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Highlights 

• Quantitative analysis developed for the determination of functional oligosaccharides in 

food matrices are discussed (2015 – 2020). 

• Structural properties of different oligosaccharides are highlighted. 

• Sample preparation techniques for specific oligosaccharides and sample matrices are 

reviewed. 

• Applications of functional OS in food products are generalized. 

Abstract 

Functional oligosaccharides (OS) are diverse groups of carbohydrates that confer several health 

benefits stemming from their prebiotic activity. Commonly used oligosaccharides, 

fructooligosaccharides and galactooligosaccharides, are used in a wide range of applications 

from food ingredients to mimic the prebiotic activity of human milk oligosaccharides (HMOs) 

in infant formula to sugar and fat replacers in dairy and bakery products. However, while 

consumption of these compounds is associated with several positive health effects, increased 

consumption can cause intestinal discomfort and aggravation of intestinal bowel syndrome 

symptoms. Hence, it is essential to develop rapid and reliable techniques to quantify OS for 

quality control and proper assessment of their functionality in food and food products. The 

present review will focus on recent analytical techniques used for the quantification of OS in 

different matrices such as food and beverage products. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 Introduction 
 

Functional oligosaccharides (OS) are diverse groups of carbohydrates consisting of monomers 

present in varying degrees of polymerization (DP) ranging between 3 to 10 units (Ibrahim, 

2018). Currently, fructooligosaccharides (FOS) and galactooligosaccharides (GOS) are the 

most utilized functional OS in the food industry, however other OS groups such as agro-

residue derived xylooligosaccharides (XOS), and pectic oligosaccharides are also being 

considered due to their relatively inexpensive production cost (Babbar et al., 2015; Moreno et 

al., 2017; Samanta et al., 2015). Technological properties of OS, such as gel-forming ability, 

water holding capacity, and thickening ability can improve sensory and physicochemical 

characteristics of food products hence, leading to increased application of OS in the food 

industry (Balthazar et al., 2017, 2015; Farias et al., 2019). They are commonly used as a partial 

replacement for fat and sugar, and as bulking agents in dairy and bakery products; they are 

also incorporated as food fortifying agents in various food products such as infant formulas, 

ice cream, cereal products, etc., to improve their nutritional functionality (Ibrahim, 2018; 

Nobre et al., 2015; Zhao et al., 2017).  

 

The study of functional OS has been a growing field of interest in both the food and 

pharmaceutical industry mainly due to their activity as prebiotics – commonly defined as 

“non-digestible compounds that beneficially affect the host by selectively stimulating the 

growth and activity of one or a limited number of bacteria in the colon” (Cezar et al., 2017; 

Samanta et al., 2015; R. D. Singh et al., 2015; Vandenplas et al., 2015). Selective promotion 

of the growth of Bifidobacteria spp. and Lactobacillus spp. by prebiotics allows the liberation 

of metabolites such as short-chain fatty acids (acetate, propionate, butyrate, lactate, etc.) which 

are associated with reduced risk of hypercholesterolemia (Bali et al., 2015), and control of 

several physiological processes such as mucosal proliferation, inflammation, colorectal 

carcinogenesis, mineral absorption and elimination of nitrogen compounds (Flores-Maltos et 

al., 2016). Furthermore, several studies have reported a positive effect of consumption of 

prebiotic OS with increased absorption of Ca, Mg, and Fe, and against diseases such as 

cardiovascular disease, cancer, obesity, and type 2 diabetes (Bali et al., 2015; Gómez et al., 

2016; Sánchez-Martínez et al., 2020; R. D. Singh et al., 2015; Zhao et al., 2017). Toxicity 

studies of FOS and GOS have shown that consumption of up to 9 g/kg body weight and 2g/kg 

body weight per day for FOS and GOS, respectively, had no adverse effects in Wister rats 

(Jain et al., 2019; Y. Zhou et al., 2017). However, several studies have been published on the 

association of increased consumption of OS, specifically FOS, with aggravation of irritable 

bowel syndrome symptoms (Charoenwongpaiboon et al., 2019; B. Chen et al., 2017; 

Huazano-garcía & López, 2017; Mellado-Mojica et al., 2016).  Consumption of FOS of 

greater than 15 g/day was reported to cause intestinal discomfort, bloating, and flatulence 

(Kumar et al., 2018). Hence, the development of rapid and sensitive techniques for 

quantitation of functional OS, along with their increasing application in the food industry, is 

warranted. In this review, recently developed techniques over the last five years for the 

quantitative determination of functional OS in different food matrices will be discussed. 

 

 



2 Analysis of Oligosaccharides 
 

2.1 Fructooligosaccharides 

 

Fructooligosaccharides (FOS) are composed of fructosyl units linked together via β(2 – 1) or 

β(2 – 6) glycosidic bonds with a glucose residue linked via α(1 – 2) glycosidic bond at the 

reducing end; commonly used FOS in fortified food products are 1-kestose (GF2), nystose 

(GF3), and fructofuranosyl nystose (GF4)  (S. P. Singh et al., 2017; Vega & Zuniga-Hansen, 

2015). FOS are naturally present as reserve phytochemicals in a variety of plants such as 

Jerusalem artichoke, bananas, tomatoes, onion, asparagus, chicory, leek, garlic, asparagus, 

wheat, honey, and yacon (Caetano et al., 2016; Flores-Maltos et al., 2016) with the highest 

concentrations reported in Jerusalem artichoke, chicory, and yacon (Caetano et al., 2016; Guo 

et al., 2016).  

 

Currently, high-performance liquid chromatography (HPLC) methods often coupled with 

refractive index detector (RID) and evaporative light scattering detector (ELSD) are 

commonly used for the routine analysis of OS in food products and for monitoring OS 

synthesis (Bersaneti et al., 2017; Ko et al., 2019; Prokopov et al., 2018; Trollope et al., 2015; 

Vega & Zuniga-Hansen, 2015; Weiß & Alt, 2017). In a study conducted by dos Santos Lima 

et al. (2019), FOS present in wine and grape juices such as GF2, GF3, and raffinose was 

quantified using reversed-phase HPLC-RID. A RP-C18 column with polar endcapping was 

used to provide better separation and stability for highly polar compounds such as 

oligosaccharides. Before injection, wine samples were diluted with ultra-pure water and then 

filtered through a 0.45µm PTFE membrane. The method showed high specificity with 

minimal interference from common refraction detection interferences such as sugar, ethanol, 

and organic acids. Also, the method provided good linearity, recovery (GF2: 90.3% and GF3: 

108.8), and sensitivity with LOD values 0.090 g/L (GF2) and 0.074 g/L (GF3), hence is a 

promising method for the routine detection of FOS in wine and grape juices. In another study, 

a simplified sample treatment of milk and milk-related products before the detection of FOS 

using HPLC-RID was developed and evaluated (Rodríguez-Gómez et al., 2015). A 

precipitating solution (495 mM zinc acetate dihydrate, 18 mM phosphotungstic hydrate, and 

5.8% (v/v) glacial acetic acid) was added into homogenized samples in a 5:1 

sample/precipitation solution ratio resulting in the precipitation of protein and fat. The results 

of the analysis demonstrated high precision (%RSD < 3.5%) and high sensitivity with LOD 

values of 0.5, 0.4, and 0.6 µg/mL for GF2, GF3, and GF4, respectively. Hence, the sensitivity 

of the method coupled with short analysis time (< 20 min) makes it a suitable technique for 

the routine analysis of common FOS in milk and milk products.  

 

However, RID can be susceptible to baseline drift because of temperature variation and 

gradient elution. Subsequently, detection by ELSD provides better sensitivity characterized 

by great baseline stability due to gradient elution compatibility and temperature independence 

(Costa & Conte-Junior, 2018; Duan et al., 2018; Zhuang et al., 2019). Zhuang et al. (2019) 

developed a technique for simultaneous quantification of FOS (DP 3-15) present in 

Atractylodis rhizome using HPLC-ELSD. Due to a lack of available standards, the authors 

used FOS standards that were extracted and purified in their laboratory. A reflux extraction 

method using 60% ethanol optimized at a 20 fold solvent to sample ratio for 2.5 h was 



employed. Results showed excellent linearity (R2 > 0.9993) for all FOS of interest, as well as 

high sensitivity with reported LOD values ranging from 0.04 – 0.14 mg/mL. Simultaneous 

quantification of 13 FOS in Morinda officinalis was also published in another study using 

UHPLC-ELSD using am ethylene-bridged hybrid (BEH) amide column with gradient elution 

(Hao et al., 2019). The authors demonstrated that using a weakly basic (pH < 12) mobile phase 

improves analyte separation by reducing peak tailing, increasing peak resolution, maintaining 

a neutral charge on the analytes, and eliminating co-elution of salts. The method was validated 

and presents several advantages in that it is rapid (< 10 min), sensitive (LOD: 10.78-33.44 

µg/mL; LOQ: 35.94-124.81 µg/mL), and precise (%RSD < 4.76). 

 

High-performance anion-exchange chromatography with pulsed amperometric detection 

(HPAEC-PAD) was also used for the routine analysis of FOS (Charoenwongpaiboon et al., 

2019; Huazano-garcía & López, 2017; Mellado-Mojica et al., 2016; Menéndez et al., 2019; 

Porras-domínguez et al., 2017). Pöhnl et al. (2017) compared the performance of HPAEC-

PAD and UHPLC-ELSD for the determination of FOS in Allium cepa (onion). Results of the 

study showed that HPAEC-PAD was superior to UHPLC-ELSD in that it has better sensitivity, 

a wider range of quantifiable FOS (up to DP of 18) and was able to baseline separate 

constitutional isomers. Also, the UHPLC-ELSD method was limited by the solubility of 

higher molecular weight FOS in organic solvents, while solubility issues are insignificant with 

HPAEC-PAD. These results were in agreement with another study for the detection of FOS 

in milk and milk products (Rodríguez-Gómez et al., 2015). However, UHPLC-ELSD still 

presents suitable results for low to medium molecular weight FOS analysis with shorter run 

time compared to HPAEC-PAD; hence, it could still be applied for routine analysis in the food 

industry. 

 

Other cited methods for FOS analysis include gas-liquid chromatography mass spectrometry 

(GLC-MS), high-performance capillary electrophoresis with laser-induced fluorescence 

detection (HPCE-LIFD), and matrix-assisted laser desorption ionization time of flight mass 

spectrometry (MALDI-TOF MS) (Rodríguez-Gómez et al., 2015; Zhao et al., 2017) however, 

recent studies focused on the evaluation, and further development of these methods were not 

available. 

2.2 Galactooligosaccharides 
 

Galactooligosaccharides are carbohydrates that are commonly composed of two to five 

galactose units linked via various glycosidic bonds (i.e. β(1 – 2), β(1 – 3), β(1 – 4), β(1 – 6))  

with an N-glucose residue at the end forming a lactose terminal within the molecule (Azcarate-

peril et al., 2016; Figueroa-Lozano et al., 2020; Solaiman et al., 2020). GOSs are found 

naturally in foods like banana, artichoke, onion, garlic, and honey; however, industrial GOS 

are commonly derived from industrial by-products (i.e. cheese whey and whey permeate) 

through the enzymatic transgalactosylation of lactose by β-galactosidase (EC 3.2.1.23) 

(Aburto et al., 2018; Chanalia et al., 2018; Rad et al., 2018; Vera et al., 2016). While they are 

structurally less complex, GOSs are reported to have similar structure and function with 

human milk oligosaccharides (HMO) hence they are commonly used to mimic the function of 

HMO in infant formulas and dairy products (Aburto et al., 2018; X. Y. Chen & Michael, 2017).  



Recent studies on GOS were focused on their synthesis, purification and production (Chanalia 

et al., 2018; Sabater et al., 2019; G. Wang et al., 2020) while quantitation studies have been 

limited. Currently, the AOAC 2001.02 method is the only validated method for the 

determination of GOS in raw materials and food products (Blanco-morales et al., 2018; 

Kaczynski et al., 2019; Lans et al., 2018). This method describes an indirect measurement of 

GOS by enzymatic hydrolysis of GOS to glucose and galactose, which are then quantified 

using HPAEC-PAD (X. Wang & Rastall, 2018). However, the presence of high levels of free 

lactose in the sample matrix dramatically reduces the accuracy of the method; thus, it is not 

suitable for GOS analysis in high-lactose products (Gill et al., 2016; Yang & Xu, 2018). 

Subsequently, this method was improved by Lin et al. (2018). Galactose and glucose were 

measured in the same chromatographic run, thus eliminating the need to determine a 

correction factor required in the AOAC 2001.02 method. Also, the degree of conversion of 

lactose was taken into consideration and applied to the formula for calculating GOS content. 

However, while this method was validated for GOS raw materials, further evaluation is 

required for its suitability in GOS analysis in high lactose food products. 

Quantification of GOS by gas chromatography – flame ionization detector (GC-FID) in infant 

formula was reported (Sabater et al., 2016). Prior to analysis, GOS samples were derivatized 

to trimethyl silylated oximes (TMSO). Furthermore, the authors demonstrated that the 

hydrolysis of maltodextrins with α-amyloglucosidase reduced interferences and improved 

peak resolution of GOS peaks, thus allowing quantification. This method showed good 

repeatability (%RSD < 12.3%) and allowed the quantification of GOS with a degree of 

polymerization (DP) up to 7. The same method was recently used to analyze the composition 

of the reaction mixture from the synthesis of GOS by propionibacteria from lactose and 

lactulose alongside HPLC-RID (Sabater et al., 2019). For HPLC-RID, GOS were quantified 

through an external calibration method using universal standards (i.e. raffinose for 

trisaccharides and stachyose for tetrasaccharides), and their concentration was expressed as 

the percentage of the total carbohydrate content. Hence, the previous methods presented 

several advantages over the AOAC 2001.02 method in that GOSs were quantified without 

prior hydrolyzation to glucose and galactose, thus simplifying GOS content calculation and 

minimizing lactose interference. However, quantitation was not the primary aim of these 

studies; hence these methods were not validated. 

 

2.3 Milk Oligosaccharides 
 

Milk oligosaccharides (MOS) are a group of carbohydrates composed of monomers glucose, 

galactose, N-acetylglucosamine, fucose, sialic acid, and N-acetylneuraminic acid with a 

fructose residue at the reducing end (Grabarics et al., 2017; Wei et al., 2018). Milk 

oligosaccharides (MOS), especially those from human milk, are novel bioactives associated 

with several physiological processes, including modulation of the gut microbiota, immune 

regulation, and anti-pathogenic response in the gastrointestinal tract (Grabarics et al., 2017; 

Walsh et al., 2020). Efforts have been placed into mimicking the composition of human milk 

oligosaccharides (HMOs) through the addition of FOS and GOS into infant formulas (Ma et 

al., 2019; Vandenplas et al., 2018) however, Walsh et al. (2020) recognized that these efforts 

alone are insufficient in simulating the health benefits gained from actual human MOS. Hence, 

to facilitate a better understanding of the effects of HMOs in infant health, and to properly 



develop methods for synthesis of HMOs, various techniques for the accurate quantitation of 

HMOs have been developed (Grabarics et al., 2017; Yan et al., 2017).  

 

Simultaneous quantification of 16 acidic and neutral HMOs was achieved by Tonon et al. 

(2019) using graphitized carbon liquid chromatography-electrospray ionization mass 

spectrometry (GCLC-EIMS) with simple sample preparation. Briefly, centrifugation and 

ultra-filtration were applied for the removal of lipids and proteins, respectively, and followed 

by a reduction reaction to prevent the separation of anomers in the porous graphitized carbon 

phase. The method showed promising results with excellent linearity (R2 > 0.9999), high 

sensitivity (LOQ = 0.039), and suitable recovery (89-110%). Also, the reported method 

presents a couple of advantages in that it was able to extract and quantify both neutral and 

acidic HMOs simultaneously. Furthermore, the simultaneous extraction and analysis of 

HMOs in the same chromatographic run minimized the loss of HMOs due to lactose 

precipitation and provided higher recovery values (89-110%) compared to another study using 

graphitized-carbon solid phase extraction (GC-SPE) (19.5-20%) (Robinson et al., 2018). 

Absolute quantitation HMOs were also reported by Xu et al. (2016) using ultraperformance 

liquid chromatography tandem triple quadrupole mass spectrometry (UPLC-QqQMS) under 

multiple reaction monitoring (MRM). The study also evaluated the feasibility of utilizing 

pooled human milk samples for the construction of calibration standards. Briefly, pooled milk 

samples were defatted and deproteinated by centrifugation and ethanol extraction, respectively. 

Half of the extracted samples were serially diluted and injected into the system, and the total 

response of HMOs in each diluted pool was determined by summing the peak areas of all of 

the transitions. The other half was cleaned by PGC-SPE, lyophilized, and weighed to calculate 

the concentration of HMOs in each diluted pool. Absolute concentrations of total, sialylated, 

fucosylated and non-fucosylated neutral HMOs were determined using the universal 

calibration curve constructed from pooled milk samples. The validity of the method was 

evaluated using commercially available HMO standards and showed suitable results in terms 

of sensitivity (LOD: 0.6 – 6.8 fmol) and linearity (R2 > 0.99). The same method was applied 

by Zhang et al. (2019) for the separation and quantitation of 12 HMOs in human milk. Under 

MRM mode in a triple quadrupole mass spectrometer, sensitivity is enhanced by applying two 

stages of mass selectivity to minimize interferences from the background matrix. The method 

was able to successfully quantify and separate 12 HMOs, including four HMO isomers 

without the need for intricate sample pretreatment such as lactose removal and derivatization. 

The same instrumental technique was also successfully applied for the investigation of 

variation in HMO concentration due to lactational changes (Ma et al., 2018), and the analysis 

of major milk OS content in formulated milk powders (Ma et al., 2019). 

 

Bovine milk oligosaccharides (BMO) are also potential alternatives for HMOs. Several BMOs 

have been identified to be structurally similar to HMOs (Vicaretti et al., 2018). Sialylated milk 

oligosaccharides, present in both BMOs and HMOs, were analyzed and quantified by Yan et 

al. (2018) via on-line solid-phase extraction – hydrophilic interaction chromatography tandem 

mass spectrometry (SPE-HILIC-MS) in mammalian milk (i.e. goat, sheep, buffalo, cow, 

donkey etc.). The authors utilized a dual gradient pump system used for purification (clean-

up column) and analysis (analytical column), respectively, allowing direct injection of 

defatted and deproteinated samples into the system. Sialylated OSs were separated from 

neutral OSs and lactose based on their electrostatic differences using a zwitterionic SPE matrix. 



The technique successfully separated 30 mono- and di-sialylated HMOs and was used for 

profiling of other mammalian milk. Method validations on the established conditions showed 

excellent linearity (R2 > 0.99) and average recovery for 3-sialyllactose (90%) and 6-

sialyllactose (106%).  Sialylated OS was also determined in donkey milk using a fluorescent 

detector (FLD) equipped UHPLC-MS (Licitra et al., 2019) by derivatizing samples using 2-

AB labelling agent (Dimethylsulfoxide/acetic acid (70/30) containing 1.05M 2-

aminobenzamide and 3M sodium cyanoborohydride). A calibration curve (R2 > 0.999; linear 

range over 0.1 – 102.4 µg/mL) for 3-SL was used for quantifying other sialylated OS present 

in donkey milk. The same method was applied for the detection of significant HMOs with a 

few modifications, namely 1M of 2-methylpyridine borane was used instead of sodium 

cyanoborohydride, and detection was done solely by FLD (Huang et al., 2019). A HILIC 

column was also used. Labelling OSs with 2-AB increased hydrophobicity and enhanced 

fluorescence absorption by adding a hydrophobic fluorophore group at the reducing end. 

Furthermore, direct injection into the HILIC column eliminated a clean-up step that is often 

required in milk OS analyses.  The technique allowed the simultaneous quantitation of major 

HMOs with the use of simple sample treatment, minimal sample volume (10µL) with decent 

recovery rate (88-107%), and high sensitivity (LOD < 10 pg) for neutral and acidic HMOs. 

Huang et al. (2019) also noted that centrifugation is appropriate for the determination of 

HMOs occurring at high levels while ultrafiltration, such as membrane separation, provided 

satisfactory results for the quantitation of trace BMOs. Suitability of capillary electrophoresis 

for MOS quantitation was also evaluated (Monti et al., 2015). Micellar electrokinetic 

chromatography – CE (MEKC-CE) showed promising results for the quantitation of sialylated 

OS in milk samples with good linearity (R2 > 0.999). However, further method validation such 

as recovery studies, and LOD and LOQ determination are warranted. Also, long analysis time 

(< 1 hour) and time consuming sample preparation (extraction with ethanol for 24 h and drying 

with N2 at room temperature) can be regarded as main disadvantages of this technique. CE 

with laser-induced fluorescent detection (LIF) is also used (Difilippo et al., 2016; Vicaretti et 

al., 2018). Normally, lactose-free OS are labelled with 8-aminopyrene-1,3,6-trisulfonic acid 

(APTS)  to establish a linear correlation between peak area and mole concentration (Difilippo 

et al., 2016). Also, this allows efficient separation and resolution of both neutral and acidic 

OS with response factors independent of structure (Vicaretti et al., 2018). 

 

Furthermore, commercially available HMOs, 2-fucosyllactose (2-FL) and 3-fucosyllactose (3-

FL) were detected in milk, UHT milk, yogurt, ground cereal bar and infant formula using 

HPLC-RID (Christensen et al., 2020). Notable sample preparation steps include centrifugation 

and ultrafiltration for the removal of lipids and proteins, respectively. The mobile phase 

composition, injection volume and column temperature were optimized to improve resolution.   

Limits of detection were 0.1 mg/mL for 2-FL and 0.2 mg/mL for 3-FL in whole milk, while 

LOD values of 0.6 mg/mL were observed for both 2-FL and 3-FL in infant formula and a 

cereal bar. The method was successfully applied for stability studies due to the high sensitivity, 

excellent linearity (R2 > 0.9995) and acceptable recovery for 2-FL (88-105%) and 3-FL (94-

112%). Furthermore, it can also be utilized for shelf-life studies as well as quality control of 

2-FL and 3-FL in other food products and is a less expensive alternative for LC-MS. 

 

 



2.4 Xylooligosaccharides 

 

Xylooligosaccharides (XOS) are derived from the hydrolysis of xylan by xylanase enzyme 

and are composed of xylose units linked via β-1,4 glycosidic bonds. Depending on the source 

of xylan and mode of production, the structure of XOS can vary greatly in terms of degree of 

polymerization (2-10), side groups (i.e. acetyl groups, arabinofuranosyl residues, 4-O-methyl 

derivative, and uronic acids.) and their substitution pattern in the xylose chain (Amorim, 

Silvério, Prather, et al., 2019; de Freitas et al., 2019; Samanta et al., 2015). Apart from their 

prebiotic activity, XOSs were reported to inhibit colon carcinogenesis (Aachary et al., 2015), 

and exhibit anti-inflammatory, antiallergic (Nieto-domínguez et al., 2017), and antioxidant 

properties (de Freitas et al., 2019). In addition, XOS presents a potential as food ingredients 

due to their stability over a wide range of pH (2.5 – 8.0) and temperature (up to 100°C) as 

well as their acceptable organoleptic properties and price competitiveness due to higher 

bifidogenic activity compared to other prebiotics (Amorim, Silvério, Cardoso, et al., 2019; 

Antov & Dordevic, 2017; de Freitas et al., 2019). Currently, much of the studies are focused 

on developing a sustainable production process for XOS using lignocellulosic residues 

(Amorim, Silvério, Prather, et al., 2019) such as corncobs (Boonchuay et al., 2018; H. Zhang 

et al., 2017), sugarcane biomass (Avila et al., 2019; X. Zhou & Xu, 2019; X. Zhou et al., 2019), 

hazelnut shells (Surek & Buyukkileci, 2017), almond shells (R. D. Singh et al., 2019), others. 

Production efficiency and xylanase activity are commonly monitored by XOS determination 

using HPAEC-PAD. In a study conducted by Cürten et al. (2017), a rapid automated detection 

method for XOS in enzymatic hydrolyzates was developed.  Optimization of column 

temperature, and flow rate along with gradient elution of 200 mM sodium hydroxide solution 

and 100 mM sodium hydroxide with 500 mM sodium acetate enabled sufficient elution and 

separation of XOS of interest (i.e. xylobiose, xylotriose, xylotetraose, and xylopentose) within 

a chromatographic run time of 10 mins. The method also demonstrated excellent linearity (R2 

> 0.999) and sensitivity (LOD: 0.35 – 1.83 mg/L). Subsequently, HPAEC-PAD was applied 

for stability studies of XOS in orange juice after high-intensity ultrasound processing (Silva 

et al., 2020). Juice samples were diluted with ultra-pure water and filtered through a 0.22µm 

PTFE syringe filter before column injection. XOSs were separated using gradient elution on 

a Carbopac PA100 column, and their corresponding peaks were identified by comparing their 

retention times with commercially available standards.  

The application of HILIC-ELSD for the determination of XOS in enzymatic hydrolyzates was 

recently proposed by Li et al. (2016). One advantage of HILIC is that highly polar samples 

are separated with high selectivity using a polar organic-aqueous mobile phase and a polar 

stationary phase. The authors extracted and purified XOS standards (DP 2-6) from a mixture 

of XOSs using solid phase extraction, followed by semi-preparative liquid chromatography 

using an HILIC column; hence demonstrating the feasibility of XOS purification using HILIC. 

Increasing the column temperature to 60°C, and passing a mobile phase consisting of H2O and 

acetonitrile over a diol column with weaker retention capacity, enabled complete separation 

of XOS (DP 2-6) within a 20 min run time. Furthermore, method validation showed that the 

technique is precise (%RSD < 4.8%), accurate (%recovery: 90.0% - 110.8%). However, this 



method provided lower sensitivity (LOD: 0.1585 – 0.5259 µg/µL) compared to the HPAEC-

PAD method that was previously discussed. A similar method was developed by (Pu et al., 

2017). A linear gradient elution of 75% - 50% acetonitrile (v/v) was applied to improve peak 

resolution of short chain XOS (DP 2-4) and accelerate the elution of long chain XOS (DP > 

4). The column temperature and flow rate were also modified to improve baseline separation, 

and peak shape and resolution. The method was successfully applied for the simultaneous 

separation and detection of non-substituted and acetylated XOS (DP 2-8) with comparable 

sensitivity (LOD: 9.6 – 11.8 µg/mL) with previous studies over a 30 min run time.  

Capillary electrophoresis with a photodiode array detector (CE-PDA) was also used for the 

analysis of xylooligosaccharides and other wood-based oligosaccharides such as manno-

oligosaccharides and cellooligosaccharides (Hiltunen et al., 2016). Wood-based OSs 

including diastereomers were successfully separated and analyzed using the method without 

prior derivatization with the exception of cellohexose, xylotriose and xylotetraose. The 

electrophoretic mobility of the analytes was adjusted using a highly concentrated background 

electrolyte solution to improve peak resolution between the target analytes. However, this 

increases analysis time hence presenting a drawback for this method. 

Table 1 

Overview of analytical methods for determination of functional oligosaccharides in different food and biological matrices. 

Technique Analytes of 

Interest 

Samples 

Analyzed 

Sample preparation LOD Recoveries 

(%) 

RSD 

(%) 

Remarks References 

RP-HPLC-

RID 

FOS (DP 2-

3) 

Wine, and 

grape juices 

Dilution and 

filtration 

0.074 – 

0.090 
g/L 

90.3 – 

108.8 

1.79 – 

2.14 

RP-C18 column 

with polar 
endcapping 

(dos Santos 

Lima et al., 
2019) 

HPLC-RID FOS (DP 2-

4) 

Milk and 

milk related 

products 

Protein 

precipitation by 

zinc and tungsten 

salt in acidic media 
and centrifugation  

60 

µg/mL 

~ 100 2.0 – 

2.5 

Luna 5u NH2 

column 

(Rodríguez-

Gómez et 

al., 2015) 

HPLC-

ELSD 

FOS (DP 3-

15) 

Atractylodis 

sp. rhizome 

powder 

20-fold reflux 

extraction with 

60% (v/v) ethanol, 

centrifugation, and 
filtration 

0.01 – 

0.04 

mg/mL 

83.16 – 

99.66 

< 2.66 Amide column 

in gradient 

elution mode 

(Zhuang et 

al., 2019) 

UHPLC-

ELSD 

FOS (DP 2-

11) 

Morinda 

officinalis 

Ultrasonic 

extraction with 

50% (v/v) 

methanol, and 
filtration 

12.87 – 

37.44 

µg/mL 

98.59 – 

102.72 

0.41 – 

2.85 

UPLC BEH 

amide C18 

column 

(Hao et al., 

2019) 

UHPLC-

ELSD 

FOS (DP < 

10) 

Onions Crude onion juice 

extraction, 

centrifugation, 

dilution, and 
filtration 

7.87 – 

9.07 ng 

on 

column 

89.5 – 

102.7 

1.1 – 

3.9 

(CV) 

UPLC BEH 

amide column; 

baseline 

separation of 
isomers was not 

achieved 

(Pöhnl et al., 

2017) 

HPAEC-

PAD 

FOS (DP up 

to 18) 

Onions Crude onion juice 

extraction, 

centrifugation, 
dilution, and 

filtration 

0.80 – 

2.29 ng 

on 
column 

95.3 – 

107.3 

1.3 – 

7.4 

(CV) 

CarboPac PA-

200 column; 

complete 
separation of 

isomers 

(Pöhnl et al., 

2017) 

HPAEC-

PAD 

GOS  GOS syrup 

and powder 

Enzymatic 

hydrolysis of GOS 
into glucose and 

galactose 

0.3 

µg/mL 

95.5 - 107 < 3.65 CarboPac PA-20 

column; AOAC 
2001.02 method 

calculation was 

simplified  

(Lin et al., 

2018) 

GC-FID GOS/FOS 

(DP up to 7) 

Infant 

formula 

Protein and fat 

precipitation with 
Carrez reagents; 

- - < 12.3 Results are 

within the range 
indicated in 

package labels 

(Sabater et 

al., 2016) 



derivatization to 

TMSO 
GC-FID GOS Reaction 

hydrolyzate 

Derivatization to 

TMSO 

- - - Commercial 

fused silica 

capillary column 

(Sabater et 

al., 2019) 

GCLC-MS Neutral and 

acidic HMO 

Human milk Centrifugation, 

dilution, 
homogenization, 

ultrafiltration, and 

reduction with 

NaBH4 

0.039 – 

0.156 
µg/mL 

(LOQ) 

89 - 110 < 

13% 

PGC column and 

electrospray 
ionization 

(Tonon et 

al., 2019) 

UPLC-
QqQMS 

Total HMO Human milk Dilution, 
centrifugation, 

protein 

precipitation with 

60% ethanol 

0.6 – 
6.8 fmol 

- - UPLC BEH 
amide column 

and electrospray 

ionization in 

MRM mode 

(Xu et al., 
2016) 

UPLC-
QqQMS 

HMO Human milk Dilution, 
centrifugation, and 

ultrasonic protein 

precipitation with 

acetonitrile 

- 89.3 – 
110.29 

< 8.64 UPLC amide 
column and 

electrospray 

ionization in 

MRM mode 

(W. Zhang 
et al., 2019) 

SPE-
HILIC-MS 

Sialylated 
milk OS 

Mammalian 
milk  

Centrifugation, 
freeze drying, and 

extraction ethanol: 

water (2:1) 

- 90 – 106 - On-line 
zwitterionic 

SPE, and amide 

column  

(Yan et al., 
2018) 

UHPLC-

FLD 

Neutral and 

acidic 
HMOs 

Human milk 10 to 100-fold 

dilution with 
ultrapure water, 

centrifugation, and 

fluorescent 

labelling with 2-AB 

0.8 – 

7.6 pg 

88 - 107 1.2 - 

3.6 

UPLC BEH 

amide column 

(Huang et 

al., 2019) 

MEKC-CE Sialylated 
OS 

Mammalian 
milk 

Centrifugation, 
extraction with 

60% ethanol, and 

drying with N2 

- - - Uncoated 
capillary; 

detection at 205 

nm 

(Monti et al., 
2015) 

CE-LIF Neutral and 
acidic OS 

Cow milk Protein and fat 
precipitation, 

lactose removal by 

SPE, and 

derivatization with 

APTS 

- 
 

- - Rapid 
characterization 

of 33 milk OS 

(Difilippo et 
al., 2016; 

Vicaretti et 

al., 2018) 

HPLC-RID Commercial 

HMO 

Infant 

formula, 

whole milk, 

and cereal 

bar 

Homogenization, 

centrifugation, and 

ultrafiltration 

0.1 – 

0.7 

mg/mL 

88 - 112 < 5 UPLC BEH 

amide column 

(Christensen 

et al., 2020) 

HPAEC-

PAD 

XOS (DP 2 

– 5) 

Reaction 

hydrolyzate 

Direct injection 0.35 – 

1.83 

mg/mL 

- - CarboPac PA-

100 column 

(Cürten et 

al., 2017) 

HILIC-

ELSD 

XOS (DP 2 

– 6) 

Reaction 

hydrolyzate 

Clean-up by SPE  91.6 – 

315 
mg/L 

95.0 -110.8 < 4.8 Lab-purified 

standards by 
SPE and semi-

preparative 

HILIC system 

(Li et al., 

2016) 

HPLC-

ELSD 

XOS (DP 2 

– 8) 

Commercial 

XOS 

Dilution with 

ultrapure water 

9.6 – 

11.8 
µg/mL 

- < 2.15 Zwitterionic 

HILIC column 

(Pu et al., 

2017) 

CE-PDA XOS (DP 2 

– 6), cello-

OS 

Birch kraft 

pulp 

Hot water 

extraction (100 – 

160 °C) 

3.8 – 

6.0 

mg/mL 

- < 5 Fused silica 

capillary; 

detection at 270 

nm 

(Hiltunen et 

al., 2016) 

 

3 Conclusion 

 



Given the structural complexity and diversity of functional oligosaccharides depending on the 

source and production process, the development of quantitative analysis for OS has been 

challenging. Furthermore, the lack of available standards, especially for GOS, limits the 

quantification of OS at an individual level; hence, OS contents are typically expressed as 

relative abundance. However, recent studies demonstrated the feasibility of extracting and 

purifying OS standards in the laboratory by SPE, preparative HPLC, or a combination of both 

in place of commercially available standards. 

Common drawbacks of conventional techniques used to analyze OS are long analysis time, 

and complicated sample pretreatment such as SPE and derivatization. Hence, recent research 

efforts have directed to simplifying sample pre-treatment through. The application of an on-

line SPE system has simplified sample pre-treatment and automation, and enhanced recovery 

rates and sensitivity compared with conventional off-line analysis. Furthermore, several 

studies have demonstrated the suitability of extraction with organic solvents (i.e. acetonitrile, 

methanol, and ethanol) coupled with centrifugation and ultrafiltration in the analysis of OS in 

various food matrices.  

Subsequently, several methods have been proposed and evaluated for the analysis of OS in 

food and reaction hydrolyzates with each method having their own set of advantages and 

disadvantages. Due the lack of chromophores in OS molecules, they are commonly detected 

using refractive index (RID), evaporative light scattering detection (ELSD), pulsed 

amperometric detection (PAD), and mass detection (MS). Liquid chromatographic methods 

coupled with RID are commonly used owing to its convenience, and they are relatively less 

expensive than other instrumental techniques. However, the incompatibility of RID with 

gradient elution greatly limits LC-RID techniques in separating higher molecular weight OS 

(DP > 4). Hence, they are commonly used for the analysis of low molecular weight OS while 

higher molecular weight OS are detected by either ELSD or PAD.  Detection by ELSD and 

MS are commonly used for HILIC-based liquid chromatographic techniques. However, 

HILIC-based techniques are limited by the differences in solubility of OS molecules. Hence, 

among these techniques, quantification by HPAEC-PAD was the most promising due to its 

higher sensitivity and specificity compared to other methods discussed in this review. 

Moreover, HPAEC-PAD was not limited by solubility differences of target OS and was able 

to present better separation between isomers and lower limits of detection and quantification 

without the need for elaborate sample preparation. However, the relatively longer analysis 

time was observed for this method; hence other methods discussed such as HPLC-RID and 

HPLC-ELSD could still be more applicable for routine analysis of OS in food samples. 
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