topological space (X, 7). The induced
topology on Y or the subspace topology is defined as Ty ={U nY|U c T}.

Example A.0.7. Let X = {a,b,c,d,e, f},Y = {b,c, e} and define T as in Example A.0.2, i.e.,
T ={X,2,{a},{c,d},{a,c,d},{b,c,d, e, f}}. Then the subspace topology on Y is

TY = {Y7 9, {C}}
Recall from the set theory the notion of equivalence relations.

Definition A.0.8. A relation ~ on a set X is said to be an equivalence relation if it is
refrexive (z ~ z), symmetric (if z ~ y then y ~ z) and transitive (if z ~ y and y ~ z then
x ~ z). For an element x € X the equivalence class is defined as all elements that are related
to x:

[2] :={y € X|z ~ y}.

The set of all equivalence classes of X determines a partition of X.

Definition A.0.9. A map f : X — Y between topological spaces (X, Tx) and (Y, Ty) is
continuous if f~1(U) is open in X for every open set U of Y.

Definition A.0.10. Topological spaces (X, 7x and (Y, 7Ty) are said to be homeomorphic if
there exists a continuous function f : X — Y such that f is bijective and has a continuous
inverse. The map f is said to be a homeomorphism between (X, Tx and (Y, 7y). We would
write (X, 7Tx) = (Y, Ty ). One can show that =~ is an equivalence relation.

A continuous map f : X — Y is said to be a local homeomorphism if every point p €
X has a neighbourhood U € X such that f(U) isopenin Y and f restricts to a homeomorphism
from U to f(U).

Definition A.0.11. Let A be a subset of a topological space (X,7T). A point x € X is said
to be a limit point of A if every open set U containing x also contains a point of A different
from .

Example A.0.12. Consider the topological space (X,7), where X = {a,b,c,d,e} and T =
{X,2,{a},{c,d},{a,c,d},{b,c,d,e}}. Consider A = {a,b,c}. Then elements b, d and e are
limit points of A, while a and ¢ are not.
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Proposition A.0.13. Let A be a subset of a topological space (X, 7). Then A is closed in
(X, T) if and only if A contains all of its limit points.

Definition A.0.14. Let A be a subset of a topological space (X, 7). Then the set A u A’
consisting of A and all its limit points, denoted as a set A’, is called the closure of A and is
denoted by A.

Definition A.0.15. Let (X1,71),...,(Xk, Tx) be topological spaces. The collection of all
subsets of X x ... x X}, of the form Uy, ..., U, where each U; is open in Xj, forms a basis
for a product topology on X x ... x Xj.

Definition A.0.16. If 7 : X — Y is a map, a subset U € X is said to be saturated with
respect to m if U is the entire preimage of its image: U = 7~ 1(7(U)).

Definition A.0.17. Let X be a topological space, Y be a set and 7 : X — Y be a surjective
map. The quotient topology on Y determined by x is defined by the following rule:
U C Y is open if and only if 7=1(U) is open in X. If Y is a topological space itself, the map
7 is called the quotient map if it is surjective and continuous and Y has a quotient topology
determined by .

Here are some useful properties of a quotient map 7 : X — Y

e If B is a topological space, a map F : Y — B is continuous if and only if Fonr: X - B
is continuous.

e The quotient topology is the unique topology on Y for which the previous property holds.
e A subset K €Y is closed if and only if 7~!(K) is closed in X.
o If 7 is injective, then it is a homeomorphism.

e If U < X is a saturated open or closed subset, then the restriction 7|y : U — w(U) is a
quotient map.

e Any composition of m with another quotient map is again a quotient map.

Theorem A.0.18. Let X and Y be topological spaces and let F': X — Y be a continuous map
that is either open or closed.

1. If F is surjective, then it is a quotient map.
2. If F is injective, then it is a topological embedding.
3. If F is bijective, then it is a homeomorphism.

Definition A.0.19. Let X be a topological space, ~ be an equivalence relation on X, X/ ~ be
the set of all equivalence classes of X and 7 : X — X/ ~ be a natural projection sending each
element = € X to its equivalence class [z]. Endowed with the quotient topology determined
by =, the space X/ ~ is called quotient space of X determined by 7.
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Definition A.0.20. A topological space (X, 7T) is said to be connected if the only clopen
subsets of X are X and @. From this, it follows that a topological space (X, 7") is not connected
or disconnected if and only if there are non-empty open sets A and B such that An B =g
and AuB = X.

Theorem A.0.21. The union of a collection of connected subspaces of X with a point in
common is connected.

Definition A.0.22. A topological space X is compact if for every collection C of open sets
of X such that | J,.o A = X there is a finite subcollection F' < C such that | J, . 4 = X.

Theorem A.0.23. The image of a compact space under a continuous map is compact.

Definition A.0.24. A topological space X is Hausdorff if ¥ p,q € X such that p # ¢ there
exists a pair of disjoint open subsets U and V in Tx such that pe U, ge Vand U nV = @.

Note that by this definition singleton sets of a Hausdorff space are closed. In other words, is
X is a Hausdorff space with a point € X, then X\{z} is open in X. To see that, consider
a point a distinct from x, By definition A.0.24, there is an open set U, containing a but not
containing . Then . x\z Ua 18 open as union of open sets, but it also equal to X\{x}.

Definition A.0.25. A topological space X is second-countable if there is a countable basis
for its topology.

Definition A.0.26. Suppose that one-point sets are closed in X. Then X is said to be normal
if for each pair (A, B) of disjoint closed sets of X, there exists disjoint open sets containing
A and B, respectively. In other words, every two disjoint closed sets of X have disjoint open
neighborhoods.

Note that a normal space is always Hausdorff, but only compact Hausdorff space is normal.
Lemma A.0.27. Let 7 : E — X be a closed quotient map. If £ is normal, so is X.

Theorem A.0.28 (The Pasting Lemma). Let X = A u B, where A and B are closed in X.
Let f: A—>Y and g: B — Y be continuous. If f(z) = g(z) for every x € An B, then f and
g combine to give a continuous function h : X — Y, defined by setting h(z) = f(x) ifx e A
and h(x) = g(x) if z € B.

Theorem A.0.29 (Extreme Value Theorem). Let f : X — R be a continuous function, where
X is a compact set. Then f is bounded and there exists p,q € X such that f(p) = supyex f(z)

and f(q) = infex f(x).

Lemma A.0.30 (Lebesgue Number Lemma). For any open cover A of a compact metric space
X, there exists a real number § > 0, also called a Lebesgue number for A, such that every
open ball in X of radius ¢ is contained in some element of A.



Appendix B

Category Theory

Definition B.0.1. A category C consists of a class Ob(C), whose elements are to be called
objects, and a class Mor(C), whose elements are to be called morphisms, satisfying the
following:

e For each morphism f, there are objects A and B, called the source and target of f. In
this case we write f: A — B.

e Given any two morphisms f : A — B and g : B — C, there exists a morphism g o f :
A — (C, called the composition of f and g.

e Given any objcet A, there is an identity morphism 1,4 : A — A such that for any
ftA—> B, foly=f=1pof.

e Morphism composition is associative: given any two morphisms f: A —- B, g: B — C
and h:C — D, (fog)oh= fo(goh).

Definition B.0.2. In any category C, a morphism f : A — B is called an isomorphism if
there is a morphism ¢ : B — A such that fog=1p and go f = 1 4. In this case, f and g are
called inverses, g is denoted f~!, and we say that A is isomorphic to B.

Example B.0.3. Let’s look at some important examples of categories: First, let us define 0
as an empty category (with no objects and no morphisms) and 1 as a category with one object
and the identity morphism.

e Sets is the category of sets and functions between them.

Setsg, is the category of finite sets and functions between them.

Groups is the category of groups and group homomorphisms.

Ab is the category of abelian groups and group homomorphisms.

Graphs is the category of graphs and graph homomorphisms.
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e Vectr is the category of vector spaces over a field F' and linear transformations in F'.
e Top is the category of topological spaces and continuous mappings.
e Poset is the category of elements of the set and orderings.

Finally, an individual group is itself a category with exactly one object, where all the morphisms
are isomorphisms. For a given group G, this category is called BG.

There are also examples of categories whose objects are sets with distinguished base
points, in addition to possibly other structure.

Definition B.0.4. A pointed set is an ordered pair (X,p) where X is a set and p is an
element of X. Similarly, one can defined objects as pointed topological spaces and so on.
Moreover, if (X, p) and (X', p’) are both pointed sets, a map F': X — X’ is called a pointed
map if F(p) = p’. In this case, we write F : (X,p) — (X', p').

Example B.0.5. With the definition above, let’s look at categories of pointed objects:
e Set, is a category of pointed sets and pointed maps.
e Top. is the category of pointed topological spaces and pointed continuous maps.

Definition B.0.6. A subcategory of a category C is a subclass Ob(D)< Ob(C) and a subclass
Mor(D) < Mor(C) such that any morphism in Mor(D) is between two objects in Ob(D).

For example, 0 is a subcategory of any category.

Definition B.0.7 (Types of morphisms). A morphism f : A — B is called a monomorphism
if it is left cancellative, i.e., f o g = foh = g = h. In this case, we say that f is monic.

A morphism f : A — B is called an epimorphism if it is right cancellative, i.e. gof = ho f =
g = h. In this case, we say that f is epic.

A morphism is called a bimorphism if it is both epic and monic.

A morphism is called a retraction if it has a left-inverse and a section if it has a right-inverse.
Note that a morphism which is both a retraction and a section is an isomorphism.

Definition B.0.8. An endomorphism is a morphism f: A — A from an object to itself. If
an endomorphism is also an isomorphism, then it is called an automorphism. The class of
endomorphisms of an object A is denoted End(A) and the class of automorphisms is denoted

Aut(A).

Definition B.0.9. A covariant functor (or just a functor) F : C — D between categories
C and D is a mapping Ob C — Ob D and Mor C — Mor D such that:

e F assigns to each object X eOb C an object F(X) €Ob D.

e F assigns to each morphism f € Morc(X,Y) a morphism F(f) € Morc(F(X), F(Y)).
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° .F(]IA) = ]1.7:(14)

o Flgof)=F(g)oF(f)

In short, a functor is a morphism of categories. In particular, every category C has the
identity functor 1¢: C — C.

Definition B.0.10. Two categories C and D are isomorphic if there exist functors F : C — D
and G : D — C that are inverses F oG = 1p and G o F = 1¢. In particular, a functor is
an isomorphism functor if and only if it is bijective on the class of objects and the class of
morphisms.

Definition B.0.11. Let C be a category and {A4;|i € I} be a family of objects of C. A
product for the family {A;|i € I} is an object P of C together with a family of morphisms
{mi : P — A;|i € I} such that for any object B and a family of morphisms {¢; : B — A;|i € I},
there is a unique morphism ¢ : B — P such that m; 0 ¢ = ¢; for all i € I.

Definition B.0.12. A coproduct for the family {A;|i € I} is an object S of C together with a
family of morphisms {¢; : A; — S|i € I} such that for any object B and a family of morphisms
{¢; : A; — Bli € I}, there is a unique morphism 1 : S — B such that 1 o ¢; = 1); for all i € I.

Theorem B.0.13. If (P, {m;}) and (Q,{1;}) are both products or both coproducts of the family
{A;]i € I} of objects of a category C, the P and Q are equivalent.

In many categories, the “objects” are sets or are sets with an added structure (such as
groups). When this is the case, the morphisms can be considered as functions on sets.

Definition B.0.14. A concrete category is a category C together with a function o that
assigns to each object A of C a set o(A), called the underlying set of A, such that

1. every morphism mapping A — B of category C is a function on the underlying sets
o(A) = o(B),

2. the identity morphism of each object A of C is the identity function on the underlying
set o(A), and

3. composition of morphisms in C agrees with composition of functions on the underlying
sets.

Definition B.0.15. Let F' be an object in a concrete category C, X a nonempty set, and
i: X — I aset map. Then object F' is free on the set X provided that for any object A of C
and set map f : X — A, there exists a unique morphism of C, f : F — A, such that foi = f
as a set map X — A.

Theorem B.0.16. If C is a concrete category, F' and Fy are objects of C such that F is free
on the set X and Fy is free on the set Xo and | X| = | Xo|, then F' is equivalent to Fy.
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