
THOMPSON RIVERS UNIVERSITY

Benchmarking penalized regression methods in machine

learning for single-cell RNA sequencing data

By

Bhavithry Sen Puliparambil

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science in Data Science

KAMLOOPS, BRITISH COLUMBIA

April, 2022

SUPERVISORS

Dr Jabed Tomal

Dr Yan Yan

© Bhavithry Sen Puliparambil, 2022



ABSTRACT

Single-Cell RNA Sequencing (scRNA-seq) technology has enabled the

biological research community to explore gene expression at a single-cell res-

olution. By studying differences in gene expression, it is possible to differen-

tiate cell clusters and types within tissues. One of the major challenges in

a scRNA-seq study is feature selection from high dimensional data. There

are several statistical and machine learning methods available to solve this

problem but their performances across data sets lack systematic comparison.

In this research, we benchmark different penalized regression methods which

are suitable for scRNA-seq data. Results on four different scRNA-seq data

sets show that Sparse Group Lasso (SGL) implemented by the SGL R pack-

age performs better than other methods in terms of area under the receiver

operating curve (AUC). The computation time for different methods varies

between data sets with SGL having the least average computation time.

Based on our findings, we propose a new method for scRNA-seq clustering

which applied SGL on a pre-selected subset of genes. These selected genes

are the union of top important genes from the ridge, lasso, elastic net, and

droplasso methods. The proposed method demonstrates an improvement in

AUC compared to SGL and other methods as well.

Key Words: Single-Cell RNA Sequencing; Machine Learning; LASSO;

Feature Selection; High Dimensional Data; R Programming Language.
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Chapter 1

Introduction

Single-cell RNA sequencing (scRNA-seq) technology is a recent trend in bi-

ological research. Researchers can now simultaneously explore thousands of

cells in a tissue and their average gene expression levels, as well as the gene

expression profile of each individual cell in that tissue with scRNA-seq tech-

nology (Slovin et al. [2021]). One of the many applications of scRNA-seq

technology is differentiating tumour cells from normal healthy cells by com-

paring their molecular signatures. However, the scRNA-seq data itself is not

without its challenges (Kiselev et al. [2019]). One could say it is the very

definition of the curse of dimensionality (p >> n, where p is the number of

variables and n is the number of observations) problem in machine learning

(ML). For scRNA-seq data, the number of genes (variables) far exceeds the

number of cells (observations). One way to solve the p >> n problem is to

employ feature selection.

Feature selection is the method of selecting variables (here, genes) that

are more useful for predicting the target variable. Random forests, Recursive
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Feature Elimination (RFE) and penalized regression are some of the com-

monly used feature selection methods in machine learning. Multiple studies

have been published on the application of random forests for scRNA-seq data

(Kaymaz et al. [2020], Pouyan and Kostka [2018]). For very high dimensional

data such as scRNA-seq data, using RFE alone tend to be computationally

expensive (Chen and Jeong [2007]). Furthermore, some of the penalized re-

gression algorithms are developed specifically for scRNA-seq data and showed

varied success.

Penalized regression allows feature selection for high dimensional data

such as scRNA-seq by producing sparse solutions which are predictive models

based on the expression of a limited number of genes. Penalized regression in

machine learning has several versions such as ridge regression, Least Absolute

Shrinkage and Selection Operator (LASSO) regression (Tibshirani [1996])

and a combination of ridge and lasso known as elastic net regression (Zou

and Hastie [2005]). Each of these is useful for a different problem when

dealing with scRNA-seq data. For instance, ridge regression is useful for

bringing some of the coefficients of the model features closer to 0. To reduce

the dimensions, the features close to zero are then proposed to be excluded

while others are retained in the model. This notion is also known as hard

thresholding. This issue is taken care of by lasso regression proposed by

(Tibshirani [2011]), which can make coefficients equal to absolute zero (soft

thresholding). There are many variants of lasso such as Drop lasso (Khalfaoui

and Vert [2018]), Group lasso (Yuan and Lin [2006]), Sparse Group lasso

(Simon et al. [2013]), and Big lasso (Zeng and Breheny [2017]). We are

interested to see which of these methods are suitable for different kinds of

scRNA-seq data.
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There also exist several other variants of lasso regression such as fused

lasso (Tibshirani et al. [2005]), adaptive lasso (Zou [2006]), and prior lasso

(Jiang et al. [2016]). Fused lasso was proposed for time series or image-

based data, adaptive lasso was proposed for proportional hazards regression,

and prior lasso (Jiang et al. [2016]) was proposed for biological data but

requires prior information to be incorporated into lasso regression. Since

these algorithms are not proposed for scRNA-seq data, they are not included

in this study.

Currently, there are several studies on machine learning algorithms which

claim to be capable of processing high dimensional data, and some are de-

veloped specifically for scRNA-seq data. However, to our knowledge, there is

no comprehensive study of how these algorithms perform in comparison with

each other, specifically when dealing with scRNA-seq data. The primary

objective of this study is to fill this gap in knowledge and thereby provide

a comprehensive guideline as to the performance of penalized regression al-

gorithms in terms of the prediction performance as well as the computation

time. The second objective of this study is to select the top-performing algo-

rithms as per the results from the first objective, investigate their combined

performance, and propose a new algorithm that may outperform the top al-

gorithm.

The rest of this thesis is organized as follows. Chapter 2 discusses the

literature review; Chapter 3 explains the research design and proposed al-

gorithm; Chapter 4 discusses the experimental data, presents the results,

analyzes the findings and biological meanings; Chapter 5 proposes future

work directions.

3



Chapter 2

Literature Review

This chapter briefly explains genome sequencing techniques, some of the

popular machine learning and statistical methods for scRNA-seq, and the

existing studies about them. The published studies vary by methods and

data sets as well as the challenges of scRNA-seq data being addressed by the

algorithms. It can be seen that there are very few studies that include more

than one penalized regression method discussed in this research.

2.1 High Throughput Sequencing

The first draft of the human genome sequence was available in 2001 (Lan-

der et al. [2001]). Sanger DNA sequencing was used for this project. This

technology was expensive and limited in throughput. The National Human

Genome Research Institute (NGHRI) funded research in genome sequencing

which led to invention of many High Throughput Sequencing (HTS) tech-
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nologies. HTS typically involved template preparation, clonal amplification,

and repeated massive parallel sequencing (Reuter et al. [2015]). RNA se-

quencing (RNA-seq) is a popular HTS method. Bulk RNA-seq measures the

average gene expression of a tissue sample. RNA-seq is used for transcript

analysis. Illumina, Roche 454 and PacBio are some of the commercial plat-

forms for RNA-seq.

2.2 Single Cell RNA Sequencing

scRNA-seq is more advanced than bulk RNA-seq because scRNA-seq can

identify the gene expression of individual cells as well as the average gene

expression of the sample. scRNA-seq is useful for identifying cellular hetero-

geneity. However, scRNA-seq has low capture efficiency and high dropouts

compared to bulk RNA-seq. Quality control is also necessary for removing

technical noise from scRNA-seq data (Chen et al. [2019]). Machine learning

methods such as the drop lasso regression was designed to overcome the is-

sue of dropout noise in scRNA-seq. Batch effect correction, normalization,

imputation, dimensionality reduction, and feature selection are often used

in scRNA-seq data analysis. scRNA-seq protocols can be classified into two

categories, full-length transcript sequencing approaches and 3’-end or 5’-end

transcript sequencing (Chen et al. [2019]). Smart-seq2, Drop-seq, STRT-seq

and Chromium are some of the popular scRNA-seq methods.
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2.2.1 Smart-seq2

Smart-seq2 is a full-length transcript sequencing technique. It is character-

ized by improved reverse transcription, template switching, and preamplifi-

cation which increase both the yield and length of cDNA libraries generated

from individual cells. Its limitations are the lack of strand specificity and the

inability to detect nonpolyadenylated RNA (Picelli et al. [2013]).

2.2.2 Drop-seq

Drop-seq is a 3’-end transcript sequencing technique. This technology quickly

profiles thousands of individual cells by enabling highly parallel analysis of in-

dividual cells by RNA-seq. Drop-seq separates individual cells into nanoliter-

sized aqueous droplets, associating a different barcode with each cell’s RNAs,

and sequencing them all together (Macosko et al. [2015]).

2.2.3 Chromium

Chromium is another example of the 3’-end transcript sequencing technique.

It is a droplet-based system that enables 3’ mRNA counting of tens of thou-

sands of single cells per sample. This technology can capture approximately

50% of cells loaded into the system. Parallel processing enables it to analyze

up to eight samples per run. The droplets undergo reverse transcription, and

barcoded complementary DNAs (cDNAs) are bulk amplified. Illumina short-

read sequencing is applied to the resulting libraries followed by Cell Ranger

which processes the sequencing data and enables automated cell clustering

6



(Zheng et al. [2017]).

2.2.4 STRT-seq

STRT-seq is a 5’-end transcript sequencing technique. The advantage of this

technology is that it eliminates the need for known markers to classify cell

types. In STRT-seq scRNA-seq expression profiles are clustered to form a

two-dimensional cell map onto which expression data is projected. Three lev-

els of the organization is integrated into this cell map: the whole population

of cells, the functionally distinct subpopulations it contains, and the single

cells themselves (Islam et al. [2011]).

2.3 Popular Machine Learning and Statisti-

cal Algorithms

This section discusses some of the popular machine learning and statistical

algorithms, other than penalized regression algorithms, that have been dis-

cussed in academic literature, in conjunction with scRNA-seq data.

We have already seen that data sets such as scRNA-seq present the chal-

lenge of high dimensionality. There are several algorithms developed for

dimensionality reduction. Principal component analysis (PCA) and Linear

Discriminant Analysis (LDA) are two such dimensionality reduction meth-

ods. Abdi and Williams [2010] describe PCA as a multivariate technique

that extracts information from several inter-correlated quantitative depen-

dent variables and create a set of new orthogonal variables called principal

7



components. LDA finds the projection hyperplane that minimizes the in-

terclass variance and maximizes the distance between the projected means

of the classes (Xanthopoulos et al. [2013]). Recursive feature elimination is

another dimesionality reduction method. However, these methods are not

used in my thesis because of their computational complexity.

Support Vector Machines, Naive Bayes Classifier, Decision Trees, Neural

Networks, Ensemble Methods such as Bagging, Random Forests, and Boost-

ing are some of the machine learning algorithms used for processing high

dimensional data. These algorithms have been studied widely and are not

included in my thesis.

2.4 Penalized regression in published research

Evidence for use of the penalized regression methods for scRNA-seq data in

the existing literature is discussed in this section. If a published study anal-

yses at least one method of penalized regression, it is included for discussion

here.

Lasso regression has been used by a study (Huynh et al. [2019]) for the

identification of a small number of highly influential genes and classification

of cell types in scRNA-seq data with high accuracy. Huynh et al. [2019] used

lasso regression to show that multiple subpopulations of cells existed at all

stages of bone marrow-derived mesenchymal stem cells (MSC) chondroge-

nesis. However, this study did not include any other variants of the lasso

algorithm such as elasticnet or drop lasso. The next section discusses studies

conducted as a comparative analysis of machine learning methods.
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2.4.1 Comparison studies involving penalized regres-

sion methods

Cao et al. [2021] conducted a systematic evaluation of methods for cell pheno-

type classification using single-cell RNA sequencing data. This study bench-

marked methods such as Elastic net, Naive Bayes (NB) Classifier, and XG-

Boost (XGB). The result of this study concluded that Elastic Net with in-

teractions performed best in small and medium data sets, NB worked well

with medium data sets, and XGB worked well with large data sets. However,

their study did not shed light on the applicability of penalized regression al-

gorithms except Elastic net on scRNA-seq data.

Scialdone et al. [2015] evaluated five computational methods (RF, logis-

tic regression, lasso regression, and SVM), and proposed a new classification

method called Pairs using the relative expression of “marker pairs” for pre-

dicting the cell-cycle stage of single cells from their transcriptome. Their

study showed that sophisticated approaches such as RF or SVM suffered

from overfitting while PCA-based predictor and Pairs method achieved a

strong enough regularization which captured a generalizable cell-cycle signa-

ture in the transcriptome.

2.4.2 New algorithms based on penalized regression

Apart from the major machine learning algorithms discussed earlier in this

thesis, several other methods have been developed by combining those algo-

rithms. A few of those methods are discussed below.
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Hua et al. [2020a] proposed a novel method LAK for clustering single-

cell RNA-seq data. LAK is a computational method that uses Lasso and

K-means based feature selection methods. Their study demonstrated that

LAK obtains a better performance in reliability, stability, convenience and

accuracy compared with other computational approaches. Evidently, the

research was about improving lasso but failed to investigate its variants.

Climente-González et al. [2019] proposed block HSIC (the Hilbert–Schmidt

Independence Criterion) Lasso, a non-linear feature selector that overcomes

drawbacks such as lack of parsimony, non-convexity and computational over-

head related to scRNA-seq data. The results of their study showed that

features selected by block HSIC Lasso retained more information about the

underlying biology than those selected by other techniques. The drawback

of their study is that block HSIC Lasso was only compared to HSIC Lasso

and least-angle regression (LARS).

Li et al. [2011] proposed a new RNA-Seq based transcriptome assembly

tool called IsoLasso. IsoLasso is a lasso algorithm with some additional

constraints enforced. The study claims that IsoLasso has higher sensitivity

and precision than the state-of-art transcript assembly tools.

Jiang et al. [2020] proposed a Bayesian Robit regression method with

Hyper-LASSO priors (BayesHL) for feature selection in high dimensional

genomic data with grouping structure. BayesHL discards more aggressively

unrelated features than LASSO, and it makes feature selection within groups

automatically without a pre-specified grouping structure. Results show that

BayesHL outperforms alternative methods (including LASSO, group LASSO,

supervised group LASSO, penalized logistic regression, random forest, neural

network, XGBoost and knockoff) in terms of predictive power, sparsity and

10



the ability to uncover grouping structure. However BayesHL study used only

Endometrial Cancer RNA-seq Data. In contrast, my thesis use 4 data sets

from 3 different species to ensure the methods are being tested on a variety

of data sets.

Evidently, none of the above studies discuss the applicability of many

of the penalized regression methods selected for this research. More impor-

tantly, no study has investigated the combined performance of lasso algo-

rithms.

2.5 Other ML methods in published research

Huang et al. [2021] discussed computational methods for distinguishing cell

subtypes from the different pathological regions of non-small cell lung cancer

on the basis of transcriptomic profiles. In their study, the random forest

classifier reached a Matthew’s correlation coefficient (MCC) of 0.922 by using

720 features, and the decision tree classifier reached an MCC of 0.786 by using

1880 features.

The popularity of deep learning methods for scRNA-seq data was studied

by Zheng and Wang [2019]. They concluded that while Autoencoders are

the dominant approach, methods based on deep generative models such as

generative adversarial networks (GANs) are emerging in scRNA-seq data

analysis.

Oller-Moreno et al. [2021] studied the emergence of Deep Learning al-

gorithms and the incorporation of prior biological knowledge into Machine

Learning models. They argued that prior knowledge can be seen as model

11



regularization that increases model generalization capabilities and stability

while it supports the biological interpretation of results.

Along with many popular machine learning algorithms, neural networks

also has been employed for analysing scRNA-seq data. Lin et al. [2017]

tested different neural network architectures and used these to reduce the

dimensionality of scRNA-seq data.

Studies were also conducted to reinforce the importance of machine learn-

ing in medical research and discussed its future potential. Asada et al.

[2021] investigated the applicability of machine learning techniques such as a

deep convolutional neural network, Latent semantic indexing cluster analysis

which uses dimensional compression to normalize and cluster the data, and

graphical lasso model for single-cell analysis. This study demonstrated the

implementation and usefulness of all three methods.

2.5.1 New algorithms based on ML methods

Alquicira-Hernandez et al. [2019] proposed a new generalized method called

scPred that claim to provide highly accurate classification of single cells,

using a combination of unbiased feature selection from a reduced-dimension

space, and machine-learning probability-based prediction method. However,

this method has not been verified in comparison with existing algorithms.

Similarly, in another study, Tian et al. [2019] developed scDeepCluster

which is a single-cell model-based deep embedded clustering method. This

method simultaneously learns feature representation and clustering via ex-

plicit modelling of scRNA-seq data generation.
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Yan et al. [2020] developed a machine learning method called Single cell

Predictive markers (SPmarker) to identify novel cell-type marker genes in the

Arabidopsis root. As per their sudy, SPmarker method identified hundreds of

new marker genes that were not identified before. However, the performance

of SPmarker has not been compared with other machine learning algorithms.

Aevermann et al. [2021] described a machine learning-based marker gene

selection algorithm, NS-Forest version 2.0, which leverages the nonlinear at-

tributes of random forest feature selection with a binary expression scoring

approach to discover the minimal marker gene expression combinations that

optimally capture the cell-type identity represented in complete scRNA-seq

transcriptional profiles.

scRNA-seq data is often corrupted by dropout noise. As discussed earlier

under penalized regression, droplasso method was developed to overcome this

problem. Some studies have also been conducted to investigate the use of

machine learning to impute missing data due to such dropout noise. Yang

et al. [2018] proposed missing imputation for single-cell RNA (MISC) which

is a robust missing data imputation model using hybrid machine learning for

single-cell RNA-seq data. Their results showed that MISC improved the cell

type classification.

Ensemble methods were used by Xiong et al. [2021] to address the prob-

lem of doublets in scRNA-seq data. There are multiple methods to detect

doublets which happens when two cells are captured as one in scrNA-seq

data. Xiong et al. [2021] proposed Chord which integrated multiple doublet

detection methods and demonstrated higher accuracy.

In the study conducted by Hu et al. [2016], the Support Vector Machine

13



based recursive feature elimination (SVM-RFE) method of feature selection

was used for the identification of key markers involved in brain development

from scRNA-seq data.

2.6 Software packages for ML methods

Some studies analysed different software packages for machine learning algo-

rithms for dealing with the challenges of scRNA-seq data. Petegrosso et al.

[2020] conducted a study of machine learning and statistical methods for

clustering single-cell RNA-sequencing data. Their study included clustering

methods such as k-Means, BackSPIN, cellTree, CIDR, DendroSplit, ICGS,

Monocle, pcaReduce, SC3, SCRAT, Seurat 1.0, and SNN-Cliq. Even though

their study included many of the libraries in R, it did not consider Lasso

algorithms for analysis.

Vrahatis et al. [2020] studied recent machine learning approaches for

Single-Cell RNA-seq data analysis. This extensive study included 23 dimen-

sionality reduction methods such as PCA, and LDA, 4 classification methods

such as KNN, Random Forest, and bagging, 11 clustering methods such as

Seurat, and Monocle, and 7 other popular analytical tools such as salmon.

But even this comprehensive study conducted in 2020 also did not include

penalized regression methods.

In conclusion, even though an abundance of literature has been published

on machine learning and statistical methods addressing different challenges

of scRNA-seq data, currently there is a definite lack of a comparative study

of the penalized regression methods for feature selection of the scRNA-seq
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data.
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Chapter 3

Methodology

This chapter discusses the penalized regression algorithms that are selected

for my study, explains how research design is developed to answer the research

objectives and describes the proposed algorithm.

3.1 Penalized Regression

Simply speaking, the optimization function of penalized regression has two

parts, a loss function, and a penalty. Let the regression equation be,

Y = Xβ + ϵ, (3.1)

where Y is a n×1 vector for response variable, X is n×p matrix for predictor

variables, β is p×1 coefficient vector and ϵ ∼ N(0, σ2I) is the error term. We

consider that both X and Y are scaled in Eq. 3.1. The estimated penalized

regression coefficients is given by,
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β̂ = argmin
β

(
1

n
||Y −Xβ||2 + λ||β||), (3.2)

where λ ≥ 0 is the tuning parameter to be estimated using cross-validation.

||β|| is the norm of coefficient vector β. The first term 1
n
||Y −Xβ||2 is the

loss function and the second term λ||β|| is the penalty. The main differ-

ence between different penalized regressions algorithms is how they apply

the penalty. L1 norm and L2 norm are popular choices for penalty Khalfaoui

and Vert [2018].

L1 norm = ||β||1 =
p∑

i=1

|βi|, (3.3)

L2 norm = ||β||22 =
p∑

i=1

β2
i . (3.4)

3.1.1 Ridge Regression

Ridge regression is a penalized regression where the penalty term is the sum

of squared coefficients. It is especially useful when predictor variables are

highly correlated. The estimator of ridge regression is,

β̂ = argmin
β

(
1

n
||Y −Xβ||2 + λ||β||22), (3.5)

where ||β||22 is the L2 norm of the coefficients.
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3.1.2 LASSO Regression

The Least Absolute Shrinkage and Selection Operator (LASSO) proposed by

Tibshirani [1996] minimizes the residual sum of squares subject to the sum

of the absolute coefficients being less than the tuning parameter. Compared

to the ridge regression, which can only shrink coefficients towards 0, the lasso

can make some coefficients exactly equal to zero thereby producing a more

interpretable model. The estimator of lasso regression is,

β̂ = argmin
β

(
1

n
||Y −Xβ||2 + λ||β||1), (3.6)

where ||β||1 is the L1 norm of the coefficients.

3.1.3 Elastic Net

Elastic net regression proposed by Zou and Hastie [2005] is a combination of

L1 and L2 penalties of lasso and ridge regression. The estimator of elastic

net is,

β̂ = argmin
β

(
1

n
||Y −Xβ||2 + λ1||β||1 + λ2||β||22). (3.7)

The elastic net regression enjoys the properties of both ridge and lasso re-

gression. The L1 norm part of the penalty generates a sparse model and the

L2 norm part of the penalty encourages greater shrinkage to large coefficients

(Zou and Hastie [2003]).

3.1.4 Group LASSO

Yuan and Lin [2006] proposed Group lasso algorithm for selecting a subset

of important variables which are the main effects with interactions with each
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other in a regression model. Compared to the lasso model which select indi-

vidual variables, group lasso select groups of variables. This is particularly

useful in processing scRNA-Seq data because we would like to include or ex-

clude the group of genes that lie in a pathway related to the outcome rather

than individual genes. Assume there are j = 1, 2, · · · , J groups of variables

and n observations. For each group, let Xj be n × pj submatrix of X with

columns corresponding to predictor variables in group j and βj be the cor-

responding coefficient vector of length pj. Then the regression equation for

group lasso regression can be written as,

Y =
J∑

j=1

Xjβj + ϵ. (3.8)

Note that for β = (β′
1,β

′
2, · · · ,β′

j)
′, X = (X1,X2, · · · .Xj), and X′

jXj = Ipj ,

the above regression equation simplifies to Eq. (3.1). For a symmetric and

positive definite kernel matrix Kj = pjIpj , the group lasso estimate is

β̂ = argmin
β

(
1

n
||Y −

J∑
j=1

Xjβj||2 + λ
J∑

j=1

||β′

jKjβj||
1
2 ), (3.9)

where the tuning parameter is λ ≥ 0.

3.1.5 Sparse Group LASSO

The shortcoming of group lasso is that while it gives a sparse set of groups,

all the coefficients in a group will be nonzero if that group is included in

the model. But sometimes both sparsity of groups and variables within each

group are desired in a model simultaneously. In the case of scRNA-seq data,

identifying some important genes in the biological pathways is of interest.
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Simon et al. [2013] proposed sparse group lasso as a solution to this specific

problem. The estimator of sparse group lasso is

β̂ = argmin
β

(
1

n
||Y −

J∑
j=1

Xjβj||2 + λ

J∑
j=1

||β′

jKjβj||
1
2 + αλ||β||1)), (3.10)

where the tuning parameter is λ ≥ 0, and α ∈ [0, 1] is a convex combination

of the lasso and group lasso penalties. When α = 0, the model reduces to

group lasso and when α = 1 it reduces to lasso which makes this approach

remarkably similar to elastic net regression.

3.1.6 Drop LASSO

scRNA-seq data is often corrupted by dropout noise. Corruption of data here

means incorrect values. For instance, dropout noise occurs when scRNA-seq

fails to detect some genes even though they are expressed in the cell (Khal-

faoui and Vert [2018]). Consequently, those genes (columns) will have zeros

in the data set which is incorrect. Khalfaoui and Vert [2018] proposed Drop

Lasso as a better-adapted solution to data corrupted by dropout noise. It is

a combination of the dropout regularisation technique proposed by Srivas-

tava et al. [2014] and lasso proposed by Tibshirani [1996]. It creates a sparse

linear model robust to the noise by artificially augmenting the training set

with new examples corrupted by dropout. First, a random permutation of

rows is chosen from matrix X with n observations and p predictor variables.

Then each of the chosen rows in X undergo an element-wise multiplication

with a random dropout mask (vector of 1s and 0s) of length p to create a new

dropout corrupted matrix Xdrop. The Drop Lasso estimator is calculated as,
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β̂ = argmin
β

(
1

n
||Y −Xdropβ||2 + λ||β||1), (3.11)

where the tuning parameter λ ≥ 0.

3.1.7 Big LASSO

Zeng and Breheny [2017] proposed Big lasso algorithm for handling ultra-high

dimensional and large scale data in R. Their approach handles out-of-core

computation seamlessly by loading data into memory only when necessary

while model fitting. This is done with the help of memory-mapped files

which stores massive data on the disk. The Big lasso algorithm also possesses

efficient feature screening rules which can accelerate the computation (Zeng

and Breheny [2017]). The estimator of Big lasso regression is,

β̂ = argmin
β

(
1

n
||Y −Xβ||2 + λ||β||1). (3.12)

The major differences between Big lasso and lasso are in out-of-core com-

putation and parallel processing.

3.2 Clustering

Clustering is the process of grouping data into clusters so that objects of

the same cluster has high similarity (Rani1 and Rohil [2013]). Two popular

clustering methods are hierarchical clustering and K-Means clustering which

are described below.
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3.2.1 Hierarchical Clustering

In hierarchical clustering, objects are grouped into a hierarchy of clusters by

nested sequential partitioning (Rani1 and Rohil [2013]). These clusters are

then graphically represented as a tree-like diagram known as dendrogram.

The dendrogram is very useful in deciding the optimal number of clusters.

In this study, we use hierarchical clustering to group genes into clusters prior

to applying group lasso and SGL. This eliminates the need to have deep

knowledge of genes to group them for processing in the algorithms.

3.2.2 K-Means Clustering

K-Means clustering algorithm starts by randomly placing k centroids in p

data points scattered in the n-dimensional space (Hartigan and Wong [1979]).

Clusters are formed by assigning data points to the nearest centroid. The

algorithm progress iteratively by moving the centroids at each step such

that the clustering error is minimized. K-Means clustering when applied in

conjunction with Lasso improved prediction accuracy (Hua et al. [2020b]).

In my study, K-means clustering is employed to cluster cells at the final step

of the proposed methods. Note that the hierarchical clustering is used to

group the genes while K-means clustering is used to cluster cells.

3.3 K-Fold Cross-Validation

Cross-validation is a data partitioning method used to estimate the prediction

error of models and to tune model parameters (Bates et al. [2021]). We will
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use K-Fold Cross-Validation (CV) for tuning the hyperparameters for all

the algorithms in this study. In K-Fold CV, the data are first divided into k

subsets of cells. One of the k subsets is used as the test set and the remaining

k−1 subsets are used as the training set. Then prediction error is calculated

for k repeats by selecting a different test set each time. The average error for

k repeats is used as the prediction performance of the model. In this study,

we use 10-fold CV for measuring the performance of the algorithms.

3.4 Metrics

This section explains the metric used to measure performance of my algo-

rithms.

3.4.1 ROC AUC

A receiver operating characteristic curve (ROC) is a graph that plots the true

positive rate (TPR) on the vertical axis and the false positive rate (FPR)

on the horizontal axis (Park et al. [2004]). ROC is used to evaluate the di-

agnostic ability of a binary classification model. The area under the ROC

curve is known as ROC AUC. The AUC value reflects the overall ranking

performance of a classifier. The AUC is theoretically and empirically better

than the accuracy metric for evaluating the classifier performance and dis-

criminating an optimal solution during the training of a classifier. However,

the computational cost of AUC is high relative to other evaluation metrics

(Hossin and Sulaiman [2015]).

23



3.5 Research design

As the first step of the analysis, each data set is pre-processed to be com-

patible for the use in different R packages. With the processed data, we

verify how each algorithm performs in terms of AUC and computation time

when dealing with scRNA-seq data. We use the same performance measures

(AUC and computation time) and CV for all data sets to ensure a fair com-

parison. In this step, a 10-fold Stratified CV is conducted to fine-tune the

hyperparameters for each algorithm, and then the performance metrics for

all the algorithms are calculated. We used hierarchical clustering for group-

ing variables before Group Lasso and Sparse Group Lasso. After compar-

ing the performance metrics, better-performing algorithms are selected and

combined to form a new algorithm. Cell clustering (using K-Means) with

the final selected genes from the proposed algorithm is used to identify how

well the cell groups in each data are differentiated by those genes. Finally,

the performance metrics of the new algorithm are compared with that of the

top-performing algorithm. Fig. 3.1 illustrates the proposed algorithm.
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Figure 3.1: Schematic of the proposed algorithm. In this algorithm, there is

a significant reduction in the number of genes prior to the execution of SGL.

Once the final set of genes are selected by the algorithm, it is used to cluster

cells in the data set.
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Algorithm 1 Steps implementing the proposed algorithm

1. Load data to R and assign classes 1 and 0 to the two selected group of

cells to form a binary classification problem.

2. Remove genes with no variability in expression across all cells.

3. Shuffle cells within each class to randomize data points.

4. Split 90% of the data set into training and 10% into testing data for

10-fold CV.

5. Repeat the steps below for the 10-fold CV

(a) Fit ridge, lasso, elastic net, and drop lasso.

(b) Select the top important genes for each algorithm. The top im-

portant genes are the genes which have coefficients above a cut off

(e.g. mean of absolute value of the coefficients).

(c) Form a gene pool by taking the union of the top important genes

from all the 4 models. For example, Fig. 4.1 and Fig. 4.2 represent

gene pool of data set GSE123818 and GSE71585, respectively.

(d) Fit SGL with new gene pool grouped by hierarchical clustering

algorithm.

(e) Save the coefficients of SGL.

6. Find the average of coefficients for each gene across 10 folds and sort

the genes.

7. Visualize the gene vs coefficients plot and select the final set of genes

which are above the elbow of the curve.

8. Cluster all the cells by applying K-means clustering on the top impor-

tant genes.
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Chapter 4

Experiments and Results

In this chapter, we discuss the experimental data, results of the analysis, final

subset of important genes selected with the new algorithm, their biological

functions, and clustering of cells with this final subset of genes for each of

the data set separately.

4.1 Experimental Data

In this study, 4 scRNA-seq data sets from 3 different species (Human, mouse

and plant) are used. The first two data sets (GSE60749 and GSE71585)

are selected from a collection of 40 curated scRNA-seq data sets from con-

quer website (http://imlspenticton.uzh.ch:3838/conquer/) created by Sone-

son and Robinson [2017]. Conquer website is a collection of consistently

processed, analysis-ready and well documented publicly available scRNA-seq

data sets. There are currently 40 data sets on conquer website, each having
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Table 4.1: Experimental data sets

Data set Genes Cells Cell Labels Organism Source

GSE60749 224444 183:84 mESCs : Dgcr8

-/- mESCs

Mus mus-

culus

conquer

GSE71585 24058 79:57 Ntsr1 tdTpos-

itive cells :

Ntsr1 tdTnega-

tive cells

Mus mus-

culus

conquer

GSE81861 57241 272:160 Colorectal

tumor cells :

Normal mucosa

cells

Homo

sapiens

GEO

GSE123818 27629 1099:1099 Shortroot -

knockout cells :

Wild-type cells

Arabidopsis

Thaliana

GEO

counts and transcripts per million (TPM) estimates for genes and transcripts,

as well as quality control and exploratory analysis reports. The other two

data sets (GSE81861 and GSE123818) for this study are downloaded from

Gene Expression Omnibus (GEO). Tab. 4.1 shows the data sets with GEO

accession numbers, number of genes, number of cells in each class, species

and the source from where data was accessed.

The first data set GSE60749, downloaded from Gene Expression Om-

nibus, is of species Mus musculus. This data set was generated in the study

of gene expression variability in pluripotent stem cells (PSCs) by single-cell

expression profiling of PSCs under different chemical and genetic perturba-

tions conducted by Kumar et al. [2014]. Gene expression levels are quantified

28



as transcripts per million reads (TPM).

For our research, we selected 183 individual v6.5 mouse embryonic stem

cells (mESCs) and 84 Dgcr8 -/- mESCs that lack mature miRNAs (knockout

of a miRNA processing factor). The 183 individual mESCs are assigned to

class 1 and 84 Dgcr8 -/- mESCs are assigned to class 0 to create the binary

classification problem. The data set included 22443 genes initially which

was reduced to 15508 after data preprocessing in which all the genes with

no variance in expression. Some of the genes in this data set are noncoding

piRNAs with numbers as names. Such numbers are converted to text by

prefixing them with ‘RNA ’, before loading data to R to make sure that the

names are not converted as dates.

The second data set GSE71585 is also of the species Mus musculus

(mouse). Our research included mouse species data because numerous clin-

ical trials are conducted on mice prior to human trials. GSE71585 data set

was generated by scRNA-Seq of adult mouse primary visual cortex in a study

conducted by Tasic et al. [2016] where the objective was to understand cell-

type diversity in the nervous system. There are 1809 cells and 24057 genes in

the data set. Gene expression levels are quantified as transcripts per million

reads (TPM). Out of all the cells, 79 Ntsr1 tdTpositive cell are assigned to

class 0 and 57 Ntsr1 tdTnegative cell are assigned to class 1. After removing

the genes which did not vary in expression across all cells, we left only 17870

genes.

The third data set GSE81861 is of species homo sapiens and is from

the analysis of transcriptional heterogeneity in colorectal tumours (Li et al.

[2017]). Intratumoral heterogeneity is a major obstacle to cancer treatment

and a significant confounding factor in bulk-tumor profiling. Therefore, Li
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et al. [2017] conducted an analysis of transcriptional heterogeneity in col-

orectal tumors and their microenvironments using scRNA–seq. There are

272 primary colorectal tumor cells and 160 matched normal mucosa cells.

Gene expression levels are quantified as fragments per kilo-base per million

reads (FPKM). A binary classification problem was created by assigning 272

primary colorectal tumor cells to class 1 and 160 matched normal mucosa

cells to class 0. The data was then transposed to form a matrix of 432 rows

(cells) and 57242 columns (genes). Standardization and normalization were

not carried out for this data set because it negatively affected the perfor-

mance of Lasso algorithms in preliminary analysis. All the genes which were

not expressed (0 values) or equally expressed among all cells were removed,

thereby reducing the number of genes to 38090.

Our last data set GSE123818 belongs to the plant species Arabidopsis

Thaliana (thale cress). This data is obtained from the study of Spatiotem-

poral Developmental Trajectories in the Arabidopsis Root by Denyer et al.

[2019]. The objective of this study was to distinguish Arabidopsis root cells

by developmental fate and time. The study generated mRNA profiles of

6-day-old wild-type (wt) and shortroot-knockout (shr) Arabidopsis thaliana

roots by deep sequencing of single cell and bulk RNA libraries (wild type

only), in duplicate (bulk & wild-type single cell) and singlicate (shr-3), using

Illumina NextSeq. From these 4727 wt cells and 1099 shr cells are selected

at random for our research. Class 0 was assigned to wt cells and class 1 was

assigned to shr cells to create the binary classification problem. Class 0 has 0

and class 1 has 1 assigned to the value of response variable. There are 27629

genes in the data set which were reduced to 24075 after removing the genes

which did not vary in expression.
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4.2 Results

The first objective of this study is to compare the performance of the selected

methods. The results of this comparison in terms of average cross-validated

AUC (CV-AUC) and computation time are shown in Tab. 4.2 and Tab. 4.4

respectively. Fig. 4.3 shows the average CV-AUC by algorithm across all

4 data sets. From Tab. 4.2 and Fig. 4.3 we observe that the top 5 algo-

rithms in the order of importance are SGL, grplasso, droplasso, biglasso, and

Lasso. As evident from Tab. 4.3, the variance of CV-AUC is close to 0 for all

methods when rounded to 2 decimal points. Notice that SGL and grplasso

outperform all other methods in terms of average CV-AUC, whereas ridge

regression algorithm has the least average CV-AUC. This could be because

grplasso and SGL incorporate grouping of genes information into model se-

lection, whereas ridge regression treats all the genes equally. On performing

Friedman test (a non parametric statistical test) with the CV-AUC results

of the 7 methods, we found statistically significant difference between their

performance at p − value = 15%. A post-hoc Nemenyi test revealed that

the difference in performance is between SGL and ridge regression. However,

more data sets need to be analysed in future to verify these results.

The average computation time is the least for SGL and biglasso, while

the most time-consuming algorithm is ridge regression. Ridge regression

use all genes in its final model making the computation complex. On the

other hand, SGL can make an entire group of genes, as well as some of the

genes within selected groups, zero (0) resulting in a sparse matrix and lesser

computation time. It is notable that computation time for GSE81861 data

set is higher compared to that of GSE60749 for most of the algorithms due
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to larger number of non zero coefficients in the former data set.

The second objective of this study is to combine the top performing

lasso algorithms in order to improve the prediction AUC and gene selection.

From the discussion of the results of the first objective, we see that SGL and

grplasso are good candidates for forming a new algorithm. In terms of gene

selection, SGL performs better than grplasso. SGL could identify the top

important genes in one fold of 10-Fold CV, whereas grplasso takes multiple

folds to get the same result. In other words, the results of top important

genes changed for each fold of 10-fold CV for group lasso compared to SGL.

SGL is therefore chosen over grplasso for the new computational algorithm.

SGL achieve better AUC than biglasso in comparable time for data sets of

size 63 MB to 252 MB when tested on a computer with 32 GB processor.

Since biglasso did not show significant improvement in computation time

compared to SGL, biglasso is not included in the new method.

In the new algorithm, we select the ridge, lasso, elastic net, and droplasso

to form a filter which creates a gene pool with the number of genes in it sig-

nificantly reduced when compared to the whole. The gene pool is formed by

taking a union of top important genes from 4 algorithms because we observed

that the top important genes have some variations between algorithms. A

union of top important genes is, therefore, more likely to capture the impor-

tant differentially expressed genes. The gene pool thus formed is grouped

and used as input to SGL and then the AUC of SGL fit is calculated.

We execute the hierarchical clustering to group the genes in the gene

pool and then run SGL. The use of hierarchical clustering avoids the need

to have extensive knowledge about the genes in order to group them. We

noted that each data set had a different number of gene groups and each gene

32



Figure 4.1: The gene pool of data set GSE123818 formed by taking the union

of top important genes from ridge, lasso, elastic net, and droplasso.
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Figure 4.2: The gene pool of data set GSE71585 formed by taking the union

of top important genes from the ridge, lasso, elastic net, and droplasso. Note

that for this data set, the top important genes of droplasso have no inter-

section with the other 3 algorithms. In the proposed algorithm, gene pool

is formed with the union of the top important genes from the 4 algorithms

rather than an intersection because there may not always be an intersection

due to the difference in regularization used.

34



group had different number of genes in them. This is acceptable given the

differences between cells and species. There is a reduction of 61% to 92% in

the number of genes in the gene pool compared to the whole for the 4 data set

used in this study. Since hierarchical clustering and SGL are executed with a

significantly reduced number of genes in the new algorithm, it enables us to

execute these steps with an 8 GB processor for two data sets (GSEGSE60749,

GSE71585) and get the same AUC as obtained with the 32 GB processor.

It needs to be mentioned here that this new computational algorithm can

be used for other high dimensional data sets as well for feature selection.

Furthermore, the grouping of genes in the proposed algorithm can be done

without expert knowledge of genes due to the use of hierarchical clustering.

We note that the AUC of the proposed algorithm shown in Tab. 4.5 is equal

to or better than that of SGL. The final selection of genes is found using a

genes vs coefficients plot of SGL fit. Fig. 4.4, 4.5, 4.6, and 4.7 show the

top important genes of 4 data sets. Note that these plots include the first 20

genes of the top important genes only for improved readability, and do not

show all the genes above the cut off. In the validation step, we use K-Means

clustering for cell clustering with the final selection of genes for each data

set. The cell clustering of 4 data sets are shown in Fig. 4.8, 4.9, 4.10, and

4.11.

4.3 Application

As shown in Fig. 4.8, the data set GSE60749 is clustered with two classes

well separated. Tab. 4.6 lists the final selection of genes for this data set.

The top important genes of this data set identified by the new algorithm are
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Figure 4.3: Average cross-validated AUC for the 4 data sets. Even though

group lasso has better AUC than SGL, SGL is better in terms of gene selec-

tion. Selecting the differentially expressed genes is of more importance for a

scRNA-seq data set compared to the prediction performance via AUC.

Table 4.2: Comparison of algorithm using CV-AUC.

Algorithm R Package GSE60749 GSE71585 GSE81861 GSE123818

Sparse Group Lasso SGL 1 0.98 0.92 0.83

Group Lasso grplasso 1 0.98 0.87 0.99

Drop Lasso droplasso 0.99 0.94 0.87 0.97

Big Lasso biglasso 1 1 0.80 0.95

Lasso glmnet 1 0.96 0.85 0.94

Elastic Net glmnet 1 0.63 0.86 0.93

Ridge glmnet 0.99 0.84 0.71 0.90
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Table 4.3: Variance of CV-AUC.

Algorithm R Package GSE60749 GSE71585 GSE81861 GSE123818

Sparse Group Lasso SGL 0 0.0018 0.0018 0.0012

Group Lasso grplasso 0 0.0018 0.0017 0.0000

Drop Lasso droplasso 0.0004 0.0047 0.0006 0.0003

Big Lasso biglasso 0 0 0.0061 0.0061

Lasso glmnet 0 0.0029 0.0017 0.0003

Elastic Net glmnet 0 0.0406 0.0021 0.0007

Ridge glmnet 0.0004 0.0042 0.0089 0.0003

Table 4.4: Comparison of algorithm using computation time (Seconds).

Algorithm R Package GSE60749 GSE71585 GSE81861 GSE123818

Sparse Group Lasso SGL 6.53 1.73 2.97 5.66

Group Lasso grplasso 1.12 2.51 29.66 3.78

Drop Lasso droplasso 13.57 7.18 59.33 3.36

Big Lasso biglasso 3.11 4.77 7.23 20.30

Lasso glmnet 3.18 2.76 13.39 48.54

Elastic Net glmnet 3.57 2.66 13.59 51.51

Ridge glmnet 58.07 26.71 3.77 17.58

Table 4.5: Comparison of performance (AUC) between SGL with all genes

and SGL using new algorithm.

data set All Genes Gene Pool SGL New algorithm

GSE60749 224444 5965 1 1

GSE71585 24058 5448 0.98 1

GSE81861 57241 5823 0.92 0.94

GSE123818 27629 10857 0.83 0.85
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Figure 4.4: Genes vs coefficients plot of data set GSE60749. Here piRNA

44441 is the top important gene.

Figure 4.5: Genes vs coefficients plot of data set GSE71585. Calm2 and

Spap25 are the top important genes.
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Figure 4.6: Genes vs coefficients plot of data set GSE81861. FABP1 and

SAT1 are the first 2 top important genes.

Figure 4.7: Genes vs coefficients plot of data set GSE123818. AT2G43610

and AT4G05320 are the top 2 genes.
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44441, 44260, 44454, 44446, 44450, 44440, Pbld, Lifr, Hist2h4 and AK203176

as given in Tab. 4.6. One interesting finding is that 44441, 44260, 44454, and

44440 genes are non-coding RNAs called piRNA. This indicates a possibility

of an association between knockout of miRNA processing factor and piRNAs

which has not been studied before. The exact function of this RNA is still

unknown. piRNAs are found in humans and rats, with major clusters oc-

curring in syntenic locations. Although their function must still be resolved,

the abundance of piRNAs in germline cells and the male sterility of Miwi

mutants suggest a role in gametogenesis Girard et al. [2006].

The new algorithm is able to cluster primary visual cortex cell groups in

the data set GSE71585 well (Fig. 4.9). Tab. 4.7 lists the final selection of

genes. The top 2 differentially expressed genes in Ntsr1 (neurotensin receptor

1) tdT (tdTomato - an exceptionally bright red fluorescent protein) positive

cells and Ntsr1 tdT negative cells are Calm2 and Snap25. Calm2 gene is

active in cortex, frontal lobe and a few other organs. It enables N-terminal

myristoylation domain binding, calcium ion and protein binding. It is active

in the pathways of Alzheimer’s disease and Glycogen Metabolism. As per

NCBI, several infants with severe forms of long-QT syndrome (LQTS) who

displayed life-threatening ventricular arrhythmias together with delayed neu-

rodevelopment and epilepsy were found to have mutations in either this gene

or another member of the calmodulin gene family (cal [2022]). Snap25 gene

enables syntaxin-1 binding activity. It is present in 10 different biological

pathways. NCBI records show that it is used to study attention deficit hy-

peractivity disorder, obesity, schizophrenia, and type 2 diabetes mellitus (sna

[2022]). The human ortholog of this gene is implicated in Down syndrome

and congenital myasthenic syndrome 18. The strong association between the

lack of tdT protein in Ntsr1 cells and these genes identified by our computa-
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Table 4.6: Final selection of genes from GSE60749

Gene Function Source

44441 piRNA. Function unknown. ENA

44260 piRNA. Function unknown. NCBI

44454 piRNA. Function unknown. RNA Cen-

tral

44446 Predicted gene. Function unknown. RGD

44450 Predicted gene. Function unknown. RGD

44440 piRNA. Function unknown. piRNAdb

Pbld Predicted to enable identical protein binding activity

and isomerase activity. Predicted to be involved in

maintenance of gastrointestinal epithelium; negative

regulation of SMAD protein signal transduction; and

negative regulation of transforming growth factor beta

receptor signaling pathway.

NCBI

Lifr Predicted to enable several functions, including ciliary

neurotrophic factor receptor binding activity; growth

factor binding activity; and leukemia inhibitory factor

receptor activity. This gene has also been discussed in

9 pathways including ESC pluripotency pathways.

NCBI

Hist2h4 It encodes a replication-dependent histone that is a

member of the histone H4 family (basic nuclear pro-

teins responsible for the nucleosome structure of the

chromosomal fiber in eukaryotes). This gene is found

in Type II interferon signaling (IFNG) pathway.

NCBI

AK203176 Predicted to enable GTP binding activity; double-

stranded RNA binding activity; and ubiquitin protein

ligase binding activity. Acts upstream of or within cel-

lular response to interleukin-4.

NCBI
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Figure 4.8: Cell clustering with final selection of genes for data set GSE60479.

The top important gene (piRNA 44441) alone can differentiate two cell groups

perfectly.

tional algorithm merits further study.

GSE81861 data set cell groups are clustered with some overlap in classes

(Fig. 4.10). Tab. 4.8 lists the final selection of genes for this data set. The

top important genes in this data set are FABP1, SAT1, PHGR1, LGALS4,

FRYL, MT1E, HSP90AA1, and HNRNPH1. FABP1 gene enables long-chain

fatty acids binding activity. It is involved in 13 biological pathways including

metabolism, and Peroxisome proliferator-activated receptor (PPAR) signal-

ing pathway fab [2022]. The second gene SAT1 is also involved in 13 biological

pathways including metabolism. It catalyzes the acetylation of spermidine

and spermine. Defects in this gene are associated with keratosis follicularis

spinulosa decalvans (KFSD) sat [2022]. LGALS4 gene codes galectins which

are a family of beta-galactoside-binding proteins implicated in modulating
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Table 4.7: Final selection of genes from GSE71585

Gene Function Source

Calm2 This gene enables calcium-dependent pro-

tein binding activity. It is involved in

Alzheimer’s disease pathway and Glycogen

metabolism pathway. It is also involved in

several important processes including reg-

ulation of response to tumor cell. Human

ortholog of this gene is implicated in long

QT syndrome 15.

NCBI

Snap25 This gene enables syntaxin-1 binding activ-

ity. It is used to study attention deficit hy-

peractivity disorder; obesity; schizophrenia;

and type 2 diabetes mellitus. Human or-

tholog of this gene is implicated in Down

syndrome and congenital myasthenic syn-

drome 18. It is found in 10 different path-

ways.

NCBI

0610005C13Rik This gene is expressed in several structures,

including heart; intestine; liver; lung; and

metanephros.

NCBI

0610007C21Rik This gene is replaced with name Atraid. It

is predicted to be involved in several pro-

cesses, including negative regulation of os-

teoblast proliferation; positive regulation of

bone mineralization; and positive regulation

of osteoblast differentiation.

NCBI
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Figure 4.9: Cell Clustering (K-Means) with final selection of genes for data

set GSE71585. The top important genes Snap25 and Calm2 are able to

cluster two cell groups.

cell-cell and cell-matrix interactions. This gene is underexpressed in colorec-

tal cancer lga [2022]. Similarly, HSP90AA1 gene is an important gene found

in 115 pathways such as signaling by EGFR, EGFRvIII, and ERBB2in Can-

cer hsp [2022]. HNRNPH1 gene found in 12 pathways may be associated

with hereditary lymphedema type I. Knockdown of heterogeneous nuclear ri-

bonucleoprotein H1 (HNRNPH1) by siRNA inhibits the early stages of HIV-

1 replication in 293T cells infected with VSV-G pseudotyped HIV-1 (hnr

[2022]). Looking at Tab. 4.8, we also find a remarkable connection between

the top important genes and HIV-1. Four genes (SAT1, MT1E, HSP90AA1,

and HNRNPH1) out of 8 important genes from a colorectal tumor also have

strong interaction with HIV-1 proteins. The association between cancer and

HIV-1 has been widely studied by medical researchers (König et al. [2008],

Nunnari et al. [2008], Corbeil et al. [1995], Alfano et al. [2013]). Evidently,
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Figure 4.10: Cell Clustering (K-Means) with final selection of genes for data

set GSE81861. There is some overlap between cell groups along the axis of

top important genes SAT1 and FABP1.

the new algorithm is able to select a highly relevant subset of genes from the

given samples of human colorectal cancer cells.

The cell clusters in GSE123818 have more overlap than the rest of the

data sets. The clustering result is shown in Fig. 4.11. Tab. 4.9 lists the final

selection of genes. The top important genes of this data set as found with the

new algorithm are AT2G43610, AT4G05320, AT2G07698, and AT3G51750.

One of five polyubiquitin genes in Arabidopsis thaliana, AT2G43610 gene is

found in growth and developmental stages such as root development (AT2

[2022a]). AT4G05320 gene encodes the highly conserved 76-amino acid pro-

tein ubiquitin which is attached to proteins targeting degradation (AT4

[2022]). AT2G07698 gene is expressed during the seed development stage

(AT2 [2022b]). AT3G51750 codes a hypothetical protein that is involved
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Table 4.8: Final selection of genes from GSE81861

Gene Function Source

FABP1 This gene encodes the fatty acid binding protein found

in liver. Biological pathways - 13, such as Peroxisome

proliferator-activated receptor (PPAR) signaling path-

way.

NCBI

SAT1 The protein encoded by this gene is a rate-limiting en-

zyme in the catabolic pathway of polyamine metabolism.

Biological pathways - 13. It has HIV-1 interaction and

KFSD.

NCBI

PHGR1 It is a protien coding gene with biased expression in

colon and small intestine.

NCBI

LGALS4 The galectins are implicated in modulating cell-cell and

cell-matrix interactions. The expression of this gene is

restricted to small intestine, colon, and rectum. It is

underexpressed in colorectal cancer.

NCBI

FRYL This gene is predicted to be involved in cell morphogen-

esis and neuron projection development. It is predicted

to be active in the site of polarized growth.

NCBI

MT1E Biological pathways - 5, such as Zinc homeostasis, Cop-

per homeostasis. HIV-1 Tat upregulates the interferon-

responsive gene expression of Metallothionein, an effect

that likely facilitates the expansion of HIV-1 infection.

NCBI

HSP90AA1 The protein encoded by this gene aids in the proper

folding of specific target proteins. Biological pathways

- 115, such as programmed cell death, innate immune

system. It has strong interactions with HIV-1 proteins.

NCBI

HNRNPH1 This gene may be associated with hereditary lym-

phedema type I. Biological pathways - 12, such as

mRNA processing. Knockdown of HNRNPH1 inhibits

the early stages of HIV-1 replication in 293T cells.

NCBI
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Figure 4.11: Cell Clustering (K-Means) with final selection of genes for data

set GSE123818. There is notable overlap between the short root knockout

and wild type cell groups of Arabidopsis Thaliana.

in root and seed development (AT3 [2022]). All the top important genes

selected by the new computational algorithm are related to growth and de-

velopmental stages in Arabidopsis thaliana. We recommend further study of

these genes in relation to root development and degradation.
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Table 4.9: Final selection of genes from GSE123818

Gene Function Source

AT2G43610 This gene is found in growth and devlopmen-

tal stages such as root development. It enables

chitinase activity and protein binding.

TAIR

AT4G05320 One of five polyubiquitin genes in Arabidopsis

thaliana. These genes encode the highly con-

served 76-amino acid protein ubiquitin that is

covalently attached to substrate proteins tar-

geting most for degradation. This gene enables

mRNA binding, protein tag, ubiquitin protein

ligase binding. The mRNA is cell-to-cell mo-

bile.

TAIR

AT2G07698 This gene is expressed in growth and develop-

mental stages such as seed and seedling devel-

opment. It enables ADP binding, ATP binding,

poly(U) RNA binding, and zinc ion binding.

TAIR

AT3G51750 This gene expressed during initial leaves visi-

ble stages and flowering stages. The biological

processes associated with this gene are cellular

lipid metabolic process, response to inorganic

substance, response to light stimulus, root de-

velopment, and seed development.

TAIR
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Chapter 5

Conclusion

This research is conducted to address the need for a comparative analysis of

penalized regression algorithms for scRNA-seq data. The algorithms chosen

to study were ridge, Lasso, Elastic Net, Drop Lasso, Group Lasso, Sparse

Group Lasso and Big Lasso regression. The research used a varied set of

scRNA-seq data from 3 different species (Mus Musculus, Homo Sapiens, and

Arabidopsis Thaliana) for analysis. The size of the data set varied from 63

MB to 252 MB. At the end of the analysis, it was found that the Sparse Group

Lasso performed better compared to other methods in terms of average CV-

AUC, computation time and selection of differentially expressed genes.

This study explored the possibility of improving the performance of the

top algorithm by combining it with others. Upon analysing top important

genes from all algorithms, it was found that the selection of genes may vary

between algorithms to the point that there may not be any intersection in

top important genes from different algorithms. Based on this result, a union

of the top important genes from 4 algorithms (ridge, lasso, elastic net and
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droplasso) was used to form a gene pool that had a significantly reduced

number of genes which was then used as the input to Sparse Group Lasso.

As evident from the results and discussion, the proposed algorithm that

uses the sparse group lasso with a reduced set of genes can select a highly

relevant subset of genes that are strongly associated with the cell clusters

in scRNA-seq samples. The CV-AUC of the proposed algorithm was found

better than that of the Sparse Group Lasso algorithm. Here we recognize

that lasso algorithms have many hyperparameters which can be customized

to arrive at different results. The output of grplasso and SGL packages can

also change depending on the number of groups in the input data and the

type of grouping used. This research has used scRNA-seq data from 3 species

that are most frequently used in biomedical research. However, the proposed

algorithm may need to be tested on data from more species.

5.1 Contributions

The major contributions of this thesis can be summarized as follows:

• The thesis produced a reliable guideline, about the comparative per-

formance of penalized regression algorithms, which might be useful for

the bioinformatics research community.

• The thesis has proposed a new algorithm that is a combination of lasso

algorithms that showed better AUC that the top-performing lasso al-

gorithm (SGL).

• The proposed algorithm does not require deep knowledge in grouping

of genes in scRNA-seq data and yet identified a highly relevant set of
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differentially expressed genes.

5.2 Future perspective

This research can take different directions in future. Some of them are listed

below.

1. Current research can expand to include more algorithms and related R

packages, such as Seagull developed by Klosa et al. [2020] which also

implement lasso, group lasso and sparse group lasso algorithms.

2. Another direction worth exploring is verifying the R packages such as

msgl (Vincent and Hansen [2014]) which can implement multinomial

classification.

3. In the proposed algorithm, all of the training data is used as input

to each of the 4 lasso algorithms. Instead, training data itself can be

divided into 4 parts and one part each fed to the 4 lasso algorithms.

Theoretically, this should reduce computation further since each algo-

rithm processes only one-fourth of the training data. How this addi-

tional step would affect relevant gene selection need to be studied.

4. A scRNA-seq data set with 1.3 million cells was published by 10x Ge-

nomics [2017]. According to 10x Genomics, this is the largest scRNA-

seq data set available as of date. Even this colossal data set is of size

3.93 GB only. This thesis research can be extended to such large data

sets when the scRNA-seq data set of Gigabyte (GB) size becomes more

commonly available in the future.
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5. The performance of the proposed algorithm for scRNA-seq data with

highly imbalanced classes may be verified against other methods cre-

ated for rare class identification such as the ensemble of phalaxes method

(Tomal et al. [2015, 2016]).

52



Bibliography

Shaked Slovin, Annamaria Carissimo, Francesco Panariello, Antonio
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Appendix A

Source Codes

The R codes for the proposed method is in the GitHub Repository below,

https://github.com/bhavithry/Benchmarking-LASSO-R
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