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ABSTRACT 
 

The desolate environment of the Iron Curtain Cave in Chilliwack, British Columbia, houses 

the Streptomyces sp. ICC1 strain shown to secrete antimicrobial secondary metabolite(s). Effective 

against both laboratory and multi-drug resistant strains of Escherichia coli and Staphylococcus 

aureus, the bioactivity has been thought to arise from the resilient physiology and specialized 

metabolic pathways that are known to exist within extreme-condition microbial species. Following 

optimization methods through liquid organic solvent extractions and both analytical and 

preparative reversed-phase high performance liquid chromatography techniques, the bioactive 

secondary metabolite(s) have been reasoned to exhibit both polar and non-polar substituents. 

Continued structural elucidation via one-dimensional proton nuclear magnetic spectroscopy 

suggested an unlikely peptidic nature to the antimicrobial compound(s) produced by the cave-

dwelling Streptomyces sp. ICC1 strain. Therefore, further instrumental analysis on pure samples 

must be performed to reveal the true molecular nature of the bioactive metabolite(s), as well as 

mode-of-action analyses.  
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INTRODUCTION 

The uprising of drug-resistant microbes has been a compounding event since the first 

observed bacterial resistance from a strain of Staphylococcus against the revolutionary discovery 

of penicillin in 1928. To date, antibiotic resistance was commonly misconceived to be the result 

of human misuse. Although undoubtedly a strong contributor, one study of note found that the 

antibiotic resistome in a bacterium from the Lechuguilla Cave, New Mexico, pre-dates the use of 

antibiotics by humans (Bhullar et al. 2012). In such a way, antibiotic resistance can be thought to 

be an entirely natural occurrence in bacterial evolution, that may have only be expedited by human 

interaction. Currently, antimicrobial resistance has been the cause of death of an estimated 700,000 

individuals each year—predicted by the World Health Organization to reach 10 million by 2050 

(Sarkar et al. 2017). The demand for alternatives to currently available pharmaceuticals 

continually increases as evolution of both man and bacterial species inevitably progresses.  

 

Distinguishing Gram-Positive and Gram-Negative Bacteria 

Although diverse, bacterial species exist in either one of two categories: Gram-positive or 

Gram-negative. The cell wall, common to all bacterial species (Mycoplasma exempt), differs in 

structure and chemical composition between Gram-positive and Gram-negative bacteria. 

Primarily, the thickness of the peptidoglycan layer within the cell wall can be very diagnostic to 

its characterization. As shown below in Figure 1, the peptidoglycan layer exists as an interwoven 

network of alternating N-acetylglucosamine and N-acetylmuramic acid residues cross-linked by 

pentapeptide side chains to provide rigid support for the cell and adequate protection from hostile 

environments (Ingraham et al. 1983, Silhavy et al. 2010). Although variable between species, the 

pentapeptide side chain in Gram-positive bacteria typically exists as L-Ala—D-Glu—L-Lys—D-
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Ala—D-Ala; differing from Gram-negative bacteria, where diaminopimelic acid generally 

replaces the third amino acid residue (Sarkar et al 2017).  Such a network differs between the two 

categories, where the peptidoglycan layer may be as thin as 2 nm in Gram-negative species and as 

thick as 15-80 nm in Gram-positive species (Figure 2) (Ingraham et al. 1983).  

 
 
 
 
 
 
 
 
 
 

Figure 1. Basic structure of the peptidoglycan layer in bacterial cell walls  
(Ingraham et al. 1983).  

 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2. Cell walls of Gram-positive (left) and Gram-negative (right) bacteria  
(Ingraham et al. 1983).  

 
Although a significant difference between the two species, it 

remained difficult to characterize the bacteria through only observation. 

Danish physician, Christian Gram, developed a simple four-step staining 

procedure on the basis of the peptidoglycan layer to easily visualize and 

distinguish a Gram-positive species from Gram-negative. Upon fixing a 

cell culture to a glass microscopy slide, crystal violet can be applied to Figure 3. Gram-stain 
procedure. 
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saturate and stain each cell. The slide can then be flooded with iodine to act as a mordant in forming 

a crystal violet-iodine complex to intensify and increase the fastness of the stain. Washing the slide 

with an organic solvent, often acetone or ethanol, effectively extracts all of the crystal violet-iodine 

complex from thin-walled Gram-negative species and significantly less from the thick 

peptidoglycan layer of Gram-positive species. In such a way, Gram-negative species appear 

colourless and can then be stained pink with safranin or basic fuchsia, while Gram-positive species 

retain the original crystal violet-iodine complex and appear purple.  

The presence of peptidoglycan in bacterial cells and its absence in mammalian cells makes 

it an ideal target for antibiotic treatment. The thick peptidoglycan layer in Gram-positive species 

can be effectively destroyed by treating with antibiotics which inhibit cell wall biosynthesis, 

commonly β-lactams or glycopeptides (Sarkar et al. 2017). Since peptidoglycan exists less 

prominently in Gram-negative cell walls, these species are often more difficult to treat. The 

specificity of an antibiotic to target primarily Gram-negative bacteria, rather than a breadth of 

species, has been highly sought after.  

 

Secondary Metabolite Production 

 Although not universally produced by microbes (Malik 1980), secondary metabolites can 

serve their host as a means of protection against threatening organisms, as metal transporters, in 

symbiosis, as sexual hormones, and in differentiation mechanisms (Demain et al. 2000). Within 

their host system, the functions of secondary metabolites—namely pigments, alkaloids, toxins, 

antibiotics, gibberellins, carotenoids, etc.—are nil and are only truly beneficial once excreted 

(Malik 1980). The interest of this study lies in the Streptomyces specific production of bioactive 

secondary metabolites, many of which have functioned as antifungals, antivirals, antitumorals, 
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anti-hypersensitives, immunosuppressants, or antibiotics (Procopio et al. 2012). The broad 

application of these bioactive molecules stems from the array of metabolic pathways within a 

species, collectively referred to as its secondary metabolome (Avignone-Rossa et al. 2013).  

 The production of Streptomyces secondary metabolites occurs during the onset of 

developmental changes occurring in the species; these changes most prominently occur during the 

formation of aerial hyphae in solid cultures or in a liquid cultures stationary phase (Avignone-

Rossa et al. 2013). Although not fully understood, nutrient exhaustion and the resulting growth 

rate stunt are thought to contribute in activating the secondary metabolism of Streptomyces 

(Avignone-Rossa et al. 2013).  

  

The Iron Curtain Cave 

The Iron Curtain Cave located near Chilliwack, British Columbia was discovered by caver 

Rob Wall in 1993 and was named accordingly for its iron-rich, decorative environment. The 

microbe involved in this study, Streptomyces sp. ICC1, was originally isolated 22.47 meters from 

the entrance of the cave, depicted as Point 1 in Figure 4, by Gosse et al. (2018). Previously 

established literature had noted that extreme cave environments, such as the Iron Curtain Cave, 

were found to commonly house microbial communities that actively produced secondary 

metabolites—many of which exhibited antimicrobial properties (Gosse et al. 2018). Cave-

dwelling bacterial species, such as the Streptomyces sp. ICC1 strain of interest, are known to thrive 

in such desolate environments as a result of their unique physiology and specialized metabolic 

pathways (Cheeptham et al. 2013). In hopes to uncover a novel opportunity for the demand in 

pharmaceutical applications, this study has focused on the optimization and characterization of the 
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antimicrobial secondary metabolite(s) that are actively secreted from the Streptomyces sp. ICC1 

strain. 

 
Figure 4. Map of the Iron Curtain Cave in Chilliwack, B.C. where the strain of interest, 

Streptomyces sp. ICC1 was collected at location Point 1. (Ghosh et al. 2017). 
 

Found to be a highly filamentous Gram-positive bacilli, the morphological characteristics 

of Streptomyces sp. ICC1 mirror the general trends observed across the genus. The scanning 

electron micrograph generated by Ghosh et al. (2017), shown below in Figure 5, clearly depicts 

the dense rod-shaped filaments of the culture which contribute to its filamentous colonial 

appearance. The Streptomyces sp. ICC1 strain was found to align to 54% of the well-studied 

Streptomyces lavendulae strain CCM 3239 through 16S rRNA sequencing techniques (Gosse et 

al. 2018). More specifically, Illumina MiSeq analysis and de novo genome assembly found the 

Streptomyces sp. ICC1 genome to consist of 9,034,309 base pairs of which 72% were guanine and 
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cytosine nucleotide base pairs (Gosse et al. 2018). Phylogenetically, the Streptomyces genus are 

known to possess a genome rich with guanine and cytosine bases in comparison to other bacterial 

species (Procopio et al. 2012). In the pharmaceutical industry, over 80% of the bacterial sourced 

antimicrobial products are derived from members of the Streptomyces genus (Procopio et al. 

2012), with the ICC1 strain being no exception.   

 

Figure 5. Scanning electron micrograph of Streptomyces sp. ICC1 retrieved from the 
Iron Curtain Cave (Ghosh et al. 2017).  

 

In this study, aseptic bioassay techniques and instrumental analyses were employed to 

observe antimicrobial performance against both Gram-positive and Gram-negative target 

organisms, specifically laboratory and multi-drug resistant strains of Escherichia coli and 

Staphylococcus aureus. The bioactive secondary metabolite(s) produced by the cave-dwelling 

Streptomyces sp. ICC1 strain were separated out from culture via multiple liquid-phase organic 

solvent and water extractions. Prominent bioactivity was consistently observed when such 

extractions were performed with diethyl ether. The bioactive compound(s) were further separated 

via analytical and preparative reversed-phase high performance liquid chromatography (HPLC) 

techniques, followed by structural elucidation via one-dimensional proton nuclear magnetic 
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resonance (NMR) spectroscopy. The preliminary findings of this study indicate that the 

antimicrobial secondary metabolite(s) are relatively hydrophobic/non-polar and potentially 

peptidic. Future work to further the understanding of the bioactive compound(s) involve additional 

instrumentation techniques, such as carbon-13 NMR spectroscopy and mass spectrometry, as well 

as unraveling their mechanism of action against tested pathogenic target organisms.   



 8 

MATERIALS AND METHODS 
 
Recovery from Dormant Colony 

The Streptomyces sp. ICC1 strain was streaked for isolated colonies on nutrient agar from 

a single dormant colony. Agar plates were streaked in triplicate and incubated overnight at 15°C—

later found to be an optimal temperature condition for growth and secondary metabolite production 

for Streptomyces sp. ICC1. Each plate was parafilmed and stored at 4°C to inhibit continual 

growth. Colonies were taken from these stock plates in all further culturing conditions.  

 

Optimization of Growth Conditions 

 To determine the optimal growth conditions for Streptomyces sp. ICC1, three different 

mediums were tested at three temperatures. Performed in triplicate, the cultures were grown up in 

15 mL aliquots of either nutrient broth, Reasoner’s 2A broth, or Hickey Tresnar broth and 

incubated at either 8°C, 15°C, or 37°C at 150 rpm. OD600 measurements were collected in 12 hour 

increments for 8 days.   

 

Optimization of Bioassay Zones of Inhibition 

 Based on the understanding that the Streptomyces sp. ICC1 strain grows most rapidly in 

nutrient broth conditions, all bioassays were performed first using molten nutrient agar. Fresh broth 

and agar media were inoculated or streaked from a single colony, where bioactivity was tested for 

every third day using both plug-assays and Kirby-Bauer disk diffusion assays. Plug-assays and 

Kirby-Bauer assays were performed from the previously tested conditions: agar and broth cultures 

of nutrient media, Reasoner’s 2A, and Hickey Tresnar grown at 15°C.  



 9 

 Kirby-Bauer disk diffusion assays required soaking 6mm sterilized paper disks with the 

either filtered or unfiltered supernatant of nutrient broth, Reasoner’s 2A broth, and Hickey Tresnar 

broth samples. Prior to saturation of the disks, the samples were centrifuged for 20 min at 10,000 

rpm and the supernatant samples were then divided into corresponding filtered and unfiltered 

samples. Chosen samples were filtered via sterile hydrophilic low-protein-binding 

polyethersulfone membrane filters of pore size 0.22 µm.  

 

Bioassay Screening for Antimicrobial Activity 

 A target organism of choice was cultured overnight at 37°C to 0.600-0.900 OD600 to ensure 

active logarithmic division. The bacterial targets employed in the bioassay screening protocols 

were namely laboratory Escherichia coli #59, multi-drug resistant Escherichia coli #15-124, 

laboratory Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus ATCC-43300.  

 An aliquot of Streptomyces sp. ICC1 broth culture incubated at 15°C for 5-40 days in 

nutrient broth at 150 rpm was retrieved and centrifuged at 10,000 rpm for 20 min. The supernatant 

was collected and filtered through sterile hydrophilic low-protein-binding polyethersulfone 

membrane syringe filters with 0.22 µm pore size. Various liquid extractions were performed on 

aliquots of the filtrate in 1:1 parts broth to diethyl ether, ethyl acetate, straight-chain hexanes, or 

1-octanol. Autoclaved 6 mm paper disks were saturated with either aqueous filtrate or organic 

solvent post-extraction and dried completely prior to bioassay addition. 

Bioassay screening was performed in sterile 15 mm x 150 mm polystyrene Petri dishes 

after exposure to ultraviolet radiation. Eighty mL of autoclaved molten nutrient agar was 

inoculated with 1% volume to volume of the exponentially dividing target organism, OD600 

between 0.600-0.900. The Kirby-Bauer disk diffusion method was employed in all bioassay 
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screening. All bioassay screening was performed within a biosafety cabinet to mitigate 

contamination and undesired bacterial exposure. The bioassay plates were incubated for 24 h at 

37°C for optimal growth of the target bacterial lawn. The presence or absence of zones of inhibition 

were recorded for each experimental condition. 

 

Active Compound(s) Separation and Preliminary Structural Analysis 

 The organic layer of the diethyl ether and broth liquid extraction was known to possess 

antimicrobial activity against the previously mentioned target organisms. Liquid extractions with 

diethyl ether were performed on aliquots of the Streptomyces sp. ICC1 broth culture collected 

every 3 days between 5 and 40 days of incubation at 15°C at 150 rpm. The organic layers from 

each extraction were combined and evaporated. For injection into the Agilent 1220 Infinity II high 

performance liquid chromatography (HPLC) system, the active compound(s) were resuspended 

from the dry flasks in 10 mL of HPLC-grade methanol.  

 The bioactive compound(s) were separated according to the analytical reversed-phase HPLC 

conditions summarized in Table 1. Following method development and analytical HPLC analysis, 

individual components were then collected via the preparative HPLC conditions further listed in 

Table 1. The resulting four separated components were divided among Eppendorf tubes and the 

eluent evaporated on a Vacufuge 5301 Centrifugal Vacuum Concentrator at 45°C. One sample 

from each separation was resuspended in deionized 18MΩ water and analyzed for antimicrobial 

activity via additional Kirby Bauer disk diffusion assays. Remaining samples were resuspended in 

either chloroform or 90:10 sodium phosphate buffer and deuterium oxide for structural elucidation 

with one-dimensional proton nuclear magnetic resonance (NMR) spectroscopy via a 500 MHz 

Bruker Avance AMIII 500 Spectrometer.  
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Table 1. Analytical and preparative HPLC parameters for compound separation. 

 Analytical HPLC Parameters Preparative HPLC Parameters 

Instrument Agilent 1220 Infinity HPLC Waters HPLC 486 

Column Kinetex 2.6 µm EVO C18 100Ȧ Phenomenex Jupiter 10u C18 300Ȧ 

Dimensions 100 x 3.0 mm 250 x 21.20 mm 

Detector 195, 272 nm 272 nm 

Flow Rate 0.4 mL/min 5 mL/min 
Injection 
Volume 5.0 µL 1.0 mL 

Eluent A: 5 mM NH4OAc in 18 MΩ H2O 
B: Acetonitrile 

Program 
Gradient 

1-21 min 90% A 10% B 
21-31min 100% B 

31-40min 90% A 10% B 
 

Table 2. NMR parameters for structural elucidation. 

Instrument Bruker Avance AMIII 500 Spectrometer 

Operating Frequency 500 MHz 

Solvent CDCl3 

Number of Scans 128 
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RESULTS  
 
Streptomyces sp. ICC1 Growth Optimization 

 Streptomyces sp. ICC1 was subjected to three different media conditions and three 

temperatures to optimize the bacterial growth and secondary metabolite production of the cave 

strain. The OD600 measurements, estimating bacterial concentration, were found to be highest in 

nutrient broth conditions when incubated at 15°C, 150 rpm. While the nutrient broth cultures were 

found to have the greatest concentration at each temperature condition, the growth rate was 

significantly repressed at 8°C and more so at 37°C. Bacterial growth was minimal in Reasoner’s 

2A broth; likewise, Hickey Tresnar broth conditions showed no growth at each temperature after 

8 days post-inoculation. 

 

Figure 6. Brown pigment change and considerable Streptomyces sp. ICC1 growth following 
8 days post-inoculation at 15°C, 150 rpm in nutrient broth (left). Bacterial growth 

considerably less in Reasoner’s 2A broth (middle), and minimal in Hickey Tresnar (right). 
 
  

 Additionally, a brown pigment change in media was consistently observed after 5 days of 

incubation at 15°C and 150 rpm in nutrient broth. The evident pigment change from clear to 

distinct brown has been thought to correlate to secondary metabolite production by the cave strain, 
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since bioactivity has been observed only thereafter.  The shift in media colour was observed earliest 

in nutrient broth after 5 days, later in Reasoner’s 2A broth after 12 days, and even later so in Hickey 

Tresnar broth after 28 days post-inoculation.  

 Following incubation of the Streptomyces sp. ICC1 culture in nutrient broth at 15°C, a 

conventional Gram-stain confirmed the cave-dwelling bacterium to possess filamentous Gram-

positive bacilli properties, shown below in Figure 2. These observations were in agreeance with 

the findings of Ghosh et al. (2017) in their scanning electron microscopy analysis of a 

Streptomyces sp. ICC1 sample.  

 
 

Figure 7. Streptomyces sp. ICC1 with filamentous Gram-positive bacilli properties  
at 1000X magnification.  

 

Optimization of Bioassay Zones of Inhibition 

 Plug-assays and Kirby-Bauer disk diffusion assays were performed on molten nutrient agar.  

Bioactivity was not observed until 6 days post-inoculation, suggesting secondary metabolite 

production must occur between days 3-6. Through identically repeated analysis, it was later 

determined that antimicrobial activity via secondary metabolites begins 5 days post-inoculation.  
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 The Streptomyces sp. ICC1 colonies grown on nutrient agar produced a larger zone of 

inhibition on all target organism bacterial lawns. In contrast, the zones of inhibition observed on 

Hickey Tresnar agar and Reasoner’s 2A agar from the colonies were relatively similar, however 

both were consistently smaller than the zones established from nutrient agar. The diameter of the 

zone of inhibition steadily increased until approximately 72 hours post-incubation, at which point 

the change in diameter was less significant and eventually showed no change after 150 hours. Of 

note, these times may have varied among the bacterial lawns. All plug-assays produced the 

characteristic brown pigment from the Streptomyces culture after 72 hours when incubated at 

15°C. An identical procedure was carried out to incubate the bioassay plates at 37°C, however no 

zones of inhibition were observed as well as no brown pigmentation. After producing these results 

in triplicate, the study eliminated the 37°C incubation condition.  

 
Figure 8. Diameter of zone of inhibition on an Escherichia coli #59 bacterial lawn  

at 15°C by nutrient agar plug-assay. 
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Figure 9. Diameter of zone of inhibition on a Staphylococcus aureus bacterial lawn  

at 15°C by nutrient agar plug-assay. 
 

 
Figure 10. Diameter of zone of inhibition on a multi-drug resistant Escherichia coli #15-124  

bacterial lawn at 15°C by nutrient agar plug-assay. 
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Figure 11. Diameter of zone of inhibition on a methicillin-resistant Staphylococcus aureus  

bacterial lawn at 15°C by nutrient agar plug-assay.  
 

 The Kirby-Bauer disk diffusion assay results were less consistent across the four target 

organism bacterial lawns. On all except the laboratory strain of Escherichia coli #59 bacterial 

lawns, bioactivity was observed via a zone of inhibition from both filtered and unfiltered nutrient 

broth supernatant samples. No bioactivity was observed when testing the supernatant samples from 

the Hickey Tresnar grown culture. However, the Reasoner’s 2A unfiltered supernatant showed 

zones of inhibition on both laboratory and methicillin-resistant strains of Staphylococcus aureus. 

The filtered Reasoner’s 2A supernatant showed no bioactivity, similar to the Hickey Tresnar.  
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Figure 12. Diameter of zone of inhibition on an Escherichia coli #59 bacterial lawn at 15°C  

by Kirby Bauer disk diffusion assay. 
 

 
Figure 13. Diameter of zone of inhibition on a Staphylococcus aureus bacterial lawn at 15°C  

by Kirby Bauer disk diffusion assay. 
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Figure 14. Diameter of zone of inhibition on a multi-drug resistant Escherichia coli #15-124 
bacterial lawn at 15°C by Kirby Bauer disk diffusion assay. 

 

 
Figure 15. Diameter of zone of inhibition on a methicillin-resistant Staphylococcus aureus  

bacterial lawn at 15°C by Kirby Bauer disk diffusion assay. 
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Antimicrobial Activity Following Organic Solvent Extractions 

 Following observed antimicrobial activity after 5-40 days post-inoculation in nutrient broth, 

liquid organic solvent extractions were performed to elucidate the relative polarity of the bioactive 

antimicrobial secondary metabolite(s). Extractions were performed with four organic solvents, 

namely diethyl ether, ethyl acetate, hexane, and 1-octanol, and bioactivity was assessed post-

extraction to determine the partition behaviour of the bioactive compound(s). The results from the 

performed extractions in the various solvents are summarized below in Table 2. As listed, the 

extractions were unsuccessful when using reagent-grade ethyl acetate, as no activity was present 

in either the organic nor the aqueous layer post-extraction. The hexane-water extractions were also 

deemed unsuccessful, as bioactivity against the target organisms was inconsistently observed. 

However, bioactivity was observed consistently in the organic layer of the diethyl ether-water 

extractions, Figure 3, and in the aqueous layer of the octanol-water extractions. 

 

Table 3. Bioactivity post-extraction using four different organic solvents.   

Solvent Organic Layer  
Activity Observed 

Aqueous Layer  
Activity Observed 

Diethyl Ether Yes 
+++ No 

Ethyl Acetate No No 

Hexane No Yes 
+ 

1-Octanol No Yes 
++ 
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Figure 16. Kirby-Bauer disk diffusion assay against multi-drug resistant  
Escherichia coli #15-124 showing bioactivity post-extraction with diethyl ether.  

 

Compound Separation via Reversed-Phase HPLC   

 Method development of the reversed-phase HPLC protocol was performed to achieve 

adequate separation among the various components. The resulting chromatograms are depicted 

below in Figures 4A and 4B. By measuring absorbance at 195 nm and 272 nm via a photodiode 

array detector, it was determined that the program gradient summarized above in Table 1 allowed 

for the highest resolution among the eluting peaks. Although lower in relative absorbance intensity, 

272 nm delivered a “cleaner” chromatogram and was chosen as the wavelength for later 

preparative HPLC analysis. It was critical to achieve relatively high resolution prior to sample 

collection to increase the samples purity. While baseline resolution was difficult to achieve for 

each individual component, Figure 4B demonstrated adequate separation for performing 

collections.  

Diethyl ether 
organic layer 

10µg Ampicillin 

Filtered  
broth 

Diethyl ether 
organic layer 

Diethyl ether 
aqueous layer 

Diethyl ether 
aqueous layer 

Diethyl ether  
control 
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Figure 17. Analytical reversed-phase HPLC chromatograms of bioactive secondary 
metabolite(s) in methanol at 195 nm (A) and 272 nm (B) detection. 

 
As an additional method of determining maximum absorbance for the biological sample, a 

three-dimensional chromatogram of the bioactive secondary metabolite(s) in methanol was created 

from the absorbance readings of 190 nm to 400 nm by the photodiode array detector. It was 

noteworthy that although 195 nm delivered the maximum absorbance for the initial components—

clearly depicted below in Figure 5, the resolution between peaks was not as high as that of the 

peaks that absorbed at 272 nm. Furthermore, the peak appearing between 8 min and 9 min was not 

absorbed at 195 nm but was observed at 272 nm. 

 

 A 

B 
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Figure 18. 3-D chromatogram of bioactive secondary metabolite(s) showing absorbance 
from 190-400 nm via photodiode array detection.  

 
 
 The preparative reversed-phase HPLC chromatogram, shown below in Figure 6, appeared 

relatively different from that of the analytical chromatogram as a result of the different column 

compositions. Due to the non-polar stationary phase of the Phenomenex Jupiter 10u C18 column, 

polar substituents are the first to elute due to their high affinity for the polar mobile phase.  It may 

be inferred then that Peaks 1 and 2 depicted in Figure 6 are relatively polar components due to 

their short retention time. Furthermore, the broadness and multiple peaks that appear are indicative 

of several underlying components residing within each peak.  

 Due to the high volume capacity of the preparative Phenomenex Jupiter 10u C18 column, 

it can be reasoned that the Peak 3 collection likely was eluted in 90% 5 mM ammonium acetate 

buffer and 10% acetonitrile. Similarly, the Peak 4 collection was likely eluted in 100% acetonitrile. 

The non-polar nature of acetonitrile can be thought to “clean” off the column by interacting with 

the non-polar substituents that have a high affinity for the columns stationary phase. As a result, 

Peak 4 can be reasoned to be quite impure due to the several components contributing to the broad 
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peak. In future, the colossal peak could be separated into its individual components by lengthening 

the program gradient and allowing elution in a high concentration of aqueous buffer, such as the 

previously used 90:10 ratio. 

 
 
 
 

 
 
 

Figure 19. Preparative reversed-phase HPLC chromatogram of bioactive secondary 
metabolite(s) in methanol with program gradient.  

 
 

 The bioactivity of each of the four peak sample collections was tested via Kirby-Bauer disk 

diffusion assays following the evaporation of all HPLC eluent. As shown below in Figure 7, the 

bioactive secondary metabolite(s) were evidently separated into Peak 2 and Peak 4 during the 

preparative reversed-phase HPLC analysis. The clear zones of inhibition against the multi-drug 

resistant strain Escherichia coli #15-124 are indicative of antimicrobial agents having been 

absorbed into the applied paper disk. These peak samples were further analyzed for structural 

elucidation via IR and one-dimensional proton NMR analysis. 
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Figure 20. Kirby-Bauer disk diffusion assay against multi-drug resistant Escherichia coli 
#15-124 showing antimicrobial activity from Peak 2 and 4 of preparative HPLC collections.  

 
 

Structural Elucidation of Bioactive HPLC Collections by IR and 1-D 1H-NMR 

 The vacufuged samples from the Peak 2 and 4 collections were resuspended in 9-parts 

sodium phosphate buffer and 1-part deuterium oxide and were observed to be very soluble. 

Noteworthy, the vacufuged samples exhibited a similar brown pigmentation when dry to that of 

the original pigmentation observed during secondary metabolite production (after 5 days). Of 

interest, 1-D 1H NMR analysis of these samples did not provide any structural information as no 

peaks were present aside from the suppressed water signal, likely due to minimal sample. 

Other vacufuged samples from Peaks 2 and 4 were dissolved in deuterated chloroform 

(CDCl3) and analyzed. The spectrum obtained from analyzing Peak 2 in CDCl3 at 128 scans by 

the 500 MHz Bruker NMR spectrometer can be seen below in Figure 8A. Sections of the spectrum 

have been further zoomed in on to aid in visualization of individual peak splitting patterns, Figures 

8B-8D. As seen in Figure 8B, a clean doublet appears around 2.25 ppm; two clean singlets at 2.05 

and 2.1 ppm; the water peak at approximately 1.56 ppm; and two crude multiplets at 0.8 ppm and 

Peak 1 

Peak 2 Peak 3 

Peak 4 

10µg Ampicillin 

Acetonitrile Diethyl ether 

Methanol 

Deionized H2O 
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1.25 ppm. The latter two signals are likely a result of CH2 and CH3 protons, due to their upfield 

and highly shielded placement on the spectrum. A clean triplet can be observed in Figure 8C at 

approximately 5.6 ppm, suggestive of possible alkene protons. Additionally, the complicated 

splitting observed in the peaks appearing from 3.8-4.4 ppm may be a result of protons being nearby 

deshielding/electron-withdrawing groups, such as alkenes or electronegative oxygen or nitrogen 

atoms. Figure 8D shows the large deuterated chloroform solvent peak at 7.26 ppm. The doublet at 

approximately 7.15 ppm and the two singlets at approximately 7.05 ppm and 7.45 ppm, as well as 

the peaks superimposed beneath the solvent peak, likely correspond to aromatic protons due to 

their downfield/deshielded placement on the spectrum. Furthermore, additional scans should be 

taken, or the sample concentrated, to determine if there are true singlets arising at approximately 

8.75 and 9.10 ppm. These signals could be indicative of deshielded amide protons, hinting that the 

bioactive secondary metabolite(s) may possess an indole ring.   
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Figure 21. 1-D 1H NMR spectra of Peak 2 dissolved in deuterated chloroform, NS=128.  
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DISCUSSION 
 
 Through extensive Kirby-Bauer disk diffusion antimicrobial assays, the bioactive secondary 

metabolite(s) produced by Streptomyces sp. ICC1 have been notably effective against both Gram-

positive and Gram-negative target organisms—primarily laboratory and multi-drug resistant 

strains of Escherichia coli and Staphylococcus aureus. The bioactive compound(s) should be 

applied against other infectious bacterial organisms to observe their effectiveness and limitations.  

 Following liquid organic solvent extractions with the aqueous broth culture, bioactivity was 

maintained in the organic, non-polar layer of the diethyl ether-water extractions and in the aqueous, 

polar layer of the 1-octanol-water extractions. Diethyl ether—essentially non-polar and insoluble 

in water—has a bent molecular structure that creates a small dipole moment and can therefore be 

used to isolate both polar and non-polar compounds in aqueous extractions. Since non-polar 

compounds tend to be more soluble in diethyl ether, it may be inferred from the organic extraction 

results that the secondary metabolites are also non-polar in nature. However, the bioactive 

compound(s) tendency to prefer the aqueous layer of the straight chain 1-octanol-water extractions 

actively suggests the secondary metabolites have polar characteristics, as they do not interact with 

the straight carbon chains of 1-octanol. Organic solvent extractions with ethyl acetate should be 

reinvestigated to understand the loss of activity post-extraction.   

 Upon confirmation that bioactivity was preserved through the liquid organic solvent 

extractions, analytical and preparative reversed-phase high performance liquid chromatography 

analysis revealed several polar and non-polar substituents within the diethyl ether extraction. 

Those peaks which eluted early, specifically Peaks 1 and 2, in the polar mobile phase were 

reasoned to possess more of a hydrophilic, polar nature. Whereas those peaks which eluted later 

due to a higher affinity for the non-polar stationary phase, Peaks 3 and 4, are thought to exhibit 
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more hydrophobic, non-polar characteristics. From additional Kirby-Bauer disk diffusion assays, 

it was determined that the antimicrobial secondary metabolite(s) from Streptomyces sp. ICC1 were 

separated into Peaks 2 and 4. It remains unclear whether these peaks possess entirely different 

bioactive molecules or if there was carry-over from the high-volume capacity of the preparative 

Phenomenex Jupiter C18 column. A longer program gradient at a higher aqueous concentration 

should be manipulated in future work to improve the resolution of individual components.  

 A more concentrated sample from the Peak 2 and Peak 4 collections should be analyzed via 

one-dimensional proton nuclear magnetic resonance spectroscopy with a high number of scans to 

provide a more accurate representation of the molecular composition. Increasing the concentration 

of the analyzed sample may reveal additional peaks or intensify those present, such as the highly 

deshielded signals present in the amide region. Observation of amide protons, as well as the present 

aromatic and other sp2/sp3 hybridized alkyl protons could ultimately suggest a proteinaceous 

nature to the bioactive Streptomyces sp. ICC1 secondary metabolite(s). Additionally, samples may 

be dissolved in other deuterated solvents prior to NMR analysis. The compound(s) may be more 

soluble in dimethylsulfoxide, considered a universal solvent, than in the previously employed 

deuterated chloroform or sodium phosphate buffer/deuterium oxide combination.  

 

CONCLUSIONS AND FUTURE WORK  

 The turn of the 20th century brought a demand for pharmaceutical development through 

antibiotic research and application. While microorganisms continue to evolve on a day to day 

basis, mankind risks the chance of falling behind their evolutionary progress in developing 

resistance. Hence, the research that encompasses how and which microbes naturally produce 

antimicrobial compounds should be considered imperative. The isolation of these bioactive 
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molecules has given rise to a significant portion of all the powerful and commercially available 

antibiotics used thus far against known infectious strains. 

 Further instrumental analysis should be executed on the purified samples, primarily 13C 

NMR and mass spectrometry, to elucidate the bioactive molecular structure of the compound(s). 

Additionally, information regarding the minimum inhibitory concentration of the produced 

bioactive molecule(s) should be investigated against several target strains, both Gram-positive and 

Gram-negative. Together, these findings can be compared to other commercially available 

secondary metabolites produced by the Streptomyces genus to assess the possible novelty of the 

compound(s).  

 Although the most common antibiotics are those which target Gram-positive bacteria, the 

Streptomyces sp. ICC1 cave strain should be further studied for its effectiveness against other 

Gram-negative species than those mentioned. The resilient physiology and metabolic pathways 

that exist within cave-dwelling species, much like in Streptomyces sp. ICC1, offer an alternative 

to harmful chemical exposure and synthetic drug design. Continual research in the area of bioactive 

metabolite production by desolate environment microbial communities must be executed to 

uncover the possible cures that may reside within. 
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