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Abstract

The Classification of Surfaces is one of the problems which gave rise to the modern topology. It
has become one of the signature theorems of the area, which now is called algebraic topology.
It states that any closed connected surface is homeomorphic to the sphere, the connected sum
of tori, or the connected sum of projective planes. In this thesis we are going to go over the
geometric, topological, and algebraic tools necessary for understanding, proving and using the
theorem together with some useful examples of surfaces.

Thesis itself consists of three chapters. The first part talks about homotopy theory
and defines the fundamental group, which is an algebraic invariant between topological spaces.
In addition, we learn some basic ways of calculating the fundamental group for some easy-
to-imagine examples. The second chapter introduces free groups and free products, which
altogether let us calculate the fundamental group in more complex cases. The third and
final chapter introduces the geometric ideas behind the classification theorem, which includes
polygonal regions and labelling schemes together with operations on them. As a result, we
overview the construction of any two-dimensional compact surface and classification theorem
as a main goal.
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Chapter 1

The Fundamental Group

1.1 Homotopy of Paths

Two continuous functions from one topological space to another are called homotopic if one can
be “continuously deformed” into the other. Such a deformation is called a homotopy between
the two functions and that is what this chapter is about.

Definition 1.1.1. Continuous maps f0, f1 : X Ñ Y are said to be homotopic, which is
denoted by f0 » f1, when there is a continuous map F : X ˆ I Ñ Y , called a homotopy from
f0 to f1, such that for all points x P X we have F px, 0q “ f0pxq and F px, 1q “ f1pxq. With
this, we can define ft0psq “ F ps, t0q to be a path from x0 to x1 obtained at t “ t0.
If f is homotopic to a constant map, i.e., if f » consty for some y P Y , then we say that f is
nulhomotopic.

Theorem 1.1.2. The homotopy relation » is an equivalence relation on the set MappX,Y q

of continuous functions from X to Y .

Proof. Let f, f0, f1, f2 : X Ñ Y be continuous maps. We need to check all the conditions of
an equivalence relation:

• Reflexivity (f » f):
Take the map F : X ˆ I Ñ Y , F px, tq “ fpxq. Since for all t P I and for all x P X we
have F px, tq “ fpxq, F is a homotopy from f to f .

• Symmetry(f0 » f1 ñ f1 » f0):
Let F : XˆI Ñ Y be a homotopy from f0 to f1, i.e. F px, 0q “ f0pxq and F px, 1q “ f1pxq.
Take G : X ˆ I Ñ Y such that Gpx, tq “ F px, 1´ tq. This function is continuous since it
is defined as a composition of continuous functions. Moreover, Gpx, 0q “ F px, 1q “ f1pxq

and Gpx, qq “ F px, 0q “ f0pxq. Thus, G is a homotopy from f1 to f0.

• Transitivity(f0 » f1 and f1 » f2 ñ f0 » f2):
Let F1 : X ˆ I Ñ Y such that F1px, 0q “ f0pxq and F1px, 1q “ f1pxq be a homotopy from

1



HOMOTOPY OF PATHS 2

f0 to f1. Also, let F2 : X ˆ I Ñ Y such that F2px, 0q “ f1pxq and F2px, 1q “ f2pxq be a
homotopy from f1 to f2. Take

F12px, tq “

#

F1px, 2tq 0 ď t ď 1{2,

F2px, 2t´ 1q 1{2 ď t ď 1.

By pasting lemma A.0.28, its components are continuous and since at t “ 1{2 we have
F1px, 1q “ f1pxq and F2px, 1´ 1q “ F2px, 0q “ f1pxq, F12 is well-defined and a homotopy
from f0 to f2.

We shall denote the homotopy class of a continuous map f : X Ñ Y by rf s. That is, rf s “

tg P MappX,Y q | g » fu. Moreover, we shall denote the set of homotopy classes of continuous
maps from X to Y by rX,Y s “ MappX,Y q{ ».

Example 1.1.3. Let f, g : R Ñ R be any two continuous, real functions. To show that
f » g, consider a function F px, tq “ p1´ tq ¨ fpxq ` t ¨ gpxq. Being a composition of continuous
functions F is continuous. Moreover, F px, 0q “ p1 ´ 0q ¨ fpxq ` 0 ¨ gpxq “ fpxq and F px, 1q “

p1 ´ 1q ¨ fpxq ` 1 ¨ gpxq “ gpxq. Thus, F is a homotopy between f and g. In particular, this
example shows that any continuous map f : R Ñ R is nulhomotopic.

Let’s consider the special case in which f is a path in X. Recall that if f : r0, 1s Ñ X
is a continuous map such that fp0q “ x0 and fp1q “ x1, we say that f is a path in X from x0
from x1. We call x0 the initial point and x1 the final point of the path f .

F : I ˆ I Ñ X
‚

x1

‚

x0

Figure 1.0.0: the path f can be continuously deformed into f 1

by a continuous deformation F .

I ˆ I

F p0, tq

f 1 » f

F p1, tq

f
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Definition 1.1.4. Two paths f0 and f1 from I “ r0, 1s to X are path homotopic if they have
the same initial point x0 and the final point x1, and if there is a continuous map F : IˆI Ñ X
such that @s P I and @t P I:

F ps, 0q “ f0psq, F p0, tq “ x0,

F ps, 1q “ f1psq, F p1, tq “ x1.

F in this case is called a path homotopy between f0 and f1. If f0 is path homotopic to f1,
we write f0 »p f1. See Figure 1.0.0.

Since the path homotopy is a special case of homotopy, one can conduce the following:

Theorem 1.1.5. The path-homotopy relation »p is an equivalence relation.

Example 1.1.6. Let f0 and f1 be any two maps of a
space X into R2. Take F px, tq “ p1 ´ tqf0pxq ` tf1pxq

as in Example 1.1.3. See Figure 1.1.0. We already know
F is a homotopy map between f0 and f1. This specific
description of a homotopy is called a straight-line (lin-
ear) homotopy since for any p P X it moves the point
f0ppq to the point f1ppq along the straight line segment. If
f0 and f1 are both paths, then F will be a path-homotopy
from f0 to f1.

Figure 1.1.0: Straight-line
homotopy between f0 and f1.

More generally, let A be any convex subset of R2. Recall that a set C is convex if the line
segment between any two points in C lies in C, i.e., @x1, x2 P C, @θ P r0, 1s, θx1`p1´θqx2 P C.
Then any two paths f0 and f1 between x0 and x1 in A are path-homotopic, since for all s, t P A,
by definition of convex set, we have F ps, tq P A and

F ps, 0q “ f0psq, F p0, tq “ p1 ´ tqf0p0q ` tf1p0q “ f0p0q,

F ps, 1q “ f1psq, F p1, tq “ p1 ´ tqf0p1q ` tf1p1q “ f0p1q.

Definition 1.1.7. Given paths f and g such that fp1q “ gp0q, the product path f ˚ g (also
called composition or concatenation) is given by

f ˚ gpsq “

#

fp2sq 0 ď s ď 1{2,

gp2s´ 1q 1{2 ď s ď 1.

Intuitively, the composition law is just given by following one path, and then the other with
twice the speed, as shown in Figure 1.1.1.

Because we need the endpoint of one path to be the beginning point for the other for compo-
sition, the set of paths does not form a group. However, if we assume that the paths start and
end at the same point (loops), then they do. We will take a closer look at this group in the
next section!
The operation ˚ can be applied to homotopy classes as well. Once again, let f : I Ñ X be a
path from x0 to x1 and let g : I Ñ X be a path from x1 to x2. Define rf s ˚ rgs :“ rf ˚ gs.
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Figure 1.1.1: Construction of a concatenation [Mun00].

Theorem 1.1.8. The operation ˚ between homotopy classes is well-defined.

Proof. Let f 1 P rf s and g1 P rgs. Because rf 1s “ rf s and rg1s “ rgs, we need to check if
rf 1s ˚ rg1s “ rf s ˚ rgs. Since f and f 1 are path-homotopic, there exists a path homotopy F from
f to f 1. Likewise, there exists a path homotopy G from g to g1. Define H : I ˆ I Ñ X such
that:

Hps, tq “

#

F p2s, tq 0 ď s ď 1{2,

Gp2s´ 1, tq 1{2 ď s ď 1.

Now we show that H is a path homotopy between f ˚ g and f 1 ˚ g1, which are both paths from
x0 to x2. We know H is continuous by the pasting lemma A.0.28. Let’s check the conditions
from definition of the path-homotopy:

Hps, 0q “

#

F p2s, 0q 0 ď s ď 1{2,

Gp2s´ 1, 0q 1{2 ď s ď 1,
Hp0, tq “ F p0, tq “ x0,

Hps, 1q “

#

F p2s, 1q 0 ď s ď 1{2,

F p2s´ 1, 1q 1{2 ď s ď 1,
Hp1, tq “ Gp1, tq “ x2.

The function H is therefore a path homotopy between f ˚ g and f 1 ˚ g1. Thus, rf ˚ gs is inde-
pendent of the class representatives f and g and the operation ˚ is well-defined on equivalence
classes.

Lemma 1.1.9. Let k : X Ñ Y be a continuous function (map) and F be a path homotopy
in X between paths f and f 1. Then k ˝ F is a path homotopy in Y between paths k ˝ f and
k ˝ f 1.

Proof. The function k ˝ F is continuous by being a composition of continuous functions. Let
x0 and x1 be respectively the initial and the final point of both f and f 1. Then from the
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definition, we get the following:

k ˝ F ps, 0q “ kpF ps, 0qq “ kpfpsqq “ k ˝ fpsq,

k ˝ F ps, 1q “ kpF ps, 1qq “ kpf 1psqq “ k ˝ f 1psq,

k ˝ F p1, tq “ kpF p1, tqq “ kpx1q,

k ˝ F p0, tq “ kpF p0, tqq “ kpx0q,

which means that k ˝ F is indeed the required homotopy.

Lemma 1.1.10. Let f and g be paths such that fp1q “ gp0q and k : X Ñ Y be a map. Then
k ˝ pf ˚ gq “ pk ˝ fq ˚ pk ˝ gq.

Proof. Let’s start with the right side of the equality and use Definition 1.1.7:

pk ˝ fq ˚ pk ˝ gqps, tq “

#

k ˝ fp2s, tq 0 ď s ď 1{2,

k ˝ gp2s´ 1, tq 1{2 ď s ď 1.

which is equal to
`

k ˝ pf ˚ gq
˘

ps, tq.

Theorem 1.1.11. Let f : I Ñ X be a path from x0 to x1, g : I Ñ X be a path from x1 to x2,
and h : I Ñ X be a path from x2 to x3. Define f̄ : I Ñ X such that f̄psq “ fp1 ´ sq. Given
x P X, let ex denote the constant path ex : I Ñ X carrying all the points of I to one point x
of X. The operation ˚ between homotopy classes has the following properties:

• Identity Elements: rex0s ˚ rf s “ rf s and rf s ˚ rex1s “ rf s.

• Inverses: rf s ˚ rf̄ s “ rex0s and rf̄ s ˚ rf s “ rex1s.

• Associativity: prf sq ˚ rgsq ˚ rhs “ rf s ˚ prgs ˚ rhsq.

Proof. Let’s prove separately all the parts of the theorem:
Identity elements: We want to show pex0 ˚ fq »p f . Let e0 : I Ñ I be the constant path at
0 and let i : I Ñ I be the identity path. Because I is convex and both paths e0 ˚ i and i are
paths from 0 to 1 by Example 1.1.6 these two paths are path-homotopic with homotopy F .
By Lemma 1.1.10, we know f ˝ pe0 ˚ iq “ pf ˝ e0q ˚ pf ˝ iq “ ex0 ˚ f . Then F ˝ f is a homotopy
between f ˝ i and ex0 ˚ f . Similar argument can be done to show the argument towards the
right identity. It follows similarly rf s ˚ rex1s “ rf s.
Inverses: We want to show pf ˚ f̄q »p ex0 . Given a path f in X from x0 to x1, let f̄ be a
path from x1 to x0 such that f̄psq “ fp1 ´ sq. We know f ˚ f̄ “ pf ˝ iq ˚ pf ˝ īq “ f ˝ pi ˚ īq.
Similarly, we know ex0 “ f ˚ e0. Since i ˚ ī and e0 are loops in I based at 0 and I is convex,
there exists the straight line path homotopy F between i ˚ ī and e0. Then by Lemma 1.1.9,
f ˝ F is a path homotopy between f ˝ pi ˚ īq “ f ˚ f̄ and f ˚ e0 “ ex0 . Therefore, as before, we
find rf s ˚ rf̄ s “ rex0s. By similar reasoning, rf̄ s ˚ rf s “ rex1s.
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Associativity: By the definition of the concatenation one can write

pf ˚ gq ˚ h “

$

’

&

’

%

fp4sq 0 ď s ď 1{4,

gp4sq 1{4 ď s ď 1{2,

hp2sq 1{2 ď s ď 1,

f ˚ pg ˚ hq “

$

’

&

’

%

fp2sq 0 ď s ď 1{2,

gp4sq 1{2 ď s ď 3{4,

hp4sq 3{4 ď s ď 1.

Let k : I Ñ I be a map: kpsq “

$

’

&

’

%

s{2 0 ď s ď 1{2,

s´ 1{4 1{2 ď s ď 3{4,

2s´ 1 3{4 ď s ď 1.

Then ppf ˚ gq ˚ hq ˝ k “ f ˚ pg ˚ hq “ pf ˚ pg ˚ hqq ˝ i. Because k and i are both paths from 0
to 1 in the convex space I, k and i are both path-homotopic by Example 1.1.6. Let F be a
path homotopy from k to i spoken of earlier. Then, ppf ˚ gq ˚ hq ˝ F is a path homotopy from
ppf ˚ gq ˚ hq ˝ k “ f ˚ pg ˚ hq to ppf ˚ gq ˚ hq ˝ i “ pf ˚ gq ˚ h. Thus, f ˚ pg ˚ hq »p pf ˚ gq ˚ h and
rf s ˚ prgs ˚ rhsq “ prf s ˚ rgsq ˚ rhs.

Now that we know ˚ is associative, we know rf1s˚ rf2s˚ ...˚rfns is well-defined. In other words,
no matter how you chop the path, you have the product of all the pieces will give you the same
result. And one can use a very smart chopping in some cases!

1.2 The Fundamental Group

Definition 1.2.1. A path f : r0, 1s Ñ X is called a loop if fp0q “ fp1q. It is said to be based
at x if fp0q “ fp1q “ x. Moreover, a loop is nulhomotopic if it is homotopic to the constant
loop, i.e., the loop f : I Ñ X given by fptq “ x0 for all t.

With the notion of loops, we can now talk about the group defined under the concatenation:

Definition 1.2.2. The fundamental group or the first homotopy group of X, π1pX;x0q,
is the set of equivalence classes of loops f : I Ñ X based at x0.

Theorem 1.2.3. The fundamental group is a group under composition of loops.

Proof. Certainly composition is an operation taking loops to loops. We first look to see that
composition is well defined on homotopy classes. If f0 » f1 and g0 » g1, then by composing
the homotopies we get a homotopy of f0 ˚ g0 to f1 ˚ g1. All other properties of a group come
from Theorem 1.1.11.

Example 1.2.4. The space π1pRn, x0q, where x0 P Rn, has trivial fundamental group. To see
this, we have to show every loop is homotopic to the constant loop. For a loop f : I Ñ Rn at
x0, consider the straight-line homotopy F ps, tq “ t ¨ fpsq ` p1 ´ tq ¨ x0. It defines a homotopy
between f and the trivial loop.

In particular, the unit ball Bn in Rn: Bn “ tx|x21 ` x22 ` ... ` x2n ď 1u has trivial
fundamental group since all loops at xo in the ball are nulhomotopic.
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Definition 1.2.5. Let α be a path in X from x0 to x1. Define a “α-hat” map α̂ : π1pX,x0q Ñ

π1pX,x1q such that α̂prf sq “ rαs ˚ rf s ˚ rαs.

Figure 1.2.1: Both loops f1 and f2
which are based at x0 can be

transformed to be starting at x1.

This function is well-defined from Theorem 1.1.8. Then
if f is a loop based at x0 then α̂prf sq is a loop based
at x1. In other words, we now have a way of “mov-
ing” from one points to another using the path between
them, like shown on Figure 1.2.1.

Theorem 1.2.6. The map α̂ is a group isomorphism.

Proof. First, note that α̂ is a homomorphism since

α̂rf s ˚ α̂rgs “ prα̂s ˚ rf s ˚ rαsq ˚ prαs ˚ rgs ˚ rαsq

“ rα̂s ˚ rf s ˚ rgs ˚ rαs “ α̂prf s ˚ rgsq.

We need to show that α̂ is an isomorphism as well.
Let rhs and rf s be elements of π1pX,x1q and π1pX,x0q,
respectively. Then

α̂prhsq “ rαs ˚ rhs ˚ rαs “ rαs ˚ rhs ˚ rαs and α̂
`

α̂qprhsq
˘

“ rαs ˚ prαs ˚ rhs ˚ rαsq ˚ rαs “ rhs.

Then, as a result, we get:

α̂
`

α̂rf s
˘

“ rαs ˚ rα̂rf ss ˚ rαs “ rαs ˚ prαs ˚ rf s ˚ rαsq ˚ rαs “ rf s.

as needed.

Definition 1.2.7. A space X is path connected if there exists a path joining any two points
(i.e., for all x, y P X there is some path f : I Ñ X with fp0q “ x, fp1q “ y).

The fundamental group of a path connected space does not depend on the choice of base point.

Theorem 1.2.8. Let X be a path connected space with x, y P X. Then, we have an isomor-
phism of groups π1pX,xq – π1pX, yq.

Proof. We can construct the isomorphism π1pX,xq – π1pX, yq as follows. Start by choosing a
path f0 from x to y, i.e., f0 : I Ñ X with f0p0q “ x, f0p1q “ y. Then, send a loop f1 based at
x to the loop α̂, which is a loop based at y.

Because of the theorem above, it is not particularly important to keep track of the base point
if one is working with a path-connected space. For this reason, base point is usually omitted
in the definition of a fundamental group of a space and we just write π1pXq.
Note that if a space is not path connected, then for x0 in a component of X, π1pX,x0q

provides no information about the other components of X. This is the reason for the study of
fundamental groups being usually restricted to path connected spaces.
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Definition 1.2.9. A space is simply-connected if it is path connected and π1pX,xq “ 0 for
all points x P X, i.e., every path between two points can be continuously transformed into any
other such path while preserving the two endpoints.

A simply-connected space is a path connected space that has no “holes” that pass through
the entire space. Such a hole would prevent some loops from being shrunk continuously into a
single point.

Theorem 1.2.10. In a simply-connected space X, any two paths that have the same initial
point x0 and endpoint x1 are path homotopic.

Proof. Let α and β be two paths from x0 to x1. Then α ˚ β is defined and is a loop based at
x0. Since X is a simply-connected space, this loop is path-homotopic to the constant loop ex0
at x0. So rαs “ rα ˚ βs ˚ rβs “ rex0s ˚ rβs “ rβs.

We now develop methods to show that the fundamental group is a topological invariant or, in
other words, a property shared by homeomorphic spaces.

Definition 1.2.11. Let h : X Ñ Y be a continuous map between spaces X and Y with
y0 “ hpx0q. Then for a loop f in X based at x0, h ˝ f : I Ñ Y is a loop in Y based at y0.
We denote this by h : pX,x0q Ñ pY, y0q. Define h˚ : π1pX,x0q Ñ π1pY, y0q by h˚rf s “ rh ˝ f s.
Then h˚ is the homomorphism induced by h relative to the base point x0. In the event
that we consider the homomorphism induced by h relative to different base points, we denote
h˚ as phx0q˚ or phx1q˚, etc.

We need to show that in the definition above the map h˚ is well-defined and indeed a
homomorphism. The first condition is true since for f, f 1 P rf s, there is a path homotopy F
between f and f 1. Then h ˝ F is a path homotopy between h ˝ f and h ˝ f 1 by Lemma 1.1.9.
Moreover, since ph˝fq ˚ ph˝gq “ h˝ pf ˚gq, h is, in fact, a group homomorphism. The induced
homomorphism has two crucial properties.

Theorem 1.2.12. If h : pX,x0q Ñ pY, y0q and k : pY, y0q Ñ pZ, z0q are continuous, then
pk ˝ hq˚ “ k˚ ˝ h˚. If i : pX,x0q Ñ pX,x0q is the identity map, then i˚ is the identity
homomorphism.

Proof. Since pk ˝ hq˚prf sq “ rpk ˝ hq ˝ f s, we get pk˚ ˝ h˚qprf sq “ k˚ph˚prf sqq “ k˚ph ˝ fq “

rk ˝ ph ˝ fqs. Similarly, i˚prf sq “ ri ˝ f s “ rf s.

Theorem 1.2.13. If h : pX,x0q Ñ pY, y0q is a homeomorphism, then h˚ is an isomorphism
of π1pX,x0q with π1pY, y0q.

Proof. Since h is a homeomorphism, it has an inverse k : pY, y0q Ñ pX,x0q. Applying Theorem
1.2.12 we get k˚ ˝ h˚ “ pk ˝ hq˚ “ i˚, where i is an identity map of pX,x0q. The same way,
h˚ ˝k˚ “ ph˝kq˚ “ j˚, where j is an identity map of pY, y0q. Since both i and j are the identity
homomorphisms of the groups π1pX,x0q and π1pY, y0q, respectively, k˚ is an inverse of h˚.
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Theorem 1.2.14. Let h, k : pX,x0q Ñ pY, y0q be continuous maps. If h and k are homotopic,
and the image of the base point x0 P X remains fixed at y0 P Y when acted upon by the
homotopy, then the homomorphisms h˚ and k˚ are equal.

Proof. Let H : X ˆ I Ñ Y be the homotopy between h and k such that Hpx0, tq “ y0 for all
t P I. Then, by definition, Hpx, 0q “ hpxq and Hpx, 1q “ kpxq. Consider a loop f : I Ñ X
based at x0 and the compositions h ˝ f , k ˝ f and H ˝ pf ˆ 1Iq : I ˆ I Ñ Y :

I ˆ I X ˆ I Y
fˆ1I H

Hpfpxq, 0q “ h ˝ fpxq Hpfpxq, 1q “ k ˝ fpxq

Hpfp0q, tq “ Hpfp1q, tq “ y0,@t P I

Then H ˝ pf ˆ 1Iq : I ˆ I Ñ Y is a homotopy between h ˝ f and k ˝ f . Moreover, h˚prf sq “

rh ˝ f s “ rk ˝ f s “ k˚prf sq, and, thus, k˚ “ h˚ : π1pX,x0q Ñ π1pY, y0q.

Definition 1.2.15. A space X is contractible if there is a homotopy between the identity
map X Ñ X and a constant map.

Example 1.2.16. Let’s look at a few facts about contractible spaces:

1. I, Rn and the disk Dn are contractible. For the first two spaces, define the homotopy by
F px, tq “ tx. Then fpx, 0q “ 0 and fpx, 1q “ x, so F is a homotopy from the constant
map 0 to the identity. To see that the disk is contractible it is enough to consider a
straight-line homotopy from the points of the disk to the origin.

2. A contractible space is also path-connected. Let F : X ˆ I Ñ X be a homotopy from
a constant map Cx0 : X Ñ X to the identity, i.e. F px, 0q “ x0 and F px, 1q “ x for all
x P X. For each point x1 P X, the function g : I Ñ X such that gptq “ F px1, tq gives a
path from x1 to x0. Thus, all points of X are in the same path components as x0, so X
itself is path-connected.

3. If Y is contractible, then for anyX, the set rX,Y s has a single element. Let F : Y ˆI Ñ Y
be a homotopy from a constant map to the identity, i.e., F py, 0q “ y0 and F py, 1q “ y
for all y P X. Then any map g : X Ñ Y is homotopic to the constant map g1pxq “ y0
with a homotopy G : X ˆ I Ñ Y defined by Gpx, tq “ F pgpxq, tq. One can check that
Gpx, 0q “ y0 and Gpx, 1q “ F pgpxq, 1q “ gpxq as needed.

4. If X is contractible and Y is path connected then rX,Y s has a single element. Define F
as a homotopy from part 2 of this example. For any function g : X Ñ Y , the function
f ˝F is a homotopy between g and a constant map g1pxq “ gpx0q. If Y is path connected,
then any two constant maps are homotopic and, thus, any two maps from X to Y are
homotopic.



COVERING SPACES AND THE FUNDAMENTAL GROUP OF A CIRCLE 10

The fundamental group is a covariant functor from the category Top˚ of pointed topological
spaces and pointed continuous maps to the category Groups of groups and group homomor-
phisms. For definitions from category theory, the reader is referred to the Appendix B.

1.3 Covering Spaces and the Fundamental Group of a Circle

To explore the fundamental groups of spaces more complex than Rn, consider the following
definition.

Definition 1.3.1. Let p : E Ñ B be a continuous onto map. The open set U of B is evenly
covered by p if the inverse image p´1pUq can be written as the union of disjoint open sets
Vα Ď E such that for each α, the restriction of p to Vα is a homeomorphism of Vα onto U . The
collection tVαu is a partition of p´1pUq into slices or fibers.

Definition 1.3.2. Let p : E Ñ B be continuous and onto. If every point b P B has a
neighborhood U , also called trivialized neighbourhood, that is evenly covered by p, then p
is a covering map and E is said to be a covering space of B which is also called the base
space.

Figure 1.3.1

A covering map over X is a map that locally
looks like the projection map for some discrete
space as seen on Figure 1.3.1.

Example 1.3.3. The identity map X Ñ X is
always a covering map ofX. In this case, we can
take the entire spaceX to be the neighbourhood
U from the definition. More generally, if F is a
discrete space, then the projection X ˆF Ñ X
is a covering space of X. We will call the map
X ˆ F Ñ X a trivial cover. Every covering
space looks locally like a trivial cover.

Note that if p : E Ñ B is a covering map, then for all b P B the subspace p´1pbq of E has the
discrete topology. One can see that since each “slice” Vα, which is open in E, intersects the
set p´1pbq in a single point, and so this point must be open in p´1pbq.

Theorem 1.3.4. Let p : E Ñ B be a covering map. Then p is an open map.

Proof. Let U be an open set in E. If U “ ∅, then ppUq “ pp∅q “ ∅ which is always open.
Therefore, assume that U ‰ ∅. Let x P ppUq. We want to show that x is an interior point
of U . Let V be a neighbourhood of x and let V0 be a path component of p´1pV q or, in other
words, a slice containing p´1pxq. Then p restricted to V0 is a homeomorphism onto V . Since
V0 is a path-connected component, it is open in E, and since U is open in, V0 X U is open in
V0. Since p is a homeomorphism from V0 onto V we have that ppV0 X Uq is open in V and is
also open in B. But also x P ppV0 XUq Ď ppUq. So x P IntpppUqq and, thus, ppUq is open.
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Theorem 1.3.5. The map p : R Ñ S1 given by the equation ppxq “ pcos 2πx, sin 2πxq is a
covering map.

Figure 1.3.2: Visualization of the
covering map of S1.

Proof. One can imagine the real line R getting
wrapped around the circle with the length of a circle
being 1 as shown on Figure 1.3.2. Then each interval
rn, n ` 1s makes exactly one loop around the circle.
Note that p is periodic, so it is enough to discuss in
detail only values of x that lie in (or near) the unit
interval. Consider x P S1, and let x0 P R be any point
such that fpx0q “ x, i.e., f´1pxq “ tx0 `k|k P Zu. Let
U Ă S1 be a small open arc of S1 such that x P U .
Then the preimage f´1pUq consists of a disjoint union
of small intervals surrounding the points x0 ` k for
k P Z. Then U is a trivialized neighbourhood of x.

For construction we use four open sets, U0, U1,
U2 and U3, described in terms of R2. Take U0 “

tpx, yq P S1 : x ą 0u. Since cos 2πx ą 0 in U0 means
that ´π{2 ă 2πx ă π{2, every interval pn´1{4, n`1{4q

is getting mapped to U0 by p. To show that every
such interval is homeomorphic to U0, note that sin 2πx
is a monotonically increasing continuous function on any of the taken intervals as x is in-
creasing. Therefore, we can provide an inverse continuous function p´1 : S1 Ñ R where
p´1px, yq “ n ` 1

2π arcsin y, which shows that p is homeomorphism on every such interval U0.
Since for all n P N intervals pn ´ 1{4, n ` 1{4q are disjoint, U0 is evenly covered by p. The
same way it can be shown that U1 “ tpx, yq P S1 : y ą 0u, U2 “ tpx, yq P S1 : x ă 0u and
U3 “ tpx, yq P S1 : y ă 0u are all evenly covered by the intervals pn, n` 1{2q, pn` 1{4, n` 3{4q

and pn ` 1{2, n` 1q, respectively. Since all of Ui cover S
1 and each of them is evenly covered

by p, p is a covering map.

If p : E Ñ B is a covering map, then p is a local homeomorphism of E with B according
to Definition A.0.10. However, the condition that p is a local homeomorphism is not enough
to claim that p is covering map.

Example 1.3.6. The map p|R` : R` Ñ S1 given by the equation p|R`pxq “ pcos 2πx, sin 2πxq

is surjective and a local homeomorphism, but not a covering map. One can see that p is not a
covering map because of the behavior of the point b0 “ p|R`p0q “ p1, 0q P S1. More specifically,
the point has no neighbourhood which is evenly covered by the map p. From Example 1.3.5
we know that a usual neighbourhood of the point b0 in S1 can be written as pb0 ´ ϵ, b0 ` ϵq
or depending on p it is pp|R`p0q ´ ϵ, p|R`p0q ` ϵq. The pre-image of these neighbourhoods is
the union of disjoint intervals pn ´ ϵ, n ` ϵq, where n P Z. However, for n “ 0 it becomes the
disjoint union of the interval p0, ϵq and intervals pn´ ϵ, n` ϵq for n P N. Each of the intervals
of second kind is evenly covered by the map p as in Example 1.3.5, but the interval p0, ϵq is
not. Therefore, p|R` is not a covering map.
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The preceding example shows that a restriction of a covering map might not be a covering
map itself. However, in case of an additional condition, we get the following result.

Theorem 1.3.7. Let p : E Ñ B be a covering map. If B0 is a subspace of B and E0 “ p´1pB0q,
then the map p0 : E0 Ñ B0 obtained by restricting p is a covering map.

Proof. Let b0 P B0 and U be an open set in B such that U is evenly covered by p and b0 P U .
Let tVαu be a partition of p´1pUq into slices. Then U X B0 is a neighbourhood of b0 in B0.
Moreover, sets VαXE0 are disjoint open sets in E0 whose union is equal to p´1pU XB0q, where
each VαXE0 is mapped homeomorphically onto U XB0 by p. Hence, p0 is a covering map.

Theorem 1.3.8. Let p : E Ñ B and p1 : E1 Ñ B1 be covering maps. Then p ˆ p1 : E ˆ E1 Ñ

B ˆB1 is a covering map.

Proof. Take b P B and b1 P B1, let U and U 1 be neighbourhoods of b and b1, respectively, that
are evenly covered by p and p1. Also, let tVαu and tV 1

αu be partitions of p´1pUq and p1´1pU 1q,
respectively, into slices. Then the inverse image under pˆp1 of the open set UˆU 1 is the union
of all the sets Vα ˆ V 1

α. These are disjoint open sets of E ˆ E1 where each of them is mapped
homeomorphically onto U ˆ U 1 by the map pˆ p1. Therefore, pˆ p1 is a covering map.

Example 1.3.9. Consider the torus T2 “ S1 ˆ S1. Then the product map p ˆ p : R ˆ R Ñ

S1 ˆS1, where p is a covering map from Example 1.3.5, is a covering of the torus by the plane
R2. Since we typically think of S1 as a subset of R2, this representation of the torus is the
subset of R4. Each of unit squares rn, n`1sˆrm,m`1s gets wrapped by pˆp entirely around
the torus.

Example 1.3.10. Consider the covering map p ˆ p from Example 1.3.9. Let b0 denote the
point pp0q of S1 and let B0 denote the subspace B0 “ pS1 ˆb0qYpb0 ˆS1q Ă S1 ˆS1. Then B0

is the union of two circles which have the point b0 in common. This is what we call the figure-
eight space. Considering the space E0 “ p´1pB0q which is the infinite grid pRˆZq Y pZˆRq,
the map p0 : E0 Ñ B0 is a covering map of the figure-eight space by Theorem 1.3.7 since it is
a restriction of the covering map pˆ p.

The covering spaces are used to prove a classic result in algebraic topology about the funda-
mental group of a circle. The idea behind it is that the fundamental group of S1 is generated
by starting at p1, 0q and creating loops that wrap around S1 a positive integer number of
times (counterclockwise) and loops that wrap around S1 a negative integer number of times
(clockwise). For the full proof the reader is referred to [Mun00] or [Wil04].

Theorem 1.3.11. The fundamental group of S1 is isomorphic to the additive group of integers.

Sketch of the proof. Consider a bijection from R to a helix in R3 with a parametrisation defined
by pcos 2πs, sin 2πs, sq. We also identify S1 as a circle of unit radius inside R2. Let p : R Ñ S1

be a map, which is also a covering map, such that ppsq “ pcos 2πx, sin 2πxq. This function can
be thought of as a projection map from R3 to R2 given by px, y, zq ÞÑ px, yq. This means that
R is a covering space of S1. Consider the map ϕ : π1pS1, b0q Ñ Z. One can show that this
map is a group homomorphism, which gives an isomorphism between π1pS1, b0q and Z.
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1.4 Retractions and Deformation Retracts

Definition 1.4.1. If A Ă X, a retraction of X onto A is a continuous map r : X Ñ A such
that r|A is the identity map of A. If such a map r exists, we say that A is a retract of X.

Lemma 1.4.2. If a0 P A and r : X Ñ A is a retraction, then r˚ : π1pX, a0q Ñ π1pA, a0q is
surjective.

Proof. Let ι : A Ñ X be the inclusion map. Then r ˝ ι “ 1A by construction. Then

r˚ ˝ ι˚ “ pr ˝ ιq˚ “ 1A˚ “ 1π1pAq

by Theorem 1.2.12. Since the right side is an isomorphism r˚ has to be a surjection, while ι˚
has to be an injection.

Theorem 1.4.3 (No-retraction Theorem). There is no retraction of B2 onto S1.

Proof. If S1 was a retract of B2, then the homomorphism induced by the inclusion ι : S1 Ñ B2

would be injective. However, the fundamental group of S1 is non-trivial while the fundamental
group of B2 is trivial.

Example 1.4.4. There is a retraction r of R2zt0u onto S1 given by equation rpxq “ x{||x||.
Therefore, ι˚, where ι : S

1 Ñ R2zt0u is the inclusion map, has to be injective, and, hence, non-
trivial or, in other words, not nulhomotopic. Similarly, i˚, where i : S

1 Ñ S1 is the identity
map, is the identity homomorphism, and hence non-trivial or not nulhomotopic.

Definition 1.4.5. Let A Ă X. We call A a deformation retract of X if the identity map
of X is homotopic to a map that carries X into A. In other words, there exists a continuous
map H : X ˆ I Ñ X such that Hpx, 0q “ x, Hpx, 1q P A for all x P X and Hpa, tq “ a for all
a P A. In this case, we call the homotopy H a deformation retraction of X onto A.

Note that the map r : X Ñ A defined as rpxq “ Hpx, 1q is a retraction of X onto A, and H is a
homotopy between the identity map of X and the map j ˝ r, where j : A Ñ X is the inclusion
map.

Theorem 1.4.6. Let A be a deformation retract of X and let x0 P A. Then the inclusion map
ι : pA, x0q Ñ pX,x0q induces an isomorphism of fundamental groups.

Proof. Let r : X Ñ A be the retraction between noted spaces. Then r ˝ ι is the identity map
of A, and by Theorem 1.2.12, r˚ ˝ ι˚ is the identity homomorphism of π1pA, b0q, where b0 P A.

Consider the composition ι ˝ r : X Ñ X, which maps X to itself, but is not the
identity map. It is homotopic to the identity map via a homotopy fixing the points of A, i.e.,
a homotopy H : X ˆ I Ñ X with Hpx, 0q “ ι ˝ rpxq, Hpx, 1q “ x, and Hpx0, tq “ x0 for all
t P I. By Theorem 1.2 since a deformation retraction gives a base-point preserving homotopy
between ι˝r and 1X , we have p1Xq˚ “ ι˚ ˝r˚ : π1pX,x0q Ñ π1pX,x0q. We know ι˚ is injective.
It is also surjective since for any class rf s in π1pX,x0q, we have rf s “ ι˚pr˚prf sqq. Therefore,
it is an isomorphism.
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Example 1.4.7. From the theorem above, one can induce that the inclusion map ι : Sn Ñ

Rn`1zt0u induces an isomorphism of fundamental groups. Thus, π1pSnq – π1pRn`1zt0uq.

Figure 1.4.1: Deformation retractions following R2ztp, qu above and the punctured torus
below, both resulting in the figure-eight.

Example 1.4.8. Consider R2ztp, qu, where p, q P R2, the doubly punctured plane, which
has the figure-eight (recall Example 1.3.10) as a deformation retract. Another space which
has the figure-eight as a deformation retract is the punctured torus, i.e. T 2zp for some point
p P T 2. The deformations from this example can be seen in the Figure 1.4.1.

1.5 Homotopy Type

Definition 1.5.1. Let f : X Ñ Y and g : Y Ñ X be continuous maps. Suppose that the map
g ˝f : X Ñ X is homotopic to the identity map of X, and the map f ˝g : Y Ñ Y is homotopic
to the identity map of Y . Then maps f and g are called homotopy equivalences, and each
of them is said to be a homotopy inverse of the other. Topological spaces X,Y are said to
be homotopy equivalent or of the same homotopy type, where we denote it by X » Y ,
when there are homotopy equivalences between the spaces.

Note that every homeomorphism f : X Ñ Y is a homotopy equivalence since we can take
g :“ f´1. Then if there are spaces X and Y such that X – Y , it would also mean that X » Y .
However, the converse of the statement is not true: consider R and t0u, which are homotopy
equivalent but not homeomorphic. In the Section 2.1.3 we have proved that the relation of
path-homotopy equivalence is an equivalence relation. The same can be done for more general
type of homotopy to show that the relation of homotopy equivalence is an equivalence relation.

Example 1.5.2. If A is a deformation retract of X, then A has the same homotopy type as
X. To show this, take the inclusion map ι : A Ñ X and the retraction map r : X Ñ A. Then
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the composition r˝ι : X Ñ X is the identity map of A, and the composition ι˝r is supposed to
be homotopic to the identity map of X by the definition of the deformation retraction. With
this example, one can think of contractible spaces as spaces that have the homotopy type of a
one-point space.

Figure 1.5.1: Theta space.

Example 1.5.3. Consider the figure-eight space X and the
theta space, defined as θ “ S1 Y p0 ˆ r´1, 1sq. The theta
space is also a deformation retract of R2ztp, qu, but it is not a
deformation retract of the figure-eight-space. To see that note
that the “bar” p0 ˆ r´1, 1sq in the theta space would need to
remain unchanged during the deformation, but it is not a sub-
space of the figure eight.
However, we can describe the homotopy equivalences between
them. Consider the figure-eight to be two congruent, tangent
circles and the θ space to be a circle with a diameter drawn.
Then the map g : Y Ñ X can be described as contracting the circle along the diameter to the
center of the circle. Similarly, the map f : X Ñ Y can be described as stretching each tangent
circle to fit into a half of the θ space.

Note that spaces being homotopy equivalent does not mean that they have isomorphic funda-
mental groups yet. To show this, we need to look at the case when the base point does not
remain the same during the homotopy.

Lemma 1.5.4. Let h, k : X Ñ Y be continuous maps with
y0 “ hpx0q and y1 “ kpx0q. If h and k are homotopic, then
there exists a path α in Y from y0 to y1 such that k˚ “ α̂˝h˚

or, in other words, the following diagram commutes.

π1pX,x0q π1pY, y0q

π1pY, y1q

k˚

h˚

α̂

Proof. Let H : X ˆ I Ñ Y be the homotopy between h and k. Define the required path α
from y0 to y1 as αptq “ Hpx0, tq. Consider an element f : I Ñ X of π1pX,x0q, a path c in
X ˆ I given as cptq “ px0, tq and loops f0 and f1 in the space X ˆ I given as f0psq “ pfpsq, 0q

and f1psq “ pfpsq, 1q. Then H ˝ f0 “ h ˝ f and H ˝ f1 “ k ˝ f , while H ˝ c “ α.
Consider a map F : I ˆ I Ñ X ˆ I, such that F ps, tq “ pfpsq, tq and the following paths in
I ˆ I, which run along the four edges of I ˆ I:

β0psq “ ps, 0q and β1psq “ ps, 1q,

γ0ptq “ p0, tq and γ1ptq “ p1, tq.

Then F ˝ β0 “ f0 and F ˝ β1 “ f1, while F ˝ γ0 “ F ˝ γ1 “ c.
The broken-line paths β0 ˚ γ1 and γ0 ˚ β1 are both paths in I ˆ I from p0, 0q to p1, 1q and since
I ˆ I is convex, there is a path homotopy between them by Example 1.1.6. Then F ˝ G is a
path homotopy in X ˆ I between f0 ˚ c and c ˚ f1. Therefore, H ˝ pF ˝Gq is a path homotopy
in Y between

pH ˝ f0q ˚ pH ˝ cqq “ ph ˝ fq ˚ α and pH ˝ cq ˚ pH ˝ f1q “ α ˚ pk ˝ fq,
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which would mean that
rk ˝ f s “ rαs ˚ rh ˝ f s ˚ rαs

or
k˚prf sq “ α̂ph˚prf sqq,

as needed.

The immediate consequence of the Lemma above is that in case of h˚ being injective, surjective
or trivial, k˚ has the same property. Moreover, if h : X Ñ Y is nulhomotopic, then h˚ is the
trivial homomorphism. The most important result of this lemma allows us to extend the idea
of fundamental group to spaces of the same homotopy type.

Theorem 1.5.5. Let f : pX,x0q Ñ pY, y0q be a continuous map. If f is a homotopy equivalence
then f˚ : π1pX,x0q Ñ π1pY, y0q is an isomorphism.

Proof. Consider g : Y Ñ X be a homotopy inverse for f and maps

pX,x0q pY, y0q pX,x1q pY, y1q,
fx0 g fx1

where x1 “ gpy0q and y1 “ fpx1q. Then we have induced homomorphisms as follows:

π1pX,x0q π1pY, y0q π1pX,x1q π1pY, y1q.
pfx0 q˚ g˚ pfx1 q˚

By assumption, g ˝ f : pX,x0q Ñ pX,x1q is homotopic to the identity map, so there is a path
α in X such that pg ˝ fq˚ “ α̂ ˝ p1Xq˚ “ α̂. It follows that pg ˝ fq˚ “ g˚ ˝ pfx0q˚ is an
isomorphism and g˚ is surjective. Similarly, since f ˝ g is homotopic to the identity map 1Y ,
the homomorphism pf ˝ gq˚ “ pfx1q˚ ˝ g˚ is an isomorphism and g˚ is injective. Therefore, g˚

is an isomorphism. Moreover, we can conclude that pfx0q˚ “ pg˚q´1 ˝ α̂ and, thus, pfx0q˚ is
also an isomorphism.

1.6 Fundamental Groups of Other Surfaces

Theorem 1.6.1. Suppose X “ UYV , where both U and V are open sets of X. Suppose UXV
is path-connected, and that x0 P U X V . Let i and j be the inclusion mappings of U and V ,
respectively, into X. Then the images of the induced homomorphisms

i˚ : π1pU, x0q Ñ π1pX,x0q and j˚ : π1pV, x0q Ñ π1pX,x0q

generate π1pX,x0q. In other words, given any loop f in X based at x0, it is path homotopic
to a product of the form g1 ˚ g2 ˚ . . . ˚ gn, where each gi is a loop in X based at x0 which lies
entirely either in U or V .
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Proof. First, use the Lebesgue number Lemma A.0.30 to choose a subdivision tbiu of I such
that for all i the set fprbi´1, bisq is contained in either U or V . If for all i, the set fprbi´1, bisq
is contained in U XV , pick this division. Otherwise, let i be an index such that fpbiq R U XV .
Both of the sets fprbi´1, bisq and fprbi, bi`1sq lie fully in either U or V . If fpbiq P U then both
of the sets must lie in U , otherwise, they both must belong to V . In both cases, consider
the same division of I but without bi - let’s call it tciu. This subdivision satisfies the main
condition - for all i the set fprci´1, cisq belongs to either U or V - therefore, we can do this
operation until we reach the desired subdivision. Let taiu be the subdivision of I obtained,
i.e., for all i we have fprai´1, aisq is either in U or V and fpaiq P U X V .
Now, define fi to be the path in X that equals the linear map of I onto rai´1, ais followed
by f . Then fi is a path that lies either in U or V , and rf s “ rf1s ˚ . . . ˚ rfns. For each i,
since U X V is path-connected, we can choose a path αi in U X V from x0 to fpaiq. Since
fpa0q “ fpanq “ x0, we can choose α0 and αn to be constant paths at x0. Now for each i we
have gi “ αi´1 ˚ fi ˚ αi. This means that gi is a loop in X based at x0 whose image lies either
in U or in V . Then we have

rg1s ˚ . . . ˚ rgns “ rα0s ˚ rf0s ˚ rα1s ˚ rα1s ˚ rf1s ˚ rα2s ˚ . . . ˚ rαn´1s ˚ rfns ˚ rαns “

rα0s ˚ rf1s ˚ . . . ˚ rfns ˚ rαns “ rf1s ˚ . . . ˚ rfns,

as needed.

Corollary 1.6.2. Suppose X “ U Y V , where both U and V are open sets of X. Suppose
U X V is path-connected and non-empty. If U and V are simply-connected, then X is simply-
connected.

Proof. Since U X V is non-empty, there exists a point x0 P U X V . Both U and V are simply-
connected, so π1pU, x0q and π1pV, x0q are trivial. Then both of the induced homomorphisms of
the inclusion mappings i˚ and j˚ are trivial homomorphisms, and, thus, π1pX,x0q is trivial.

Theorem 1.6.3. The n-sphere Sn is simply-connected for n ě 2.

Proof. First, note that for n ě 1, the punctured sphere Snztpu is homeomorphic to Rn, since
we can define the stereographic projection as a homeomorphism between them. Firstly, let’s
show that for n ě 1, the punctured sphere Snztpu is homeomorphic to Rn. For a point
p “ p0, . . . , 0, 1q P Sn define a map f : pSnztpuq Ñ Rn as stereographic projection:

fpxq “ fpx1, x2, . . . , xn`1q “
1

1 ´ xn`1
px1, . . . , xnq.

To show that this map is a homeomorphism, we can check that the map g : Rn Ñ pSnztpuq,
defined by

gpyq “ gpy1, . . . , ynq “ ptpyqy1, . . . , tpyqyn, 1 ´ tpyqq,

where tpyq “ 2{p1 ` ||y||2q, is both right and left inverse for f . Another way of thinking
about it is understanding what it is doing: if we take a line passing through p and the point
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x P pSnztpuq, it would intersect the plane Rn ˆ t0u Ă Rn`1 in only one point fpxq ˆ t0u.
Note that the reflection map px1, . . . , xn`1q ÞÑ px1, . . . , xn,´xn`1q defines a homeomorphism
of Snzp with Snztqu, where q “ p0, . . . , 0,´1q P Sn is the south pole of the sphere, so the latter
space is also homeomorphic to Rn.

Now take U “ Snztpu and V “ Snztqu be open sets of Sn. For n ě 1, the sphere
Sn is path-connected since both U – Rn and V – Rn are path-connected and have the point
p1, 0, . . . , 0q in common. To show that Sn is simply-connected, note that U X V “ Snztp, qu

which is homeomorphic to Rnzt0u. The latter space is path-connected and, thus, U X V is
path-connected. Therefore, by Corollary 1.6.2, U Y V “ Sn is simply-connected.

Definition 1.6.4. A topological space M is a topological manifold of dimension n (or
topological n-manifold) if

• M is Hausdorff (recall A.0.24),

• M is second-countable (recall A.0.25), and

• M is locally Euclidean: for all points m P M there exists an open neighbourhood in
which is homeomorphic to an open subset of Rn.

A topological 2-manifold is called a surface.

Theorem 1.6.5. π1pX ˆ Y, x0 ˆ y0q is isomorphic with π1pX,x0q ˆ π1pY, y0q.

Proof. Let p : X ˆ Y Ñ X and q : X ˆ Y Ñ Y be the projection maps. Using the induced
homomorphisms of given maps, define a homomorphism

Φ : π1pX ˆ Y, x0 ˆ y0q Ñ π1pX,x0q ˆ π1pY, y0q

by the equation
Φprf sq “

`

p˚prf sq, q˚prf sq
˘

“
`

rp ˝ f s, rq ˝ f s
˘

.

To show that the map Φ is an isomorphism we need to show that it is bijective. To show that
the map is surjective, let g : U Ñ X be a loop based at x0 and let h : I Ñ Y be a loop based
at y0. Also, define f : I Ñ X ˆ Y such that fpsq “ gpsq ˆ hpsq. Then f is a loop in X ˆ Y
based at x0 ˆ y0 with

Φprf sq “ prp ˝ f s, rq ˝ f sq “ prgs, rhsq,

which means that the element prgs, rhsq lies in the image of Φ. More intuitively, if f is a loop
based at px0, y0q, it is nothing more than a pair of loops in X and Y based at x0 and y0.
Similarly, homotopies of loops are nothing but pairs of homotopies of pairs of loops.

To show that Φ is one-to-one, define f : I Ñ X ˆ Y as a loop in X ˆ Y based at
x0 ˆy0 with an identity element being Φprf sq “

`

rp˝f s, rq ˝f s
˘

, which means that p˝f »p ex0
and q ˝ f »p ey0 . Let G and H be the respective homotopies in X and Y . Then the map
F : I ˆ I Ñ X ˆ Y defined by F ps, tq “ Gps, tq ˆHps, tq is a path homotopy between f and a
constant loop based at x0 ˆ y0.
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Note that the preceding theorem can be extended to a finite product of spaces. More-
over, if any of the spaces end up being contractible, they can be dropped from the product.

Example 1.6.6. A natural example to consider, given that π1pS1q – Z, is the torus T 2 “

S1 ˆ S1. Then π1pT 2q – Z ˆ Z.



Chapter 2

Free Groups

So far in the previous sections we were able to compute the fundamental group in some basic
cases. For more complicated cases, we need to develop a few more strategies and skills to be
able to describe the structure of the group itself.

Recall the definition of the direct product G “ G1 ˆG2 ˆ . . .ˆGn of a finite number
of groups tGiu

n
i“1. The elements of G are ordered n-tuples g “ pg1, . . . , gnq, where gi P Gi,

with the operation of multiplication denoted by

pg1, . . . , gnqph1, . . . , hnq “ pg1h1, . . . , gnhnq.

This idea can be extended to a case with infinitely many groups: consider an infinite collection
of groups tGiuiPI , where I is an index set. The direct product in this case is defined as

ś

iPI Gi.
Its elements are functions which assign to each index i P I an element gi P Gi with the similar
definition for the multiplication.

2.1 Free Groups

Given a non-empty set X, we would like to construct a free group on this set. There are
different ways to describe free groups and products, and we are going to follow the idea from
[Hun12]. If X “ ∅, then the free group is going to be the trivial group xey. Otherwise, let X´1

be a set disjoint from X such that |X| “ |X´1|. Choose a bijection X Ñ X´1 and denote an
image of x P X by x´1. Choose an element I disjoint from X YX´1.

Definition 2.1.1. In this context, a word on X is a sequence pa1, a2, . . .q such that aj P X
for j P N and for some n P N, ak “ 1 for all integer k ě n. Define I “ p1, 1, 1, . . .q to be the
empty word.

There are infinitely many such words we can construct on a set, although, some of them seem
to be equivalent. To deal with this problem there are a few reduction operations we can do
to get the reduced word:

1. if we have adjacent x and x´1, we can delete both,

20
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2. if ak “ 1 for some k P N, then ai “ 1 for all i ě k.

Notice that every reduced word is of the form pxλ11 , x
λ2
2 , . . . , x

λn
n , 1, 1, . . .q, where xi P X and

λi “ ˘1. We will denote such word by xλ11 x
λ2
2 . . . xλnn . For simplicity, one can also combine the

adjacent identical elements x and x to write x2 and so on for higher powers.

Example 2.1.2. The empty word I is reduced without any reduced operations applied.
Consider a set X “ tx, y, zu. Let w1 “ px, xq and w2 “ px´1, y, y, y, x´1, x´1, x, z, z´1q be
words. Their juxtaposition is the sequence w “ px, x, x´1, y, y, y, x´1, x´1, x, z, z´1q, which
can be reduced to px, y, y, y, x´1q “ xy3x´1.

Two reduced words xλ11 x
λ2
2 . . . xλnn and yδ11 , y

δ2
2 , . . . , y

δm
m with λi, δj “ ˘1 are equal if and only

if both are I or m “ n and for all 1 ď i ď n we have xi “ yi and λi “ δi. With this definition
denote the set of all reduced words on a set X as F pXq.
To make this a group we need to add an identity and a binary operation to it.

Definition 2.1.3. Consider juxtaposition of two words

x ˚ y “ pxλ11 , x
λ2
2 , . . . , x

λn
n q ˚ pyδ11 , y

δ2
2 , . . . , y

δm
m q “ pxλ11 , x

λ2
2 , . . . , x

λn
n , yδ11 , y

δ2
2 , . . . , y

δm
m q,

both taken on a given set X.

Intuitively, the empty word I behaves like an identity element, i.e., I ˚ w “ w ˚ I “ w, for any
non-empty word w P F pXq. Also, note that the juxtaposition of two reduced words might not
be reduced, but one can reduce it using the reduction operations.

Theorem 2.1.4. If X is a nonempty set and F “ F pXq is the set of all reduced words on X,
then F is a free group under juxtaposition and it is denoted by F “ xXy instead.

Proof. To verify that F is a group we need to check all properties of a group. We know that the
empty word is an identity and a word pxλ11 , x

λ2
2 , . . . , x

λn
n q has an inverse px´λn

n , x
´λn´1

n´1 , . . . , x´λ1
1 q.

To verify associativity, note that we do not need to reduce the juxtaposition until the very
end. With this, one gets the products of three reduced words x, y, z P X equal to

px ˚ yq ˚ z “ ppxλ11 x
λ2
2 . . . xλnn q ˚ pyδ11 y

δ2
2 . . . yδmm qq ˚ pzγ11 z

γ2
2 . . . zγkk q

“ pxλ11 x
λ2
2 . . . xλnn yδ11 y

δ2
2 . . . yδmm q ˚ pzγ11 z

γ2
2 . . . zγkk q

“ xλ11 x
λ2
2 . . . xλnn yδ11 y

δ2
2 . . . yδmm zγ11 z

γ2
2 . . . zγkk

“ pxλ11 x
λ2
2 . . . xλnn q ˚ ppyδ11 y

δ2
2 . . . yδmm q ˚ pzγ11 z

γ2
2 . . . zγkk qq “ x ˚ py ˚ zq.

Here, we mention some properties of free groups. If |X| ě 2, then the free group on X is not
abelian since for x, y P X, such that x ‰ y, we have words xy and yx being both reduced but
not equal to each other. Also, every element of such a group except the identity has infinite
order. This being said, if X “ tau, then F is an infinite cyclic group.
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Theorem 2.1.5 (Universal Mapping Property). Let F be the free
group on a set X and ι : X Ñ F an inclusion map. If G is a
group and ϕ : X Ñ G a map of sets, then there exists a unique
homomorphism of groups ϕ : F Ñ G such that ϕ ˝ ι “ ϕ, i.e., the
following diagram commutes.

F

X G

ϕ
ι

ϕ

Proof. Define ϕp1q “ e and for a non-empty reduced word on X, define

ϕpxλ11 x
λ2
2 . . . xλnn q “ ϕpx1qλ1ϕpx2qλ2 . . . ϕpxnqλn .

Since G is a group and λi “ ˘1 for all 1 ď i ď n, the product above is well-defined in G. Such
a definition of ϕ automatically results in ϕ being a homomorphism such that ϕ ˝ ι “ ϕ. To
show that ϕ is indeed unique, consider a homomorphism g : F Ñ G such that g ˝ ι “ ϕ. Then

gpxλ11 x
λ2
2 . . . xλnn q “ gpx1qλ1gpx2qλ2 . . . gpxnqλn

“ gpιpx1qλ1qgpιpx2qλ2q . . . gpιpxnqλnq

“ ϕpx1qλ1ϕpx2qλ2 . . . ϕpxnqλn “ ϕpxλ11 x
λ2
2 . . . xλnn q,

which means ϕ is unique.

The theorem above shows that F is a free object on the set X in the category of groups
according to the Definition B.0.15. This being said, if F 1 is another free object on the same
set X with λ : X Ñ F 1 in the category of groups, then there is an isomorphism ϕ : F Ñ F 1

such that ϕ ˝ ι “ λ.

Corollary 2.1.6. Every group G is the homomorphic image of a free group.

The free group on X is also said to be the freest group generated on a set X. To see why
note that in an arbitrary group there are different products of elements, which give an identity
element as a result. For example,

1. x ˚ x´1 “ e for any element of any group;

2. in a cyclic group of order n, xn “ e.

Any such product is called a relation on a group X. Relations of type (1), which come from
properties of a group, are said to be trivial, while all other ones, like type (2), are said to be
non-trivial. The other way to define a free group on a set is to take a set X with only trivial
relations between its elements.

Definition 2.1.7. Let X be a set and R be a set of reduced words on X. A group G is said to
be the group defined by the generators x P X and relations w “ e for w P R provided
G – F {N , where F is a free group on X and N the normal subgroup of F generated by R. In
this case, we call G “ xX|Ry a presentation of G.
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These notions also lead to the idea that one can completely describe a group G with
its generating set X and relations set R between them. Note that a presentation of a group
is not unique. To see this, consider a cyclic group Z6 with presentations xa|a6y and xa, b|a2 “

b3 “ a´1b´1aby.
There is a relation between free groups and free abelian groups. For that recall that if x and y
are elements of a group G, then the element rx, ys “ xyx´1y´1 P G is called the commutator
of x and y. The notation rG,Gs denotes the subgroup of G generated by all commutators - the
commutator subgroup. Commutators are, in a sense, a measure how much of G fails to be
commutative. In particular, the commutator subgroup is trivial if and only if all commutators
are the identities. We know a few facts about this subgroup:

Theorem 2.1.8. Given a group G, the commutator subgroup rG,Gs is a normal subgroup and
the quotient group G{rG,Gs is abelian. Moreover, if h : G Ñ H is a homomorphism from G to
an abelian group H, then the kernel of h contains rG,Gs, and hence h induces a homomorphism
k : G{rG,Gs Ñ H.

Proof. The theorem consists of 3 different facts, each of which is going to proved in a separate
step.

Step 1. To show that rG,Gs is normal, first, we need to show that any conjugate of a
commutator is in rG,Gs as well:

grx, ysg´1 “ gpxyx´1y´1qg´1

“ pgxyx´1qpy´1g´1q

“ pgxyx´1qpg´1y´1ygqpy´1g´1q

“ ppgxqypgxq´1y´1qpygy´1g´1q

“ rgx, ysry, gs,

which is known to be in rG,Gs. Now, consider an arbitrary element z of rG,Gs. This element
is a product of commutators and their inverses. Since

rx, ys´1 “ pxyx´1y´1q´1 “ yxy´1x´1 “ ry, xs

or, in other words, every inverse of a commutator is a commutator itself, z is just a product of
commutators z1, z2, . . . , zn. Then its conjugate is

gzg´1 “ gz1z2 . . . zng
´1 “ gz1pg´1gqz2pg´1 . . . gqxng

´1 “ pgz1g
´1qpgz2g

´1q . . . pgxng
´1q,

which is a product of commutators’ conjugates, which we know is in rG,Gs, as well. Therefore,
the group rG,Gs is normal.

Step 2. For this step let G1 “ rG,Gs. To show that G{rG,Gs is abelian, we need

paG1qpbG1q “ pbG1qpaG1q,

which is equivalent to
abG1 “ baG1,
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which is equivalent to
a´1b´1abG1 “ G1.

Since a´1b´1ab is a commutator on its own, it belongs to G1 and the last statement follows.
Step 3. Since H is abelian by assumption, h carries each commutator to the identity

element of H. Hence, the kernel of h contains the whole commutator subgroup rG,Gs, so h
induced the desired homomorphism k.

Hence, using this we can transform any free group F to a free abelian group F {rF, F s,
which is called the abelianization, using the natural projection π : F Ñ F {rF, F s.

Definition 2.1.9. If G is a free abelian group, the rank of G is the number of elements in
the generating set of G.

Since for any free group G with n generators the free abelian group G{rG,Gs has rank
n, any system of free generators for G would have n elements.

Theorem 2.1.10. If F and F 1 are free groups on finite sets S and S1, then F and F 1 are
isomorphic if and only if S and S1 have the same rank.

Since now we are dealing with finitely generated abelian groups, we need some prop-
erties of such groups. First, recall that the set of all elements of an arbitrary abelian group
A that have finite order is called the torsion subgroup. If we denote the torsion subgroup
by T , then the quotient group A{T is going to be torsion free. In case groups A and A1 are
isomorphic, their torsion subgroups and quotients mod torsion subgroups are also isomorphic.
The converse is true, however, only for finitely generated abelian groups.

Theorem 2.1.11 ([Mas91],[Hun12]). Consider only finitely generated abelian groups. Then
we have the following:

1. Let A be a finitely generated abelian group and let T be its torsion subgroup. Then, T
and A{T are also finitely generated, and A is isomorphic to the direct product T ˆA{T .
Hence, the structure or A is completely determined by its torsion subgroup T and its
torsion-free subgroup A{T .

2. Every finitely generated torsion-free abelian group is a free abelian group of finite rank.

3. Every finitely generated abelian group G is isomorphic to a product

Zd1 ‘ . . .‘ Zdk ‘ Z‘n – pZ{d1Zq ‘ . . .‘ pZ{dkZq ‘ Z‘n,

where Z‘n means the direct product of n copies of the group Z. Moreover, k, n and di
are all uniquely determined and they completely determine the structure of the group G.

However, how do we extract information about a group from its presentation? This
question is answered in, for instance, [D L97]. The reader is welcome to familiarize themselves
with the topic, but here we are going to state the needed theorem and use of it for the finite



FREE PRODUCT 25

X. Consider a presentation P “ xX|Ry of a group G with abelianization Gab. Let us fix the
notation

X “ tx1, x2, . . . , xru, C “ trxi, xjs|1 ď i ă j ď ru, r P N,

where C might be regarded as a subset of any group presented on generators X.

Proposition 2.1.12 ([D L97]). If G “ xX|Ry, then Gab “ xX|R,Cy.

Now, in terms of presentations, part (3) of Theorem 2.1.11 means that every such group
G has a unique presentation of the form

xx1, . . . , xr|x
d1
1 , . . . , x

dk
k , Cy,

where k ď r and the di satisfy the conditions of the theorem.

2.2 Free Product

With the idea from the previous section, one can define the free product of groups. Given a
family of mutually disjoint groups tGi|i P Iu, let X “

Ť

iPI Gi and let I be a one-element set
disjoint from X.

Definition 2.2.1. A word is a sequence pa1, a2, . . .q such that ai P X Y I and for some n P N,
ai “ 1 for all i ě n.

A word in this case also can get reduced:

1. if ai P X is the identity element of some Gj , then we can delete ai,

2. if ai and ai`1 belong to the same Gj , we can substitute it with their composition ai ˚Gj

ai`1, and

3. if ak “ 1, then ai “ 1 for all i ě k.

With this reduction operation, the empty word I, represented by the sequence p1, 1, . . . , 1q, is
already reduced. Every non-empty reduced word can also be written uniquely as a1a2 . . . an “

pa1, a2, . . . , an, 1, 1, . . .q, where ai P X. Considering the same binary operation, the juxtaposi-
tion, we are able to define the set of all reduced words on X and denote it by

ś˚
iPI Gi.

Theorem 2.2.2.
ś˚
iPI Gi forms a group, free product of the family tGi|i P Iu, under the

juxtaposition.

We can identify Gi with its isomorphic image in
ś˚
iPI Gi.

Theorem 2.2.3 (Characteristic Property of Free Product). Let tGi|i P Iu be a family of groups
with free product

ś˚
iPI Gi and family of inclusions ιi : Gi Ñ

ś˚
iPI Gi. If tψi : Gi Ñ H|i P Iu is

a family of group homomorphisms onto a group H, then there exists a unique homomorphism
ψ :

ś˚
iPI Gi Ñ H such that ψ ˝ ιi “ ψi for all i P I.
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Similarly to the free groups, the free product of groups represents the coproduct in the
category of groups.

Theorem 2.2.4. Consider a group G “
ś˚
iPI Gi, where all Gi are free groups with taαuαPJi as

respective systems of free generators with
Ş

iPI Ji “ ∅. Then G is a free group with taαuαP
Ť

iPI Ji

as a system of free generators.

The theorem above can be extended to a free product of any finite number of free groups.

Example 2.2.5. If G is a group defined by generators a, b and relations a2 “ I and b3 “ I,
then G – Z2 ˚ Z3. Generally, the group defined by the generator c and the relation cm “ I for
some m P N is the cyclic group Zm.

2.3 The Seifert-van Kampen Theorem

In this section, let X “ U Y V be a topological space, where both U and V are open in X.
Moreover, suppose that X, U , V , and U XV are all path-connected and that the fundamental
groups of U and V are known. There are two versions of the main theorem in this section.

Theorem 2.3.1 (Seifert-van Kampen Theorem, modern version). Let x0 P U X V and let
ϕ1 : π1pU, x0q Ñ H and ϕ2 : π1pV, x0q Ñ H be homomorphisms. Let i1, i2, j1, j2 be the
homomorphisms indicated below, each induced by inclusion.

π1pU, x0q

π1pU X V, x0q π1pX,x0q H

π1pV, x0q

j1
ϕ1i1

i2

Φ

j2
ϕ2

If ϕ1 ˝ i1 “ ϕ2 ˝ i2, then there exists a unique homomorphism Φ : π1pX,x0q Ñ H such that
Φ ˝ j1 “ ϕ1 and Φ ˝ j2 “ ϕ2.

Proof. First, we will show uniqueness of Φ. By Theorem 1.6.1 π1pX,x0q is generated by the
images of the induced homomorphisms j1 and j2. Because Φ is determined by ϕ1 and ϕ2 on
these images, it follows that it is determined on every product of the elements from these
images. However, these products include all of the elements, and so Φ is determined by ϕ1 and
ϕ2 and, therefore, is unique.
To show the existence, consider a path f in X together with its path-homotopy class rf s in
X. If f lies in U , V or U X V , let rf sU , rf sV and rf sUXV denote its path-homotopy class in
U , V and U X V , respectively. The plan is to define several different maps, each building on
the previous, and, for that, consider the steps below.
Step 1. Let’s define a map ρ which assigns an element of the group H to each loop f based
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at x0 that lies in U or in V . In other words, we want to extend both ϕ1 and ϕ2 to a set map
ρ defined on all loops in X, which are contained in either U or V . Define an element of the
group H by

ρpfq “

#

ϕ1prf sU q if f lies in U,

ϕ2prf sV q if f lies in V.

Note that ρ is well-defined because for f lying in both U and V we have ϕ1prf sU q “ ϕ1pi1prf sUXV qq

and ϕ2prf sV q “ ϕ2pi2prf sUXV qq. Moreover, since by assumption ϕ1 ˝ i1 “ ϕ2 ˝ i2, we also have
ϕ1prf sU q “ ϕ2prf sV q. This makes up two facts about our map ρ:

1. If rf sU “ rgsU or rf sV “ rgsV , then ρpfq “ ρpgq (by the initial definition of ρ).

2. If both f and g lie in U or both of them lie in V , then ρpf ˚ gq “ ρpfq ˚H ρpgq since ϕ1
and ϕ2 are homomorphisms.

Step 2. Let’s extend ρ to a map σ, which assigns an element of H to each path f lying in U or
in V such that the map σ also satisfies the condition (1) of ρ and condition (2), when possible,
i.e., when f ˚ g is defined. This makes any path be workable as any other closed loop.
For each x P X, choose a path αx from x0 to x as follows:

• If x “ x0, let αx be a constant path at x0.

• If x P U X V , let αx be a path in U X V .

• If x P U or x P V with x R U X V , let αx
be a path in U or V , respectively.

This way for any path f in U or in V from x to
y, we define a loop Lpfq based at x0 such that

Lpfq “ αx ˚ pf ˚ αyq.

Note that because of our choice of αx and αy, if
f was a path in U , then Lpfq would be a loop in
U as shown on Figure 2.3.0. The same follows
if f was a path in V .

Figure 2.3.0: Construction of a loop.

Now, define σpfq “ ρpLpfqq. To show that this map works for us, we need to show that σ is
indeed an extension of ρ and that the properties given hold. If f is a loop based at x0 lying in
either U or V , then we have

Lpfq “ αx0 ˚ pf ˚ αx0q,

where αx0 is a constant path at x0. Then Lpfq is path-homotopic to f in either U or V , so
ρpLpfqq “ ρpfq by property (1) of ρ. Hence, σpfq “ ρpfq. To check condition (1), let f and
g be paths which are path homotopic in U or V . If F is a path homotopy in U from f to g,
then the homotopy LpF q is a path homotopy in U from Lpfq to Lpgq. Thus, Lpfq and Lpgq

are path-homotopic in U and so the condition (1) applies. The same can be done for the case
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when f and g are path homotopic in V . To check condition (2), let f and g be arbitrary paths
in U or V such that fp0q “ x, fp1q “ gp0q “ y and gp1q “ z so f ˚ g is well-defined. Then we
have

Lpfq ˚ Lpgq “ pαx ˚ pf ˚ αyqq ˚ pαy ˚ pg ˚ αzqq »p αx ˚ ppf ˚ gq ˚ αzq,

which means that Lpfq ˚ Lpgq is path homotopic to Lpf ˚ gq. Therefore,

ρpLpf ˚ gqq “ ρpLpfq ˚ Lpgqq “ ρpLpfqq ˚H ρpLpgqq

by condition (2) for ρ. Hence, σpf ˚ gq “ σpfq ˚H σpgq and so property (2) is satisfied.
Step 3. Finally, let’s extend σ to a set map τ which assigns an element of H to an arbitrary
path f of X. Given any path f in X, using the Lebesgue Number Lemma A.0.30, we can
choose a subdivision 0 “ s0 ă s1 ă . . . ă sn “ 1 of the interval I such that f maps each of
the sub-intervals rsi´1, sis into U or V . Let fi denote the path obtained by restricting f to the
sub-interval rsi´1, sis. Then fi is a path in U or V with rf s “ rf1s ˚ . . . ˚ rfns. Define τ as

τpfq “ σpf1q ˚H . . . ˚H σpfnq.

This map will satisfy the similar conditions to ρ and σ:

1. If rf s “ rgs, then τpfq “ τpgq.

2. If f ˚ g is well-defined, then τpf ˚ gq “ τpfq ˚H τpgq.

But before we show that the map actually satisfies these claims, let’s show that this definition
of τ is actually independent of the choice of subdivision. For this we need to show that the
value of τpfq remains the same if we add one additional point p to the subdivision. Let i be
the index such that si´1 ă p ă si with p being a new point. If we compute τpfq using the new
subdivision, the only change in the the value is the change of σpfiq to σpf 1

iq ˚H σpf2
i q, where f 1

i

and f2
i are paths obtained by restricting f to rsi´1, ps and rp, sis, respectively. However, since

fi is path homotopic to f 1
i ˚f2

i in U or V , we have τpfiq “ τpf 1
iq ˚H τpf2

i q by conditions (1) and
(2) which we know work for τ . Therefore, τ is indeed independent of our choice of subdivision
and hence well-defined.
It immediately follows that τ is an extension of σ: if f is already in U or V , then we can use
the trivial partition r0, 1s “ tt0u, p0, 1q, t1uu to define τpfq and so τpfq “ σpfq by definition.
Now, let’s show that τ satisfies the condition (1): if rf s “ rgs, then τpfq “ τpgq. Let f and g be
paths in X from x to y and let F be the path homotopy between them. Using the compactness
of r0, 1s2 for the Lebesgue number lemma A.0.30, we can choose subdivisions s0 ă . . . ă sn
and t0 ă . . . ă tm of r0, 1s such that F maps each sub-rectangle rsi´1, sis ˆ rtj´1, tjs into U or
V . Let fj be the path fjpsq “ F ps, tjq. Then f0 “ f and fm “ g. Note that for all pairs of
paths fj´1 and fj there exists a subdivision s0, . . . , sn of I such that F carries each rectangle
Ri “ rsi´1, sis ˆ r0, 1s into either U or V . Given i, consider the linear map of I onto rsi´1, sis
followed by f or by g - let’s call these maps fi and gi, respectively. The restriction of F to
the rectangle Ri gives a homotopy between fi and gi which is fully happening in either U or
V . However, it is not path-homotopy since the end-points of these restrictions do not have to
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match. Consider the paths which represent the way of these end points during the homotopy,
i.e., define βiptq “ F psi, tq. This way βi is the path in X from fpsiq to gpsiq with both β0 and
βn being constant paths at x and y, respectively. We would like to show that for all i,

fi ˚ βi »p βi´1 ˚ gi.

For this consider the broken-line path along the bottom and right edges of Ri from si´1 ˆ 0
to si ˆ 1, as shown on Figure 2.3.1. The composition of F with this path is equal to the path

Figure 2.3.1

fi ˚βi. A similar thing happens when we take the broken-line path along the left and top edges
of Ri and follow it by F - we obtain the path βi´1 ˚ gi. Since Ri is convex, by Example 1.1.6
there is a path homotopy in Ri between two broken-line paths and by Lemma 1.1.9 if we follow
by F , we obtain a path homotopy between fi ˚ βi and βi´1 ˚ gi which takes place in either U
or V . Using the conditions (1) and (2) for σ, we get that

σpfiq ˚h σpβiq “ σpβi´1q ˚H σpgiq

and, thus, we have
σpfiq “ σpβi´1q ˚H σpgiq ˚H σpβiq

´1.

Similarly, since β0 and βn are constant maps, and identity elements get mapped to the identity
elements, we have σpβ0q “ σpβnq “ eH . Now, we can compute using the definition

τpfq “ σpf1q ˚H σpf2q ˚H . . . ˚H σpfnq

“ σpβ0q ˚H σpg1q ˚H . . . ˚H σpgnq ˚H σpβnq´1

“ σpg1q ˚H . . . ˚H σpgnq “ τpgq.

Therefore, we can deduce that τpfj´1q “ τpfq for each j and so τpfq “ τpgq.
Finally, let’s show that τ satisfies the condition (2). Suppose we have a composition of paths
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f ˚g in X. Choose a subdivision s0 ă ... ă sn of r0, 1s containing the point 1{2 as a subdivision
point sk such that f ˚ g carries each sub-interval into either U or V . For i “ 1, . . . , k, the
increasing linear map of I to rsi´1, sis followed by f ˚ g is the same as the increasing linear
map from I to r2si´1, 2sis followed by f ; let’s call the latter fi. Similarly, for i “ k ` 1, . . . , n,
the linear map of I to rsi´1, sis followed by f ˚ g is the same as the increasing linear map of I
to r2si´1 ´ 1, 2si ´ 1s followed by g - let’s call this map gi´k. Using the subdivision s0, . . . , sn
of f ˚ g from before, we have

τpf ˚ gq “ σpf1q ˚H . . . ˚H σpfkq ˚H σpg1q ˚H . . . ˚H σpgn´kq.

Using the subdivision 2s0, . . . , 2sk of the path f we have

τpfq “ σpf1q ˚H . . . ˚H σpfkq.

Similarly, using the subdivision 2sk ´ 1, . . . , 2sn ´ 1 of the path g we have

τpgq “ σpg1q ˚H . . . ˚H σpgn´kq.

Therefore, (2) clearly holds since τpf ˚ gq “ τpfq ˚H τpgq.
Step 4. For each loop f in X based at x0 define Φprf sq “ τpfq. The conditions (1) and (2)
from above show that Φ is a well-defined homomorphism. To show that Φ ˝ j1 “ ϕ1 consider
a loop f in U . Then

Φpj1prf sU qq “ Φprf sq “ τpfq “ ρpfq “ ϕ1prf sU q.

Similarly, for a loop g in V we have

Φpj2prgsV qq “ Φprgsq “ τpgq “ ρpgq “ ϕ2prgsV q.

The classical version of the same theorem assumes the modern version.

Theorem 2.3.2 (Seifert-van Kampen Theorem, classical version). Assume the hypotheses of
the modern version of the theorem. Let x0 P U X V . Consider j : π1pU, x0q ˚ π1pV, x0q Ñ

π1pX,x0q be the homomorphism of the free product that extends the homomorphisms j1 and
j2. Then, j is surjective, and its kernel is the least normal subgroup N of π1pU, x0q ˚ π1pV, x0q

that contains all elements represented by words of the form i1pgq´1i2pgq for g P π1pU X V, x0q.

The least normal subgroup of the noted product can also be described as a group
generated by all elements of the form i1pgq´1i2pgq for g P π1pU X V, x0q and their conjugates.

Proof. Note that by Theorem 1.6.1, π1pX,x0q is generated by the images of j1 and j2 and,
thus, j is surjective. For the second part of the theorem, we will firstly show that N Ď kerpjq.
Recall that the kernel of j is a normal subgroup of π1pU, x0q ˚π1pV, x0q. Note that it suffices to
show that i1pgq´1i2pgq belongs to the kernel for all g P π1pU X V, x0q. To the contrary, if there
was an element of N which does not belong to the kernel, it would still belong to all normal
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subgroups of π1pU, x0q ˚ π1pV, x0q, one of which is the kernel itself. Take an inclusion mapping
i : U X V Ñ X, then

ji1pgq “ j1i1pgq “ i˚pgq “ j2i2pgq “ ji2pgq,

which implies that ji1pgq “ ji2pgq and so i´1
1 pgqi2pgq is getting mapped to the identity element.

Thus, i´1
1 pgqi2pgq belongs to the kernel of j. Moreover, j induces an epimorphism

k : π1pU, x0q ˚ π1pV, x0q{N Ñ π1pX,x0q

since it is a composition of a homomorphism and an epimorphism. To show that N equals
kerpjq, we need to show that k is injective since N is trivial. For that, it is enough to show
that k has a left inverse.
Let H denote the group π1pU, x0q ˚ π1pV, x0q{N . Also, let ϕ1 : π1pU, x0q Ñ H be the inclusion
map from π1pU, x0q to the free product followed by the projection of the free product onto its
quotient by N . Let ϕ2 : π1pV, x0q Ñ H be defined similarly. Consider the diagram

π1pU, x0q

π1pU X V, x0q π1pX,x0q H

π1pV, x0q

j1
ϕ1i1

i2

Φ

k

j2 ϕ2

Note that from the diagram we can see that ϕ1˝i1 “ ϕ2˝i2. Moreover, if g P π1pUXV, x0q, then
ϕ1pi1pgqq is the coset i1pgqN in H, and ϕ2pi2pGqq is the coset i2pgqN . Since i1pgq´1i2pgq P N ,
these two cosets are actually equal.
From the modern version of the Seifert-van Kampen Theorem we know that there exists a
homomorphism Φ : π1pX,x0q Ñ H such that Φ ˝ j1 “ ϕ1 and Φ ˝ j2 “ ϕ2. Let’s show
that Φ is the left inverse for k. For this to be true we need Φ ˝ k to act as an identity on
any generator of H, i.e., on any coset of the form gN , where g P π1pU, x0q or g P π1pV, x0q.
Suppose g P π1pU, x0q, then we have

kpgNq “ jpgq “ j1pgq,

and so it follows that
ΦpkpgNqq “ Φpj1pgqq “ ϕ1pgq “ gN,

which is exactly what we need. Similarly, one can show the same thing if g P π1pV, x0q.

With Seifert-van Kampen’s Theorem, we can get an exact formula for the fundamental
group of a space X if we know the fundamental groups of a decomposition of X into U , V , and
their intersection U X V . This theorem often is used when “gluing” familiar spaces together
along a common and familiar subspace since instead of U and V we can take the covering
tUα|α P Au of X by path-connected open sets such that the family is closed under finite
intersection and all of its elements include the common point x0.
Assuming the hypotheses of the Seifert-Van Kampen Theorem.
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Corollary 2.3.3. If U X V is simply-connected, then there is an isomorphism

k : π1pU, x0q ˚ π1pV, x0q Ñ π1pX,x0q.

Corollary 2.3.4. If V is simply-connected, then there is an isomorphism

k : π1pU, x0q{N Ñ π1pX,x0q,

where N is the least normal subgroup of π1pU, x0q containing the image of the homomorphism
i1 : π1pU X V, x0q Ñ π1pU, x0q

Definition 2.3.5. The real projective plane RP2 is a quotient space obtained from S1 by
identifying each point x with its antipode ´x.

Theorem 2.3.6. The projective plane RP2 is a compact surface with fundamental group iso-
morphic to Z{2Z.

Proof. To show that RP2 is a compact surface, we need to show that it is compact, Hausdorff,
locally Euclidean and second countable. It is second countable since if S2 has a countable basis
tUnu, the space RP2 would have a countable basis tppUnqu, where p : S2 Ñ RP2 is a quotient
map. The image space is clearly Hausdorff and locally Euclidean. Moreover, the space RP2 is
compact as an image of a compact space S2 under a continuous map p.
To calculate the fundamental group, consider S1 “ U Y V with U “ S1ztxu for some point
x R S1 and V being an open neighbourhood around x. Then U X V is an open disk around
x. Note that the fundamental group of any open neighbourhood is 0, since it is a simply-
connected space, so π1pV q “ 0. The open disk U is a deformation retraction of S1, and,
therefore, π1pUq – Z. Using Corollary 2.3.4, π1pRP2q – xay{xa|a2y – Z{2Z.

2.4 The Fundamental Group of a Wedge of Circles

Figure 2.4.1: Example of
the wedge of five circles.

Definition 2.4.1. Consider a Hausdorff space X “
Ťn
i“1 Si,

where each of Si is homeomorphic to the unit circle S1. If there
is a point p P X such that Si X Sj “ tpu whenever i ‰ j, then we
call the space X the wedge (bouquet) of the circles tSiu

n
i“1.

Note that each space Si is compact and, hence, closed
in X. Moreover, since each Si can be imbedded in the plane,
the same can be said about the space X. In other words, if Ci
denotes a circle of radius i in R2 with center at pi, 0q, then X is
homeomorphic to

Ťn
i“1Ci.

Theorem 2.4.2. Let X be the wedge of the circles S1, . . . , Sn with the common point p. Then
π1pX, pq is a free group. Moreover, if fi is a loop in Si that represents a generator of π1pSi, pq,
then the loops f1, . . . , fn represent a system of free generators for π1pX, pq.
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Let’s prove a more general result than this for a space X which is a union of infinitely many
circles, which all have a point in common.

Definition 2.4.3. Consider a space X, which is a union of the subspaces Xα for α P J . The
topology of X is said to be coherent with the subspaces Xα provided a subset C of X is
closed in X if C X Xα is closed in Xα for each α. An equivalent definition can be obtained
with open sets instead.

In other words, a topological space is coherent with a family of subspaces if it is a
topological union of those subspaces. In case of a finite collection of circles like before, X is
the union of finitely many closed subspaces tXiu

n
i“1 and so the topology of X is automatically

coherent with these subspaces, since if C XXi is closed in Xi, it is also closed in X and, thus,
C is the finite union of the sets C XXi.

Definition 2.4.4. Let X be a space which is a union of the subspaces Sα, α P J , each of which
is homeomorphic to S1. If there is a point p P X such that for all α ‰ β we have SαXSβ “ tpu

and the topology of X is coherent with the subspaces Sα, then X is called the wedge of the
circles Sα.

Note that the Hausdorff condition, which is included in Definition 2.4.1, is not included
in the infinite case. But it is still required, it just follows from the coherent condition.

Lemma 2.4.5. LetX be the wedge of the circles tSαuαPJ . ThenX is normal, and any compact
subspace of X is contained in the union of finitely many circles Sα.

Proof. Firstly note that one-point sets are closed in X. Consider disjoint closed subsets A
and B of the space X such that B does not contain the point p. Choose disjoint subsets Uα
and Vα of Sα that are open in Sα and contain tpu Y pA X Sαq and B X Sα, respectively. Let
U “

Ť

αPJ Uα and V “
Ť

αPJ Vα. Then U and V are disjoint. Now, since all sets Uα contain p
we have that UXSα “ Uα. Similarly, since none of the sets Vα contain p, we have V XSα “ Vα.
Hence, U and V are open in X, and, thus, X is normal.

Consider a compact subspace C of X. Choose a point xα P CXpSαztpuq if CXpSαztpuq

is not empty. The set D “ txαu is closed in X, since its intersection with each space Sα is
either empty or a one-point set, which is closed in a Hausdorff space X. For the same reason,
each subset of D is closed in X. Thus, D is a closed discrete subspace of X contained in C
and since C is limit point compact, D must be finite.

Theorem 2.4.6. Let X be the wedge of circles tSαuαPJ with the common point p. Then
π1pX, pq is a free group. Moreover, if fα is a loop in Sα representing a generator of π1pSα, pq,
then the loops tfαu represent a system of free generators for π1pX, pq.

Proof. Let iα : π1pSα, pq Ñ π1pX, pq be the homomorphism induced by inclusion and let Gα be
the image of iα. Note that if f is any loop in X based at p, then the image set of f is compact
and so f lies in some finite union of subspaces Sα. Moreover, if f and g are two path-homotopic
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loops in X, then they are path-homotopic in some finite union of the subspaces of Sα by the
preceding lemma.

To see that the groups tGαu generate π1pX, pq, consider a loop f in X. It must lie in
Sα1 Y . . . Y Sαn for some finite set of indices. By Theorem 2.4.2, we have rf s as a product of
elements of the groups Gα1 , . . . , Gαn . It follows that iβ is a monomorphism. In the case f is
nulhomotopic in X, f must be path homotopic to a constant in some finite union of spaces
Sα, so by Theorem 2.4.2, f is path homotopic to a constant in Sβ.

Suppose there exists a reduced nonempty word w “ pgα1 . . . gαnq in the elements of
the groups Gα which represents the identity element of π1pX, pq. Let f be a loop in X whose
path-homotopy class is represented by w. Then f is path homotopic to a constant in X and so
it is path homotopic to a constant in some finite union of subspaces Sα, which is not possible
according to Theorem 2.4.2.

Definition 2.4.7. Given two topological spaces X and Y with points x0 P X and y0 P Y , the
wedge X _ Y of X and Y is defined as the quotient space of their disjoint union where two
copies of the base points (one in X and one in Y ) are identified.

Example 2.4.8. Consider the wedge X of the spaces X1, . . . , Xn. Let’s show that if for each
i, the common point p is a deformation retract of an open set Wi of Xi, then π1pX, pq is the
free product of the groups π1pXi, pq relative to the monomorphisms induced by inclusion.
Consider the problem for the case when X “ X1 _X2. We can assume that both X1 and X2

are path-connected since if Ci are the path components containing p in Xi, then π1pCi, pq “

π1pXi, pq. Let U “ X1 Y W2 and let V “ X2 Y W1. Then both U and V are path-connected
since their deformation retracts are X1 and X2, respectively, and U XV “ W1 YW2 is simply-
connected since its deformation retract is just the point p. Therefore, by Theorem 2.3.3, there
is an isomorphism π1pX1, pq ˚ π1pX2, pq – π1pX, pq.

2.5 Adjoining a Two-Cell

Theorem 2.5.1. Let X be a Hausdorff space and let A be a closed path-connected subspace
of X. Suppose there is a continuous map h : B2 Ñ X which maps IntpB2q bijectively onto
XzA and maps S1 “ BdpB2q onto A. Let p P S1, a “ hppq and let k : pS1, pq Ñ pA, aq be the
restriction of h. Then the homomorphism

i˚ : π1pA, aq Ñ π1pX, aq

induced by the inclusion is surjective, and its kernel is the least normal subgroup of π1pA, aq

containing the image of k˚ : π1pS1, pq Ñ π1pA, aq.

Proof. Step 1. Consider the origin 0 of B2, its image x0 “ hp0q in X and an open set U “

Xztx0u of X. Let’s show that A is the deformation retract of U .
Let C “ hpB2q and let π : B2 Ñ C be the restriction of h. Consider the map

π ˆ I : B2 ˆ I Ñ C ˆ I.
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Figure 2.5.1: Representation of the construction discussed in Step 1.

Since B2 ˆ I is compact and C ˆ I is Hausdorff, the map πˆ I is closed. Since it is closed and
surjective, it is a quotient map by definition. Its restriction

π1 : pB2zt0uq ˆ I Ñ pCztx0uq ˆ I

is a quotient map as well, since its domain is open in B2 ˆ I and is saturated with respect
to π ˆ I. It is known that there is a deformation retraction of B2zt0u onto S1, and so using
the quotient map π1 it can induce a deformation retraction of Cztx0u to πpS1q. We extend
this deformation retraction to all U ˆ I by letting each point of A remain fixed during the
deformation. Therefore, A is a deformation retract of U .

Then by Theorem 1.4.6 the inclusion of A into U induces an isomorphism of funda-
mental groups and what we need to prove can be reduced to the following:

Let f be a loop whose class generates π1pS1, pq. Then the inclusion of U into X
induces an epimorphism π1pU, aq Ñ π1pX, aq whose kernel is the least normal

subgroup containing the class of the loop g “ h ˝ f .

Step 2. In order to prove the reduced statement, consider the homomorphism π1pU, bq Ñ

π1pX, bq induced by inclusion relative to the base point b which does not belong to A.
Let b be any point of UzA. Now, X is the union of the open sets U and V “ XzA “

πpIntpB2qq. We know U is path-connected, since A is its deformation retraction. Because π is
a quotient map, its restriction to IntpB2q is also a quotient map and hence homeomorphism.
Thus, V is simply-connected. The set U X V “ V ztx0u is homeomorphic to IntpB2qzt0u, so it
is path connected and its fundamental group is infinite cyclic. Since b is a point of U X V , by
Theorem 2.3.4 the homomorphism π1pU, bq Ñ π1pX, bq induced by the inclusion is surjective,
and its kernel is the least normal subgroup containing the image of the infinite and cyclic group
π1pU X V, bq.
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Step 3. Now, let’s prove the result for a
point a. Let q be the point of B2 which
is the midpoint of the line segment from 0
to p. Also, let b “ hpqq so b is a point in
U X V . Let f0 be a loop in IntpB2qzt0u

based at q that represents a generator of
the fundamental group of this space. Then
g0 “ h˝f0 is a loop in UXV based at b that
represents a generator of the fundamental
group of U X V . By Step 2 we know that
the homomorphism π1pU, bq Ñ π1pX, bq in-
duced by the inclusion is surjective and its
kernel is the least normal subgroup con-
taining the class of the loop g0 “ h ˝ f0. Figure 2.5.2: The situation described in Step 3.

To obtain the similar result for the point a, consider γ as the straight line path in B2 from q
to p and a path δ “ h ˝ γ in U from b to a. The isomorphism induced by the path δ commute
with the homomorphisms, both denoted δ0, induced by inclusion in the diagram:

π1pU, bq π1pX, bq

π1pU, aq π1pX, aq

δ0 δ0 .

Therefore, the homomorphism of π1pU, aq into π1pX, aq induced by inclusion is surjective and
its kernel is the least normal subgroup containing the element δ0prg0sq.

The loop f0 represents a generator of the fundamental group of IntpB2qzt0u based at
q. Then the loop γ ˚ pf0 ˚ γq represents a generator of the fundamental group of B2zt0u based
at p. Therefore, it is path homotopic to either f or its inverse. Suppose the latter: following
the path homotopy by the map h, we note that δ ˚ pg0 ˚ δq »p g in U . Then δ̂prg0sq “ rgs and
the theorem follows.

Note that the unit ball in the Theorem above can be replaced with any space B which
is homeomorphic to B2. We call such space a 2-cell. Then the space X in the Theorem
is obtained by ”adjoining” a 2-cell to A. In other words, the theorem above states that the
fundamental group of X is obtained from the fundamental group of A by killing off the class
k˚rf s, where rf s generates π1pS1, pq.



Chapter 3

Classification of Surfaces

By now, we have built all the skills we need to be able to classify all the compact surfaces
up to homeomorphism. This problem is more or less trivial for smaller dimensions, i.e., 0
and 1. For the smallest dimension, 0-dimensional connected manifold is just a point, which
means that any 0-dimensional disconnected manifold is just a discrete set. In the case of 1
dimension, we would have a manifold homeomorphic to either a circle or a closed interval in
case of compactness, otherwise, it has to be homeomorphic to the real line R. The reader is
welcome to read more about the one-dimensional case in [Dav87]. In this chapter, though, we
would like to handle the case of compact two-dimensional manifolds.

3.1 Fundamental Groups of Surfaces

We would like to start with some construction. Let’s look at surfaces which can be constructed
as quotient spaces from a polygonal region in a plane.
Consider a point c of R2 and a number a ą 0. Construct a circle in R2 with the center at
c and with the radius a. Given a finite sequence θ0 ă θ1 ă . . . ă θn of real numbers, where
n ě 3 and θn “ θ0 ` 2π, consider the points pi “ c` apcos θi, sin θiq, which all lie on the circle
described. They also are numbered in counterclockwise order around the circle with pn “ p0.
The line through pi´1 and pi splits the circle and, as a result, the plane into two closed pieces.
Let Hi be the one that contains all the points tpiu

n
i“1, which we call vertices. Then the space

P “
Şn
i“1Hi is what we call the polygonal region determined by the points tpiu

n
i“1. The

line segments pipi`1 for all i “ 0, 1, . . . , n ´ 1 with pn “ p0 are called the edges of P . The
union of all edges is what we call the boundary of P and, thus, the region P zBdpP q “ IntpP q

is the interior.
Given a line segment L of R2, an orientation of L is the ordering of its end points:

initial point a and final point b. In this case, we say that L is oriented from a to b. If
L1 is another line segment, oriented from c to d, then the order-preserving linear map of L
onto L1 is the homeomorphism h that carries the point x “ p1 ´ sqa ` sb of L to the point
hpxq “ p1 ´ sqc` sd of L1. Note that h is the straight-line homotopy between straight paths.

37
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Using this, if two polygonal regions P and Q have the same number of vertices, p0, ..., pn
and q0, ..., qn, respectively, with p0 “ pn and q0 “ qn, then combining all the separate homeo-
morphisms using the pasting lemma, we get a homeomorphism h of BdpP q with BdpQq that
carries the line segment from pi´1 to pi by a linear map onto the line segment from qi´1 to qi
as shown on Figure 3.1.1. If p and q are fixed points of IntpP q and IntpQq, respectively, then
this homeomorphism may be extended to a homeomorphism of P with Q which linearly maps
a perpendicular from p to a point x P BdpP q to a perpendicular from q to hpxq.

Figure 3.1.1

Definition 3.1.1. A labelling of the edges of a polygonal region P in the plane is a map
from the set of edges of P to a set S called the set of labels. Given an orientation of each
edge of P , and given a labelling of the edges of P , define an equivalence relation on the points
of P as follows:

x „

#

x, if x P IntpP q,

hpxq, if x P BdpP q and both x and hpxq belong to edges with the same label.

The quotient space X obtained from this equivalence relation is said to have been obtained by
pasting the edges of P together according to the given orientations and labelling.

Definition 3.1.2. Let n P Nzt1u and let r : S1 Ñ S1 be rotation through the angle 2π{n.
Form a quotient space X from the unit ball B2 by identifying each point x of S1 with the
points rpxq, r2pxq, . . . , rn´1pxq. In this case, X is called the n-fold dunce cap and we will
denote it as Dn.
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Example 3.1.3. Consider the orien-
tations and labelling of the edges of
the triangular region pictured in Fig-
ure 3.1. All different orientations and
labellings can give us different quo-
tient spaces. Note that the provided
labellings do not give a full list of all
possible labellings for a triangle.

However, we would like to describe
a method for specifying orientations
and labels for the edges of a polygo-
nal region without drawing a picture.

Figure 3.1: Different labellings for a triangle.

Definition 3.1.4. Let P be a polygonal region with vertices p0, ..., pn, where p0 “ pn. Given
orientations and a labelling of the edges of P , let a1, ..., am be the distinct labels that are
assigned to the edges of P . For each k, let aik be the label assigned to the edge pk´1pk , and
let ϵk be equal `1 or ´1 according to the orientation assigned to this edge, i.e., if it goes from
pk´1 to pk or the reverse. Then the number of edges of P , the orientations of the edges, and
the labelling are completely specified by the symbol

w “ pai1qϵ1pai2qϵ2 . . . painqϵn ,

which is called a labelling scheme for the edges of P .

We can omit the positive exponents in the labelling scheme to get the scheme to be
looking like words which we have been working with in the previous chapter. Recall the
first figure in Example 3.1.3: the labelling scheme there can be written as a´1ba if we take
p0 to be a top vertex of the triangle. If we decide to switch p0 we would get the schemes
baa´1 and aa´1b. It is clear that a cyclic permutation of the terms of the labelling scheme
will change the end space X formed by using the scheme only up to homeomorphism.

Figure 3.1.2: Construction of a torus using a
square labelling.

Example 3.1.5. A sphere can be con-
structed by pasting the edges of a square
with the labelling scheme aa´1bb´1.
Torus T2 can also be constructed by
pasting the edges of a square, but with
the labelling scheme aba´1b´1 as shown
on Figure 3.1.2.
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Example 3.1.6. Recall that we defined the projective plane to be homeomorphic to the
quotient space of the unit ball B2 obtained by identifying every point of the boundary with
its antipode. Since the unit square is homeomorphic to the unit ball, we can specify the same
space by the labelling scheme abab.

Theorem 3.1.7. Let X be the space obtained from a finite collection of polygonal regions by
pasting edges together according to some labelling scheme. Then X is a compact Hausdorff
space.

Proof. We will prove the case where X is obtained from a single polygonal region. This can be
extended to an arbitrary collection of polygonal regions. Firstly, note that since the image of
a compact space under a continuous map is compact and the quotient map is continuous, X is
compact. To show that X is also Hausdorff, let’s use the Lemma A.0.27 and instead show that
the quotient map π is a closed map. For this, we need to show that for each closed set C of
P , the set π´1pπpCqq is closed in P . Now, the set π´1pπpCqq consists of all points of C and all
points of P which are pasted to points of C by the map π. To determine these points consider
the compact subspaces C X e of P for each edge e. If ei is an edge that gets pasted to e, and
if hi : ei Ñ ei is the pasting homeomorphism, then the set De “ π´1pπpCqq X e contains the
space hipCeiq. Thus, De equals the union of Ce and the spaces hipCeiq, as ei ranges through
all the edges of P which are pasted to e. Since this union is compact, it is closed in e and in
P . Since π´1pπpCqq is the union of the set C and sets De, as e ranges over all edges of P , it
is closed in P , as needed.

Note that if X is obtained by pasting the edges of a polygonal region together, the
quotient map π may map all the vertices of the polygonal region to a single point of X, or it
may not. In the case of the torus, the quotient map does satisfy this condition, while in the
case of the sphere, it does not.

Theorem 3.1.8. Let P be a polygonal region; let

w “ pai1qϵ1pai2qϵ2 . . . painqϵn

be a labelling scheme for the edges of P . Let X be the resulting quotient space and let π : P Ñ X
be the quotient map. If π maps all the vertices of P to a single point x0 of X, and if a1, . . . , ak
are the distinct labels that appear in the labelling scheme, then π1pX,x0q is isomorphic to the
quotient of the free group on k generators α1, ..., αk by the least normal subgroup containing
the element

pαi1qϵ1pαi2qϵ2 . . . pαinqϵn .

Proof. The map π sends all vertices of P to a single point of X. Therefore, the space A “

πpBdpP qq is a wedge of k circles. For each i, choose an edge of P which is labelled ai. Consider
the linear map fi of I onto the chosen edge oriented counterclockwise and let gi “ π ˝fi. Then
the loops g1, . . . , gk represent the set of free generators for π1pA, x0q. The loop f going around
BdpP q once in the clockwise direction generates the fundamental group of BdpP q and, thus,
the loop π ˝ f equals the loop pgi1qϵ1 . . . pginqϵn . Now, the needed result follows from Theorem
2.5.1.
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Definition 3.1.9. Consider the space Tn obtained from a 4n-sided polygonal region P with
the labelling scheme

pa1b1a
´1
1 b´1

1 qpa2b2a
´1
2 b´1

2 q . . . panbna
´1
n b´1

n q.

This space is called the n-fold connected sum of tori or n-torus.

In other words, to construct the 2-fold torus, we can consider the polygonal region P .
See Figure 3.1.3. If we split the polygonal region P along the indicated line c, each of the
resulting pieces represents a torus with an open disc removed. Another way to construct such
surface would be taking two copies of the torus T 2, deleting a small open disk from each of
them, and pasting the remaining pieces together along their edges. A similar argument for
both of construction techniques shows the construction of the 3-fold torus T#T#T and so on.
See Figure 3.1.4.

Figure 3.1.3: Construction of T#T from a polygonal region [Mun00].

Figure 3.1.4: Construction of T#T#T from a polygonal region.

Theorem 3.1.10. Let X denote the n-fold torus. Then π1pX,x0q is isomorphic to the quotient
of the free group on the 2n generators α1, β1, . . . , αn, βn by the least normal subgroup containing
the element

rα1, β1srα2, β2s . . . rαn, βns,

where rα, βs “ αβα´1β´1.

Proof. To be able to use Theorem 3.1.8 we need to show that the quotient map sends all the
vertices of the space X to a single point x0 of X since all the labels are distinct by definition.
Note that every n-fold torus can be split up into n separated tori, which means that it is
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Figure 3.1.5: Generators for T1, T2 and T3, respectively [Hat02].

enough to show that all vertices of a single torus get mapped to a single point. That is true by
construction. For instance, consider a double torus with its generators, all represented in the
middle of Figure 3.1.5. Loops a and b, which are generated from one of the tori, get combined
with loops c and d from the construction of the second tori. All together these four generators
can make up any loop on the double torus.

Definition 3.1.11. Let m ą 1. Consider the space obtained from a 2m-sided polygonal region
P in the plane by means of the labelling scheme

pa1a1qpa2a2q . . . pamamq.

This space is called the m-fold connected sum of projective planes, or simply the m-fold
projective plane, and denoted by RPm “ RP2# . . .#RP2.

Similarly to Theorem 3.1.10, we get the following result for RPm.

Theorem 3.1.12. Let X denote the m-fold projective plane. Then π1pX,x0q is isomorphic
to the quotient of the free group on m generators α1, . . . , αm by the least normal subgroup
containing the element

pα1q2pα2q2 . . . pαmq2.

Figure 3.1.6: Construction of the Klein Bottle
[Mun00].

Example 3.1.13. The Klein bottle K is
the space obtained from a square by means
of the labelling scheme aba´1b as shown on
Figure 3.1.6. Moreover, by Theorem 3.1.8
we know the presentation of its fundamental
group: π1pKq “ xa, b|aba´1by.
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3.2 Homology of Surfaces

By this point we know how to construct a surface or get a presentation of a surface, but we
do not know yet how to compare its fundamental group to a fundamental group of another
surface. This is what we are going to explore in this section.

Definition 3.2.1. Let X be a path-connected space with x0 P X. Define the first homology
group of X as

H1pX,x0q “ π1pX,x0q{rπ1pX,x0q, π1pX,x0qs.

We know that if X is a path-connected space, and if α is a path in X from x0 to x1,
then there is an isomorphism α̃ of π1pX,x0q with π1pX,x1q, but the isomorphism depends on
the choice of the path α. We would like to verify a stronger result for the group H1pXq. In
this case, the isomorphism of the “abelianized fundamental group” based at x0 with one based
at x1, induced by the path α, is independent of the choice of the path α.

To verify the independence, it suffices to show that if α and β are two paths from x0 to
x1, then the path α ˚ β induced the identity isomorphism of π1pX,x0q{rπ1pX,x0q, π1pX,x0qs

with itself. Indeed, if rf s P π1pX,x0q, then we have

g̃rf s “ rg ˚ f ˚ gs “ rgs´1 ˚ rf s ˚ rgs.

When we pass to the cosets in the abelian group π1pX,x0q{rπ1pX,x0q, π1pX,x0qs, we see that
g̃ induces the identity map.

One can show that the base point is not relevant in the notation of this group similarly
to the fundamental group of a path-connected space. This being said, we will denote it by
H1pXq instead.

Showed independence of the base point and a path shows that to differentiate between
two surfaces one can compute their homology groups instead of fundamental groups. To do
this we need the following result.

Theorem 3.2.2. Let F be a group with N being a normal subgroup of F . Consider the
projection q : F Ñ F {N . Then the projection homomorphism p : F Ñ F {rF, F s induces an
isomorphism

ϕ : qpF q{rqpF q, qpF qs Ñ ppF q{ppNq.

In other words, if one divides F by N and abelianizes the quotient, they would obtain the same
result as if we abelianize F first and then divide by the image of N in this abelianization.

Proof. Consider the projection homomorphisms p, q, r, s as given in the following diagram,
where qpF q “ F {N and ppF q “ F {rF, F s.

qpF q qpF q{rqpF q, qpF qs

F

ppF q ppF q{ppNq

s

u

ϕ

q

p v

r

ψ
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Since r ˝ p maps N to the identity, it induces a homomorphism u : qpF q Ñ ppF q{ppNq.
Now, since the image group is abelian, the homomorphism u induces a homomorphism ϕ :
qpF q{rqpF q, qpF qs Ñ ppF q{ppNq. On the other hand, since s ˝ q maps F onto an abelian
group, it also induces a homomorphism v : ppF q Ñ qpF q{rqpF q, qpF qs. Because s ˝ q maps
N to the identity, the same thing is done by v ˝ p and, thus, v induces a homomorphism
ψ : ppF q{ppNq Ñ qpF q{rqpF q, qpF qs.

We can describe the homomorphisms ϕ and ψ in a similar way such that they are
inverses of each other. For instance, for a given y in qpF q{rqpF q, qpF qs, choose an element x of
F such that s ˝ qpxq “ y. Then ϕpyq “ rpppxqq.

Corollary 3.2.3. Let F be a free group with free generators α1, α2, . . . , αn. Let N be the
least normal subgroup of F containing the element x of F and let G “ F {N . Consider the
projection p : F Ñ F {rF, F s. Then G{rG,Gs is isomorphic to the quotient of F {rF, F s, which
is free abelian with basis ppα1q, . . . , ppαnq, by the subgroup generated by ppxq.

Proof. The group N is generated by x and all of its conjugates. Also, the group ppNq is
generated by ppxq since p is a projection. Therefore, by the preceding theorem, the corollary
follows.

Theorem 3.2.4. If X is the n-fold connected sum of tori, then H1pXq is a free abelian group
of rank 2n.

Proof. By Theorem 3.1.10, the fundamental group of the n-fold tori is isomorphic to the
quotient of the free group on the 2n generators α1, β1, . . . , αn, βn by the least normal subgroup
containing the element

rα1, β1srα2, β2s . . . rαn, βns,

where rα, βs “ αβα´1β´1. Now, using Corollary 3.2.3, H1pXq is isomorphic to the quotient of
the free abelian group F 1 on the set of generators α1, β1, . . . , αn, βn by the subgroup generated
by the element rα1, β1s . . . rαn, βns. Since the group F 1 is abelian, the element equals to the
identity element. Using presentations we can write the following:

H1pTnq “ pπ1pTnqqab “ xα1, β1, . . . , αn, βn|rα1, β1s . . . rαn, βnsyab “ Z‘2n.

Theorem 3.2.5. If X is the m-fold connected sum of projective planes, then the torsion
subgroup T pXq of H1pXq has order 2, and H1pXq{T pXq is a free abelian group of rank m´ 1.

Proof. By Theorem 3.1.12, π1pXq is isomorphic to the quotient of the free group F 1 on the set
of generators α1, . . . , αm by the subgroup generated by pα1q2 . . . pαmq2. Let β “ α1 ¨ . . . ¨ αm.
The torsion subgroup T pXq is generated by β2 and, thus, the order of it is 2. Moreover, the
elements α1, . . . , αm´1, β form a basis for F 1. Now, by Corollary 3.2.3, H1pXq is isomorphic
to a quotient of a free abelian group generated by m elements by the subgroup generated by
the image of β2. Then H1pXq is isomorphic to the quotient of the m-fold Cartesian product
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Z ˆ . . . ˆ Z by the subgroup 0 ˆ . . . ˆ 0 ˆ 2Z, which is the same as Zm´1 ‘ Z2. By Theorem
2.1.11, both H1pXq{T pXq and T pXq are free abelian. Thus, T pXq is isomorphic to Z2 and so
H1pXq{T pXq is isomorphic to Zm´1. As a result, H1pXq{T pXq is a free abelian group of rank
m´ 1, as required.

Now, as we have computed the first homology groups for the connected sum of tori and
the connected sum of projective planes, we get the following.

Corollary 3.2.6. Let Tn and RPm denote the n-fold connected sum of tori and the m-fold
connected sum of projective planes, respectively. The the surfaces S2, T1, T2, . . . ,RP1,RP2, . . .
are all topologically distinct.

3.3 Cutting and Pasting

Now, as we have developed some algebraic techniques, we also need to catch up on some ge-
ometric techniques for computing the fundamental group. These “cut-and-paste” techniques
let us see how a space X can be represented by different collections of polygonal regions and
different labelling schemes.
First, let’s consider cutting. Let P be a polygonal region with successive vertices p0, p1, . . . , pn “

p0. Given k with 1 ă k ă n ´ 1, consider the polygonal regions Q1 with successive vertices
p0, p1, . . . , pk, p0, and Q2 with successive vertices p0, pk, . . . , pn “ p0. These regions have the
edge p0pk in common and the region P is their union.

Now, let’s move (by a translation in R2) one of the regions, for instance, Q1, away
from the region Q2 to obtain two polygonal regions with empty intersection. Call this new
region Q1

1. Then the regions Q1
1 and Q2 are said to have been obtained by cutting P apart

along the line from p0 to pk. See Figure 3.3.1 from right to left. Note that the region P is
homeomorphic to the quotient space of Q1

1 and Q2 obtained by pasting the edge of Q1
1 going

from q0 to qk to the edge of Q2 going from p0 to pk, by a linear map of one edge onto the
other. For the reverse operation, suppose we are given two disjoint polygonal regions Q1

1 with

Figure 3.3.1: Visualization of the pasting operation for a polygonal region P with 7 vertices.

successive vertices q0, . . . , qk, q0, and Q2, with successive vertices p0, pk, . . . , pn “ p0. Also,
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suppose we form a quotient space by pasting the edge of Q1
1 from q0 to qk onto the edge of Q2

from p0 to pk, by a order-preserving linear map of one edge onto the other.
The points of Q2 lie on a circle and are arranged in counterclockwise fashion. Let us

choose points p1, . . . , pk´1 on the same circle in such a way that p0, p1, . . . , pk´1, pk are arranged
in counterclockwise order, and let Q1 be the polygonal region with these as successive vertices.
There is a homeomorphism of Q1

1 onto Q1 that carries qi to pi for each i and maps the edge q0qk
of Q1

1 linearly onto the edge p0pk of Q2. Therefore, the quotient space before is homeomorphic
to the region P which is the union of Q1 and Q2. We say that P is obtained by pasting
Q1

1 and Q2 together along the indicated edge. See Figure 3.3.1 from left to right. We can
summarize this as a theorem.

Theorem 3.3.1. Suppose X is the space obtained by pasting the edges of m polygonal regions
together according to the scheme

y0y1, w2, . . . , wm.

Let c be a label not appearing anywhere in the scheme above. If both y0 and y1 have length at
least two, then X can also be obtained by pasting the edges of m`1 polygonal regions according
to the scheme

y0c
´1, cy1, w2, . . . , wm.

Note that the converse of this statement also holds due to the nature of cutting.

We can make a list of elementary scheme operations which we are allowed to perform
without affecting the resulting space X.

1. Cut: replacing the scheme w1 “ y0y1 with schemes y0c
´1 and cy1, provided that c does

nor appear elsewhere in the w1 and both y0 and y1 have length at least two.

2. Paste: replacing the scheme y0c
´1 and cy1 by the scheme y0y1, provided c does not

appear elsewhere in the total scheme.

3. Relabel: replacing all occurrences of any given label by some other label which does not
appear anywhere in the total scheme. Similarly, one can change the sign of the exponent
of all occurrences of a label.

4. Permute: replacing one of the schemes wi by a cyclic permutation of wi. In other words,
the scheme now begins with a different vertex without changing anything else.

5. Flip: replacing the scheme pai1qϵ1 . . . painqϵn with its formal inverse painq´ϵn . . . pai1q´ϵ1 .

6. Cancel: deleting pairs aa´1 in the scheme y0aa
´1y1 given that a does not appear else-

where in the total scheme and both y0 and y1 have the length at least two. To see the
geometric meaning of this operation, consider Figure 3.3.2.

7. Uncancel: the reverse operation of the previous operation.
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Figure 3.3.2: Visualization of the cancel operation.

Definition 3.3.2. Two labelling schemes for collections of polygonal regions are equivalent
if one can be obtained from the other by a sequence of elementary scheme operations.

Note that since each elementary operation has its inverse operation also on the list
of the elementary operations, the notion of equivalence, which was introduced above, is an
equivalence relation.

Example 3.3.3. Going back to Example 3.1.13, we already know that the Klein bottle K
is the space obtained from the labelling scheme aba´1b. It is homeomorphic to the 2-fold
projective plane RP2#RP2, which can be seen through the following elementary operations
and visualized as shown on Figure 3.3.3.

aba´1b „ abc´1 and ca´1b cutting

„ c´1ab and b´1ac´1 permuting and flipping

„ c´1aac´1 pasting

„ aacc permuting and relabelling

Figure 3.3.3: Klein Bottle transformed into RP2#RP2.
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3.4 The Classification Theorem

First we would like to show that every space obtained by pasting the edges of the polygonal
region together in pairs is homeomorphic either to S2, Tn or RPm.
Consider polygonal regions P1, . . . , Pk with labelling schemes w1, . . . , wk. We call a scheme
proper if each label appears exactly twice in a labelling scheme. Note that a proper scheme
remains proper after any elementary operation from the previous section.

Definition 3.4.1. Let w be a proper labelling scheme for a single polygonal region. We call
w of torus type if each label in it appears exactly twice, each time with a different exponent.
Otherwise, we call w of projective type.

Consider a scheme w of projective type. This being said w has either a label not
appearing twice or a label appearing twice but with the same exponent. Consider the latter
case, i.e., w “ ry0sary1sary2s, where writing ryis means that yi may be empty.

Lemma 3.4.2. Consider a proper scheme w “ ry0sary1sary2s, where some of the yi for i “

0, 1, 2 may be empty. Then w „ aary0y
´1
1 y2s.

(a) Case where y0 is empty. (b) General case.

Figure 3.4.1: Labelling schemes operations following the proof of the Lemma 3.4.1.

Proof. Let’s first assume that y0 is empty. In this case we need to show that ary1sary2s „

aary´1
1 sry2s. In case of y1 being empty as well, we have an automatic equality. Otherwise, in

case of y2 being empty, one has ary1sa being equal to a´1ry´1
1 sa´1, then a´1a´1ry´1

1 s, which is
also equal to aary´1

1 s. Now, if neither of ry1s or ry2s is empty, one has to do a similar sequence
of operations to show the same thing. Consider operations shown on Figure 3.4.1a:

ary1sary2s „ ary1sc and c´1ary2s cutting

„ ary1sc and cry´1
2 sa´1 permuting and flipping

„ ry1sccry´1
2 s pasting

„ aary´1
1 sry2s permuting and relabelling.

Now we can consider the general case with y0 not being empty. In case of both y1 and y2
being empty, one can permute the scheme and get the wanted result. Otherwise, consider the
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sequence of operations shown on Figure 3.4.1b:

ry0sary1sary2s „ ry0sab´1 and bry1sary2s cutting

„ b´1ry0sa and ry´1
1 sb´1ry´1

2 sa´1 permuting and flipping

„ b´1ry0sry´1
1 sb´1ry´1

2 s pasting

„ bry2sbry1y
´1
0 s permuting and relabelling

„ bbry´1
2 y1y

´1
0 s by the case prior when y0 is empty

„ ry0y
´1
1 y2sb´1b´1 flipping

„ aary0y
´1
1 y2s permuting and relabelling.

Corollary 3.4.3. If w is a scheme of projective type, then it is equivalent to a scheme of the
same length and of the form pa1a1qpa2a2q . . . pakakqw1, where k ě 1 and w1 is either of torus
type or empty.

Proof. The scheme w can be written as ry0sary1sary2s, which by Lemma 3.4.2 is equivalent to
w1 “ aaw1 with the same length as w. If w1 is of torus type, we are done. Otherwise, rewrite
w1 as aarz0sbrz1sbrz2s “ raaz0sbrz1sbrz2s. By the same Lemma, this scheme is equivalent to
w2 “ bbraaz0z

´1
1 z2s “ bbaaw2 with the same length as w. If w2 is of torus type, we are done.

Otherwise, the argument can be continued until we reach the torus type scheme.

Lemma 3.4.4. Consider a proper scheme w “ w0w1, where w1 is a scheme of torus type
which does not contain two adjacent terms having the same label. Then w is equivalent to a
scheme w1 “ w0w2, where w2 has the same length as w1 and has the form w2 “ aba´1b´1w3,
where w3 is either of torus type or empty.

Proof. Step 1. First, let’s show that w can be written in the form

w “ w0ry1sary2sbry3sa´1ry4sb´1ry5s, (3.4.1)

where some of the yi might be empty. Let a be the label whose occurrences with opposite
exponents are the close together as possible. Since these occurrences are non-adjacent, there
is at least one other label in between - call this label b. We can, without loss of generality,
assume that b and a appear with positive exponent first. Otherwise, we just need to switch
the labels. Now, since a and a´1 are the closest to each other such labels, the label b´1 cannot
appear before a´1. Thus, it has to come after a´1 or before a. In the first case, we are finished.
The second scheme is the same if one switch the label a to b´1 and b to a.
Step 2. Consider the form 3.4.1 of w and rewrite it as

w “ w0ry1sary2by3sa´1ry4b
´1y5s.
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(a) Step 2 operation. (b) Step 3, second case.

(c) Step 4, second case.

Figure 3.4.2: Labelling schemes operations following the proof of the Lemma 3.4.2.

Now, consider the cutting and pasting operation represented in Figure 3.4.2a. We have the
following result.

w „w0cry2by3sc´1ry1y4b
´1y5s

„w0ary2sbry3sa´1ry1y4sb´1ry5s “ w1 relabelling.

Step 3. If all the schemes y1, y4, y5 and w0 are empty, then one gets

w1 “ ary2sbry3sa´1b´1

„ bry3sa´1b´1ary2s permuting

„ ary3sba´1b´1ry2s “ w2 relabelling.

Otherwise, we can apply the operations represented in

w1 “ w0ary2sbry3sa´1ry1y4sb´1ry5s

„ w0cry1y4y3sa´1c´1ary2y5s Figure 3.4.2b

„ w0ary1y4y3sba´1b´1ry2y5s relabelling.

Both times end scheme can be put as w2 “ w0ary1y4y3sba´1b´1ry2y5s.
Step 4. Similar to the previous step, if the schemes w0, y1 and y2 are empty, one gets

w1 “ ary1y4y3sba´1b´1

„ ba´1b´1ary1y4y3s permuting

„ aba´1b´1ry1y4y3s “ w3 relabelling.
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Otherwise, we can apply the operations

w2 “ w0ary1y4y3sba´1b´1ry2y5s

„ w0ca
´1c´1ary1y4y3y2y5s Figure 3.4.2c

„ w0aba
´1b´1ry1y4y3y2y5s relabelling.

Now, the only thing left to show is that a connected sum of projective planes and tori
is equivalent to a connected sum of projective planes.

Lemma 3.4.5. Any proper scheme w of the form w0pccqpaba´1b´1qw1 is equivalent to the
scheme w1 “ w0paabbccqw1.

Proof. Consider the sequence of operations:

w0pccqpaba´1b´1qw1 „ ccrabsra´1b´1srw1w0s permuting

„ ccrabsrbas´1rw1w0s inverse substitution

„ rabscrbascrw1w0s Lemma 3.4.2

“ rasbrcsbracw1w0s

„ bbrac´1acw1w0s Lemma 3.4.2

“ rbbsarcs´1arcw1w0s

„ aarbbccw1w0s Lemma 3.4.2

„ w0aabbccw1 permuting.

In particular the theorem above states that the space X “ T1#RP2 is homeomorphic
to RP3 “ RP2#RP2#RP2. We can visualize it as on Figure 3.4.3.

Figure 3.4.3: Elementary scheme operations showing that T 2#RP2 – RP3.
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Theorem 3.4.6 (The Classification Theorem). Let X be the quotient space obtained from a
polygonal region in the plane by pasting its edges together in pairs. Then X is homeomorphic
either to S2, to the n-fold torus Tn, or to the m-fold projective plane RPm.

Proof. Let w be a proper labelling scheme of length at least 4 for the quotient space X from
the polygonal region P . We would like to show that w is equivalent to one of the schemes:

1. aa´1bb´1, which produces a 2-sphere;

2. pa1b1a
´1
1 b´1

1 qpa2b2a
´1
2 b´1

2 q . . . panbna
´1
n b´1

n q with n ě 1, which produces Tn;

3. abab, which produces RP1;

4. pa1a1qpa2a2q . . . pamamq with m ě 2, which produces RPm.

Let’s consider w to be a proper scheme of torus type. Using the method of mathematical
induction, we will show that w is equivalent either to the scheme (1) or to the scheme (2). If
w has length 4, then it has to be either aa´1bb´1 or aba´1b´1, where the first one is a scheme
of type (1) and the second one is of type (3). Assume w has length greater than 4. If w is
equivalent to a shorter scheme of torus type, then by induction hypothesis, it is equivalent
either to the scheme (1) or to the scheme (2). Otherwise, w cannot contain two adjacent
elements having the same label. By Lemma 3.4.4 (taken with empty w0), w is equivalent to
a scheme having the same length as w but of the form aba´1b´1w3, where w3 is a non-empty
scheme of torus type. Similarly to w, w3 cannot contain any two adjacent terms having the
same label. Thus, we can use Lemma 3.4.4 again with w0 “ aba´1b´1 and, as a result, w has
to be equivalent to the scheme of the form

paba´1b´1qpcdc´1d´1qw4,

where w4 is a either empty or of torus type. If it is empty, we are finished and the scheme is
of type (2). Otherwise, we can apply the lemma again until we reach an empty scheme.
Now, let’s consider w to be a proper scheme of projective type. Similarly, we are going to use
induction to show that w is equivalent either to the scheme (3) or to the scheme (4). If w has
length 4, it must be either aabb, which is a scheme of type (4), or aab´1b, which by Lemma
3.4.2 is equivalent to the scheme abab, which is a scheme of type (3). Now, assume the length
of w is greater than 4. By Corollary 3.4.3, w has to be equivalent to the scheme of the form

w1 “ pa1a1q . . . pakakqw1,

where k ě 1 and w1 being either empty or of torus type. In case it is empty, we are done.
Otherwise, if w1 has two adjacent terms with the same label, then w1 is equivalent to a shorter
scheme of projective type and we can apply the induction hypothesis. Otherwise, by Lemma
3.4.4, w1 is known to be equivalent to a scheme of the form

w2 “ pa1a1q . . . pakakqaba´1b´1w2,
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where w2 is either empty or of torus type. By Lemma 3.4.5, w2 is equivalent to the scheme
pa1a1q . . . pakakqaabbw2, which is a scheme of type (4). Continuing the same process, we reach
the empty scheme since w is finite, and so it has to be equivalent to the scheme of type (4).

Example 3.4.7. Consider X to be a quotient space obtained from an 8-sided polygonal region
P by means of the labelling scheme abcdad´1cb´1. See Figure 3.4.4. Let π : P Ñ X be the
quotient map. We can not use Theorem 3.1.8 since we do not have all vertices mapped to a
single point. Instead, we end up with 2 points x0 and x1.
In this case we can still calculate the fundamental group of the boundary of X. We can see
that a connects x1 to itself, c connects x0 to itself, while b and d are paths between x0 and
x1 of opposite direction. We now want to calculate its fundamental group. Note that we can
retract the segment d into the point x0, making the point coincide with x1. The resulting
deformation retract ends up being the wedge of three circles. Thus, π1pA, x0q – Z ˚ Z ˚ Z
by Theorem 2.4.2. One can also show it using labelling schemes, where r s denotes an empty
scheme, with the following operations.

r sarbcdsard´1cb´1s „ aad´1c´1b´1d´1cb´1 by Lemma 3.4.2

„ raasd´1rc´1b´1sd´1rcb´1s „ d´1d´1aabccb´1 by Lemma 3.4.2

„ b´1cd´1d´1aabc permuting

„ rb´1scrd´1d´1aabscr s „ ccb´1b´1a´1a´1d´1d´1 Lemma 3.4.2

„ aabbccdd relabelling.

Therefore, X is homeomorphic to RP3.

Figure 3.4.4: Polygonal region in Example 3.4.7.
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3.5 Construction of Compact Surfaces

So far we have proved that every compact connected surface is homeomorphic to a surface
from the list in the Theorem 3.4.6, but we have not clearly showed that every surface can be
obtained by pasting together in pairs the edges of a polygonal region.

Definition 3.5.1. LetX be a compact Hausdorff space. A curved triangle inX is a subspace
A of X and a homeomorphism h : T Ñ A, where T is a closed triangular region in the plane.
If e is an edge of T , we say that hpeq is an edge of A. Similarly, hpvq is a vertex of A if v is a
vertex of T . A triangulation of X is a collection of curved triangles tAiu

n
i“1 in X such that

Ťn
i“1Ai “ X and for i ‰ j the intersection Ai X Aj is either empty or a vertex or edge of Ai

and Aj . If X has a triangulation, we say that X is triangulable.

Note that if hi : Ti Ñ Ai is the associated homeomorphism, then if Ai XAj is an edge
e of both Ai and Aj , then the map h´1

j hi defines a linear homeomorphism h´1
j hi|e of the edge

h´1
i peq of Ti with the edge h´1

j peq of Tj .

Theorem 3.5.2. Every compact surface is triangulable.

The proof of the theorem above is a well-known result of topology. It uses Jordan
curves and the interested reader can find it in [Tho92] or in [AS60]. Prior to proving the main
result, we outline a few propositions to make the main proof easier.

Proposition 3.5.3. If X is a triangular region in the plane and if x is an interior point of one
of the edges of X, then x does not have a neighborhood in X homeomorphic to an open 2-ball.

Proof. Suppose there is a neighbourhood U of x which is homeomorphic to an open ball B in
R2 with the homeomorphism carrying x to 0. Note that the space Xztxu is homeomorphic to
a circle. Let V be an open neighbourhood of 0 contained in B. Choose ϵ such that the open
ball Bϵ of radius ϵ centered at 0 lies in V . Consider the inclusion mappings:

Bϵzt0u Bzt0u

V ´ 0
j

i

k

The inclusion i is homotopic to the homeomorphism hpxq “ x{ϵ, which is scaling the circle,
so by Theorem 1.4.6 it induces an isomorphism of fundamental groups. Therefore, k˚ must be
surjective and so V zt0u cannot be simply-connected. However, a point x on the edge, which
is a part of the boundary of the trianglular region, has arbitrary small neighbourhood W for
which W ztxu is simply-connected. Thus, we reached a contradiction and, as a result, x does
not have a neighborhood in X homeomorphic to an open 2-ball.

Proposition 3.5.4. Let X be the union of k triangles in R3, each pair of which intersect
in the common edge e. If k ě 3, then a point x of e does not have a neighborhood in X
homeomorphic to an open 2-ball.
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Proof. We would like to show that there is no neighbourhood W of x in X such that W ztxu

has abelian fundamental group (since an open 2-ball without an interior point is homotopic
to a circle and has fundamental group Z). Consider a union A of all the edges of triangles
of X which are different from e. The space A is a collection of k “arcs”, each pair of which
intersects in their endpoints. If B is the union of three of the arcs that make up A, then there
is a retraction r of A onto B, obtained by mapping each of the arcs not in B homeomorphically
onto one of the arcs in B, keeping the end points fixed. Then r˚ is an epimorphism by Lemma
1.4.2. Since the fundamental group of B is not abelian, neither is the fundamental group of A
by Theorem 1.4.6. It follows that the fundamental group of Xztxu is not abelian since A is a
deformation retract of Xztxu.

Assume x is the origin in R3. If W is an arbitrary neighbourhood of 0, we can find a
scaling map fpxq “ ϵx which carries X into W . The image Xϵ “ fpXq is a copy of X lying
inside of W . Consider the inclusion mappings:

Xϵzt0u Xzt0u

W ´ 0
j

i

k

Similarly to the proof of Proposition 3.5.3, k˚ is surjective, and so the fundamental group of
W zt0u cannot be abelian.

Theorem 3.5.5. If X is a compact surface, then X is homeomorphic to the quotient space
obtained from a collection of disjoint triangular regions in the plane by pasting their edges
together in pairs.

Proof. Since the surface is compact, by Theorem 3.5.2, X is triangulable. Let A1, A2, . . . , An
be a triangulation of X with corresponding homeomorphisms hi : Ti Ñ Ai. One can get any
triangulation to be disjoint, thus, consider the case when the triangles Ti are already disjoint.
Then the maps hi can be combined to form a map h : T1 Y T2 Y . . .Y Tn Ñ X. Note that this
map is a quotient map since the space E “ T1 Y T2 Y . . .Y Tn is compact and X is Hausdorff.
Moreover, because the map h´1

j ˝hi is linear when Ai XAj is an edge, h pastes the edges of Ti
and Tj together by a linear homeomorphism.

First, we need to show that for each edge e, which belongs to the triangulation triangle
Ai, there is exactly one other triangle Aj such that AiXAj “ e. Note that by Proposition 3.5.3,
there is at least one additional triangle Aj having e as an edge and by Proposition 3.5.4 there
is only one such triangle. Therefore, the quotient map actually pastes the edges of triangles
together in pairs, since each edge appears exactly twice in a scheme.
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Now, we would like to show that if the inter-
section Ai XAj equals a vertex v, then there is
a sequence, as visualized in Figure 3.5.0, start-
ing with Ai and ending with Aj , of triangles
having v as a vertex such that the intersection
of each triangle of the sequence with its suc-
cessor is an edge of each. In other words, we
cannot have a case of the wedge of multiple
surfaces. To show that such situation is not
possible, given a common vertex v, define two
triangles Ai and Aj such that v P Ai XAj to be
equivalent if there exists a sequence of triangles
as mentioned above.

Figure 3.5.0: Visualization of the triangle
sequence with a common vertex v.

Suppose there are two equivalence classes of triangles, and let B and C be the unions
of the triangles in two different equivalence classes. Intersection of the sets B and C consists
of v alone since no triangle in B that has a common edge with a triangle in C. Therefore, for
every sufficiently small neighbourhood W of v in X, the space W ztvu is disconnected, which
contradicts the locally Euclidean property of the surface X.

Theorem 3.5.6. If X is a compact connected triangulable surface, then X is homeomorphic to
the quotient space obtained from a polygonal region in the plane by pasting their edges together
in pairs.

Proof. From the previous theorem there is a collection tTiu
n
i“1 of disjoint triangular regions in

the plane such that X is homeomorphic to the quotient space obtained from the collection by
pasting their edges together in pairs. To extend the previous theorem, we paste the edges of
triangles with the same label together. If two triangular regions have edges with the same label,
we can paste the regions together along these two edges. The result would be one four-sided
region with still proper orientations and labels instead of two triangular regions. Continue
similarly as long as there are two regions having edges bearing the same label. Eventually, one
reaches the situation with either a region with all different labels (exactly what we need) or
with multiple polygonal regions, no two of which have edges bearing the same label. In such
case the space ends up not being connected, which is not possible by the assumption.
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Appendix A

Topology

The following chapter is using materials from the textbooks Topology [Mun00] and General
Topology [Wil04]. As any other axiomatic branch of mathematics, we would like to start with
a set of definitions and axioms, which later would develop theorems and propositions.

Definition A.0.1. A topology on a non-empty set X is a collection T of subsets of X, called
open sets, satisfying

• Both X and ∅ are open, i.e., X P T and ∅ P T .

• The union of any family of open subsets is open.

• The intersection of any finite family of open subsets is open.

A pair pX, T q consisting of a set X together with a topology T on X is called a topological
space.

Example A.0.2. Let X “ ta, b, c, d, e, fu and T1 “ tX,∅, tau, tc, du, ta, c, du, tb, c, d, e, fuu.
Then T1 is a topology on X as it satisfies all the conditions from the definitions. On the
other hand, the collection T2 “ tX,∅, tau, ta, c, du, tb, c, d, e, fuu is not a topology on X since
tb, c, d, e, fu X ta, c, du “ tc, du, which does not belong to T2.

Example A.0.3. Define T as a collection of all subsets of X. It clearly satisfies all the
conditions for a topology. We call this topology discrete on the set X. In this case, we
call pX, T q a discrete space. We can also define the topology with the smallest number of
elements T “ t∅, Xu for a set X. This topology is called indiscrete and the pair pX, T q is
called indiscrete space.

Definition A.0.4. Let pX, T q be a topological space. A subset S of X is said to be a closed
set in pX, T q if its complement XzS is open in pX, T q.

One can define a topology based on closed sets instead of open sets. Then the words
“intersection” and “union” in the definition flip: we would have the intersection of any number
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of closed sets is a closed set together with the union of any finite number of closed sets being
a closed set.
Note that despite the names, open and closed sets are not mutually exclusive. For instance,
in discrete space every set is both open and closed - we call such sets clopen - while in an
indiscrete space pX, T q all subsets of X except X and ∅ are neither open or closed.

Definition A.0.5. A collection B of open subsets of X is a basis for the topology of X if
every open subset of X is the union of some collection of elements of B.

In other words, if B is a basis for a topology T on a set X, then a subset U of X is in
T if and only if it is a union of elements of B.

Definition A.0.6. Let Y be a non-empty subset of a topological space pX, T q. The induced
topology on Y or the subspace topology is defined as T |Y “ tU X Y |U Ă T u.

Example A.0.7. Let X “ ta, b, c, d, e, fu, Y “ tb, c, eu and define T as in Example A.0.2, i.e.,
T “ tX,∅, tau, tc, du, ta, c, du, tb, c, d, e, fuu. Then the subspace topology on Y is

TY “ tY,∅, tcuu

Recall from the set theory the notion of equivalence relations.

Definition A.0.8. A relation „ on a set X is said to be an equivalence relation if it is
refrexive (x „ x), symmetric (if x „ y then y „ x) and transitive (if x „ y and y „ z then
x „ z). For an element x P X the equivalence class is defined as all elements that are related
to x:

rxs :“ ty P X|x „ yu.

The set of all equivalence classes of X determines a partition of X.

Definition A.0.9. A map f : X Ñ Y between topological spaces pX, TXq and pY, TY q is
continuous if f´1pUq is open in X for every open set U of Y .

Definition A.0.10. Topological spaces pX, TX and pY, TY q are said to be homeomorphic if
there exists a continuous function f : X Ñ Y such that f is bijective and has a continuous
inverse. The map f is said to be a homeomorphism between pX, TX and pY, TY q. We would
write pX, TXq – pY, TY q. One can show that – is an equivalence relation.

A continuous map f : X Ñ Y is said to be a local homeomorphism if every point p P

X has a neighbourhood U Ď X such that fpUq is open in Y and f restricts to a homeomorphism
from U to fpUq.

Definition A.0.11. Let A be a subset of a topological space pX, T q. A point x P X is said
to be a limit point of A if every open set U containing x also contains a point of A different
from x.

Example A.0.12. Consider the topological space pX, T q, where X “ ta, b, c, d, eu and T “

tX,∅, tau, tc, du, ta, c, du, tb, c, d, euu. Consider A “ ta, b, cu. Then elements b, d and e are
limit points of A, while a and c are not.



60

Proposition A.0.13. Let A be a subset of a topological space pX, T q. Then A is closed in
pX, T q if and only if A contains all of its limit points.

Definition A.0.14. Let A be a subset of a topological space pX, T q. Then the set A Y A1

consisting of A and all its limit points, denoted as a set A1, is called the closure of A and is
denoted by A.

Definition A.0.15. Let pX1, T1q, . . . , pXk, Tkq be topological spaces. The collection of all
subsets of X1 ˆ . . . ˆ Xk of the form U1, . . . , Uk, where each Uj is open in Xj , forms a basis
for a product topology on X1 ˆ . . .ˆXk.

Definition A.0.16. If π : X Ñ Y is a map, a subset U Ď X is said to be saturated with
respect to π if U is the entire preimage of its image: U “ π´1pπpUqq.

Definition A.0.17. Let X be a topological space, Y be a set and π : X Ñ Y be a surjective
map. The quotient topology on Y determined by π is defined by the following rule:
U Ď Y is open if and only if π´1pUq is open in X. If Y is a topological space itself, the map
π is called the quotient map if it is surjective and continuous and Y has a quotient topology
determined by π.

Here are some useful properties of a quotient map π : X Ñ Y :

• If B is a topological space, a map F : Y Ñ B is continuous if and only if F ˝ π : X Ñ B
is continuous.

• The quotient topology is the unique topology on Y for which the previous property holds.

• A subset K Ď Y is closed if and only if π´1pKq is closed in X.

• If π is injective, then it is a homeomorphism.

• If U Ď X is a saturated open or closed subset, then the restriction π|U : U Ñ πpUq is a
quotient map.

• Any composition of π with another quotient map is again a quotient map.

Theorem A.0.18. Let X and Y be topological spaces and let F : X Ñ Y be a continuous map
that is either open or closed.

1. If F is surjective, then it is a quotient map.

2. If F is injective, then it is a topological embedding.

3. If F is bijective, then it is a homeomorphism.

Definition A.0.19. Let X be a topological space, „ be an equivalence relation on X, X{ „ be
the set of all equivalence classes of X and π : X Ñ X{ „ be a natural projection sending each
element x P X to its equivalence class rxs. Endowed with the quotient topology determined
by π, the space X{ „ is called quotient space of X determined by π.



61

Definition A.0.20. A topological space pX, T q is said to be connected if the only clopen
subsets ofX areX and ∅. From this, it follows that a topological space pX, T q is not connected
or disconnected if and only if there are non-empty open sets A and B such that AXB “ ∅
and AYB “ X.

Theorem A.0.21. The union of a collection of connected subspaces of X with a point in
common is connected.

Definition A.0.22. A topological space X is compact if for every collection C of open sets
of X such that

Ť

APC A “ X there is a finite subcollection F Ď C such that
Ť

APF A “ X.

Theorem A.0.23. The image of a compact space under a continuous map is compact.

Definition A.0.24. A topological space X is Hausdorff if @ p, q P X such that p ‰ q there
exists a pair of disjoint open subsets U and V in TX such that p P U , q P V and U X V “ ∅.

Note that by this definition singleton sets of a Hausdorff space are closed. In other words, is
X is a Hausdorff space with a point x P X, then Xztxu is open in X. To see that, consider
a point a distinct from x, By definition A.0.24, there is an open set Ua containing a but not
containing x. Then

Ť

aPXzx Ua is open as union of open sets, but it also equal to Xztxu.

Definition A.0.25. A topological space X is second-countable if there is a countable basis
for its topology.

Definition A.0.26. Suppose that one-point sets are closed inX. ThenX is said to be normal
if for each pair pA,Bq of disjoint closed sets of X, there exists disjoint open sets containing
A and B, respectively. In other words, every two disjoint closed sets of X have disjoint open
neighborhoods.

Note that a normal space is always Hausdorff, but only compact Hausdorff space is normal.

Lemma A.0.27. Let π : E Ñ X be a closed quotient map. If E is normal, so is X.

Theorem A.0.28 (The Pasting Lemma). Let X “ A Y B, where A and B are closed in X.
Let f : A Ñ Y and g : B Ñ Y be continuous. If fpxq “ gpxq for every x P AXB, then f and
g combine to give a continuous function h : X Ñ Y , defined by setting hpxq “ fpxq if x P A
and hpxq “ gpxq if x P B.

Theorem A.0.29 (Extreme Value Theorem). Let f : X Ñ R be a continuous function, where
X is a compact set. Then f is bounded and there exists p, q P X such that fppq “ supxPXfpxq

and fpqq “ infxPXfpxq.

Lemma A.0.30 (Lebesgue Number Lemma). For any open cover A of a compact metric space
X, there exists a real number δ ą 0, also called a Lebesgue number for A, such that every
open ball in X of radius δ is contained in some element of A.
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Category Theory

Definition B.0.1. A category C consists of a class Ob(C), whose elements are to be called
objects, and a class Mor(C), whose elements are to be called morphisms, satisfying the
following:

• For each morphism f , there are objects A and B, called the source and target of f . In
this case we write f : A Ñ B.

• Given any two morphisms f : A Ñ B and g : B Ñ C, there exists a morphism g ˝ f :
A Ñ C, called the composition of f and g.

• Given any objcet A, there is an identity morphism 1A : A Ñ A such that for any
f : A Ñ B, f ˝ 1A “ f “ 1B ˝ f .

• Morphism composition is associative: given any two morphisms f : A Ñ B, g : B Ñ C
and h : C Ñ D, pf ˝ gq ˝ h “ f ˝ pg ˝ hq.

Definition B.0.2. In any category C, a morphism f : A Ñ B is called an isomorphism if
there is a morphism g : B Ñ A such that f ˝ g “ 1B and g ˝ f “ 1A. In this case, f and g are
called inverses, g is denoted f´1, and we say that A is isomorphic to B.

Example B.0.3. Let’s look at some important examples of categories: First, let us define 0
as an empty category (with no objects and no morphisms) and 1 as a category with one object
and the identity morphism.

• Sets is the category of sets and functions between them.

• Setsfin is the category of finite sets and functions between them.

• Groups is the category of groups and group homomorphisms.

• Ab is the category of abelian groups and group homomorphisms.

• Graphs is the category of graphs and graph homomorphisms.
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• VectF is the category of vector spaces over a field F and linear transformations in F .

• Top is the category of topological spaces and continuous mappings.

• Poset is the category of elements of the set and orderings.

Finally, an individual group is itself a category with exactly one object, where all the morphisms
are isomorphisms. For a given group G, this category is called BG.

There are also examples of categories whose objects are sets with distinguished base
points, in addition to possibly other structure.

Definition B.0.4. A pointed set is an ordered pair pX, pq where X is a set and p is an
element of X. Similarly, one can defined objects as pointed topological spaces and so on.
Moreover, if pX, pq and pX 1, p1q are both pointed sets, a map F : X Ñ X 1 is called a pointed
map if F ppq “ p1. In this case, we write F : pX, pq Ñ pX 1, p1q.

Example B.0.5. With the definition above, let’s look at categories of pointed objects:

• Set˚ is a category of pointed sets and pointed maps.

• Top˚ is the category of pointed topological spaces and pointed continuous maps.

Definition B.0.6. A subcategory of a category C is a subclass Ob(D)Ď Ob(C) and a subclass
Mor(D) Ď Mor(C) such that any morphism in Mor(D) is between two objects in Ob(D).

For example, 0 is a subcategory of any category.

Definition B.0.7 (Types of morphisms). A morphism f : A Ñ B is called a monomorphism
if it is left cancellative, i.e., f ˝ g “ f ˝ h ñ g “ h. In this case, we say that f is monic.
A morphism f : A Ñ B is called an epimorphism if it is right cancellative, i.e. g˝f “ h˝f ñ

g “ h. In this case, we say that f is epic.
A morphism is called a bimorphism if it is both epic and monic.
A morphism is called a retraction if it has a left-inverse and a section if it has a right-inverse.
Note that a morphism which is both a retraction and a section is an isomorphism.

Definition B.0.8. An endomorphism is a morphism f : A Ñ A from an object to itself. If
an endomorphism is also an isomorphism, then it is called an automorphism. The class of
endomorphisms of an object A is denoted End(A) and the class of automorphisms is denoted
Aut(A).

Definition B.0.9. A covariant functor (or just a functor) F : C Ñ D between categories
C and D is a mapping Ob C Ñ Ob D and Mor C Ñ Mor D such that:

• F assigns to each object X POb C an object FpXq POb D.

• F assigns to each morphism f P MorCpX,Y q a morphism Fpfq P MorCpFpXq,FpY qq.
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• Fp1Aq “ 1FpAq.

• Fpg ˝ fq “ Fpgq ˝ Fpfq.

In short, a functor is a morphism of categories. In particular, every category C has the
identity functor 1C : C Ñ C.

Definition B.0.10. Two categories C and D are isomorphic if there exist functors F : C Ñ D
and G : D Ñ C that are inverses F ˝ G “ 1D and G ˝ F “ 1C. In particular, a functor is
an isomorphism functor if and only if it is bijective on the class of objects and the class of
morphisms.

Definition B.0.11. Let C be a category and tAi|i P Iu be a family of objects of C. A
product for the family tAi|i P Iu is an object P of C together with a family of morphisms
tπi : P Ñ Ai|i P Iu such that for any object B and a family of morphisms tϕi : B Ñ Ai|i P Iu,
there is a unique morphism ϕ : B Ñ P such that πi ˝ ϕ “ ϕi for all i P I.

Definition B.0.12. A coproduct for the family tAi|i P Iu is an object S of C together with a
family of morphisms tιi : Ai Ñ S|i P Iu such that for any object B and a family of morphisms
tψi : Ai Ñ B|i P Iu, there is a unique morphism ψ : S Ñ B such that ψ ˝ ιi “ ψi for all i P I.

Theorem B.0.13. If pP, tπiuq and pQ, tψiuq are both products or both coproducts of the family
tAi|i P Iu of objects of a category C, the P and Q are equivalent.

In many categories, the “objects” are sets or are sets with an added structure (such as
groups). When this is the case, the morphisms can be considered as functions on sets.

Definition B.0.14. A concrete category is a category C together with a function σ that
assigns to each object A of C a set σpAq, called the underlying set of A, such that

1. every morphism mapping A Ñ B of category C is a function on the underlying sets
σpAq Ñ σpBq,

2. the identity morphism of each object A of C is the identity function on the underlying
set σpAq, and

3. composition of morphisms in C agrees with composition of functions on the underlying
sets.

Definition B.0.15. Let F be an object in a concrete category C, X a nonempty set, and
i : X Ñ F a set map. Then object F is free on the set X provided that for any object A of C
and set map f : X Ñ A, there exists a unique morphism of C, f : F Ñ A, such that f ˝ i “ f
as a set map X Ñ A.

Theorem B.0.16. If C is a concrete category, F and F0 are objects of C such that F is free
on the set X and F0 is free on the set X0 and |X| “ |X0|, then F is equivalent to F0.
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