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ABSTRACT 

Western Rattlesnakes (Crotalus oreganus) are vital members of ecological communities in 

the arid regions of southern British Columbia. These areas are ecologically unique 

compared to the rest of BC, but they are facing higher levels of agricultural and urban 

development. Therefore, it is critical for us to understand how exactly the conversion of 

natural habitat to a landscape dominated by vineyards, orchards and resorts will 

impact wildlife. So far Rattlesnakes have been able to persist in areas with 

anthropogenic disturbance, but previous research has shown that there may be hidden 

effects on the health of individuals. Rattlesnakes near Osoyoos, BC living in areas with 

abundant human disturbance exhibit relatively poor body condition when compared to 

those living in undisturbed, natural habitats. Considering the process whereby stress 

reduces body condition via tissue catabolism, I developed a prediction. I hypothesized 

that habitat disturbance in Osoyoos is leading Western rattlesnakes (Crotalus oreganus) 

to exhibit higher levels of baseline stress, causing a reduction in their body condition. 

Throughout the summer of 2018, I collected sixty-eight blood samples from rattlesnakes 

within the Osoyoos population and analyzed the baseline corticosterone (stress 

hormone) content using enzyme-linked immunoassay kits. I found no difference in 

baseline corticosterone levels between snakes living in natural habitats and those in 

disturbed habitats. In addition I found no overarching relationship between baseline 

concentrations of corticosterone and body condition among all the sampled 

rattlesnakes. While these results do not agree with our original hypotheses, they still 

provide an important insight into the stress ecology of the Western Rattlesnake in BC. 

This work will serve as an important baseline for future stress related research on the 

Osoyoos Rattlesnake population. 

Thesis Co-Supervisor: Professor Dr. Karl Larsen 

Thesis Co-Supervisor: Associate Professor Dr. Mark Rakobowchuk 
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INTRODUCTION 

Twenty-first century wildlife conservation is facing more scrutiny than ever, 

driving increased pressure on wildlife researchers to identify the causal mechanisms 

behind conservation issues to legislators, courts and land managers. One approach has 

been conservation physiology, an emerging discipline (Wikelski and Cooke, 2006) that 

uses physiological tools and techniques to look at the causal relationships affecting 

organisms as they respond to changing environments and human disturbance. 

Environmental disturbances of any kind, natural or anthropogenic, are major selective 

forces (Wingfield and Romero 2011). As a result, animals have evolved a range of 

responses to these stressors that are defined as adverse stimuli that invoke a stress 

response, the cascading physiological and behavioural response by the individual.  

The study of stress is one of the largest areas of research within conservation 

physiology. Acutely, the stress response is a vital physiological process that enables 

organisms to overcome immediate environmental challenges and alterations (Baker et 

al. 2013). There are two main physiological branches in the response to stress: (1) 

stimulation of the sympathetic nervous system (SNS) releases catecholamines, and (2) 

stimulation of the hypothalamic-pituitary-adrenal axis (HPA) works to restore 

homeostasis via a process known as allostasis (Sheriff et al. 2011). Through allostasis the 

physiological systems of the body revert back to the normal dynamic consistency of 

homeostasis (McEwen and Wingfield, 2003). McEwen and Wingfield developed a 

model conceptualizing stress, made up of three key concepts: (i) “Allostasis is achieving 

stability through change.”, (ii) allostatic loads represent “the result of the daily and 

seasonal routines organisms have to obtain food and survive and extra energy needed 

to migrate, molt, breed, etc.” and it is tolerated up to a limit, and (iii) allostatic overload, 

where the organism can no longer cope with its condition, it is unable to exceed its 

energetic demands. Under natural conditions it would be normal for an individual to 
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experience allostatic overload; at that point the stress response would then act to 

mobilize energy reserves or change behaviour so that the animal returns to a regular 

allostatic load. However, under certain conditions the stress response can become 

chronically activated (Baker et al. 2013) and the individual becomes stuck in a state of 

allostatic overload. This is an issue as the stress response evolved to solve temporary 

issues and is not meant to be activated in the long term. This chronic condition can lead 

to additional problems.  

The benefits and detriments of stress are directly tied to the physiological 

components that the response is derived from, namely the stimulation of the SNS and 

HPA axis. The response from the SNS is almost instantaneous after interaction with a 

stressor, and induces the secretion of norepinephrine and epinephrine (Reeder and 

Kramer, 2005). Together these neurohormones increase heart rate, redirect blood flow 

and make energy stores available by stimulating glycogenlolysis and lipolysis. 

Stimulation of the HPA axis occurs simultaneously with the SNS, but through a 

signalling cascade that eventually signals the production of glucocorticoids (GCs). The 

primary GC produced varies depending on the taxa of interest and may be either 

cortisol or corticosterone. During acute secretion GCs increase available energy through 

gluconeogenesis and decrease glucose use, insulin sensitivity, and protein and fat 

metabolism; all these functions help the organism counter a specific stressor. In the 

short-term, elevated levels of GCs are critical in aiding an animal’s escape from a life-

threatening situation (Wingfield et al. 1998). However, if the stressor somehow becomes 

chronic, prolonging the stress response, deleterious effects start to accumulate; these 

include neuronal cell death, hyperglycemia, insulin resistance, muscle and bone 

atrophy, hypertension, growth inhibition, and even immune system collapse. This 

highlights the need to balance focus, between the positive and negative effects of stress.  
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For example, the implications that elevated levels of stress hormones may have 

on reproductive function may be overlooked. While this relationship can be highly 

variable between species there is a general pattern. There has been an historic view that 

any stress is detrimental towards reproduction but moderately elevated levels of GCs 

may be positively associated with reproduction through the mobilization of energy 

stores (Moore and Jessop, 2003). While some recent evidence notes the benefits, the 

historic point of view is well supported with an abundance of evidence showing a link 

between highly elevated levels of GCs and the suppression of reproductive behaviours 

and even total inhibition of reproduction. Just as any other life history trait, we must 

consider both the costs and benefits associated with the stress response.  

Previous research has shown that the intensity and duration of the stress 

response is directly linked to the general health of the animal (Boonstra et al. 1998), 

making it a valuable metric of study. In quantifying stress, researchers mainly examine 

GC concentrations because they persists for minutes to hours (Wingfield and Cooke 

2006), unlike the SNS response hormones. An important considerations in study design 

is the origin of the sample. It is critical to understand exactly how stress is linked to the 

sample type that you have chosen, as the relationship between the material and stress 

will vary. Blood plasma (or serum) has been the sample type of choice for most stress 

research for some time now. The GC concentration in blood plasma reveals the current 

physiological state of the organism, i.e. what the current stress state of the organism is 

at that moment in time (Sheriff et al. 2011). It is understood that there are three 

components that may influence circulating GC content: (1) endogenous cycles 

(circadian rhythms, seasonal variation), (2) prior acute environmental stressors (actual 

or perceived; predator encounters, extreme weather, etc) and (3) chronic stressors 

(predators, environmental conditions, etc). These factors must be kept in mind when 

concentrations of GC are being examined in any analyses. Glucocorticoids in the blood 
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are metabolized in the liver, and then make their way into either the urine through the 

kidneys, or the gut through the bile ducts. Afterwards the gluccocorticoid metabolites 

(GCMs) do not follow a straightforward path: they may be reabsorbed by the 

bloodstream within the gut, and undergo hepatic degradation (Klasing, 2005) or their 

structure may be altered by the intestinal microflora (Eriksson and Gustafsson, 1970; 

Sadoul and Geffroy, 2019). Both of these processes would then alter the ultimate GC 

content of the excreta. While blood plasma provides information about the current 

circulating concentration of GCs, it remains important to capture a longer term picture 

of the stress the animal is experiencing. 

Measuring chronic or long term stress can be accomplished using structures such 

as hair or feathers because they have slow growth rates and incorporate GCs into their 

structure during development. Thus, GCs accumulate over time in these tissues and 

provide information about stress from the chronic perspective. Along with hair and 

feathers it is possible to use other components of the integumentary system to 

understand chronic stress, such as finger or toe nails (Frugé et al. 2018).  In using these 

materials, it is important to understand their exact growth rates, so that the time scale of 

the GC accumulation can be accurately identified (Sheriff et al. 2011). Currently these 

methods are still somewhat exploratory because the exact process by which GCs are 

incorporated into these structures is not fully understood. Blood supply during 

formation is thought to be the main source of GCs in integumentary structures, but they 

could also be absorbed from the GC-containing secretions from a multitude of glands. 

Sample selection and collection is only the first step of stress related study. 

Following collection of tissues containing GCs, the next challenge becomes the 

quantification of GC concentration within these various samples. Immunoassays are the 

primary approach to quantifying GCs. The two most common versions utilized for this 

purpose are radio-immunoassays (RAI) and enzyme immunoassays (EIA or ELISA). 
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These two approaches are similar in the fact that they are both sensitive, competitive 

binding assays, both use an antibody specifically targeted against the GC. Radio-

immunoassays use a radioactive isotope that generates a radioactive signal indicative of 

the GC concentration. Alternatively, the EIA method uses an enzyme to create a 

colorimetric signal that allows for quantification of GC concentration. In order to read 

either of these signals, expensive equipment is required, including a scintillation or 

gamma reader to register the radioactive signal of the RIA and/or a microplate reader to 

read the optical densities of the colorimetric signal of the EIA. An increase in the 

commercial availability of these assays in recent years has greatly enhanced the quality 

and quantity of stress research on wildlife across the globe. 

The vast majority of work on wildlife stress has focused on a small range of taxa. 

Typically, researchers target the primary GC produced by their study species, as this is 

the most biologically active. In general the primary GC is different between taxa: for 

mammals, and fish it is cortisol, for amphibians, reptiles, and birds, corticosterone is 

most abundant, but there can be intrataxonomic variation as well. (Sheriff et al. 2011). 

There is a vast body of literature regarding cortisol based studies, since cortisol is the 

primary GC produced in humans. Researchers have examined a wide range of sub-

topics relating to cortisol in humans, including: the effects cortisol has on various 

components of the metabolism (Brillon et al. 1995; Khani and Tayek, 2001), the link 

between cortisol and memory (Newcomer et al. 1999), how cortisol may influence 

development (Goodyer et al. 2001) , understanding the heritability of factors controlling 

cortisol production (Ising and Holsboer, 1996), even the sociological context of stress 

and cortisol production (Taylor, 2012), and this is only to name a few of the major 

avenues of study relating to cortisol in humans. While much of the existing research on 

stress has been conducted historically with humans in mind, the interest surrounding 

stress in animals is growing. We do already have a fairly complex understanding of 
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stress in some laboratory animals, such as muroid rodents and primates, but our 

knowledge for most wildlife species is minimal at best (Reeder and Kramer, 2005).  

In mammals there has been several key factors identified as determinants in GC 

secretion. Coe and Levine (1995) revealed how the activity of the HPA axis and thus the 

concentration of GCs varies with circadian and circannual rhythms with respect to 

regulating energy balance as it relates to environmental conditions. This kind of 

temporal variation is linked to stress in more ways than one, as other work has shown 

the impact of seasonal variation of both biotic and abiotic factors greatly alters 

adrenocortical activity (Boonstra et al. 2001). The cyclical activity of the HPA axis is 

most notable in species at high latitudes, as these areas have the greatest disparity in 

environmental conditions and resources between different times of year (Gustafason 

and Belt, 1981). While these temporal differences in GC secretion are generally shared 

across most animals, there is significant variation between species, and even intra-

specific sex differences that should be considered (Reeder and Kramer, 2005). With a 

growing understanding of the processes underlying stress and the stress response, 

research is moving towards more functional conservation based questions. The 

extensive human influence on the planet is behind a lot of these questions, such as how 

pollution might be altering the stress response of mammals (Oskam et al. 2005), how 

high levels of tourism may increase the stress of local mammals (Zwijacz-Kozica et al. 

2013), and the link between habitat disturbance and increased cortisol levels in other 

mammalian species (Jaimez et al. 2012). Many of the same results seen for mammalian 

species have also been described in the other primary cortisol producing group, the 

fishes.  

Many researchers have examined cortisol in fishes, likely due to the commercial 

value of fisheries. Within this context many of the research questions relate to how 

fishery practices or conditions could influence cortisol levels in fish, such as over-
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crowding, confinement, and handling (Montero et al. 1999; Pankhurst and Sharples, 

1992; Strange and Schreck, 1978), all of which were found to increase the stress levels of 

fish, potentially impacting tissue quality. While an abundance of funding from fishing 

industries supports a great deal of this direct fishery related research, there is other 

work looking at cortisol in natural populations of fish. The conservation theme is 

carried over here, especially in the context of anthropogenic factors relating to stress, 

including increases in cortisol secretion in response to ship noise (Wysocki et al. 2006), 

impaired or reduced cortisol production in fish exposed to environmental pollutants 

(Hontella et al. 1992), and how habitat degradation may lead to increased cortisol levels 

(Hasler et al. 2015). Similar to mammals, temporal variation has also been noted as a 

factor in altering cortisol production, specifically in terms of seasonal and daily timing 

(Thorpe et al. 1987), as well as points in the reproductive cycle (Wingfield and Grimm, 

1977). Most of the research on stress within the different taxonomic groups follows 

similar overarching themes, but the extent of more specific questions varies a great deal. 

This variation in specific questions is sometimes linked to the actual GC that is being 

examined.  

Unlike the mammals and the fishes, corticosterone, not cortisol is the primary 

biologically active GC amongst bird species (Sheriff et al. 2011). Although the specific 

GC is different, the causes and ultimate effects of stress do not change much despite the 

active molecule being different. Just like the other taxa, many avian studies have 

examined the link between temporal variation and corticosterone secretion (Romero et 

al. 1998; Romero and Remage-Healey, 2000). Other environmental factors that can 

activate a stress response have also been identified and these include, but are not 

limited to harsh weather (Romero et al. 2000), urbanization (Fokidis et al. 2009), and 

even habitat quality (Marra and Holberton, 1998). Extensive work has even shown that 

corticosterone may play some role in influencing the life history, as species with higher 
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levels of stress induced corticosterone were found to have higher annual survival rates 

(Hau et al. 2010). Two specific studies conducted on birds were part of the foundation 

for this Honours thesis. The first found that baseline corticosterone levels rose in 

association with a decline in body condition throughout the breeding season in Black-

legged kittiwakes (Rissa tridactyla)(Kitaysky et al. 1999). The other showed that 

corticosterone secretion in American redstarts (Setophaga ruticilla) differed between 

habitat types, and this effect was compounded in the spring when the habitat types 

differed the most in quality (Mara and Holberton, 1998). These studies are especially 

relevant since birds and herpetiles both produce the same main GC. 

 Amphibians and reptiles are the other vertebrate groups that also primarily 

secrete corticosterone (Sheriff et al. 2011). As mentioned the foundation for our 

understanding of stress in wildlife has been built on the study of endotherms, like 

mammals and birds (Claunch et al. 2017).  In general, much less research has examined 

stress ecology in amphibians and reptiles, possibly as a result of the relatively slow or 

variable metabolisms of ectotherms such as amphibians and reptiles. The rates of 

physiological processes and reactions are dictated by body temperature, so when body 

temperature is variable it becomes difficult to interpret physiology. Some of the work 

that has been done has actually identified differences between amphibians and reptiles, 

in terms of their corticosterone secretion. Amphibians appear to be more sensitive to 

certain geographic variation, their baseline levels of corticosterone are related positively 

to latitude, and negatively to elevation (Eikenaar et al. 2012). The reptiles exhibit neither 

of these relationships. While some differences are apparent, many of the underlying 

factors influencing stress in the other groups are shared, including seasonal and daily 

variation (Pancak and Taylor, 1983; Tyrrell and Cree, 1998), environmental conditions 

(Cash and Holberton, 2005), and habitat quality (Janin et al. 2011). Recently Lind et al. 

(2018) has compiled and listed a number of studies looking at the relationship between 
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body condition and corticosterone in other species of snakes. From studies in that list, 

no consistent pattern has been discovered, with results varying between a negative 

relationship (Moore et al. 2000: Palacios et al. 2012) and no relationship (Holding et al. 

2014; Lind and Beaupre, 2015; Lutterschmidt et al. 2009) between corticosterone and 

body condition. Several interesting observations can be made when examining the 

differences in the studies on that list; the only other study on a fellow northern species, 

the Common garter snake (Thamnonphis sirtalis) found no significant relationship 

between body condition and corticosterone (Dayger et al. 2013). In addition the only 

studies comparing body condition and corticosterone in the Crotalus genus twice found 

that there was no significant relationship between the two variables in Timber 

rattlesnakes (Crotalus horridus) (Lind and Beaupre, 2015; Lutterschmidt et al. 2009). A 

comparison between body condition and corticosterone is notably absent for Crotalus 

oreganus. This leads in to my study species, the northern most population of the 

Western rattlesnake (Crotalus oreganus). 

The Western Rattlesnake (Crotalus oreganus) in British Columbia is inhabiting the 

northern-most limit of its range in North America. As ectotherms their daily and 

seasonal activity is dictated by the weather (Gregory, 2007). In Canada the winter 

weather is far too cold to permit above ground activity, so snakes hibernate for a large 

portion of the year. By limiting the time available for growth, courting and mating, the 

Canadian climate has serious effects on the population ecology and life-histories of 

these animals. In addition to the natural challenges imposed by life at higher latitudes, 

various anthropogenic threats are placing additional pressure on these species. 

Lesbarrères et al. (2014) identified the main anthropogenic impacts facing northern 

herpetiles as habitat loss and fragmentation, roads, pesticides and other contamination, 

infectious diseases and climate change. Among these habitat loss and fragmentation 

have been considered the most serious threats to all herpetofauna in northern 
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environments. This is especially prevalent in British Columbia where the Western 

Rattlesnake (Crotalus oreganus) occupies arid grasslands and riparian areas, as these 

land types are the most desirable for agricultural and urban development (COSEWIC, 

2015). As of 2005, approximately 16.1% of all grassland habitat in BC has been lost, but 

this effect is even more pronounced in the Okanagan where sub-regions have seen 

amounts of land conversion as high as 20-28% percent.  

My study population occured at the southernmost tip of the Okanagan valley, 

adjacent to the American border near the town of Osoyoos, BC (49°01′56″N 

119°28′05″W). The study site itself is located on the east side of Osoyoos Lake, on 

Osoyoos Indian band land, an extremely hot and arid area. This site offered a 

contrasting environment where I was able to compare snakes from the same population 

that were living in either disturbed or undisturbed habitats. The property contained a 

section of extensive natural shrub steppe habitat known as the north desert, and an area 

of high anthropogenic disturbance in the southern portion. The disturbed resort area 

had a variety of different disturbance regimes.  The complex included a golf course, 

hotel, condominiums, winery, interpretive centre, campground and several roads. In 

addition, several key components of the resort were surrounded by a thin gauge wire 

fence, built to exclude snakes from these areas. This in itself was an interesting 

component of the overall anthropogenic disturbance in the area, since this physical 

barrier blocked the normal migration route of snakes in the area (Maida, 2018).  

 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Osoyoos&params=49_01_56_N_119_28_05_W_region:CA-BC_type:city(5085)
https://tools.wmflabs.org/geohack/geohack.php?pagename=Osoyoos&params=49_01_56_N_119_28_05_W_region:CA-BC_type:city(5085)
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Figure 1. Map of the Osoyoos Indian Reserve (OIR) study site, with a legend 
denoting the different disturbance regimes in the area.  

 

The site is the subject of a long-running snake research program (>12 yrs) that 

provides the background for this thesis. Lomas et al. (2015) examined the effects of 
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anthropogenic disturbance on this population. They used a disturbance ranking system 

that separated snakes into disturbance categories based on the straight-line distance to 

the nearest disturbance. Western rattlesnakes (Crotalus oreganus) in the higher 

disturbance categories (closer distance to disturbance) displayed a lower body 

condition than those in the lower disturbance categories. I used a simplified version of 

this system where I separated snake captures into three primary areas: (1) the north 

desert, where the distance to disturbance is always far (capture location is at the 

minimum 250 meters to the nearest disturbance) (2) the snake fence, where the distance 

to disturbance is very close (capture distance always less than 3 meters to the fence) (3) 

The resort, where the distance to disturbance is short but variable (capture location 

between 0-150m to disturbance). Data from small mammal monitoring in the area 

found that there was not a significant difference in small mammal numbers or densities 

between the disturbed and undisturbed habitats (Maida, 2018). If there is no implicit 

difference in food availability, then examining other factors causing this reduction in 

body condition remains an important area of research.  

I proposed that physiological stress may be playing an underlying role in 

influencing body condition in snakes occupying the Osoyoos habitat, similar to that 

reported elsewhere. Given the mixed habitat quality of our site, we can draw 

comparisons to the Mara and Holberton study (1998) where they found that lower 

quality habitats were associated with higher levels of corticosterone. Then considering 

the results of Lomas et al. (2015), we can speculate that stress may be the cause based on 

the studies that have demonstrated this effect (Kitaysky et al. 1999; Moore et al. 2000; 

Palacios et al. 2012). Elevated levels of stress hormones are known to cause tissue 

catabolism that ultimately reduces energy reserves (Sheriff et al. 2011). Following the 

work by Lomas et al. (2015) I investigated this potential mechanism within the Osoyoos 

snake population. 
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I hypothesized that habitat disturbance in Osoyoos is leading Western 

rattlesnakes (Crotalus oreganus) to exhibit higher levels of baseline stress, causing a 

reduction in their body condition. I predicted that snakes living in the undisturbed 

north desert area would exhibit relatively low baseline levels of corticosterone. The 

resort and snake fence areas both represent disturbed habitats, but due to the physical 

interaction between snakes and the fence I expect them to show the highest levels of 

baseline corticosterone. Snakes at the resort do not face any physical barriers, but 

instead a variety of indirect forms of disturbance so I expect their baseline 

corticosterone secretion to lie between the undisturbed habitat snakes and those living 

along the snake fence. I also predict there will be a negative relationship between 

baseline corticosterone and body condition across sites, among all sampled individuals.  

 

METHODS 

This project was conducted under federal and provincial permits that allowed 

capturing and handling of the targeted wildlife species. Protocols for handling were 

approved by an animal care committee from Thompson Rivers University. All data 

used in this thesis were collected during July and August of 2018, as these were the 

months when the Western rattlesnakes have settled into their summer foraging habitat. 

All snakes were found through walking surveys, or through visitation of known 

congregation sites. I conducted these surveys in the three primary disturbance areas 

which I described before: the north desert, the snake fence and the resort.  I avoided the 

hottest times of day when snakes were hiding, surveying in the morning (06:00-12:00) 

and in the late evening (19:00-24:00). As soon as a snake was encountered, a timer was 

used to ensure blood samples were obtained within 5 minutes of the initial encounter, 

to prevent corticosterone concentration from being influenced by handling (Schuett et 

al. 2004). Tongs were used to maneuver the anterior portion of the snake into an acrylic 
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tube. Following immobilization I palpated the snakes to ensure no gravid females were 

used for blood samples. At least 0.5 mL of blood was drawn from the caudal vein with a 

1mL syringes (Terumo Medical Corporation®, Japan) with 27G x 1/2" gauge needles. 

The blood was transferred to Vacutainer™ (Becton Dickinson, United States) tubes 

coated in lithium heparin to prevent clotting. These tubes were labelled and stored in a 

portable insulated lunch kit with an icepack. Then within 4 hours the samples were 

transferred to 1.5mL microcentrifuge tubes (Fisher Scientific, United States), and 

centrifuged at 6000 rpm for 10 minutes (VWR Galaxy mini centrifuge, VWR 

International, United States). Afterwards the blood plasma supernatant was removed 

and transferred to a new microcentrifuge tube (Fisher Scientific, United States) and 

frozen. At the end of the field season, blood samples were transported on ice to a -80°C 

freezer in the laboratory at Thompson Rivers University, where they remained until 

further analysis. 

In addition to blood sampling, I also recorded the GPS coordinates (±5m), 

disturbance category, snout-to-vent length (SVL), weight, and sex of each captured 

animal. The most proximal segment of the rattle was painted light blue to ensure 

individuals were not resampled. I also recorded any anecdotal evidence that may have 

influenced corticosterone levels such as the snake having been substantially disturbed 

prior to capture. 

I used corticosterone ELISA kits (ENZO Biochem Inc., United States) to assay 

stress levels in the blood samples collected from the snakes. Samples were thawed 

before analysis, then duplicate 100µL plasma samples were pipetted into assay wells. 

After this 50 µL of both the alkaline phosphatase conjugate and sheep polyclonal 

antibody were added to the wells. I prepared the standardized wells by completing 

serial dilutions using a solution with a known corticosterone concentration. The plate 

was then incubated at room temperature on a shaker (500 rpm) for 2 hours. The wells 
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were subsequently washed by emptying the contents of the wells, and then adding 400 

µL of wash solution. This process was completed three times. After the final wash, all 

remaining moisture was removed from the wells and 200 µL of pNpp substrate solution 

was added to every well, before the last incubation phase at room temperature for 1 

hour, without shaking. Following this, 50 µL of the stop solution was added to every 

well and the plate was read immediately using a microplate reader at both 406nm and 

621nm. To validate samples between kits, I analyzed 5 samples with both kits and 

determined the coefficient of variation between the kits. In addition, 5 more samples 

had widely varying results within their replicates in the first kit, so they were repeated 

on the second to obtain a more consistent result. To derive the concentration of 

corticosterone in the samples, a standard curve was generated using the standard 

solutions with known concentrations of corticosterone. Using the equation of the line 

for these curves and the percentage bound (a function of optical density), I derived the 

associated concentration of corticosterone in pg/mL for each sample.  

Statistical analyses 

Following Lomas et al. (2015) body condition was derived from a regression 

between log10-transformed SVL and mass and the residual values were calculated; this 

method is considered appropriate for deriving a measurement of body condition in 

snakes based on general size (Reist, 1985). 

All statistics were performed in Minitab (Version 18.1). All data were first tested 

for normality using the Kolmogorov-Smirnov. I compared body condition index 

between our 3 primary sites with a one-way ANOVA test. I then repeated this test to 

compare the concentration of corticosterone between the sites. Tukey’s honestly 

significant difference test was used post-hoc for detecting differences between groups. 

Finally I built a linear regression to examine the relationship between LOG BCI and the 

concentration of corticosterone (pg/mL).  
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RESULTS 

In total 68 blood samples were collected, with 32 from snakes in the resort area, 

26 from snakes in the north desert and 10 from snakes located at the snake fence. I 

found no significant difference between the mean body condition index values of 

snakes captured at the 3 different sites. (F=1.60 df=2 df=65 P=0.08, Figure 2).  Similarly 

there was no difference in the mean concentration of corticosterone in blood samples 

between the 3 different sites (F=1.98 df=2 df=65 P=0.15, Figure 3). The linear regression 

between corticosterone concentration and LOG BCI showed a very weak relationship 

(F=1.11 df=1, P=0.30 R2=0.017, Figure 4). 
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Figure 2. Boxplot comparing the body condition of snakes captured at the three 
different sites. No significant difference in body condition was detected between these 
groups (F=1.60 df=2 df=65 P=0.08).  
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Figure 3. Boxplot of corticosterone concentrations (pg/mL) in blood samples collected 
from snakes within the 3 different sites. No difference in corticosterone concentration 
was seen between these groups (F=1.98 df=2 df=65 P=0.15). 
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Figure 4. Linear regression between plasma corticosterone concentration (pg/mL) and 
LOG body condition (F=1.11 df=1, P=0.30 R2=0.017). 

 

 

 

 

 

 

 

 

R2= 0.017 
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DISCUSSION 

 Overall there were no trends that matched my predictions. My results comparing 

BCI between snakes occupying different portions of the landscape contrasted strongly 

with those reported earlier by Lomas et al. (2015) in that there were no apparent 

differences between snakes in the different disturbance regimes. There was no 

difference in baseline concentrations of corticosterone between the blood samples 

collected from snakes at the different sites. It appears that increased habitat disturbance 

in Osoyoos is not leading the Western Rattlesnake population (Crotalus oreganus) to 

exhibit higher levels of baseline stress, causing a reduction in their body condition. I 

attempted (post-hoc) to determine if there was an underlying relationship between 

baseline corticosterone and body condition, independent of site, but again there was no 

detectable link between them. 

 While my hypotheses and predictions were not supported, the results are not 

unlike those found in the literature. I based my hypothesis upon research that showed a 

clear negative relationship between corticosterone concentrations and body condition 

(Kitaysky et al. 1999; Moore et al. 2000; Palacios et al. 2012), yet other work has shown 

no relationship whatsoever between these metrics (Dayger et al. 2013; Lind and 

Beaupre, 2015; Lutterschmidt et al. 2009). The body condition index reflects the amount 

of stored energy an animal has available, or in other words, it is the physiological 

energy balance of the individual and the allocation of that energy. This is a critical 

internal process that must result in a favourable distribution of energy to life-history 

processes such as foraging, reproduction, and predator avoidance or else there may be 

significant fitness losses (Dayger et al. 2013). Since one of the primary functions of GCs 

is to mobilize energy stores, a negative relationship often exists between circulating GC 

concentrations and body condition (Kitaysky et al. 1999; Moore et al. 2000; Palacios et al. 

2012). However in our case, and in others no relationship between the two variables 
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was found (Dayger et al. 2013; Lind and Beaupre, 2015; Lutterschmidt et al. 2009). This 

suggests the presence of this relationship is contextual, and varies depending on the 

environmental conditions and life-history. Previous research on the Common Garter 

Snake (Thamnophis sirtalis) has come to similarly-conflicting conclusions about the 

relationship between corticosterone and body condition. A study of the species in 

Oregon (Lat 45°N) found a negative correlation between body condition and 

concentrations of corticosterone (Moore et al. 2000). Conversely, a parallel study in 

Manitoba at a higher latitude (51°) found no significant relationship (Dayger et al. 2013). 

Although more comparative data are needed, there may be life-history elements that 

northern populations specifically balance off energetically, resulting in little 

relationship between body condition and corticosterone.  

The mean baseline corticosterone levels I recorded in this study (=57405 pg/mL) 

were approximately five times higher than those detected in a similar study of timber 

rattlers (C. horridus) in Pennsylvania (Lutterschmidt et al. 2009). This further suggests 

that underlying differences in baseline GC levels may exist between populations and 

species. It also adds credibility to the argument that northern populations of snakes 

may be less likely to exhibit a relationship between corticosterone and body condition. 

Since the season for breeding and reproduction is condensed by the climate (Gregory, 

2007) there may be higher levels of corticosterone secretion by all individuals 

independent of site. This higher level of corticosterone secretion could facilitate more 

rapid reproductive behaviour and the mobilization of the necessary energy stores to 

accomplish this. In order to validate this claim a much broader data set would be 

required to make such a wide comparison between northern and southern populations. 

Although it could be a plausible explanation, there are other components that should be 

considered when interpreting these results. 
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The discrepancy in my results compared to those of other studies may be due to 

the fact I was unable to control for all the factors that determine GC content. There are 3 

main elements influencing circulating GC content: (1) Endogenous cycles (Circadian 

rhythms, seasonal variation), (2) Prior acute environmental stressors (actual or 

perceived; predator encounters, extreme weather, etc.) and (3) Chronic stressors 

(predators, environmental conditions, etc) (Sheriff et al. 2011). My hypothesis and 

predictions were based on the third element, in that I suggested that long-term poor 

environmental conditions due to human disturbance would elevate baseline 

corticosterone concentrations. However, controlling the 1st and 2nd elements is not 

always possible. It is difficult to know the individual experiences of these animals and 

as a result other acute environmental stressors (unknown to us) may be influencing the 

results. In addition other endogenous factors and cycles, including sex (Honman et al. 

2003), age (Reichert et al. 2012), reproductive stage (Rubenstein and Wikelski, 2005), and 

time of year or day (Pancak and Taylor, 1983; Tyrrell and Cree, 1998) also may be 

affecting GC levels.  

 Endogenous cycles in particular may have had a profound effect on my results. 

Western Rattlesnakes are cryptic and difficult to locate, even when relatively abundant. 

Thus, a blood sample was taken every time an individual was encountered, provided 

they met the base criteria. This meant that blood samples were taken from individuals 

at different times of year, varying times during the day, and under different weather 

conditions and then all incorporated into the same model. One such factor that I did not 

account for was the reproductive stage any particular individual was in. Given that 

among other species, peak corticosterone secretion generally occurs during the mating 

season (Dayger et al. 2013), levels in Western Rattlesnakes should peak during late July 

or early August (COSEWIC, 2015). This window in time coincided with the latter part of 

my blood sample collection period. This implies all sampled rattlesnakes captured 
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during this period may have been exhibiting higher than normal levels of baseline 

corticosterone. In turn, the similarity between mean baseline corticosterone 

concentrations I detected may be due to the coincidental reproductive stage all 

individuals were experiencing. Moreover, corticosterone secretion must be relatively 

similar in all individuals at certain points of the breeding season because there will be a 

specific range of GC concentrations that allows mating to occur (Dayger et al. 2018). 

While it is important to consider these endogenous factors, there are ways to enhance 

the complexity of my methods to avoid these issues to some degree. 

A more parsimonious explanation for my results is that baseline stress alone is 

not the most revealing metric and it is unsuitable to address questions around 

comparing stress between habitats. It is possible that the snakes in anthropogenically 

disturbed habitats are facing greater environmental stressors, without exhibiting higher 

levels of baseline corticosterone due to a difference in the sensitivity of the HPA axis 

(Dayger et al. 2013).  In addition, the work of Sapolsky et al. (1984), found that 

sensitivity to stress could be altered not only within the HPA axis, but at the cellular 

level as well. Sustained elevated levels of circulating corticosterone will result in a 

reduction in the number of cytosolic corticosterone receptors within the targeted cells. 

Both of these physiological mechanisms work to mitigate the negative effects of chronic 

stress, cells dampen their receptivity to corticosterone to buffer the higher 

concentrations of corticosterone; effectively reducing the link between corticosterone 

and any physical effects such as reduced body condition. Rich and Romero (2005) have 

detailed the downstream effects of acute stress response suppression: European 

starlings exposed to chronic stress were found to downregulate corticosterone secretion 

upon stimulation from acute stressors. While this effect may be present in the Western 

rattlesnake, it cannot be examined if the data consists of baseline concentrations of 

corticosterone alone.  
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I have identified a number of issues with my protocols and these could be 

addressed in future work on stress in the Osoyoos Rattlesnakes if more elaborate 

methods are used, ones that can decouple the effects of chronic and acute stress. One 

approach could be a capture stress protocol (Pakkala et al. 2013), a strategy developed 

to detail the magnitude of the acute stress response. Another option could be to utilize 

more experimental techniques such as using clipped scutes or entire sheds (Berkens et 

al. 2013) as measures of chronic stress. Lastly, it should become a focus to maximize the 

potential sample size. My sample (N=68) was relatively small compared to those in the 

Lomas et al (2015) study, where data was collected over multiple years (N=623).  

While I did not detect differences in corticosterone levels between snakes 

occupying different habitats, my work still serves as an important baseline for future 

study.  Conservation physiology strives to uncover the underlying mechanisms behind 

conservation issues, in part so that law and policy makers can be adequately informed 

so that proper protections can be implemented. While I was unable to support my 

hypothesis, I have discovered several interesting components about the stress 

physiology and ecology of the Western rattlesnake in southern British Columbia. This 

information could lead to more directed questions about the real implications of human 

disturbance on the stress response of the Western rattlesnake and the downstream 

effects. Stress ecology is an important component of conservation biology that must be 

understood in order to effectively protect species from the negative effects of human 

development. 
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