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Abstract 6

Experimental evidence of complex dispersion regimes in natural systems, where the growth of the 7

mean square displacement in time cannot be characterised by a single power, has been accruing 8

for the past two decades. In such processes the exponent γ(t) in 〈r2〉 ∼ tγ(t) at times might be 9

approximated by a piecewise constant function, or it can be a continuous function. Variable order 10

differential equations are an emerging mathematical tool with a strong potential to model these 11

systems. However, variable order differential equations are not tractable by the classic differential 12

equations theory. This contribution illustrates how a classic method can be adapted to gain insight 13

into a system of this type. Herein a variable order Gierer-Meinhardt model is posed, a generic 14

reaction– diffusion system of a chemical origin. With a fixed order this system possesses a solution 15

in the form of a constellation of arbitrarily situated localised pulses, when the components’ diffu- 16

sivity ratio is asymptotically small. The pattern was shown to exist subject to multiple step-like 17

transitions between normal diffusion and sub-diffusion, as well as between distinct sub-diffusive 18

regimes. The analytical approximation obtained permits qualitative analysis of the impact thereof. 19

Numerical solution for typical cross-over scenarios revealed such features as earlier equilibration 20

and non-monotonic excursions before attainment of equilibrium. The method is general and allows 21

for an approximate numerical solution with any reasonably behaved γ(t). 22

Keywords: fractional differential equations, matched asymptotic expansions, variable order dif-
ferential equations, numerical estimates of memory integrals

1. Background 23

Beginning circa 1980 measurements of dispersion in various natural systems documented 24

behaviour that could not be captured faithfully by a linear growth of the mean square 25

displacement 〈r2〉 ∼ t. In time such systems were termed anomalous. Spanning numerous 26

scientific fields, the underpinning diffusive processes can be catalogued by basic transport 27

properties, often including the Fickian diffusion as a special limit (Codling et al., 2008; Eliazar 28

and Klafter, 2011). The sui generis nature of each anomalous process notwithstanding, wide 29

sub-classes have been identified (Klages et al., 2008). The present contribution addresses a 30

type of anomaly named sub-diffusion due to the sub-linear dispersion 〈r2〉 ∼ tγ with 0<γ<1. 31

One way to obtain this kind of transport is to generalise the integer derivative in the diffusion 32

equation to one of a fractional order (Metzler and Klafter, 2000). Mathematically an integer 33
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order partial differential equation for the concentration of components u with a constant34

diffusion coefficient D and source f(u)35

ut = D∆u+ f(u), r ∈ Ω, t > 0, (1a)

will become a fractional partial differential equation36

u
γ
t = D∆u+ f(u), r ∈ Ω, t > 0. (1b)

Over a certain range of time the dispersion r = |r| in the domain Ω will exhibit sub-diffusion37

with a mean square displacement that grows in time with the exponent γ. Within this38

framework the index γ need not be constant, albeit traditionally it has been fixed.39

Whilst the integer derivative operator is indisputably unique, multifarious fractional40

derivatives exist. For a constant γ the most classic definition appears in Oldham and Spanier41

(1974), whereas more specialised operators can be found for instance in Elliot (1993) and42

Chen et al. (2010), as well as in studies of specific systems quoted below. Variable order con-43

cominants have drawn some attention as well, cf. Naber (2004) and Ramirez and Coimbra44

(2009). Recent studies bespeak the potential purport of the latter operators as a modelling45

tool for systems evincing a time dependent dispersion power 〈r2〉 ∼ tγ(t).46

One group of applications manifests distinct scales γ at well defined periods of time, i.e.47

a piecewise constant approximation of γ(t) is a practical approach. An example thereof is48

a time limited process in a finite domain, as undergone by molecules in biological media49

(Reynolds, 2005; Bakalis et al., 2015), often with an auxiliary signalling reaction triggering50

an essential change in the spatial structure of the diffusing molecules or local medium (Cabal51

et al., 2006; Torreno-Pina et al., 2016). McKinley et al. (2009) construct a flexible model in52

the field of rheology, and Meerschaert et al. (2013) present a more formal framework.53

Another group of applications employs a continuous exponent γ(t). Sun et al. (2009) give54

examples of numerical solutions with a linear function in t (as well as exponents depending on55

variables other than time). Saxton (1997) examines the distribution of diffusion coefficients56

in single particle tracking and demonstrates how statistically the apparent mean square57

displacement 〈r2〉 can be highly non-linear. The same author discusses a smooth cross-over58

between two regimes with constant γ and compares to non-transient diffusion, connecting59

the results to experimental measurement techniques (Saxton, 2007). At times γ and the60

conforming order of the diffusion equation are noted to depend on system variables such61

as concentration (Chen et al., 2013) or temperature (Morgan and Spera, 2001), however62

ultimately when the mean square displacement is measured, the exponent γ will be time-63

dependent.64

In light of the above, variable order fractional equations promise a significant advance in65

questions of correct interpretation of experimental measurements and juxtaposition of various66

particle tracking techniques. To date studies presented numerical solutions that could be67

compared to classic cases or fitted to experimental results, but offered little analytical insight.68

An analytical solution to a paradigm system, explicating the temporal evolution subject to69

transitions between disparate diffusive regimes and possible new behaviour thereupon, will70
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be a valuable step. This study focusses on a phenomenological reaction – diffusion system 71

with an aim to relax the restriction of a constant order temporal derivative (mean square 72

displacement growth power), thereby permitting the description of cross-over from regular 73

diffusion to sub-diffusion and between sub-diffusive regimes. 74

2. Gierer-Meinhardt model 75

The reaction – diffusion system in question was first proposed by Gierer and Meinhardt 76

(1972) and describes the interaction of two chemical species: an activator component that 77

encourages the reaction process and an inhibitor, suppressing the rate thereof. When the 78

diffusivity ratio between the components is asymptotically small with the reaction terms 79

appropriately scaled, the system possesses a solution in the form of a set of spikes, i.e. 80

localised spots of high concentration. With a fixed index γ these solutions were obtained by 81

Iron et al. (2001) for regular diffusion, γ = 1, and by Nec and Ward (2012) for sub-diffusion, 82

0 < γ < 1. Here it is proposed to endow the problem with time variability of the anomaly 83

index γ that is also the order of the partial differential equations, but in a way that still 84

admits of a solution. 85

On a finite, one-dimensional domain with no flux boundaries the unified model reads 86

∂γ
t a = ǫ2γaxx − a+

ap

hq
− 1 < x < 1 , t > 0 , (2a)

87

τo ∂
γ
t h = hxx − h+ ǫ−γ a

m

hs
− 1 < x < 1 , t > 0 , (2b)

88

ax(±1, t) = hx(±1, t) = 0 , a(x, 0) = a0(x) , h(x, 0) = h0(x) , (2c)

where a(x, t) and h(x, t) are the activator and inhibitor concentrations, respectively. Here 89

0 < ǫ ≪ 1, τo > 0, the quadruple of reaction exponents (p, q,m, s) satisfies 90

p > 1, q > 0, m > 0, s > 0,
p− 1

q
<

m

s+ 1
, (2d)

and the index γ ranges 0 < γ 6 1. When γ = 1, system (2) comprises two conventional 91

partial differential equations. When 0 < γ < 1, the derivative of order γ is defined (for a 92

univariate function) as 93

dγ

dtγ
f(t) = −

1

Γ(−γ)

∫ t

0

f(t)− f(t− ζ)

ζγ+1
dζ, 0 < γ < 1, (2e)

wherein Γ denotes the Gamma function. Further detail on this operator can be found in 94

Elliot (1993) and Nec and Ward (2012). Since the integration is with respect to ζ, it is 95

forthwith admissible to extend the order to be a time dependent function γ(t). Some forms 96

of memory operators include differentiation with respect to t or imbed the delay directly into 97

the order through the dependence γ(t− ζ), therefore requiring a more careful generalisation, 98
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cf. Ramirez and Coimbra (2009). Henceforth the anomaly index is deemed to be a function99

of time, designated thus explicitly γ(t) or merely γ for simplicity.100

For a constant γ the spike solution is constructed by the method of matched asymptotic101

expansions (Iron et al., 2001; Nec and Ward, 2012). On an infinite domain a similar construc-102

tion is possible (Nec, 2016b). One of the tacit assumptions of this classic method is that the103

partial differential equations are of a fixed order, as are the concomitant asymptotic scales,104

together admitting a reduction to a system of non-linear algebraic equations for the spikes’105

heights and ordinary differential equations for the drift of loci. As shown hereinafter how-106

ever, this reduction can be extended to the case of multiple transitions between a sequence107

of arbitrary orders within the range 0 < γ 6 1 at equally arbitrary cross-over moments.108

3. A pattern of n spikes109

Consider an n-tuple of spikes centred at a set of arbitrary loci xi, {i = 0, . . . , n − 1}.110

Classically the outer solution for the activator away from the loci xi is the trivial quiescent111

state a(x, t) ≡ 0, whereas for the inhibitor h(x, t) expand112

h ∼ h(0)(x, t) + o(1). (3)

Within a narrow region about the locus the inner spatial variable yi
def
= (x − xi)

/

ǫγ(t) is113

required to make the differential term on the right hand side in (2a) of order O(1). The114

corresponding slow time variable τ = ǫα(t)t. The temporal scale α is determined below. The115

inner asymptotic solutions are set as116

Ai(yi, τ) = a
(

xi + ǫγ(t)yi, ǫ
−α(t)τ

)

∼ A
(0)
i (yi, τ) + ǫγ(τ)A

(1)
i (yi, τ) + · · · (4a)

117

Hi(yi, τ) = h
(

xi + ǫγ(t)yi, ǫ
−α(t)τ

)

∼ H
(0)
i (yi, τ) + ǫγ(τ)H

(1)
i (yi, τ) + · · · . (4b)

The unusual feature about (4) is the time dependence of the scales γ and α, as conventionally118

these are constant. It is imperative to substantiate when an expansion of this ilk is valid.119

Obviously, it is valid when γ and α are constant. Observe that it is also valid for any step-like120

function:121

γ(t) =
∑

j

γj

{

θ
(

t− t×j−1

)

− θ
(

t− t×j

)

}

, j = 1, 2, . . . , (5)

wherein 0 < γj 6 1 are constant anomaly indices, θ(t) denotes the Heaviside step function,122

t×j are the corresponding cross-over times satisfying t×j > t×j−1 and t×0 = 0 without loss of123

generality. With γ(t) ≡ 1 the diffusion mechanism is the regular Fickian diffusion entailing124

a linear growth of the mean square displacement in time 〈r2〉 ∼ t, recovering the classic125

model (Gierer and Meinhardt, 1972). With 0 < γ(t) < 1 the dispersion is sub-diffusive,126

i.e. 〈r2〉 ∼ tγ(t). A plain, fixed order process is obtained with all γj equal. A regular to127

anomalous transition is given by γj = 1, 0 < γj+1 < 1 and vice versa, whilst 0 < γj < 1,128

γj 6= γj+1 yield transitions between distinct sub-diffusive regimes. At any cross-over moment129
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t×j the scales of the entire asymptotic series (4) will be instantaneously adjusted. 130

Albeit the non-linearity introduced into series (4) through the dependence ǫγ(t) forthwith 131

precludes an extension to functions of a more generic nature, it is hereby conjectured that the 132

spike solution will persist (albeit not be described by the series above) for smooth functions 133

such that the changes in γ(t) occur on a time scale much faster than τ . For instance for an 134

inner layer transition 135

γ(t) =
γj+1 − γj

2
tanh

t− t×j

ε
+

γj+1 + γj
2

(6)

this requirement is mathematically expressed as ε ≪ ǫ−α, posing virtually no restriction 136

on the inner layer width ε since ǫ ≪ 1 and α > 0, whilst an inner layer exists as such 137

for ε ∼ O(1) or ε ∼ o(1). Thence illatively follows that the functional form of γ(t) is 138

encumbered but little, in particular any temporal variation on O(1) scale will not interfere 139

with the formation of the spike and its slow drift. 140

For the solution construction to hold formally it must be assumed that γ(t) is a piece- 141

wise constant function as in (5). However, any reasonably behaved function γ(t) might be 142

discretised into a set of step-like segments. The combination of solutions will remain valid 143

as long as t ∼ O(1) or higher, i.e. no attempt is made to seek a truly smooth evolution, or 144

to express that more technically, the orders of magnitude are preserved. Small steps in γ are 145

permissible as long as the restriction on t is observed. Figure 1 shows a possible discretisation 146

to approximate the smooth function (6). 147

For any given segment the classic reduction yields the following algebraic-differential 148

system (consult Nec and Ward (2012) for technical detail). The spikes’ heights H
(0)
i (leading 149

order inner solution for the inhibitor) are governed by a set of non-linear equations 150

H
(0)
i (τ) = −bm

n−1
∑

j=0

H
(0)
j

βm−s
G(xi; xj) , (7a)

where G(x, xi) is the Green’s function 151

G(x; xi) =







− csch 2 cosh(xi − 1) cosh(x+ 1) x < xi

− csch 2 cosh(xi + 1) cosh(x− 1) x > xi

(7b)

and 152

bm =

∫

R

um dy , (7c)

is a factor computed from the homoclinic u(y) 153

u(y) =

(

p+ 1

2

)1/(p−1)

sech2/(p−1)

(

p− 1

2
y

)

(7d)
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t×j t×j+1
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γj+1

t

γ
(t
)

Figure 1: A valid discretisation example of a smooth cross-over.

that controls the spike’s shape. In particular the leading order inner solution for the activator154

is given by155

A
(0)
i = H

(0)
i

β
u(yi), β =

q

p− 1
, (7e)

whence Ai(yi, τ) decays exponentially as |yi| −→ ∞ and is localised in the vicinity of the156

spike locus xi. The leading order outer solution for the inhibitor reads157

h(0)(x, t) = −bm

n−1
∑

i=0

H
(0)
i

βm−s
G(x; xi) . (7f)

The spikes’ loci xi(τ) drift on the slow time scale τ = ǫαt, α = γ + 1, according to the158

differential system159

dxi

dτ

∣

∣

∣

∣

dxi

dτ

∣

∣

∣

∣

γ−1

=
qbmf(p; γ)

(p+ 1)H
(0)
i















1

2
H

(0)
i

βm−s
(

Gx(x
−
i ; xi) +Gx(x

+
i ; xi)

)

+
n−1
∑

j=0
j 6=i

H
(0)
j

βm−s
Gx(xi; xj)















,

(7g)
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160

f
(

p; γ(t)
)

≡

∫

R

up+1 dy

/
∫

R

u′(y)Dγ
yu dy , (7h)

161

D
γ
yu(y) ≡

1

Γ(−γ)
sgn

dxi

dτ

∫ ∞

0

{

u(y)− u

(

y + ξ sgn
dxi

dτ

)}

dξ

ξγ+1
. (7i)

With regular diffusion f(p; 1) = 2(p + 1)/(p− 1), equation (7h) being a fractional generali- 162

sation thereof. Operator (7i) ostensibly distinguishes between leftward and rightward drift, 163

thus breaking the symmetry of motion on either side of an equilibrium point. This is an 164

explicit aftermath of the memory inherent to all temporal fractional derivatives. Nonetheless 165

no actual asymmetry ensues, since the operator’s only appearance is in the second integral 166

in (7h), acting on the even function u(y), in conjunction with the odd function u′(y), so that 167

the factor f
(

p; γ(t)
)

does not depend on sgn x′
i(τ). The function D

γ
yu is neither even nor 168

odd for 0 < γ < 1 (consult figure 2). The functional dependence of f(p; γ) is given in figure 169

3. At a cross-over time t×j the value will be instantaneously adjusted by a jump between 170

respective values γj and γj+1 on the curve corresponding to the same value of the kinetic 171

exponent p. Bar the small interval of non-monotonicity for p = 2 (uppermost curve in figure 172

3), diminution in γ will always entail an increase in f(p; γ). 173

Albeit classically the foregoing asymptotic reduction (7) was devised for a constant γ, a 174

painstaking checking verifies its validity for a piecewise constant function γ(t). This result 175

is not altogether trivial, because whilst the inner spatial scale involves the compound ǫγ , the 176

slow time scale involves ǫα with α = γ+1, whence a jump in γ cannot be forthwith absorbed 177

in ǫ. By and large system (7) permits a qualitative understanding of a variable order dynami- 178

cal system of a fractional order γ(t): within the limitations of the asymptotic theory unifying 179

an arbitrary sequence of piecewise constant segments of γ(t), it shows analytically that the 180

variable order will not have an overwhelming impact on the nature of the solutions. Given 181

that from a mathematical point of vantage relaxing the constraint of a fixed order is devas- 182

tating to the application of traditional solution and analysis tools, and at the outset might 183

lead to unpredictable results, this insight supports the physical soundness of variable order 184

models. Past computational works showed examples of this inference, e.g. Sun et al. (2009); 185

Chen et al. (2013), however with the Gierer-Meinhardt model a more formal substantiation 186

is possible. Moreover, owing to the generic nature of the piecewise constant discretisation, 187

it is safe to surmise that for most systems possessing asymptotic solutions of any kind the 188

same procedure will conform to a valid description for an arbitrary piecewise constant se- 189

quence of orders. In addition it is illustrated hereinafter for specific spike constellations that 190

a discretisation within the delineated limits of the presented theory yields a phase plane 191

trajectory remarkably smooth visually, i.e. a piecewise constant sequence provides a good 192

approximation without exacting the toll of a full numerical simulation. This last feature 193

pertains solely to the Gierer-Meinhardt model, of course, and cannot be extended illatively 194

to other dynamical systems. 195

System (7) is expected to be accurate by comparison to the full system (2) up to the 196
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−y∞ 0 y∞

−1

0

1.5

y

D
γ
yu

∣

∣

∣

x′

i
<0

Figure 2: Function D
γ
yu with the fractional operator D

γ
y defined in (7i) for equally spaced 0.1 6 γ 6 0.9 (solid curves, neither

even nor odd functions) generalising u′ (dashed curve, odd function). The computation was performed for
dxi

dτ
< 0 and

p = 2 upon regularisation of (2e) via integration by parts twice. The infinite bound of the integral was truncated at 3y∞.
Qualitatively similar results were obtained for 2 6 p 6 5. Cf. figure 1 of Nec and Ward (2012), computed to higher accuracy
here for expositional purposes.

order of the correction term in series (4), i.e. O
(

ǫγ(τ)
)

. The concomitant error with regular197

diffusion is O(ǫ). Similar reduced reaction– diffusion systems with regular diffusion have198

been shown to manifest excellent agreement with the full partial differential system, insofar199

as to predict correctly the onset of instability, cf. Sun et al. (2005) and Tzou et al. (2011).200

In stark contrast to integer order equations, partial differential equations of a fractional201

order, even without singular perturbations, require custom devised schemes, since conven-202

tional schemes have proved to baffle the regular notions as regards consistence, stability and203

accuracy (Meerschaert and Tadjeran, 2004). These difficulties are caused by the presence of204

memory, having at times unpredictable interference with other terms in the equations to be205

solved. In addition, time fractional operators contain integrals with singular kernels. With-206

out exception successfully implemented schemes circumvented this fundamental quandary207

by regularising the operator. The modification involved either a change in the kernel, such208

as Caputo’s derivative, several examples of which appear in Ramirez and Coimbra (2009),209

or addition of an initial term (Henry and Wearne, 2000) or both (Sun et al., 2009). Defi-210
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4

6

9

γ

f
(p
;γ

)

Figure 3: Factor f(p; γ) for equally spaced 2 6 p 6 5 computed for 1
10

6 γ 6
9
10

. Cross marks show the normal values

2(p + 1)/(p − 1). f(p; γ) −→ ∞ at the stagnation limit γ −→ 0+. Cf. figure 3 of Nec and Ward (2012), computed to higher
accuracy here for expositional purposes.

nition (2e) is not regularised, its particular form essential to preserve basic equilibrium and 211

spectrum related properties of (2) as a dynamical system (more detail can be found in Nec 212

(2016b)). Thus a numerical solution of (2) is impossible with standard computational means. 213

Nonetheless, the error bound above can be used to calculate the maximal value of ǫ that 214

would ensure the solution given by (7) not exceed the corresponding error in the normal 215

system by taking min γ(τ). 216

4. Quasi-equilibrium solutions 217

System (7) is the reduction of (2) at the limit ǫ −→ 0. Different constellations of spikes were 218

investigated to elucidate the effect of anomaly index transition on the drift toward equilib- 219

rium. Equation (7g) is a somewhat unconventionally written ordinary differential equation 220

that can be cast into a better amenable to numerical integration form by x′
i(τ)
∣

∣

∣
x′
i(τ)
∣

∣

∣

γ−1

= 221

sgn x′
i(τ)
∣

∣

∣
x′
i(τ)
∣

∣

∣

γ

, and thence x′
i(τ) can be computed by evaluating the right hand side of 222

(7g), whose sign determines sgn x′
i(τ). Generally at every integration step the non-linear 223

system (7a) must be solved, albeit some simple patterns permit an explicit solution. In 224



10

the classic Runge-Kutta procedure employed here or other predictor-corrector methods (7a)225

must be solved for all intermediate predictor steps as well.226

A more fundamental peculiarity of (7g) is that the integration variable τ relates to the227

physical time t through τ = tǫγ(t)+1, therefore changing scale at every cross-over point t×j,228

prescribed by equation (5). In praxis without lost of generality every interval characterised229

by a fixed value γj was integrated with τ initialised to zero and
(

xi, H
(0)
i

)

– to the values230

reached at the end of the preceding interval. The full variable τ was made monotonic upon231

completion of integration by addition of τ×j = t×jǫ
γj+1.232

Infra solutions are presented for two groups of transition scenarios. The first category233

examines a sequence of significant jumps in γ with the purpose to exemplify the extent of234

abruptness in the pattern’s response with respect to relative velocity of the spikes and their235

heights; demonstrate the variability of possible response behaviours; present non-intuitive236

or non-monotonic response to certain parameters; identify typical mechanisms responsible237

for pattern evolution that might be considered advantageous for a natural system, such as238

a capability of fast equilibration or quick non-linear excursions before attainment of equilib-239

rium. The second category pertains to the smooth cross-over. Function (6) was used with240

the corresponding piecewise constant sequence in figure 1. Despite the coarseness of this241

discretisation all evolution trajectories appeared absolutely smooth. Thus only a concise242

sample is shown depicting this observation.243

4.1. Single spike244

With n = 1 equation (7a) is forthwith soluble for the spike height as a function of the locus245

location x0246

H
(0)
0 =

(

− bmG(x0, x0)
)−1/(βm−s−1)

, (8a)

whereby the differential equation (7g) can be integrated in closed form for γ = 1 to yield247

−4qτ

p− 1
= ln

sinh(2x0)

sinh(2x0(0))
+

1

2
cosh(2) ln

(

cosh(2x0)− 1
)(

cosh(2x0(0)) + 1
)

(

cosh(2x0) + 1
)(

cosh(2x0(0))− 1
) (8b)

or numerically for 0 < γ < 1. Moreover, for any γ the sole fixed point x0 = 0 is stable,248

allowing to replace sgn x′
i(τ) = − sgn xi. From (7g) it is readily inferred that the only effect249

of γ is the speed wherewith the spike approaches equilibrium. What is less immediate is250

whether a change in γ incurs magnification or diminution of said speed. The magnitude of251

the right hand side of (7g) is below unity for any practical values of parameters, exclude252

for instance extremely small γ since lim
γ−→0+

f(p; γ) = ∞. Thereby x′
i(τ) will involve this253

quantity’s 1/γ > 1 power for any 0 < γ < 1. Bar a narrow region just below γ = 1 for p = 2,254

f(p; γ) is a descending function of γ (figure 3). Therefore the 1/γ > 1 power and growth of255

f(p; γ) are opposing influences, begetting the following behaviour: for a small increase in f ,256

i.e. γ slightly below unity, the spike will slow down somewhat, for more significant growth of257

f it will speed up, whilst for small γ its progress will again be delayed at the cross-over point258
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t×, this latter evolution occurring over a very narrow interval of γ. This is best exemplified 259

when f depends monotonically on γ, i.e. p > 2, although it is always correct. Figure 4 shows 260

a typical example of this phenomenon.

0 τ×
0

maxx′

0

τ

x
′ 0
(τ
)

Figure 4: Anomaly dependent acceleration and delay phenomenon during the drift of a single spike: velocity x′

0(τ) for a

transition scenario γ(t < t×) = γ1, γ(t > t×) = γ2 with γ1 = 1 and γ2 = 1 (dotted), γ2 = 1
2

(dash-dotted), γ2 = 0.0995
(dashed) and γ2 = 0.099 (solid). Note the non-monotonicity due to growth of f(p; γ) with diminution of γ counteracted by
the 1/γ power in equation (7g). Other parameters used: (p, q,m, s) = (3, 2, 2, 0), t× = 10, ǫ = 1

10
, x0(0) = − 1

2
. Qualitatively

similar results obtained with (p, q,m, s) = (2, 1, 2, 0), (2, 1, 3, 0), (4, 2, 2, 0).

261

With a single spike, or more generally any constellation with only one drift equation 262

(more examples to be discussed hereinafter), the anomaly dependent acceleration or delay 263

do not affect the trajectory traversed by the ith spike in the
(

xi, H
(0)
i

)

plane. The slow 264

time variable τ parametrises this trajectory, hence transitions between different values of γ 265

impact solely the velocity of the spike motion, as visualised in figure 5. In light of the above 266

a general conclusion follows that for this degenerate pattern additional transitions will not 267

result in worthy of investigation phenomena. 268

4.2. Pair of spikes 269

A well explored constellation is the symmetric pattern, where the premise of reflective sym- 270

metry x0 < 0, x1(τ) ≡ −x0(τ) entails equal heights H
(0)
0 (τ) ≡ H

(0)
1 (τ) (Iron et al., 2001; 271

Nec and Ward, 2012; Nec, 2016a). System (7) effectively reduces to one forthwith soluble 272
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non-linear equation and one ordinary differential equation, whose closed form solution for273

γ = 1 is very similar to (8) and omitted here. Illatively from the single spike case, this274

pattern is not interesting as regards transient phenomena due to variable anomaly indices,275

as the trajectories are invariant albeit the parameterisation differs. Therefore it behoves one276

to centre the attention on asymmetric arrangements, whereat system (7) comprises two pairs277

of coupled equations.278

The effect of varying anomaly index is better evident when initially the loci are positioned279

significantly away from the symmetric constellation. Figure 6 shows the trajectories of280

H
(0)
i (xi), i = {0, 1} for a scenario of five distinct anomaly indices. Note the non-monotonicity281

of the left spike’s height adjustment: with diminishing γ in the first two transitions the spike282

grows higher, then lower as γ decreases further at the third transition, followed by slight283

growth with γ returning to normal. The response of the right spike does not manifest obvious284

conforming evolution, as it is located farther from its equilibrium point, its motion centred on285

attainment thereof. In particular the left spike overshoots the equilibrium height for a spell to286

compensate for the right spike’s position. Indeed eventually the two spikes are similarly close287

to the respective equilibria (compare locations at trajectory ends), albeit never symmetric.288

Juxtaposition with the propagation without anomaly reveals a twofold impact: the left spike,289

initially situated near its equilibrium point, would have achieved the equilibrium height very290

slowly but for the transition, whilst the right spike would have been nowhere close to the291

equilibrium position or height within the same time frame. Thus the transition to anomaly292

might be a powerful mechanism to speed up the pattern’s equilibration.293

With a set of kinetic exponents corresponding to higher values of β, and thence a stronger294

non-linearity, it is also possible to obtain a trajectory that includes an excursion away from295

equilibrium before converging thereto. This occurs when the initial heights of the two spikes296

are on different sides of the equilibrium value. Nonetheless here too the equilibration is297

essentially faster with anomaly. Figure 7 depicts a situation of this ilk.298

4.3. Triple of spikes299

The symmetric arrangement
(

x0(τ), x1(τ), x2(τ)
)

≡
(

x0(τ), 0,−x0(τ)
)

again effectively re-300

duces system (7) to a single differential equation of the autonomous type, to wit no differences301

in trajectories
(

xi(τ), H
(0)
i (τ)

)

will ensue regardless of the parameterisation in τ . Thus, as302

before, only asymmetric constellations are of interest. Figure 8 gives a typical equilibration303

trajectory. Interesting phenomena to observe are earlier approach towards the equilibrium304

height H
(0)
eq for all three spikes with a transition to sub-diffusion, possible overshooting of305

H
(0)
eq whilst drift with regular diffusion begets no such occurrence (right spike x2), and fur-306

ther excursion from H
(0)
eq by comparison to the regular trajectory (central spike x1). Figure307

9 depicts the evolution for a combination of kinetic parameters that incur initial height on308

different sides of the equilibrium value H
(0)
eq . With this set of parameters, corresponding to309

a higher value of β, it is possible to obtain an overshooting of equilibrium by the normal310

trajectory, but not the anomalous one (left spike, x0), as well as a considerably delayed311

overshooting (right spike, x2).312



13

4.4. Quadruple of spikes 313

For any n > 3 a symmetric arrangement of either even

(

x0(τ), x1(τ), . . . xn/2−1(τ),−xn/2−1(τ) . . . ,−x1 − x0

)

or odd
(

x0(τ), x1(τ), . . . x(n−1)/2−1(τ), 0,−x(n−1)/2−1(τ) . . . ,−x1 − x0

)

number of spikes system (7) will require the solution of
⌊

n
2

⌋

non-linear equations for the 314

spike heights and an equal number of respective drift differential equations. In this sense 315

a pattern of four spikes is the first case, where a non-smooth trajectory
(

xi(τ), H
(0)
i (τ)

)

is 316

expected with a symmetric initial state. Figure 10 shows such an example. 317

With an asymmetric initial state similar phenomena are obtained as with n 6 3: con- 318

siderable excursions, faster occurring changes in spike height and marked non-monotonicity. 319

Rather consistently the spikes drift a larger distance than subject to an uninterrupted nor- 320

mal diffusion regime. A typical example is given in figure 11. In light of these observations 321

constellations of n > 4 are expected to introduce more variability within the available de- 322

grees of freedom, but reveal no qualitatively new phenomena. It is noteworthy that the 323

same set of kinetic exponents that for pairs and triples engendered less typical evolution, 324

with n = 4 failed to yield an equilibrated pattern (with initial conditions and all transition 325

parameters identical to other sets used). This occurrence was further investigated and is 326

discussed hereinafter. 327

Figure 12 illustrates the smoothness of phase plane trajectories for the same constellation 328

and initial conditions, but a discretised transition sequence approximating a smooth cross- 329

over in figure 1. From the result it is seen that a full solution would not produce tangibly 330

smoother curves, proving the soundness of the approximation procedure. The computation 331

was performed for all foregoing constellations with a similar aftermath. The particular 332

example shown was chosen due to well defined non-monotonicity in height evolution that 333

was nonetheless traced smoothly. 334

5. Existence of solutions 335

System (7) is valid as long as H
(0)
i > 0 ∀i and all xi are sufficiently far apart. Being a 336

reduction of the full partial differential system (2) on the slow time scale τ , (7) cannot track 337

behaviour that breaches the assumptions of quasi-equilibrium. 338

One such event of relevance here is a termination of a solution branch due to a bifurcation. 339

To the best of the author’s knowledge this occurrence has not been formally explored in the 340

algebraic-differential system associated with the spike solution in Gierer-Meinhardt model, 341

albeit it has been observed in numerical simulations (Tzou, 2016). A constellation following 342

a branch in the 2n-dimensional space
(

xi, H
(0)
i

)

, i = {0, . . . , n − 1} that terminates before 343

the equilibrium point is reached, will not be able to equilibrate. Only simulation of the 344

full partial differential system (2) can elucidate the shift to another solution branch and 345
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possible changes in the constellation, a study beyond the ambit of the current analysis.346

The existence of a bifurcation and concomitant termination of the trajectories in each of347

the planes
(

xi, H
(0)
i

)

is an inherent property of the reduced Gierer-Meinhardt system and348

not the result of sub-diffusion or transitions between distinct values of the anomaly index,349

however a bifurcation might induce an earlier termination in the presence of anomaly or350

beget unbounded growth. Typical examples appear hereunder, and no attempt is made to351

map the parameter space effecting a bifurcation.352

The first example is for a system with regular diffusion and no transitions, i.e. γ ≡ 1.353

Figure 13 shows the spike velocity x′
i(τ) and trajectories H

(0)
i (xi) for a quadruple of spikes.354

Whilst the velocity is finite, note that the slope at the terminus point τtrm becomes infinite, as355

does
d

dτ
H

(0)
i . Nevertheless x′

i(τ) remains finite, as this is not a singularity of (7g). One must356

bear in mind the terminus is indeed attained – the integration ceases because (7a) possesses357

no solution, in contrast to the equilibration itself with its exponentially or algebraically slow358

approach towards the fixed point, or a finite time blow up, where computation becomes359

impractical.360

If γ is moderately small, a constellation might reach a branch terminus, whilst with γ ≡ 1361

no bifurcation is encountered. An example of this is given in figure 14. This constellation362

is initialised identically to the one used in figure 11 with sets of kinetic exponents begetting363

no solution existence issues.364

An unimpeded growth of
∣

∣x′
i(τ)
∣

∣ might ensue for small values of γ, when the right hand365

side of (7g) exceeds unity in magnitude. Re-write the left hand side of (7g) as sgn x′
i

∣

∣x′
i

∣

∣

γ
,366

whence it is readily inferred that 1/γ begets a power growth. For instance, with the same set367

of parameters as in figure 14, if another cross-over moment is added anywhere in the range368

t×1 < t×2 < ttrm and γ3 < γ2, the solution grows beyond the computer’s handling ability369

within a few integration steps after the transition.370

6. Discussion371

The infinitesimally narrow spike solution, existing for the Gierer-Meinhardt model with372

both regular diffusion (γ = 1) and sub-diffusion (0 < γ < 1), persists when the index373

γ, traditionally a constant, is a piecewise constant function. To wit, the validity of the374

asymptotic spike pattern extends to the situation when the system undergoes transitions375

between regimes, whose mean square displacement evolution 〈r2(t)〉 ∼ tγ is characterised by376

distinct exponents. The number of transition points as well as their cross-over timings t×j377

and corresponding anomaly indices 0 < γj 6 1 are arbitrary.378

At each transition γj −→ γj+1 occurring at t×j, j = 1, 2, . . ., the drift velocity x′
i(τ) has a379

jump discontinuity, therefore the spike heightH
(0)
i (τ) and locus position xi(τ) are continuous,380

but not smooth. Generally the non-smoothness is retained in the plane
(

xi, H
(0)
i

)

, with381

the exception of trajectories H
(0)
i (xi) where τ is an arbitrary parameterisation variable, i.e.382

for those constellations that are effectively described by a sole non-linear equation for the383
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height and respective differential equation for locus drift, namely a single spike, a pair of 384

symmetric spikes, and a triple with central spike at equilibrium x1 ≡ 0 and outer spikes 385

moving symmetrically. Thence for n 6 3 only asymmetric initial states yield qualitatively 386

distinct trajectories for a sequence of transitions by comparison to a constant γ(t). For 387

n > 4 both symmetric and asymmetric initial states give non-smooth trajectories in the 388

locus position – spike height planes. Near the equilibrium points transitions occasion but 389

small differences in velocity, therefore often the non-smoothness is virtually indiscernible. 390

The manifold alterations in the trajectory form range from minor and quantitative to 391

qualitatively novel behaviour. Depending on the specific parameters chosen, a pattern might 392

equilibrate significantly faster than with a single fixed anomaly index, be it normal or sub- 393

diffusive; the spikes might drift a larger distance in the process; the spike height might reach a 394

local maximum or minimum that would not have been attained without a series of transitions. 395

Recollecting that the spike height conforms to reactant concentration in the original chemical 396

model, these results bear on recent experimentally documented concepts related to reactions 397

within such complex biological media as cell membranes, organelles and nuclei. The most 398

prominent aftermath of permitting the conventionally constant anomaly index to vary in 399

time is the instantaneous adjustment of the spike’s velocity. This behaviour qualitatively 400

corresponds to a number of scenarios. One is a concatenation of events, when a cascade 401

of consecutive periods of molecule diffusion and subsequent reactions trigger each other in 402

turn, each with its own physical characteristics due to the locality of each drifting cluster and 403

ligands. When out of a set of identical diffusing molecules a sufficient number is bound at the 404

target, the concentration of that reactant diminishes, signalling the next reaction in the chain 405

and possible slowing down of the initial diffusion. Another is that docking of the designated 406

molecules will trigger a fast removal of the remaining reactant, thereby requiring a significant 407

acceleration of their spatial propagation. Yet another is diffusion through distinct media, like 408

penetration in and out of a nucleus or a cell or within such systems as the lymphatic vessels 409

and nodes, where multifarious stages can be characterised by different anomaly indices. 410

The findings presented are based on an asymptotic reduction of a system of partial 411

differential equations of a fractional order. Ideally it is desirable to obtain a numerical 412

verification in those parts of the parameter space, where the asymptotic solution is valid. 413

Numerical solution of partial fractional differential equations is notoriously difficult and 414

often defies conventional concepts of numerical analysis as regards consistence, accuracy and 415

stability of schemes (Meerschaert and Tadjeran, 2004). Here the challenge due to the kernel 416

singularity of (2e) is further compounded by an increase in the spike width with diminishing 417

γ, whereby the interval of feasible values of ǫ is narrower than the concomitant expected for 418

normal diffusion and integer order equations. Development of a suitable numerical scheme 419

is an enduring problem and topic of future research. All past successful schemes resorted 420

to a regularisation of the fractional operator, a course of action impossible here, given that 421

the operator is needed in its current form for the spike pattern to exist as well as certain 422

spectral properties to be retained. 423

The Gierer-Meinhardt system is a paradigmatic model, representing no particular natural 424

application, but capable of reconstructing general observable phenomena. Whist having once 425
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more proved a powerful pattern forming tool, the limitation of the solution obtained here is in426

the requirement that the anomaly index remain constant between any two transition points.427

Whilst a formally continuous variation of γ might be a curious topic for future research,428

the posed theory was shown to yield evolution trajectories appearing visibly smooth when a429

smooth function γ(t) was discretised into a sequence of step-like segments. The limitations430

on the validity of the presented asymptotic solution are not burdensome, therefore such431

discretisation is feasible for most reasonably behaved γ(t). Moreover, the method itself is432

generic and might be easily adapted to unrelated dynamical systems, as long as an asymptotic433

solution with fixed scales is available. The degree of smoothness in the solution will depend434

on the particular system at hand. It is furthermore conjectured that for γ(t) of an abrupt,435

yet continuous variation, for instance an inner layer as in (6) with ε ≪ 1, away from the436

transition core the solution obtained herein will faithfully capture the dynamics, whilst in437

the vicinity thereof some delay in adjustment of the spike velocity will ensue, depending438

on the specific dependence of γ(t). Perhaps an asymptotic solution might be furnished for439

certain forms of γ(t) based on an independent small parameter describing the abruptness of440

transition. With an unrestricted variation, i.e. γ(t) such that no regions can be approximated441

by a constant, a disparate method of solution will be required, as the current asymptotic442

approach becomes unfeasible.443

The Gierer-Meinhardt system is further amenable to a generalisation involving a frac-444

tional Laplacian (spatial fractional derivative), thereby admitting solutions of spikes that445

propagate according to Lévy flights, a type of super-diffusion (Nec, 2012). Extension of the446

current analysis to include transitions between Lévy flights with distinct anomaly indices as447

well as between sub-diffusive to super-diffusive regimes is another future problem.448
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Figure 5: Trajectory parameterisation example for a single spike and transition scenario γ(t < t×) = 1, γ(t > t×) = 1
5

(solid curves) and drift with no transition, γ ≡ 1 (dotted curves): locus position x0(τ) (upper left panel), H
(0)
0 (τ) (upper

right panel) and H
(0)
0 (x0) (bottom panel). Diamonds mark the cross-over moment τ× = t×ǫγ(t)+1 on all panels. Circle

marks the end of the indistinguishable dotted curve on the bottom panel: from the upper panels it is obvious that the spike
speeds up upon transition, therefore the solid trajectory (with transition) extends further than the dotted one (no transition).
Other parameters used: (p, q,m, s) = (3, 2, 2, 0), t× = 50, ǫ = 1

10
, x0(0) = − 3

4
. Qualitatively similar results obtained with

(p, q,m, s) = (2, 1, 2, 0), (2, 1, 3, 0), (4, 2, 2, 0).
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Figure 6: Trajectory parameterisation example for a pair of spikes and transition scenario of five intervals characterised by

γ =
{

1, 1
4
, 3
20

, 1
10

, 1
}

with cross-over moments t× = {1, 2, 6, 8}. Initial position is
(

x0, x1

)

=
(

− 2
5
, 1
10

)

. Equilibrium position

is
(

x0, x1

)

=
(

− 1
2
, 1
2

)

. Equilibrium height, equal for both spikes, is marked by the dashed line. Dotted lines show the

trajectory for γ ≡ 1 (in upper panel continuing beyond the frame given). Diamonds mark the cross-over moments t×j . Other

parameters used: (p, q,m, s) = (3, 2, 2, 0), ǫ = 1
10

. Qualitatively similar results obtained with (p, q,m, s) = (2, 1, 2, 0), (4, 2, 2, 0).
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Figure 7: Example of non-monotonic equilibration for a pair of spikes with transition scenario of five intervals characterised by

γ =
{

1, 1
4
, 3
20

, 1
10

, 1
}

with cross-over moments t× = {1, 2, 6, 8}: left spike exhibits trajectory excursion away from equilibrium

prior to convergence (upper panel, height peak vicinity enlarged in central panel), right spike’s response is monotonic (lower

panel). Initial position is
(

x0, x1

)

=
(

− 2
5
, 1
10

)

. Equilibrium position is
(

x0, x1

)

=
(

− 1
2
, 1
2

)

. Equilibrium height, equal

for both spikes, is marked by the dashed line (observe left spike begins above equilibrium height, whilst right spike is below).
Dotted lines show the trajectory for γ ≡ 1 (in upper and central panels continuing beyond the frame given). Diamonds mark
the cross-over moments t×j . Other parameters used: (p, q,m, s) = (2, 1, 3, 0), ǫ = 1

10
.
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Figure 8: Trajectory parameterisation example for a triple of spikes and transition scenario of five intervals characterised by

γ =
{

1, 1
4
, 3
20

, 1
10

, 1
}

with cross-over moments t× = {1, 2, 6, 25}. Initial position is
(

x0, x1, x2

)

=
(

− 3
5
, 1
10

, 3
10

)

. Equilibrium

position is
(

x0, x1, x2

)

=
(

− 2
3
, 0, 2

3

)

. Equilibrium height, equal for all spikes, is marked by the dashed line. Dotted lines show

the trajectory for γ ≡ 1. Diamonds mark the cross-over moments t×j . Other parameters used: (p, q,m, s) = (3, 2, 2, 0), ǫ = 1
10

.

Qualitatively similar results obtained with (p, q,m, s) = (2, 1, 2, 0), (4, 2, 2, 0).



25

x0(t×1)x0(t×4)

H
(0)
0 (t×1)

H
(0)
eq

x0

H
(0

)
0

x1(t×1)x1(t×4)

H
(0)
eq

maxH
(0)
1

x1

H
(0

)
1



26

x2(t×1) x2(t×4)

H
(0)
2 (t×1)

H
(0)
eq

maxH
(0)
2

x2

H
(0

)
2

Figure 9: Trajectory parameterisation example for a triple of spikes and transition scenario of five intervals characterised by

γ =
{

1, 1
4
, 3
20

, 1
10

, 1
}

with cross-over moments t× = {1, 2, 6, 25}. Initial position is
(

x0, x1, x2

)

=
(

− 3
5
, 1
10

, 3
10

)

. Equilibrium

position is
(

x0, x1, x2

)

=
(

− 2
3
, 0, 2

3

)

. Equilibrium height, equal for all spikes, is marked by the dashed line. Dotted lines show

the trajectory for γ ≡ 1. Diamonds mark the cross-over moments t×j . Other parameters used: (p, q,m, s) = (2, 1, 3, 0), ǫ = 1
10

.
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Figure 10: Trajectory parameterisation example for a symmetric quadruple of spikes and transition scenario of five intervals

characterised by γ =
{

1, 1
4
, 3
20

, 1
10

, 1
}

with cross-over moments t× = {8, 10, 20, 30}. Initial position is
(

x0, x1

)

=
(

− 19
20

,− 3
4

)

.

Equilibrium position is
(

x0, x1

)

=
(

− 3
4
,− 1

4

)

. The two rightmost spikes satisfy x2(τ) ≡ −x1(τ), H
(0)
2 (τ) ≡ H

(0)
1 (τ),

x3(τ) ≡ −x0(τ), H
(0)
3 (τ) ≡ H

(0)
0 (τ). Equilibrium height, equal for all spikes, is marked by the dashed line. Dotted lines show

the trajectory for γ ≡ 1. Diamonds mark the cross-over moments t×j . Other parameters used: (p, q,m, s) = (3, 2, 2, 0), ǫ = 1
10

.

Qualitatively similar results obtained with (p, q,m, s) = (2, 1, 2, 0), (2, 1, 3, 0), (4, 2, 2, 0).
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Figure 11: Trajectory parameterisation example for a quadruple of spikes and transition scenario of five intervals characterised

by γ =
{

1, 1
4
, 3
20

, 1
10

, 1
}

with cross-over moments t× = {1, 2, 6, 8}. Initial position is
(

x0, x1, x2, x3

)

=
(

− 19
20

,− 1
2
, 3
5
, 9
10

)

.

Equilibrium position is
(

x0, x1, x2, x3

)

=
(

− 3
4
,− 1

4
, 1
4
, 3
4

)

. Equilibrium height, equal for all spikes, is marked by the dashed

line. Dotted lines show the trajectory for γ ≡ 1. Diamonds mark the cross-over moments t×j . Other parameters used:

(p, q,m, s) = (3, 2, 2, 0), ǫ = 1
10

. Qualitatively similar results obtained with (p, q,m, s) = (2, 1, 2, 0), (4, 2, 2, 0). With the set
(p, q,m, s) = (2, 1, 3, 0) the pattern failed to equilibrate.
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Figure 12: Trajectory parameterisation example for a quadruple of spikes and inner layer transition scenario (figure 1) with

γ0 =
3

4
, γ1 =

3

20
and ε = 5 in (6). Initial position is

(

x0, x1, x2, x3

)

=
(

− 19
20

,− 1
2
, 3
5
, 9
10

)

. Equilibrium position is
(

x0, x1, x2, x3

)

=
(

− 3
4
,− 1

4
, 1
4
, 3
4

)

. Diamonds mark the cross-over moments t×j . Other parameters used: (p, q,m, s) =

(3, 2, 2, 0), ǫ = 1
10

. Qualitatively similar results obtained with (p, q,m, s) = (2, 1, 2, 0), (4, 2, 2, 0).
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Figure 13: Example of trajectory termination due to a bifurcation for a quadruple of spikes with γ ≡ 1. Top panel: velocity
x′

i(τ), i = 0 (leftmost spike, solid curve), i = 1 (left central spike, dashed curve), i = 2 (right central spike, dash-dotted

curve) and i = 3 (rightmost spike, dotted curve). Bottom panel: H
(0)
i

(xi) for the left spikes, i = {0, 1}, and H
(0)
i

(−xi) for
the right ones, i = {2, 3}. Diamonds mark trajectory termini. Curve line styles are identical to top panel. Initial position is
(

x0, x1, x2, x3

)

=
(

− 19
20

,− 1
2
, 3
5
, 9
10

)

. Equilibrium position
(

x0, x1, x2, x3

)

=
(

− 3
4
,− 1

4
, 1
4
, 3
4

)

is never reached, the terminus

point τtrm characterised by infinite slope of x′

i(τ). Other parameters used: (p, q,m, s) = (3, 3, 3, 0), ǫ = 1
10

.
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Figure 14: Example of trajectory termination due to a bifurcation for a quadruple of spikes with γ =
{

1, 1
4

}

and cross-over

moment t× = 1. Top: velocity x′

i(τ). Solid curves: i = 0 (leftmost spike), i = 1 (left central spike), i = 2 (right central spike)

and i = 3 (rightmost spike). Dotted curves show the same evolution for γ ≡ 1. Bottom: respective H
(0)
i

(xi). Diamonds mark

trajectory termini. Crosses mark the cross-over moment. Initial position is
(

x0, x1, x2, x3

)

=
(

− 19
20

,− 1
2
, 3
5
, 9
10

)

. Equilibrium

position
(

x0, x1, x2, x3

)

=
(

− 3
4
,− 1

4
, 1
4
, 3
4

)

is never reached, the terminus point τtrm characterised by infinite slope of x′

i(τ)

for the the left pair of spikes, x′

i(τtrm) = 0 for the right pair. Other parameters used: (p, q,m, s) = (2, 1, 3, 0), ǫ = 1
10

.


