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ABSTRACT 

Type 1 Diabetes Mellitus is an autoimmune disease where pancreatic b-cells within the 

Islets of Langerhans are destroyed. A complication associated with type 1 diabetes mellitus is 

diabetic ketoacidosis, and if left untreated can result in coma or death. There are commercial 

methods for individuals to analyze ketone body concentrations within urine and blood, but these 

are invasive, expensive, and aren’t always accurate. Therefore, saliva should be examined as a 

potential alternative to the current commercial methods on the market. This experiment aimed to 

quantify the amount of beta-hydroxybutyrate and acetoacetate, in the saliva, blood, and urine 

samples using GC-MS by inducing ketosis in consenting participants. The participants followed a 

ketogenic diet for four days, and their biological samples were obtained before and after. The blood 

samples were centrifuged to isolate the plasma and deproteinated. All sample matrices were 

evaporated, the ketone bodies were derivatized using BSTFA + 1% TMCS at 80°C for 1.5 h, and 

the headspace was analyzed. The participants followed an Atkins diet to induce ketosis and the 

amount of beta-hydroxybutyrate was able to be quantified for each participant. The urine samples 

had high concentrations of beta-hydroxybutyrate, which could be a result of the acidic urine 

increasing the derivatization efficiency. There was very little beta-hydroxybutyrate detected within 

saliva. Since there was detection, this could potentially be used as a method to quantify ketone 

bodies upon further method development. No acetoacetate was detected in any of the samples. 

Future work should further optimize the methodology to detect acetoacetate, and the addition of 

recovery and internal standards to the samples to ensure all the analyte is derivatized and to 

determine if there is any variation between runs.  

 

Thesis supervisor: Dr. Kingsley Donkor  
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1.0 INTRODUCTION 

1.1 Type 1 Diabetes Mellitus 

Diabetes mellitus is an epidemic in today’s world with 600 million people worldwide being 

diagnosed as diabetic with 10% of those patients being diagnosed with type 1 diabetes mellitus 

(T1D) (Dholakia et al. 2016). T1D is an autoimmune disease where pancreatic b-cells within the 

Islets of Langerhans are destroyed, and the individual can no longer produce insulin. 

Unfortunately, the mechanism that triggers the autoimmune destruction of b-cells is unknown,  but 

T1D pathogenesis is being hypothesized to be in three stages (Butalia et al. 2016; Pociot and 

Lernmark 2016). In the first stage, b-cell autoantibodies are present, but inactive (Pociot and 

Lernmark 2016). The second stage involves the autoantibodies attacking the b-cells once some 

sort of environmental trigger occurs, and the third stage involves the symptoms of T1D to be 

present (Pociot and Lernmark 2016). The pathogenesis of T1D seems to be a combination of many 

factors. For instance, there are many genetic loci that are attributed to increasing the chances of 

being diagnosed with T1D like the human leukocyte antigen class II molecules, DQ and DR, within 

the major histocompatibility complex locus, and more are being discovered still (Butalia et al. 

2016; Pociot and Lernmark 2016). As well, certain environmental factors contribute to the 

increased risk of T1D like the mumps, rubella, microorganisms, and other factors which are still 

being studied (Butalia et al. 2016). Individuals with T1D have to monitor their blood glucose level 

every 4-8 h with the goal of being in a range of 4.0 to 7.0 mmol/L (Giugliano et al. 2008; Morales 

and Schneider 2014). If they are less than 3.9 mmol/L, they would have hypoglycemia and 

typically are treated with juice (Morales and Schneider 2014). Blood sugar levels consistently 

greater than 7.0 mmol/L while fasting refers to hyperglycemia and is treated with exogenously 

administered insulin (Giugliano et al. 2008).  
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There are many complications associated with T1D. For instance, those with T1D are prone 

to end-stage renal disease, blindness, foot and leg amputations, and cardiovascular diseases (Pociot 

and Lernmark 2016). Another complication of T1D is diabetic ketoacidosis. Essentially, it is a 

metabolic state in which the diabetic individual does not have enough insulin to stimulate glucose 

uptake by target cells, thus excreting glucose via urine, and increasing concomitantly the blood 

glucagon concentration which stimulates ketogenesis within the liver, and the excess of ketone 

bodies ends up acidifying the individuals blood (Laffel 1999; Mullins et al. 2011). By clinical 

definition, one is diagnosed with diabetic ketoacidosis when they have a blood glucose level 

greater than 11 mmol/L, a pH less than 7.3, ketonaemia, and ketonuria (Usher-Smith et al. 2011). 

One is considered in ketonaemia when blood ketone concentration is greater than 3 mM (Laffel 

1999). The amount of ketone bodies can be as high as 25 mM in those suffering from T1D (Laffel 

1999; Kanikarla-Marie and Jain 2016). In non-diabetic populations, ketoacidosis generally not a 

concern since these individuals have two feedback loops to maintain plasma ketone levels below 

3 mM (Mullins et al. 2011). 

Ketone bodies are ionized at physiological pH, so the hydrogen ions bind to the bicarbonate 

molecules, which tends to overwhelm the blood-buffering capacity and subsequently acidifies the 

blood (Laffel 1999; Mullins et al. 2011; Kanikarla-Marie and Jain 2016). This also leads to the 

loss of sodium ions, loss of ammonium, severe dehydration, and the loss of blood volume (Mullins 

et al. 2011). Those with T1D also struggle to clear ketone bodies through urine, whether or not 

they are suffering from ketoacidosis, and have decreased succinyl CoA-oxoacid transferase 

(SCOT) and 3-hydroxybutyrate dehydrogenase activities thus increasing ketone concentration 

within the blood (Kanikarla-Marie and Jain 2016; Sherwin et al.). If left untreated, this can result 

in coma or death and is the leading cause of death among children with T1D (Mullins et al. 2011; 
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Usher-Smith et al. 2011). This is concerning because between 10% and 70% of children recently 

diagnosed with T1D are in diabetic ketoacidosis, so it is crucial that the symptoms of diabetic 

ketoacidosis is acted upon and subsequently treated (Usher-Smith et al. 2011). Ketoacidosis is 

treated using insulin, potassium bicarbonate, and saline, which treat hyperglycemia, the lack of 

electrolytes within the individual and balance pH, and treat dehydration, respectively (Laffel 1999; 

Kanikarla-Marie and Jain 2016).  

 

1.2 Ketogenic Diets and Ketone Bodies  

Ketogenic diets (KD) have become very popular for those wishing to lose weight. KDs are 

a high-fat, moderate protein, and low carbohydrate intake diet that reduces glucose supply to 

decrease glycolysis and increase fatty acid breakdown through beta-oxidation (Branco et al. 2016; 

Roehl and Sewak 2017). Initially, acetyl-CoA is generated from fatty acid oxidation and can be 

used by the citric acid cycle to produce ATP. Using acetyl-CoA, the ketone bodies acetoacetate 

(AcAc), acetone, and beta-hydroxybutyrate (BHB) can be produced which serves as an energy 

source for the brain, the heart, the kidney cortex, and skeletal muscle (Laffel 1999; Roehl and 

Sewak 2017). The production of ketone bodies are necessary since they are water soluble, allowing 

energy sources to travel systemically, and can subsequently travel through the brain-blood barrier 

to enter neurons and generate ATP through their mitochondria (Mullins et al. 2011; Wibisono et 

al. 2015). There are four different types of KD which are the long-chain triglyceride KD (classic 

KD), modified Atkins diet, medium-chain triglyceride KD, and low glycemic index treatment 

(Branco et al. 2016; Roehl and Sewak 2017). The diets differ in the ratio of grams of fat consumed 

to grams of protein and carbohydrates consumed, percentage of calories consumed, and in the 

foods that are allowed to be consumed (Branco et al. 2016; Roehl and Sewak 2017). Originally, 
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KD was created in 1921 as a way to treat epilepsy, as it is believed to induce anticonvulsant effects 

in humans which affects neuronal firing and the spread of seizures (Branco et al. 2016). It has also 

been used as a therapeutic diet for those suffering from type II diabetes mellitus, obesity, and 

cancer (Wibisono et al. 2015; Branco et al. 2016; Roehl and Sewak 2017). The diet affects 

cancerous cells by reversing redox signaling pathways within tumors (Branco et al. 2016). Though 

it has been used therapeutically, there are potential short-term and long-term harms of the diet. In 

the short-term, participants may experience constipation, hypoglycemia, dehydration, lethargy, 

and acidosis (Branco et al. 2016). Long-term effects include hypercholesterolaemia, 

nephrolithiasis, and cardiomyopathy (Branco et al. 2016).  

 

Figure 1. The ketone bodies that is produced within the human body. 

 

Individuals on KDs usually go into ketosis, which refers to a metabolic state where ketone 

bodies are metabolized to produce ATP (Branco et al. 2016). Under normal physiological 

conditions, the ketone concentration within plasma is less than 0.2 mM (Garber et al. 1974; 

Courchesne-Loyer et al. 2013). Under ketosis, the concentration of BHB is around 1-2 mM and 

around 0.5 mM for AcAc after 3 days of fasting, and can reach as high as 8 mM, and between 1-2 

mM for AcAc for obese individuals after 42 days of fasting (Owen et al. 1967; Owen et al. 1969; 

Garber et al. 1974). Further, it was found that the ketone bodies also can provide up to two-thirds 



 

 5 

of the brain’s energy requirement during ketosis (Owen et al. 1967; Courchesne-Loyer et al. 2013). 

Ketone bodies are generated in response to a change in the molar concentration of glucagon to 

insulin, as a result of a lower concentration of glucose circulating throughout the body (Mullins et 

al. 2011; Kanikarla-Marie and Jain 2016). Because the insulin content is so low, lipolysis is no 

longer inhibited, nor is hormone-sensitive lipase deactivated, allowing for fatty acids from adipose 

tissue to be metabolized (Laffel 1999; Kanikarla-Marie and Jain 2016). Therefore, the increase of 

cAMP, due to a high glucagon content, activates protein kinase A which signals for the enzyme 

adipose triglyceride lipase to begin hydrolysis of the triglycerides within adipose tissue (O’Neill 

et al. 2013; Steensels and Ersoy 2019). The newly formed diglycerides are then hydrolyzed by 

hormone-sensitive lipase to make monoglycerides, and glycerol (O’Neill et al. 2013; Steensels and 

Ersoy 2019). From here, the fatty acids are then released into circulation, and travels to various 

tissues through albumin (Laffel 1999; Steensels and Ersoy 2019). The fatty acid translocase/CD36, 

the most effective fatty acid transporter for increased fatty acid content, uptakes the fatty acids, 

and carnitine acyltransferase 1 then transports the fatty acids across the inner mitochondrial 

membrane, where beta-oxidation of fatty acids takes place to form acetyl CoA (Laffel 1999; 

Nickerson et al. 2009; Kanikarla-Marie and Jain 2016). Normally, under non-ketotic conditions, 

the acetyl CoA would enter the citric acid cycle, and condense with oxaloacetate (Laffel 1999). 

Since there is a lower content of glucose within the bloodstream, hepatic cells therefore utilize the 

oxaloacetate within gluconeogenesis, effectively slowing down the citric acid cycle (Laffel 1999). 

Further, under non-ketotic conditions, acetyl CoA could leave the inner mitochondria and be 

converted to malonyl CoA via acetyl CoA carboxylase, which is used for fatty acid biosynthesis 

(Laffel 1999). Though during ketosis, acetyl CoA carboxylase is inhibited by the increase in 

glucagon and lectin and decrease in insulin and adiponectin within the body, thus shunting these 
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pathways and using the acetyl CoA for the generation of ketone bodies (Laffel 1999; O’Neill et al. 

2013). Acetyl CoA is converted to acetoacetyl CoA by 3-ketothiolase, followed by the formation 

of β-hydroxy β-methylglutaryl CoA through mitochondrial β-hydroxy β-methylglutaryl CoA 

synthase, and cleaved to form AcAc by β-hydroxy β-methylglutaryl CoA lyase (Laffel 1999; 

Kanikarla-Marie and Jain 2016). AcAc is reduced to BHB by 3-hydroxybutyrate dehydrogenase, 

which oxidizes an NADH as a result (Laffel 1999; Kanikarla-Marie and Jain 2016). Acetone is 

also produced from AcAc by spontaneous decarboxylation (Laffel 1999). BHB and AcAc are the 

two dominant ketone bodies that are used as energy sources within the body (Laffel 1999; Fujii et 

al. 2014; Kanikarla-Marie and Jain 2016). The ratio between the two ketone bodies is usually three 

BHB molecules to one AcAc molecule, which is a result from the NADH/NAD+ ratio and activity 

of the 3-hydroxybutyrate dehydrogenase (Laffel 1999; Kanikarla-Marie and Jain 2016). 

The ketone bodies, being water soluble, travel throughout the blood stream to serve as an 

energy source (Laffel 1999; Kanikarla-Marie and Jain 2016). The ketones enter organs and are 

transported into the cell by monocarboxylate transporter 1 and 2 (Puchalska and Crawford 2017). 

Subsequently, the ketones travel through to the inner mitochondria for ketolysis, but the 

mechanism is unclear (Puchalska and Crawford 2017).The abundant BHB molecules revert back 

to AcAc by 3-hydroxybutyrate dehydrogenase (Branco et al. 2016). From here, the AcAc 

molecules are used to regenerate acetoacetyl CoA through the enzyme SCOT and an acetyl group 

is cleaved from methylacetoacetyl CoA thiolase to regenerate acetyl CoA which enters the citric 

acid cycle (Laffel 1999; Branco et al. 2016; Kanikarla-Marie and Jain 2016). It should be noted 

that SCOT is the rate limiting step of ketolysis, and the highest expression of this enzyme is in the 

heart and the brain (Laffel 1999; Kanikarla-Marie and Jain 2016). Further, SCOT is downregulated 
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by high concentrations of AcAc, which is the reason for an increase in circulating ketone bodies 

during the initial phases of ketosis (Laffel 1999). 

There are commercial methods for individuals to analyze ketone body concentrations. 

Commonly, urinary ketones are measured to screen individuals for diabetic ketoacidosis (Laffel 

1999). The urine kit relies on the Legal reaction, in which AcAc reacts in presence of an alkaline 

buffer and nitroferricyanide to produce a purple color on a test strip (Laffel 1999; Brooke et al. 

2016). This test does not react with BHB, nor does it measure the amount of ketones present (Laffel 

1999; Brooke et al. 2016). Measuring AcAc through urine is a cheap method to determine if 

someone is in a state of ketoacidosis; although it can be perceived as intrusive and awkward for 

people and is less accurate than measuring blood ketone levels, which primarily focuses on BHB 

(Brooke et al. 2016). Using a blood ketone monitor, the amount of BHB is quantitatively 

determined (Brooke et al. 2016). It is believed that BHB levels within blood provide fewer false 

positives than urine kits that test for AcAc. Also there is a higher correlation between blood BHB 

concentrations and the clinical markers of diabetic ketoacidosis (Brooke et al. 2016). Though, 

measuring blood has its challenges since the meters have difficulties measuring concentrations 

greater than 5 mM, can be seen as invasive, and the blood strips and meter is expensive to purchase 

(Brooke et al. 2016). Thus, it would be in the best interest of the public to develop a less invasive 

and affordable way to analyze ketone bodies, especially BHB, within the body. 

Saliva plays an important role within the body as it clears substances from the mouth, 

contains salivary amylase to break down carbohydrates, buffers pH, and protects, hydrates, and 

lubricates oral mucosal surfaces (Proctor 2016). Saliva consists mostly of water, but also contains 

hormones, microbes, enzymes, and other metabolites (Elmongy and Abdel-Rehim 2016; 

Viswanath et al. 2017). Most notably, saliva is isotonic to plasma (Aps and Martens 2005; 
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Elmongy and Abdel-Rehim 2016; Proctor 2016). The concept of using saliva as a diagnostic model 

is slowly gaining popularity within the literature, but there is very little research on the 

quantification of ketone bodies in the literature, not to mention quantifying the amount of BHB or 

AcAc within individuals undergoing ketosis (Elmongy and Abdel-Rehim 2016). Previously, it was 

noted that both saliva and blood contain BHB, and there is a positive correlation between them 

(Liu et al. 2015). The study done by Liu et al. also observed BHB within urine, but their subjects 

used were not in ketosis (2015). In another study, saliva was analyzed in diabetic patients and 

healthy volunteers for BHB, which was found to be around 25 ng/mL and 16.5 ng/mL, 

respectively, though the participants were also not in ketosis either (Tsutsui et al. 2012). AcAc was 

not explored in both experiments (Tsutsui et al. 2012; Liu et al. 2015).  

The instrument technique of gas chromatography-mass spectrometry (GC-MS) involves 

producing and separating gas phase analytes, and detecting these analytes by first ionizing them 

using a mass spectrometer (Niwa 1995). This technique has been used in previous experiments to 

quantify ketone bodies within biological fluids (Paul et al. 2006; Hassan and Cooper 2009; Holm 

et al. 2010; Føreid and Gadeholt 2017), and it is a very powerful technique to detect analyze the 

analytes of interest. The gas chromatograph separates gaseous analytes which are carried through 

a stationary column by an inert gas (Niwa 1995). In the column, the analytes are separated based 

on their affinity with the column and vapor pressure (Niwa 1995). The stationary phase interacts 

with the analytes and separates them based on their affinity to the non-polar column (Niwa 1995); 

the more non-polar the analyte is, the longer it takes for it to elute through the column (Niwa 1995). 

If the analyte has a high vapor pressure, it will travel through the column quickly as well (Niwa 

1995). Once it is separated, the analytes will be bombarded by electrons and ionized by an electron 

impact mass spectrometer, which then separates the charged ions through a mass analyzer by its 
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mass-to-charge ratio to obtain a mass spectrum (Niwa 1995). This allows for the investigators to 

determine what eluted from the gas chromatograph (Niwa 1995).  

Therefore, this experiment looks to quantify the amount of BHB and AcAc, the two most 

common ketone bodies, found in the saliva, blood, and urine via GC-MS before and after inducing 

ketosis in consenting participants. Through quantification, the development of methods that are 

non-invasive and cheap to purchase to observe the ketone body content within individuals can be 

explored. Within this study, method development was conducted to try and optimize the detection 

of the ketone bodies. From there, nine participants followed a ketogenic diet for four days, where 

their blood, urine, and saliva were sampled before-the-diet and after-the-diet. The ketone bodies 

were then extracted, analyzed, and quantified for each individual participant.  

 

2.0 METHODS 

2.1 Standards and Materials 

Lithium acetoacetate, (±)-sodium 3-hydroxybutyrate, and BSTFA + 1% TMCS were 

purchased from Sigma-Aldrich Canada Ltd. (Oakville, Ontario, Canada). The acetonitrile was of 

HPLC grade. The trichloroacetic acid and Tris were purchased from Sigma-Aldrich Canada Ltd. 

(Oakville, Ontario, Canada). The headspace vials were 20 mL and clear, while the caps were 18 

mm magnetic screw caps. Both were purchased from Canadian Life Science (Peterborough, 

Ontario, Canada). They were previously never used before the experiment. 

 

2.2 Ketogenic Diet 

Participants were recruited to participate in a KD through posters and word of mouth 

around the Thompson Rivers University campus. The participants contacted the investigators and 
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arranged a meeting time to further discuss the experiment. The participants were given a numbered 

consent form upon arrival for them to read over and was signed if they consented to participating 

in the study. They were then given a numbered screening questionnaire to complete so the 

investigators could determine if they were healthy enough to participate in the study. Both the 

consent forms and questionnaires were numbered in effort to keep the participant’s anonymous, 

and their name and corresponding number were recorded in a secure notebook. There were 10 

participants originally, but Participant 1 removed themselves from the study prior to starting the 

diet. 

The diet that the participants were following was a classic ketogenic diet that followed a 

3:1 ratio of fats to protein and carbohydrates. The participants were encouraged to follow the meal 

plan that was created by the investigators (see Appendix), but they were able to eat other food as 

long as they received permission from the investigators and recorded it in a meal log. The diet was 

followed for four days. Because the participants have different eating habits, they were encouraged 

to eat until they were full as long as they were maintaining a 3:1 ratio of fats to proteins and 

carbohydrates.  

 

2.3 Sampling 

The participants fasted for a minimum of 8 h prior to sampling. The participants were 

instructed to urinate a minimum of 10 mL into a centrifuge tube. The tubes were sealed, wiped, 

and given to the investigators. The participants were to passively drool a minimum of 500 µL into 

a 1.5 mL Eppendorf tube. This was done by sitting down, and arching their back to a 45° angle, 

and further directing their head downward to allow for the saliva to pool in their mouth. They then 

had to manipulate their mouth to allow for the saliva to enter the Eppendorf tube. They had to 
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ensure that the saliva was not bubbly as it would not give an accurate representation of the amount 

currently in the tube itself. The participants then had 5 mL of their blood drawn into lithium heparin 

tubes. The blood was placed on ice after the initial collection. This was conducted before the 

participants started the diet and 4 days after following the ketogenic diet. 

The urine was split into three 1.5 mL Eppendorf tubes as storage, and 500 µL of the sample 

was pipetted into a sterile Eppendorf tube for subsequent use within the experiment. The saliva 

was stored in its original container. The blood, after being drawn, was then centrifuged at 3000 rcf 

for 10 min at 4°C to separate the plasma. The plasma was then pipetted into 1.5 mL Eppendorf 

tubes as storage, and a 500 µL sample was taken to be used in the experiment. All fluids were then 

stored at -80°C until the samples were to be analyzed. 

 

2.4 Sample Analysis 

 All of the sample tubes that were stored were dethawed on ice. The plasma was then 

deproteinated to remove potential protein interferences within the plasma. There was 500 µL of   

2 M trichloroacetic acid that was added to the Eppendorf tube. It was then centrifuged at 13,000 

rpm for 3 min at 4°C. The supernatant was moved, and 250 µL of 4 M Tris was then added. The 

solution was then centrifuged at 13,000 rpm for 15 min at 4°C. It was also brought back to pH 7 

using KOH. Once the saliva had dethawed, the sample was centrifuged at 13,000 rpm for 10 min 

to pellet the mucins within the fluid. Afterwards, 200 µL of each fluid was pipetted into a new 

headspace vial, along with 10 µL of 70% ethanol. The solution was capped, mixed, and it sat for 

1 h in order to sterilize the fluids. The vials had their caps removed, and the solutions inside were 

evaporated in an oven at 80°C. After the evaporation, 75 µL of BSTFA + 1% TMCS and 150 µL 

of acetonitrile were added to each headspace tube, were capped, and derivatized at 80°C for 1.5 h. 
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They were subsequently left at room temperature for three days afterwards. The samples were 

agitated at 250 rpm for 6 min at 80°C prior to analysis. The PAL headspace syringe, at 85°C, then 

penetrated through the vial cap and sampled 100 µL of headspace and injected it into the GC-MS.  

 

2.5 Instrumental Conditions 

Analysis was performed using an Agilent 7890B-GC coupled 5977A-MS (Agilent 

Technologies, Santa Clara, CA). The instrument operated using a PAL RSI 85 autosampler system 

equipped with a headspace function and an agitator with an oven. The column was an Agilent HP-

5MS column (30 m x 250 µm x 0.250 µm) (Agilent Technologies, Santa Clara, CA). An agitator 

on the autosampler was heated to 80°C, and the syringe was heated to 85°C. The split was 2:1, and 

the split flow was 2 mL/min. The injector temperature was 250°C. The temperature program used 

was developed from a previous method (Hassan and Cooper 2009). The initial oven temperature 

was 60°C and was held at this temperature for 2 min. The temperature increased to 180°C at 

20°C/min, and then increased to 250°C at 50°C/min which was then held for 1 min. The total run 

time was 10.4 min. The amount injected was 100 µL. 

A scan on the mass spectrometer was used to detect the ions from 40-350 m/z. The ion 

chromatograms were extracted using selected ion monitoring to determine where the ketone bodies 

were eluting at. The ions 147 and 233 were used to identify the BHB, and 147 and 231 were used 

to identify AcAc; the 147 ion was used to determine the concentration of the ketone bodies. As 

well, the NIST database was used in elucidating the mass spectrum to help estimate the compound 

that eluted from the gas chromatograph (Linstrom and Mallard 2001). This software estimates the 

compounds that eluted from the instrument, giving a probability of accuracy, based on the mass 

spectrum of the peak at that specific point (Linstrom and Mallard 2001). 
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2.6 Preparation and Analysis of the Ketone Body Standards 

A stock solution of 5000 ppm was made for BHB and AcAc, individually. The BHB stock 

solution was made up in a 50 mL volumetric flask with 18 MW water, while the AcAc solution 

was made up to 25 mL with 18 MW water. These stocks solutions were used to develop standards 

with concentrations of 50 ppm, 100 ppm, 250 ppm, 500 ppm, 1000 ppm, and 2000 ppm, made up 

to 10 mL with 18 MW water in a volumetric flask. The standards were mixed, and 225 µL of each 

solution was added to a new headspace vial. The solution was evaporated in an oven at 80°C. The 

solution then had 75 µL of BSTFA + 1% TMCS and 150 µL of acetonitrile added to each vial. 

They were derivatized in the oven for 1.5 h at 80°C and were run three days afterwards. Before 

analysis, the samples were agitated at 250 rpm for 6 min at 80°C. The PAL headspace syringe then 

was used to inject 100 µL of the standards headspace into the GC-MS.  

 

3.0 RESULTS AND DISCUSSION  

3.1 Detection and Calibration of the Ketone Bodies  

The development of a method to detect the ketone bodies was investigated using the BHB 

standard. This standard was used for method development because of its prominence within the 

blood of individuals producing ketone bodies (Laffel 1999; Fujii et al. 2014). A mass of BHB was 

added into hexane, acetonitrile, water, and methanol. It was not soluble in the hexane since nothing 

seemed to be dissolved, but it was soluble in methanol, water, and acetonitrile; it was most soluble 

in methanol and water. Therefore, the BHB standard was dissolved in 18 MW water to create the 

stock solutions. The solution was then pipetted into a glass headspace vial, where the solution was 

evaporated to dryness using nitrogen gas. This was inefficient and extremely difficult to do, so the 
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headspace vials were transported to an oven which was set to 80°C to evaporate the solvent. The 

derivatizing agent was then pipetted into the vial, it was capped, and the vial was heated to promote 

the derivatization reaction. Upon analysis, there was no signal that was ascertained. Therefore, the 

stock solution would be acidified to ensure that all of the hydroxyl groups were protonated to help 

with the derivatization reaction. The same procedure was then conducted, but there were still no 

results that were ascertained. Acetonitrile was then added as a catalyst for the derivatization to take 

place, especially since BHB is soluble in it. There was a BHB signal detected with the GC-MS. 

The signal obtained had a mass-to-charge ratio at 147 and 231, and the NIST database predicted 

this molecule to be a trimethylsilyl beta-hydroxybutyrate molecule as result of the derivatization. 

The chromatogram in Figure 2 displays BHB found within the chromatogram and subsequent mass 

spectra. 
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(a 

(b 

Figure 2. The chromatogram (a) of 5000 ppm derivatized BHB with its corresponding mass 
spectrum (b). The BHB signal is found at 6.521 min. 

 

Next, we determined how much acetonitrile to be added to help the derivatization occur. 

In each reaction, 225 µL of 5000 ppm BHB stock solution was added to a headspace vial and 75 

µL of BSTFA + 1% TMCS was added; the amount of acetonitrile added was 75, 150, and 225 µL 

to each reaction afterwards. All were derivatized for 25 min at 80°C, and it was found that the 150 

µL solution produced the highest signal for BHB. The optimal time of the derivatization was 

determined afterwards. A sample that was produced during the method development for the 

optimal amount of acetonitrile added was analyzed one month following to its initial derivatization 

was found to have an extremely large peak area. Because of this, it was assumed that the amount 
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of time the initial derivatization in the oven was for was irrelevant as the derivatization seemed to 

occur for longer than anticipated. A solution was then derivatized in an oven for 1.5 h at 80°C to 

aid in as much derivatization as possible and was then kept at room temperature and analyzed 

every day. The solution seemed to have the same peak area on the third and fourth day of analysis. 

Therefore, the solutions were to be derivatized for 1.5 h at 80°C and then placed in a room 

temperature environment for the next three days before they were analyzed by the GC-MS. 

The next standard that was used was AcAc. This standard was difficult to use since its 

chromatograms had many impurities, and the peak area was not as high as it was for BHB. A 2000 

ppm stock solution was made for method development nonetheless, and the peak obtained was 

very small, especially in comparison to the BHB peak area. This standard had two derivatizations 

occur instead of one. AcAc has one hydroxyl group, but based on the mass spectra and the NIST 

database, it seemed like there were two derivatizations occurring. The carboxylic acid remained 

the same, but the lone carbonyl tautomerized and was subsequently converted to a hydroxyl group 

which was also derivatized. 

The AcAc standard solution was not acidified to see if it had any effect on the end result. 

This produced a chromatogram that had a greater peak area than the one previously seen with the 

acidified AcAc. Therefore, the experimental procedure for BHB was reexamined since both ketone 

bodies were predicted to be within the biological fluids. The BHB sample solution was not 

acidified, derivatized, and subject to analysis; the results showed that it still had a distinct signal, 

but the peak area was not as high as it was for the acidified BHB. In an effort to detect quality 

ketone body signals, the solutions were not acidified to aid in detecting AcAc among the biological 

samples. Figure 3 includes a chromatogram and mass spectrum for AcAc. 
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(a 

(b 

Figure 3. The chromatogram (a) of 5000 ppm derivatized AcAc with its corresponding mass 
spectrum (b). The AcAc signal is found at 7.197 min. 

 

A calibration curve was produced for both analytes separately. This was done by preparing 

standards of increasing concentrations and obtaining the peak areas of each signal and plotting it 

on a graph. The concentrations used were 50 ppm, 100 ppm, 250 ppm, 500 ppm, 1000 ppm, 2000 

ppm, and 5000 ppm. The range of concentrations was very wide in an effort to account for the 

variation in ketone bodies produced by each individual. These solutions were analyzed in triplicate, 

save for the 100 ppm standard of BHB which was analyzed in duplicate; this is because the run 
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had an error which stopped the run before the BHB signal was analyzed. The derivatized ketone 

bodies that the mass spectrometer detected are found in Figure 2. 

 

Figure 4. The derivatized acetoacetate (a) and beta-hydroxybutyrate (b) that were to be analyzed 
by the GC-MS.  
 

For the BHB standard curve, there was a trend of linearity based on the coefficient of 

variation (R2=0.9742). The limit of detection (LOD) for the BHB standard curve was found using 

the standard deviation of the lowest concentration standard used divided by the slope of the curve 

and multiplied by 3. Likewise, the limit of quantification (LOQ) was found in the same manner 

but was multiplied by 10 instead of 3. The LOD and the LOQ was found to be 26.48 ppm and 

88.28 ppm, respectively. Other papers have determined the LOD to be 0.833 ppm (Holm et al. 

2010), and 10 ppm (Paul et al. 2006). The closest to the LOD obtained in this experiment is by 

Paul et al., but that result is much smaller than the results experimentally determined. Because of 

this, the method should be further optimized since this method isn’t able to detect low levels of 

ketone bodies as effectively as the other methods do. One way to do this could be to run many 

trials, and then average the spectra together to lower the signal-to-noise ratio. 
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Figure 5. The beta-hydroxybutyrate standard curve using the GC-MS. 

 

For the AcAc standard curve, the GC-MS was not able to detect the ketone body standards 

below 1000 ppm. It also produced unreliable signals for standards that were greater than 500 ppm 

as the 2000 ppm standard seemed to have a peak area consistently larger than 5000 ppm. Because 

the chromatogram had many foreign peaks as well, it was suspected that the standard was 

contaminated. Upon obtaining a second batch of AcAc, it also seemed to have foreign peaks and 

difficulties detecting the AcAc ketone body. Thus, there was no standard curve generated for 

AcAc. 
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3.2 The Qualitative Results of the Diet 

The participants were to follow a ketogenic diet in an effort to produce ketone bodies within 

their body. The participants were to eat 3 g of fats for every 1 g of protein and carbohydrates. Each 

participant documented what they ate, and the time they ate the food at. They were encouraged to 

eat food until they were full, and not eat a specific amount of calories.  

The first meal that was recorded was breakfast. It was defined as a substantial meal that 

was ingested before 10:30 am. Because each participant had different eating habits, this meal was 

not forced upon the participants. The food that was consumed by the participants were recorded 

and displayed in Table 1. It was the least consumed meal as there were two participants (2 and 4) 

who exclusively did not eat breakfast; Participant 5 and 6 each had breakfast only on one day, and 

Participants 7 and 8 seemed to have only tea in the morning save for the Day 2 breakfast for 

Participant 7. For those who did not eat breakfast, their body would be in a fasting state which 

would increase the amount of triglycerides that were eventually oxidized to produce ketone bodies 

(Mullins et al. 2011; Kanikarla-Marie and Jain 2016). As for those who ate a breakfast, they mainly 

ate some form of eggs with or without bacon which are both higher in protein and fat content. This 

is fine since biochemical pathways will prefer to use triglycerides as an energy source before 

proteins (Kanikarla-Marie and Jain 2016). Though the protein content is high, the amount of 

carbohydrates ingested were very low. This is beneficial since the amount of glucose circulating 

within the blood is minimized. Therefore, it seemed like the participants were following the 

ketogenic diet during breakfast.  
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Table 1. The breakfast consumed by each participant during the course of the diet.  
Participant 2 Participant 

3 
Participant 
4 

Participant 
5 

Participant 
6 

Participant 7 Participant 8 Participant 
9 

Participant 
10 

Breakfast 
Day 1 

N/A Bacon and 
Eggs 

N/A Omelette N/A English tea 
and 2 cheese 
strings 

N/A Scrambled 
eggs with 
spinach, 
avocado, 
and 
pepperoni 
stick 

N/A 

Breakfast 
Day 2 

N/A Bacon and 
Eggs 

N/A N/A Bacon and 
peanut 
butter 

English tea 
with some 
almond 
milk, 
omelette 
cooked in 
butter with 
pepper, 
onions, 
hams, and 
mozzarella 
cheese 

Mint green 
tea 

Scrambled 
eggs 

Red pepper 
slices, 
black 
coffee 

Breakfast 
Day 3 

N/A 2 egg 
omelette 
with 
onions, 
green 
peppers, 
bacon, 
cheese, 
and 
chicken 

N/A N/A N/A English tea 
with some 
almond milk 

Mint green 
tea 

Greek 
yogurt and 
strawberries 

Bacon and 
eggs 

Breakfast 
Day 4 

N/A Bacon and 
Eggs, 
berries, 
and whip 
cream 

N/A N/A N/A N/A Mint green 
tea 

Greek 
yogurt and 
strawberries 

Bacon and 
eggs and 
black 
coffee. 

 

The second meal that was recorded was lunch. It was defined as a substantial meal that was 

ingested after 10:30 am and before 4:00 pm since each participant would have different eating 

habits and schedules. The food that was consumed by the participants at lunch were recorded and 

displayed in Table 2. Lunch was eaten by all of the participants, but Participant 3 only consumed 

lunch 2 out of the 4 days. It’s worth considering that this participant was also not consuming 

breakfast; there is a chance that this participant was producing many ketone bodies as a result of 

this fast. The meals that were eaten seem to consist of a lot of vegetables, mainly in the form of a 

salad. There was also a noticeable amount of bacon and pork chops consumed. The vegetables 

contain many vitamins that the participants would be ingesting during the course of the diet; they 

themselves have little protein, fat, and carbohydrates. Pork chops have a high protein content, but 
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there still is a substantial amount of fat which is still relevant for the purpose of the diet. Bacon 

has more fat then protein, which is extremely beneficial for the purpose of this diet. There does 

not seem to be any particular meal with a high content of carbohydrates which would therefore 

hinder the results of this experiment. Thus, it seemed like the participants were following the 

ketogenic diet during lunch.  

 
Table 2. The lunch consumed by each participant during the course of the diet.  

Participant 
2 

Participant 
3 

Participant 4 Participant 5 Participant 
6 

Participant 7 Participant 8 Participant 9 Participant 
10 

Lunch 
Day 1 

Black 
Coffee, 
Beef Jerky, 
Cucumber 

Chicken 
breasts with 
hot sauce 

Scrambled 
eggs cooked 
in butted 
with cheese 
and ketchup 

Lettuce 
wrap burger 

Celery 
with 
peanut 
butter, red 
bell 
pepper, 
pepperoni 
sticks, 
bacon 

2 eggs with 
siracha, 
bacon with 
mustard 

4 eggs with 
bacon 

N/A Red pepper 
and 
cucumber 

Lunch 
Day 2 

Pork 
Chops 
(cooked in 
butter), 
broccoli, 
bell 
peppers, 
zucchini, 
beans 
(called 
vegetable 
medley) 

N/A Chicken, 
bacon, 
lettuce, 
cheese salad 

N/A Pepperoni 
sticks, 
chicken 
sausage, 
Brie 
cheese, 
celery 
sticks with 
peanut 
butter, and 
1 red bell 
pepper 

N/A Omelette 
with ham 

Brie cheese, 
pepperoni 
stick, some 
red pepper, 
and 
strawberries  

Keto 
Avocado, 
Bacon, and 
goat-cheese 
salad with 
ranch 
dressing 

Lunch 
Day 3 

Pork chops 
with 
vegetable 
medley 

Raspberries 
with 
whipping 
cream 

Scrambled 
eggs, butter, 
shredded 
cheese, and 
strawberries 

Green salad 
with 
Chinese-
styled 
chicken and 
beef 

Zucchini 
boats 

Bacon with 
mustard and 
an apple 

Bacon, apple, 
and dark 
chocolate 

Cheddar 
cheese, chia 
tea with 
heavy 
cream, ½ 
green pepper 

Keto 
pancakes 
with 
raspberries 

Lunch 
Day 4 

Cucumber 
and cheese 

N/A Pepperoni 
sticks and 
pork chop 

Chicken 
Caesar salad 

Spinach 
and goat 
cheese 
salad with 
olive oil 

Tea with 
Steak and 
parmesan 
cheese chips 

Steak and 
dark 
chocolate 

Salad with 
cheddar 
cheese, feta, 
eggs, bacon, 
and Caesar 
dressing 

Keto 
pancakes 
with 
raspberries 
and 
strawberries 

 

The third meal that was recorded was dinner. It was defined as a substantial meal that was 

ingested after 4:00 pm and before 8:30 pm since each participant would have different eating habits 

and schedules. The food that was consumed by the participants at dinner were recorded and 

displayed in Table 3. Every participant ate dinner for the duration of the ketogenic diet, except for 

Participant 9 who did not eat dinner on Day 4. There seemed to be a large amount of protein eaten 
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during this time; the protein includes burgers and chicken mainly, but other options like pork chops 

and steak. The burgers all seem to have been eaten with a lettuce bun, save for Participant 8 on 

Day 2. This is beneficial since the bread is a source of carbohydrates which would have potentially 

tamper the results of the experiment. As for Participant 8, the participant seemed to still consume 

a high enough content of fats in comparison to the amount of carbohydrates eaten, so the effect of 

glucose within the bloodstream may be minimized. Chicken has a higher content of protein in it, 

but there still is a fat content making it suitable for the diet. Other than the previously mentioned 

dinner, there does not seem to be any particular meal with a high content of carbohydrates which 

would therefore hinder the results of this experiment. The tacos consumed by Participants 7 and 8 

slightly raise a flag because the taco shell contains carbohydrates, but there should be enough fat 

within the meal that minimizes the effects of the carbohydrates. Thus, it seemed like the 

participants were following the ketogenic diet during dinner.  
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Table 3. The dinner consumed by each participant during the course of the diet.  
Participant 
2 

Participant 
3 

Participant 4 Participant 5 Participant 
6 

Participant 7 Participant 8 Participant 9 Participant 
10 

Dinner 
Day 1 

Pork 
Chops, 
green 
Beans, bell 
peppers, 
broccoli, 
zucchini 

2 beef 
patties, 
lettuce 
wrap, 
onion, hot 
sauce 

2 Burgers 
with cheese, 
pickles, 
bacon, 
onions, 
mayo, 
mustard, and 
lettuce as a 
bun 

Green salad 
and chicken 
wings 

Hard-
boiled egg. 
A salad 
with 
bacon, 
avocado, 
and goat 
cheese. 

3 tacos with 
lettuce as a 
bun, ground 
beef, onion, 
red and green 
peppers, 
cheese, and 
hot sauce 

3 tacos with 
lettuce as a 
bun, ground 
beef, onion, 
red and green 
peppers, 
cheese, and 
hot sauce 

Spinach 
salad with 
bacon, goat 
cheese, and 
avocado 

Bacon and 
eggs 

Dinner 
Day 2 

Pork chops, 
bacon, 
vegetable 
medley, 
cheese 

Rotisserie 
chicken 

2 Burgers 
with cheese, 
pickles, 
bacon, 
onions, 
mayo, 
mustard, and 
lettuce as a 
bun 

Chicken 
burger (with 
lettuce as the 
bun), Green 
salad 

Bacon and 
avocado 
salad with 
spinach 
and goat 
cheese, 
and 2 
pepperoni 
sticks 

Burger with 
lettuce bun, 
cheddar 
cheese, 
tomato, 
pickles, 
bacon, 
special sauce, 
served with a 
side Caesar 
salad with 
bacon and no 
croutons 

Cheeseburger 
and Caesar 
salad without 
croutons 

Zucchini 
boats with 
pepperoni 
sticks, 
parmesan, 
and goat 
cheese 

Pork chops 
with green 
beans and 
pickles 

Dinner 
Day 3 

Chicken 
and 
avocado 
salad (with 
cucumbers, 
bell 
peppers, 
kale, 
lettuce) 

Chicken 
breasts and 
bacon 

Caesar salad 
(bacon 
cheese, 
lettuce, 
grilled 
chicken, and 
Caesar 
dressing) 

Burgers with 
lettuce bun 

Cucumber, 
green bell 
pepper 
with cream 
cheese, 
peanut 
butter, 
bacon, 
cheese, 
and bacon-
cheese 
balls. 

Steak and 
left-overs 
from the 
tacos from 
Dinner Day 1 

Jerk chicken 
legs, 
pepperoni, 
and cheese 
string. 
Later was 
steak 

Zucchini 
boats and a 
pepperoni 
stick 

Pork chops 
with green 
beans 

Dinner 
Day 4 

Avocado 
Salad (with 
cheese, 
cucumber, 
lettuce, 
bacon, 
olive oil) 

Chicken 
breasts 

Caesar salad 
(bacon 
cheese, 
lettuce, 
grilled 
chicken, and 
Caesar 
dressing) 

Southern 
Chicken and 
Beef salad 

2 beef 
burgers in 
iceberg 
lettuce 
with Brie, 
garlic aioli, 
and onion 

Jerk chicken 
leg, one hot 
Italian 
sausage, 
veggie stir 
fry 

chicken leg, 
one hot 
Italian 
sausage, 
veggie stir fry 

N/A Keto 
Avocado, 
Bacon, and 
goat-
cheese 
salad with 
ranch 
dressing 

 

The last meal that was recorded was snacks that would occur throughout the day. To be a 

snack, it had to be eaten at a separate time from when the three major meals were consumed and 

in a lesser amount. Snacks also included beverages that were had throughout the day that weren’t 

designated as a breakfast drink or water. The food that was consumed by the participants as snacks 

were recorded and displayed in Table 4. Majority of the participants had snacks throughout the 

day. The snacks seem to be potentially worrisome in regard to the carbohydrates being consumed. 

For instance, Participants 7 and 8 both consumed beer and carrots which are extremely high in 

carbohydrates. Their dinners also had a higher amount of carbohydrates in comparison to the other 



 

 25 

participants. Because of this, they may have ingested more carbohydrates than fats, and 

compromised their results for the experiment. Of course, this would have to be determined based 

on the analysis of their biological fluids. Pepperoni sticks were the most common snack that was 

ingested. This food contains an extremely high concentration of fat in it, a moderate amount of 

protein, and essentially no carbohydrates. This was an ideal food to snack on during the duration 

of the diet. Participants 7 and 8 did eat these, but it is unclear if they ate enough for it to make the 

carbohydrates they consumed to follow the 3:1 ketogenic diet ratio. In general, it seemed like the 

snack foods had very little carbohydrates in it. 
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Table 4. The snacks consumed by each participant during the course of the diet.  
Participant 
2 

Participant 
3 

Participant 4 Participant 5 Participant 
6 

Participant 7 Participant 8 Participant 9 Participant 
10 

Snacks 
Day 1 

Pepperoni 
Sticks 

Beef jerky N/A N/A Coffee, 
pepperoni 
sticks, and 
bacon 

Parmesan 
cheese chips, 
strawberries, 
salami, 
cheese 
string, some 
dark 
chocolate, 
and tea. 

Carrots, tea, 
cheese 
strings, 
pepperoni 
sticks, apple, 
dark 
chocolate 

Red pepper, 
pepperoni 
sticks, and a 
cup of 
halotop ice 
cream 

Pepperoni 
sticks 

Snacks 
Day 2 

Cucumber, 
pepperoni, 
cheese, 
pork rinds  

Almonds 
and beef 
jerky 

3 eggs 
cooked in 
butter with 
shredded 
cheese and 
pepper 

Raspberries, 
strawberries
, and 
blueberries 

Coffee Strawberries
, carrots, 
cheese 
strings, hot 
pepperoni 
sticks, 
pickles, 
double gin 
and tonic 

Dark 
chocolate, 
apple, 
pepperoni 
sticks, and 
cheese 
strings 

Haltotop ice 
cream, Brie 
cheese 

Pepperoni 
sticks and 
cucumber 

Snacks 
Day 3 

Pepperoni 
sticks, 
cheese 

Almonds 
and beef 
jerky 

N/A N/A Coffee, 
bacon-
cheese 
balls, 
celery 
sticks with 
peanut 
butter, red 
bell 
pepper 
with 
cream 
cheese 

3 beers, 
strawberries, 
dark 
chocolate 

4 beers Peanut 
butter and 
halotop ice 
cream.  

Halotop ice 
cream, 
pepperoni 
sticks 

Snacks 
Day 4 

Pepperoni 
sticks, 
cheese 

N/A Pepperoni 
sticks, 
strawberries
, peanut 
butter, 
ketogenic 
pancakes 

N/A Coffee, 
Bacon-
cheese 
balls, 
celery 
stick with 
cream 
cheese, 
and 3 
pepperoni 
sticks 

Tea with 
almond milk, 
hot salami, 
cheese 
strings, 
strawberries 

Berries Brie cheese, 
cheddar 
cheese, 
strawberries
, and 
pepperoni 
sticks, 
peanut 
butter 

Salad with 
avocado, 
cheese, 
beans, 
tomatoes, 
and corn 

 

In general, the participants overall ate minimal carbohydrates, but they did consume a large 

amount of protein and fat. The targeted ratio of fat to protein and carbohydrates was supposed to 

be 3:1. Based on the food that was ingested, it seems like the amount of fats consumed was 

essentially the same compared to the amount of fats, and that the carbohydrates consumed were 

much lower. It seemed like the participants ended up following the Atkins diet eating a ratio closer 

to 60% fats, 30 % protein, and 10% carbohydrates, as opposed to the classical diet (Kang et al. 

2007). Even though the diet has changed, blood ketosis is still probable as previous studies have 

recorded patients having BHB levels greater than 3 mM within 3 days of following the diet (Kang 
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et al. 2007). But it is worth noting that the amount of food and the way it was cooked was not 

recorded, so there is a chance that there are more carbohydrates within the meals than was written 

by the participants. There is also a chance that the participants did not write down all of the food 

they ate, and they cheated on the diet. Though difficult to prove, it is worth considering when 

observing the results from the analysis.   

 

3.3 The Quantification of Ketone Bodies  

3.3.1 Quantification in Blood 

Blood is one of the most accurate ways to determine the concentration of ketone bodies 

within the individual as ketone bodies circulate through the body via blood (Laffel 1999; 

Kanikarla-Marie and Jain 2016; Brooke et al. 2016). The sample was then brought back to 

physiological pH because acetoacetate was better able to be derivatized and detected at pH 7 

compared to below pH 2. The samples were analyzed in duplicate on the GC-MS, and the results 

are displayed in Table 5. Based on the results, it seems like Participant 2, 4, 5, and 8 seem to have 

increased the amount of BHB within their blood. Each trial of Participant 2’s blood was able to 

detect BHB, which strengthens the argument that there was an increase in the levels of BHB 

circulating their body. Both Participants 4 and 8 did not have a BHB signal detected before the 

diet occurred, which could mean that the amount of BHB within their system was below the LOD 

and LOQ of the instrument, or that there was variation within the instrument during the different 

runs. Participants 6, 7, 9, and 10 seem to have a lower amount or similar amount of BHB in the 

after-the-diet compared to the before-the-diet samples. This could result from the participants not 

following the diet that was prescribed to them. By eating carbohydrates, their body would not have 

shunted glycolysis and the citric acid cycle, which would have resulted in little amounts of ketone 
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bodies produced. Another reason why BHB may have been detected could be a result of the 

participants fasting longer than 12 h as the concentration of BHB increases over time (Marinou et 

al. 2011). Statistics were not conducted since not every participant was able to generate average 

values of BHB before and after the diet.  

 
Table 5. The experimentally determined amounts of beta-hydroxybutyrate in the blood samples. 
Participant 
Number 

Trial 
Number 

BHB 
Before 
Diet 
(ppm) 

Retention 
Time 
(min) 

Average 
BHB 
Before 
Diet 
(ppm) 

BHB 
After 
Diet 
(ppm) 

Retention 
Time 
(min) 

Average 
BHB 
After 
Diet 
(ppm) 

2 1 245.46 6.520 274.96 390.89 6.521 398.09 
2 2 304.48 6.519 405.29 6.520 
3 1 0 N/A N/A 0 N/A N/A 
3 2 248.90 6.519 268.83 6.520 
4 1 0 N/A N/A 240.48 6.522 245.45 
4 2 0 N/A 250.43 6.520 
5 1 0 N/A N/A 0 N/A N/A 
5 2 246.69 6.519 339.99 6.520 
6 1 0 N/A N/A 0 N/A N/A 
6 2 247.04 6.520 258.12 6.520 
7 1 250.64 6.519 261.75 247.34 6.518 247.05 
7 2 272.86 6.520 246.75 6.5117 
8 1 0 N/A N/A 240.24 6.52 242.22 
8 2 0 N/A 244.21 6.518 
9 1 0 N/A N/A 0 N/A N/A 
9 2 266.06 6.521 283.55 6.646 
10 1 0 N/A N/A 239.60 6.519 254.09 
10 2 257.57 6.519 268.58 6.518 

 

Interestingly enough, it seems like the results agreed with the results that were expected 

within the blood. By converting the concentrations in ppm to mM, the amount of BHB within the 

blood samples seem to agree with the results of previously found by Owen et al. (1967), Owen et 

al. (1969), Galvin et al. (1968) and Garber et al. (1974) being in between around 1-2 mM after 4 

days. There is variation between individuals as everyone has a slightly different metabolism and 

ate slightly different foods. It is also worth acknowledging that Participant 2 had a concentration 
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of 3.82 mM of BHB which refers to potential ketoacidosis arising based on the symptom 

ketonaemia (Laffel 1999; Usher-Smith et al. 2011). It is unknown if that was the situation since 

the blood glucose and blood pH was not measured, but it is possible.  

Within the blood, there was no AcAc signals detected in any of the samples. It is possible 

that there was AcAc within the blood samples, but the concentration was below the LOD. In the 

future, certified reference material should be utilized during method development to help quantify 

the AcAc from within the blood. 

There are many runs where there is no signal detected. It does not necessarily mean that 

there were no ketone bodies present within the fluid, but that it may have been below the LOD. As 

well, there was no internal standard used which would have been used to determine if there was 

any variation between runs. It does seem like there was variation between runs since some samples 

have BHB detected in one trial, but not the other trial. It is unknown what could have caused that 

variation between runs to occur.  

 

3.3.2 Quantification in Urine 

The participants also had their urine collected before and after conducting the diet. The 

samples were analyzed in duplicate on the GC-MS, and the results are displayed in Table 6. There 

was no AcAc detected in the urine. This is somewhat surprising since it is measured in commercial 

methods currently (Brooke et al. 2016). A possible reason could be that the urine had an acidic pH 

and was not adjusted to pH 7. Because of this, there needs to be further method development 

conducted to ensure that AcAc is observed within urine. As well, there was an extremely high 

amount of BHB recorded within urine. The amount of BHB was negligible for all of the 

participants before the diet, but they almost all seemed to have higher BHB levels within their 
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urine than in their blood. Statistics were not conducted since not every participant was able to 

generate average values of BHB before and after the diet. 

 

Table 6. The experimentally determined amounts of beta-hydroxybutyrate in the urine samples. 
Participant 
Number 

Trial 
Number 

BHB 
Before 
Diet 
(ppm) 

Retention 
Time 
(min) 

Average 
BHB 
Before 
Diet 
(ppm) 

BHB 
After 
Diet 
(ppm) 

Retention 
Time 
(min) 

Average 
BHB After 
Diet (ppm) 

2 1 0 N/A  N/A 
 

7461.37 6.521 9572.11 
2 2 0 N/A 11682.8

5 
6.520 

3 1 0 N/A N/A 871.75 6.520  663.56 
 3 2 0 N/A 455.37 6.521 

4 1 0 N/A  N/A 294.94 6.523 369.18 
4 2 0 N/A  443.423 6.521 
5 1 0 N/A  N/A 276.17 6.522  278.74 
5 2 0 N/A  281.31 6.523 
6 1 0 N/A  N/A 1133.22 6.520 1042.82 
6 2 0 N/A  952.41 6.519 
7 1 0 N/A  N/A 324.80 6.520 349.49 
7 2 0 N/A  374.19 6.520 
8 1 0 N/A  N/A 269.51 6.523 275.54 
8 2 0 N/A  281.56 6.524 
9 1 0 N/A  N/A 350.65 6.520 366.65 
9 2 0 N/A  382.65 6.520 
10 1 0 N/A  N/A 1103.14 6.519 1553.35 
10 2 0 N/A  2003.56 6.520 

 

 In a study conducted by Liu et al., they observed participants biological fluids after fasting 

a minimum of 9 h and found 0.12 µM of BHB in urine compared to 68.8 µM in plasma (2015). 

Based on this piece of data, it seems like BHB is at a higher concentration within the bloodstream 

than it is within urine. But in the past, as ketosis occurs for a longer period of time, the amount of 

AcAc in urine decreases and the amount of BHB excreted increases (Galvin et al. 1968). Though, 

it is difficult to compare how much AcAc and BHB were analyzed since it was in units of µmol/min 



 

 31 

(Galvin et al. 1968). Nonetheless, it is still believed that the amount of BHB detected is positively 

skewed since the urine is acidic. Having acidic urine would likely derivatize more BHB within the 

vial, thus a higher concentration was seen by experiment. To know for sure, the experiment would 

have to be conducted again, except there would have to be a control for the pH of urine.  

 

3.3.3 Quantification in Saliva 

Saliva was also collected and analyzed to see how much ketone bodies were present. Saliva 

is becoming a more popular diagnostic model to use as it is less invasive and isotonic to plasma 

(Aps and Martens 2005; Elmongy and Abdel-Rehim 2016; Proctor 2016). The concept of 

quantifying ketone bodies within saliva in ketotic participants is rather novel. The samples were 

analyzed in duplicate on the GC-MS, and the results are displayed in Table 7. There was no AcAc 

detected in the saliva. It was expected that it would have very little amounts of AcAc since saliva 

is isotonic to blood which contains a small amount of AcAc in it (Liu et al. 2015). As for BHB, 

there was very little signal that was detected overall. There were 4 signals that were obtained from 

the before-the-diet samples. The concentration of BHB in these samples are very similar to the 

results obtained in these participants bloods samples. There were only two signals obtained in the 

after-the-diet samples by Participant 3 and 4. These signals were smaller than the signal detected 

in the before-the-diet sample for these participants. Theoretically, it should be higher since the 

ketogenic diet would have occurred, increasing the amount of ketone bodies within the individuals. 

Statistics were not conducted since not every participant was able to generate average values of 

BHB before and after the diet. 
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Table 7. The experimentally determined amounts of beta-hydroxybutyrate in the saliva samples. 
Participant 

Number 

Trial 

Number 

BHB 

Before 

Diet 

(ppm) 

Retention 

Time 

(min) 

Average 

BHB 

Before 

Diet 

(ppm) 

BHB 

After 

Diet 

(ppm) 

Retention 

Time 

(min) 

Average 

BHB After 

Diet (ppm) 

2 1 253.70 6.520 249.59 0 N/A N/A 

2 2 245.48 6.520 0 N/A 

3 1 253.22 6.521 N/A 0 N/A N/A 

3 2 0 N/A 243.84 6.519 

4 1 244.44 6.518 N/A 240.48 6.522 N/A 

4 2 0 N/A 0 N/A  

 

 In a study conducted by Liu et al., they previously observed participants biological fluids 

after fasting a minimum of 9 h and found 1.74 µM of BHB in saliva compared to 68.8 µM in 

plasma (2015). Based on this result, it would be expected that there is some BHB detected, but not 

as much as in the blood. There are two potential reasons why the amount of signal detect was very 

low. The first could be that the amount of BHB within the sample was below the LOD, which is 

logical considering the amount of BHB in the plasma is almost 40x larger than that observed in 

the saliva (Liu et al. 2015). The other reason is that there was not a lot of BHB that was derivatized 

within the sample, so the signal was very low as a result. Likewise, the samples that did produce a 

signal could have had a very effective derivatization by chance. A way to improve upon this would 

be to add a recovery standard to determine how effective the derivatization was to ensure that all 

of the potential analyte was derivatized and detected.  
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4.0 CONCLUSIONS 

In conclusion, participants underwent a ketogenic diet to induce ketosis; samples of their 

blood, urine, and saliva were collected before and after the diet to determine if BHB and AcAc 

could be quantified through the GC-MS. The conditions were moderately optimized to obtain the 

best possible signals for the BHB and AcAc ketone bodies for the time being. A calibration curve 

for BHB was produced (R2 = 0.9742) and was used to quantify the amount of ketone bodies present 

in the biological samples. For the participants whose blood samples were able to be quantified, it 

seems like they were in ketosis and the amount of BHB seems within range of what was expected. 

The urine samples had a high concentration of BHB, which could be a result of the acidic urine 

which would help in the derivatization step, so it could be analyzed. There was very little signal 

detected within saliva, but the fact that signal was detected means that this could potentially act as 

a method to quantify ketone bodies upon more method development. 
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5.0 FUTURE WORK 

Future work for this research would look to optimize the detection of AcAc from 

biological fluids. Possible ideas include trying to separate this ketone body from the BHB and 

using a different derivatizing agent to make it volatile. Future work should also consider using 

two recovery standards to know how effective the derivatization is, and if any analyte is lost 

during the matrix evaporation step. Adding an internal standard would be useful to determine if 

there is any variation between runs. Another idea for future work would be to control the pH 

across all biological fluids since it seems like urine produced a higher signal because the acidity 

of the matrix favored the derivatization reaction to occur. Lastly, optimizing a better method to 

extract, derivatize, and analyze the BHB from saliva. Possible ideas include acidifying the pH of 

a sample to protonate the analyte in an effort to do liquid-liquid microextraction with hexane. 

Then, concentrating the solution and derivatizing it. This may be effective for detecting BHB, so 

the future work on AcAc will dictate if the method would change to detect the amount of AcAc 

in the biological fluid. Potentially, this method could be used on all biological fluids as well.  
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7.0 APPENDICES 

The Ketogenic Diet Outline (3 Figures below) 
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Participant 2 Blood After-The-Diet (Trial 2)

 
Participant 2 Blood Before-The-Diet (Trial 2)
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Participant 2 Saliva Before-The-Diet (Trial 1) 

 
Participant 2 Urine Before-The-Diet (Trial 1) 
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Participant 2 Urine After-The-Diet (Trial 1) 

 
 
Comparison Between Acidified Beta-Hydroxybutyrate (a) and Non-Acidified Beta-
Hydroxybutyrate at 5000 ppm Each 
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Comparison Between Acidified Acetoacetate(a) and Non-Acidified Acetoacetate at 1600 ppm 
Each 
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