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Highlights

† Landfill gas flow presents unique, but little explored regime and geometry.

† This study identifies the significance of medium parameters over fluid properties.

† In contrast to many applications gravity is shown to be non-negligible.

† Well radius of influence and optimal well spacing are determined.

† New accessible method is given to compute pressure, flux and radius of influence.

Abstract

Landfills form an important link in the chain of waste management. Sound engineering design and

effective gas collection can only be attained via a thorough understanding of flow in different parts of

the landfill. This study addresses gas flow induced by perforated horizontal wells commonly used for

landfill gas collection. Planar flow through a porous medium of varying properties is solved numerically,

yielding a twofold insight: quantitative deviations establish the validity and limitations of theoretical

models, whilst qualitative comparison illustrates the impact of various flow parameters. It is found

that an accurate modelling of geometry and medium resistance is essential in determination of a correct

pressure distribution that can then be used to optimise gas collection. Gravity, an often overlooked

effect, is shown to be non-negligible. The error source and bounds are given and explained for different

landfill configurations. By contrast, temperature is of a lesser importance by an order of magnitude,

implying that comprehensive spatial modelling of the exothermal reactions generating the gas as well

as temperature dependent fluid properties such as viscosity are of a secondary interest. The well radius

of influence, i.e. the maximal collection distance, is a fundamental design parameter impacting the

interchange of fluid with the atmosphere. The numerical solution permits to obtain optimal values for

effective collection and minimise flux between the landfill and atmosphere. Based upon a comprehensive

numerical simulation an analytical approximation is suggested as an accessible design tool. The formula

enables the computation of pressure profiles within the landfill and involves a minimal number of required

input parameters. The surface flux and radius of influence can also be determined thereby.

1 Introduction

Landfills give rise to a unique and little explored flow regime. The system is quite complex for several reasons.
One, it combines flow fields of disparate characteristics: within the various landfill layers the flow is hindered
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Figure 1: Flow geometry schematic, side view: perforated pipe imbedded within laminae of distinct per-
meability: gravel pack PA, waste stratum AB and cover layer BS. Dashed lines mark contiguity surfaces.
Solid line S is the surface. Subscripts P ,A,B,S are used throughout to refer to quantities at these surfaces.
Subscript X denotes the outermost surface, i.e. B in the absence of a cover and S in presence thereof.
Dotted lines mark planes aligned with perforated pipe cross-sections (cross-section geometry shown in figure
2). Arrows mark general direction of flow. Dimensions not to scale. Reproduced for convenience from [16].
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Figure 2: Flow geometry schematic, cross-section for various mixed domains: pipe (thin solid circle), gravel
pack (thin grey circle), waste stratum (thick black curves) and cover layer (thick grey curves). Dashed lines
mark surface planes in the presence (S) and absence (B) of a cover layer. Dimensions not to scale.
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similarly to a porous or fractured medium, whereas within the collecting pipes it is unobstructed. The fluid
comprises gas as well as leachate, a liquid. Although early on an attempt was made to model a multi-phase
flow [3], leachate flow is more often analysed separately, cf. [1, 19] and references therein. Two, a single
landfill cell comprises several layers of distinct permeability, some acting as a filter and not generating. At
times multiple cells are involved [5]. Three, within the waste stratum the medium parameters are uncertain
and highly variable, depending on the type of waste at each locality. This was confirmed in numerous
measurements [22, 14, 10], studies of mechanical properties [18, 15] as well as empirical permeability models
[2, 21], all emphasising to a degree that availability of field data on medium properties would pose a limitation
on accurate predictions. Amongst the more computationally intensive studies are some using neural network
optimisation [13], graph theory [11] and closed commercial solvers [8, 12].

Scarcely few studies have developed analytical models for landfill gas collection as a fluid flow field.
Axisymmetric equations for extraction by vertical [23, 5] as well as horizontal [6, 16] wells have been solved
for certain combinations of boundary conditions. In all foregoing works gravity is neglected. In fact to
date no studies considering gas flow have taken gravity into account. The flow velocities within the landfill
are small, potentially rendering gravity non-negligible in the balance of vertical momentum. Substantial
evidence thereof was given in [16] by inclusion of a gravel pack – a thin non-generating filter layer around
the well – and revelation that most of the imposed pressure gradient dissipated over that layer, when its
permeability was lower than that of the waste.1 The purpose of the current contribution is to combine an
analytical approach and numerical simulation in order to extend the theoretical solution in [16] and explore
more realistic and useful models. In particular the study reveals a local approximation that will be relatively
simple to use in the field to estimate flux through boundaries of a landfill of any shape both in design and
functional phases.

To attain the ends above the partial differential equations governing the landfill gas flow field are solved
numerically. Simple cases are verified via exact solutions, including a completely new one in elliptic coor-
dinates. The full numerical solution is used to analyse a gravity inclusive problem with no axial symmetry
assumption.

Figure 1 depicts the geometry in question: a horizontal pipe with perforated cross-sections is supported
by a gravel pack within a waste stratum, where landfill gas is generated. The extraction might be dynamic
or passive with sub-atmospheric and atmospheric pressure at the pipe outlet respectively. A simplifying
assumption of axisymmetric geometry and flow resulted in a viable leading order solution that recreated
several interesting control related phenomena encountered in the field [16]. It was shown that the flow
within each perforated cross-section might be deemed planar. This conclusion is called upon here in order
to quantify the soundness of the axial symmetry assumption along two distinct lines of inquiry – domain
shape and inclusion of gravity – and establish their influence on the flow field.

A realistic landfill cell cross-section is not circular. Whilst taking the gravel pack as circular is fairly
accurate, the waste stratum’s width often significantly exceeds its depth. The assumption of axial symmetry
entails two artefacts. One, the cover, if present, circumscribes the landfill instead of being a surface layer
only. And two, the depth of the landfill, being the smaller of the two dimensions, uniquely determines the
radius where a boundary condition can be prescribed. Thus the formal solution cannot capture the flow field
faithfully in the lateral regions containing the main bulk of waste. To address these problems elliptic and
rectangular domains are examined. An elliptic domain rectifies the radial limitation by introducing separate
horizontal and vertical axes lengths, whilst retaining a certain affinity to the circle. A rectangle represents real
landfills perhaps the most closely, allowing for distinct lateral length and depth parameters, as well as a cover
that is a surface layer only. Figure 2 depicts the relation between all aforementioned domains. Hereinafter a
radial solution will denote a setting with full axial symmetry, whereas mixed elliptic or rectangular geometry
will refer to a circular gravel pack and elliptic / rectangular outer boundaries respectively (tangent ellipses
for three laminae). An elliptic solution will appertain solely to the problem in elliptic coordinates.

1That situation is particularly applicable to demolition waste, highly non-uniform in fragment size and loosely compacted.
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The steady state equations governing the flow of gas through interconnected pore spaces are (cf. [7, 20])

∇ ⋅ (ρu) = C, u = −k
µ
(∇p − ρg) in Ω, (1a)

where p and ρ are the gas pressure and density, related through the state equation for ideal gas p = ρRT with
R and T being the gas constant and temperature respectively. u and µ are the fluid velocity and viscosity,
C is the generation rate per unit volume and k represents an effective medium permeability:

k = φ3r2?

18τ(1 − φ)2 , (1b)

where 0 < φ < 1, τ and r? denote porosity, tortuosity and the radius of an equivalent spherical particle
respectively [4, 17]. g is the gravity vector. The domain Ω has the pipe as its inner boundary (thin black
circle in figure 2) and any one of the thick grey or black curves as the outer boundary. Thus there are
either two (cover absent) or three (cover present) sub-domains with gas generated in the second one. The
boundary condition on the pipe is p(∂ΩP) = pP , a constant associated with the suction imposed. The
boundary condition on the outer circumference is either prescribed pressure p(∂ΩX ) = pX (Dirichlet type),
where pX is the hydrostatic pressure distribution in the presence of gravity or a constant in the absence

thereof, or no flux u ⋅ n̂ ∣
∂ΩX

= 0 (Neumann type), where n̂ is the outward normal. To effect a proper

comparison between elliptic and rectangular domains a condition of only one type is allowed on ∂ΩX . On
curves of contiguity between sub-domains continuity of p and u is imposed. The permeability k is deemed
an effective quantity. As pointed out in [21], spatially distributed measurements over prolonged periods of
time would be essential for accurate predictions, whilst remaining quite impractical since waste degradation,
settlement and changes in the landfill configuration would soon nullify the modelling. The waste anisotropy
is an inherent property, generally unpredictable and virtually impossible to quantify. Therefore intricate
modelling as a porous or fractured medium in one setting does not appear to be applicable elsewhere. By
contrast, an effective permeability enables qualitative analysis for design as well as functionality monitoring
purposes2. For instance, modelling leachate flow is outside of this study’s scope, however where leachate
is recycled to percolate through the landfill or known to drain poorly, the overall medium permeability
can be reduced accordingly. To isolate the impact of distinct physical phenomena, the effects of geometry
and gravity were studied with the permeability held constant for each sub-domain. A linear variation of
permeability with depth due to consolidation and degradation was also investigated.

2 Numerical solution

The FlexPDE solver [24] was used to obtain a finite element solution with an unstructured triangular,
dynamically refined mesh to observe a prescribed relative error in p (non-dimensional) of ε = 10−5. Solutions
for ε = 10−3 were found to coincide at least up to 11 significant figures, confirming adequate convergence of
the numerical scheme.

The numerical simulation was first completed in two cases, where exact solutions were available: radial
flow in polar coordinates [16] and separation of variables solution in elliptic coordinates (appendix B). The
magnitude of the deviation between numerically obtained and exact solutions (normalised by patm) was at
most O(10−7). In addition to confirming script correctness and numerical scheme accuracy, these were useful
for qualitative analysis in domains combining circular inner and elliptic outer boundaries. In particular the
radial and elliptic solutions feasibly reconstruct the pressure profiles on and in the vicinity of vertical and
horizontal rays respectively. It stands to reason the radial solution will be a good approximation within
its region of validity, because the axial geometry properly reconstructs the domain centre. The solution
in elliptic coordinates requires the focal length as an arbitrary system parameter, somewhat distorting the

2The permeability k can be estimated via (1b) or from handbook values published for different materials, as obtained with
basic measurements by Darcy’s law, the second formula in (1a).
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Figure 3: Pressure distribution (non-dimensional) for Dirichlet boundary condition: comparison of the
numerical solution in mixed elliptic domains (solid) with exact solutions in radial (dashed) and elliptic
(dotted) coordinates on horizontal (black) and vertical (grey) rays. Domain: two laminae (left) and three
laminae (right). Lateral extent: ℓX = 2rX (top) and ℓX = 3rX (bottom). No gravity. All other parameters
listed in appendix A.

well’s vicinity. Further mathematical detail is given in appendix B. A typical pressure field is compared in
figure 3 for Dirichlet boundary conditions and four geometric settings: lateral extent of double and triple
the landfill depth for two (cover absent) and three (cover present) sub-domains. The discrepancies between
vertical and horizontal profiles render the significance of domain asymmetry obvious. Hereinafter this is
investigated with respect to various physical parameters.

The nominal values of all geometric and physical parameters are listed in appendix A and are typical to
landfills of medium size, yielding robust results, i.e. deviations in these values entail no qualitative change
in the solution.

2.1 Medium and fluid properties

The medium permeability k holds the salient responsibility for the resistance to fluid flow. By (1b) it depends
on three underlying parameters. Since infinitely many combinations thereof result in the same value of k,
the tortuosity τ is chosen to illustrate all impact due to the simplicity of its mathematical function: a
proportional modification of all sub-domains’ permeabilities if φ and r? remain fixed. The feasible range of
τ is 100 ⪅ τ ⪅ 1000. Figure 4 compares radial pressure profiles with those obtained for a mixed elliptic domain
of increasing horizontal axis ℓX . For the boundary condition p(∂ΩX ) = pX juxtaposition of profiles along
vertical and horizontal rays shows that all curves corresponding to a fixed value of τ are in good agreement
with the radial solution in rP < r < rX . For the lower value of τ the profiles conforming to different ℓX
coincide over their common range. The higher value of τ gives a bound of 1-2% to the possible discrepancy
of pressure values predicted. However, observe that this deviation corresponds to 1/4 − 1/2 of the pressure
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Figure 4: Pressure distribution (non-dimensional): impact of τ for two (top) and three (bottom) laminae.
Boundary conditions: Dirichlet (left) and Neumann (right). Values of tortuosity: τ = 100 (thin curves),
τ = 1000 (thick curves). Rays: horizontal (black) and vertical (grey), coinciding for the radial case. Lateral
extent: ℓX = rX (dotted), ℓX = 2rX (dashed), ℓX = 3rX (solid). No gravity. All other parameters listed in
appendix A.

drop pX − pP (compare to the ordinate range), and thus in fact is not small. By contrast, the boundary
condition of no flux results in a significant span of pressure values for low and high values of τ even relative
to patm.

Figure 5 shows the effect of temperature and lends itself to a similar qualitative inference, albeit with
respective deviations an order of magnitude smaller.

2.2 Inclusion of gravity

By (1a) gravity assists gas collection above the pipe centre and partly counteracts the imposed pressure
gradient beneath it. This asymmetry is more significant if the flow is quite slow, occurring when ka < kb,
i.e. most of the suction is dissipated over the relatively thin gravel layer. With the introduction of gravity
the boundary conditions must be made consistent with the expected asymmetry and type of flow. For that
purpose the symmetric Dirichlet condition on the outer boundary was amended to read (y = 0 at the pipe
centre)

p(∂ΩX ) = pX exp(g(rX − y)
RT

) , (2a)

p(∂ΩP) = pP exp(− gy

RT
) , (2b)

i.e. conform to the hydrostatic distribution of pressure in an ideal gas. Because the pipe radius is small
relative to the landfill depth, i.e. rP ≪ rX , the inner condition is for all practical purposes equivalent to
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Figure 5: Impact of temperature: T = 15oC (thin curves), T = 215oC (thick curves). Graphics and flow
conditions as in figure 4.

p(∂ΩP) = pP .
Figure 6 gives the pressure profiles along horizontal and vertical rays with and without gravity for the

mixed elliptic domain with ℓX = rX . With a Dirichlet condition (left panels) using realistic values in (2)
gives a measurable difference on the order of magnitude of 0.25kPa between the uppermost and lowermost
surfaces of the landfill, or equivalently 5 − 10% if related to the surface to well head loss of 3.75kPa. The
difference at the end of a horizontal ray is visible and as expected about 1/2 of the above. With a Neumann
condition the surface to well head loss is ≈ 1kPa with a similar gravity induced difference, amounting to
20− 25%. These observations are independent of the domain’s lateral extent, as confirmed for ℓX = 2rX and
ℓX = 3rX (not shown).

Figure 6 allows for qualitative inferences as well. Each panel contains six curves, one pair representing the
pressure profiles along the vertical ray below the pipe (grey, r < 0), one similar pair above it (grey, r > 0) and
one pair depicting the variation along the horizontal ray (black, r > 0). On the top left panel the geometry
is radial, therefore the vertical and horizontal profiles without gravity must coincide. Furthermore, the
vertical profiles for r > 0 are indistinguishable, since the boundary conditions at the uppermost points of the
landfill and pipe are identical with and without gravity. On the bottom left panel there also is no distinction
between the two vertical profiles (they do not coincide with the horizontal one due to the presence of a
cover layer). In light of the above two conclusions follow. One, the radial solution reproduces the pressure
distribution faithfully within r < rX for domains of distorted shapes. And two, for the purpose of surface
flux computation without a cover or with a partly permeable cover the gravity is not a material effect, since
its impact is mainly felt in the lower part of the landfill.
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Figure 6: Pressure distribution (non-dimensional) with (thick curves) and without (thin curves) gravity on
horizontal (black) and vertical (grey) rays. Domain: radial without cover (top) and mixed elliptic with cover
(bottom). Boundary conditions: Dirichlet (left) and Neumann (right). Some curves coincide (see text),
dominant line style shown. Lateral extent: ℓX = rX . All other parameters listed in appendix A.

2.3 Varying permeability

Although it is accepted the permeability of the waste stratum decreases with depth due to consolidation
and degradation of the medium, little is known on the diminution rate. Therefore a linear variation of k
was studied for a rectangular domain. The permeability at y = rB (top of waste layer) was set to equal kB,
the typical value used in all foregoing computations (equation (1b) and appendix A). The value at y = −rB
(landfill bottom) was set to fkB with the factor 10−1 ⩽ f ⩽ 10−4. Thus

kAB(y) = kB⎛⎝(1 − f) y − rB2rB
+ 1⎞⎠. (3)

Figure 7 compares the corresponding pressure profiles with those obtained for the mean value kB/2. The
asymmetry of the grey curves engendered by (3) is obvious next to the symmetric black ones. The differences
are most noticeable near the bottom of the landfill, where the disparity between the very low permeability
by (3) and the mean value is greatest.

3 Surface flux

One of the quantities of interest in this problem is the flux of gas across the surface plane S or B. For a
lateral extent ℓX

ṁs = −
ℓX

∫
−ℓX

k

µ
ρ(∂p

∂y
+ ρg)dx. (4)
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Figure 7: Pressure (non-dimensional) along vertical sections of a rectangular domain with Dirichlet boundary
condition: permeability linearly diminishing with depth in the waste stratum (grey, equation(3) with f =
0.001) and concomitant mean constant permeability (black). Section locations corresponding to pairs of
black and grey curves from bottom to top on each panel: x = rP , x = 5rP , x = 10rP , x = 1

4
(rP + ℓX ),

x = 1

2
(rP + ℓX ), x = 3

4
(rP + ℓX ). Domain: two laminae (left) and three laminae (right). Lateral extent:

ℓX = rX (top) and ℓX = 2rX (bottom). No gravity. All other parameters listed in appendix A.

In particular it is desired to determine which gas crosses the surface: landfill gas escapes when the vacuum
is insufficient, with an obvious adverse environmental impact, or air is drawn into the landfill if the suction
is too strong, decimating the population of anaerobic bacteria responsible for waste degradation. Thus it
is important to find the optimal sub-atmospheric pressure to be imposed at the pipe boundary so as to
minimise the flux. When the flux function is available, an illative quantity is the radius of influence, defined
as the maximal lateral extent where the well collects gas.

The first attempt to analyse the surface flux was done in [16], explaining mainly the variation along the
well’s length. The radial solution was analytically extended to obtain the flux at the surface, to wit outside of
the formal solution domain. Whilst successfully identifying the location of higher pressure gradients and flux,
this approach permitted only an approximate prediction of the radius of influence: the flux as a function
of horizontal distance from the pipe centre possessed no root, instead descending asymptotically to zero,
thereby preventing a definitive estimate. Thence it was possible to define a cut-off point of a very small
normal velocity that could be deemed zero for all practical purposes, and thus obtain the radius of influence.
A conceptually disappointing feature in that study was the necessity to prescribe the cut-off point, a decision
involving judgement and engineering experience. Moreover, the correctness of the threshold choice depends
on the characteristic velocity in the landfill that varies with medium permeability.

Here the full numerical simulation rectifies the aforementioned drawback by using a mixed rectangular
domain, so that the flux surface of interest coincides with the uppermost boundary (figure 2). As a con-
sequence the flux function possesses a simple root, entailing an unambiguous identification of the radius of
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Figure 8: Surface flux with (dotted) and without (solid) gravity normalised by total generated mass in one
longitudinal landfill segment C∆. Lateral extent: ℓX = rX , 2rX , 3rX . Domain: mixed rectangular with no
cover (top left), asymmetric cover (top right) and symmetric cover (bottom left). Bottom right panel shows
respective differences between the last two. Dashed lines mark the change of sign, i.e. ṁs = 0, the intercepts
with the curves giving the corresponding radii of influence. All other parameters listed in appendix A.

influence. Figure 8 depicts typical flux variation as a function of horizontal distance for domains of aspect
ratio 1 ⩽ ℓX /rX ⩽ 3. The impact of gravity is small and affects only the column of fluid immediately above
the pipe centre. An interesting effect is that the radius of influence does not increase monotonically with the
domain’s lateral extent. Figure 9 shows this dependence for a landfill without cover and with an asymmetric
cover, the two realistic situations. In both cases for domains of low aspect ratio (ℓX /rX ⪅ 2 here, generally
depending on the suction imposed on the pipe boundary) the radius of influence equals the lateral extent
of the domain, i.e. the suction suffices to collect gas throughout the landfill. As the aspect ratio increases,
the radius of influence reaches a maximum and then slowly diminishes, approaching an asymptotic value.
The maximum corresponds to a critical lateral extent, where the side boundaries assist in gas collection by
preventing outward flow. As the horizontal dimension increases further, the effect dissipates, giving the true
radius of influence as an asymptotic value that depends on the sub-atmospheric pressure pP alone.

4 Local approximation via radial solution

Hitherto evidence has been presented of the quantitative inadequacy of the radial solution as a global
approximation: when the outer boundary of the domain is no longer circular, the radial solution cannot be
expected to capture the pressure field accurately, since the boundary condition is given at a non-uniform
distance from the pipe centre. This comprehension leads to the question whether the radial solution is useful
in a local approximation. Figure 10 illustrates the difference between the numerical and radial solutions on
a set of rays from the pipe centre to the outer boundary. On each ray the radial solution is calculated based
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Figure 9: Radius of influence versus lateral extent for mixed rectangular domains with a top cover (solid,(r∗, r(∗)max) marks critical lateral extent and radius of influence) and no cover (dashed, (r†, r(†)max) marks

respective critical lengths). All other parameters listed in appendix A.

on the actual boundary distance. It is seen that for both mixed elliptic and rectangular domains the error is
quite small, well under 1%. The maximal error is obtained on the longest ray, i.e. horizontal for an ellipse
and corner ray for a rectangle, deep within the waste layer. In particular near the boundary itself the error
is extremely small and thereon identically zero, implying that surface flux can be reasonably approximated
by a simple numerical integration, not requiring a finite element solution.

Note that (4) includes gravity. Omitting this term might significantly impact the result, since ρg is on

the order of magnitude of 10, whilst ∣∂p
∂y
∣ is not very large. Formula (4) needs to be adjusted to the domain

at hand. The radial solution reads [16]

p =
√

a ln r + b − µ

2k
RTCr2 , (5a)

where a and b are constants depending on boundary conditions and the number of layers in the landfill.
Closed form expressions for common situations are given in [16]. The concomitant radial velocity is

ur = −k
µ

dp

dr
= − k

2µp

⎛⎝ar − µ

k
RTCr

⎞⎠, (5b)

where k and C are the permeability and generation rate of the relevant landfill layer. To compute the flux
for a symmetric rectangle, for instance, evaluate

ṁs = −2
ℓX

∫
0

k

µ

p

RT

⎛⎝ur cosϑ + pg

RT

⎞⎠dx, (6)
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Figure 10: Pressure difference (non-dimensional) between full numerical and ray-specific radial solutions for
two laminae mixed elliptic (top) and rectangular (bottom) domains of lateral extent ℓX = 2rX (left) and
ℓX = 3rX (right) on 31 rays evenly spaced between horizontal and vertical lines with Dirichlet boundary
condition. All other parameters listed in appendix A.

where ϑ is the angle measured clockwise from the vertical through the pipe centre. The interval [0, ℓX ] is
discretised into n segments. The points then are xi = iℓX /n, i = {0,1, . . . , n}. The radial distance to each

point is ri =
√
r2X + x2

i and cosϑi = rX /ri. These define pi by (5a) and ui by (5b). Then the discrete version
of (6) is given by the trapezoidal method:

ṁs ≈ −ℓX
n

k

µRT

⎛⎝p0(u0 + p0g

RT
) + pn(un cosϑn + png

RT
) + 2n−1

∑
i=1

pi(ui cosϑi + pig

RT
)⎞⎠, (7)

the accuracy improving with increasing n. It is also possible to estimate the radius of influence by locating

a point x∗ such that the expression ur cosϑ + pg

RT
is positive at xi < x∗ and negative at xi+1 > x∗.

5 Conclusion

Landfill gas flow as a continuum flow field is by and large an unexplored application of fluid dynamics, com-
bining several types of media and interacting with the atmosphere. Drawing upon a previously established
inference of flow planarity within each cross-section aligned with pipe perforations, numerical solution of
flow equations in porous sub-domains of distinct permeability and realistic geometry sheds light upon the
strengths and limitations of the axisymmetric solution. This solution, with its one and only length dimen-
sion, gives a fair approximation in the vicinity of the vertical line between the pipe and surface, intriguingly
even in the presence of gravity, but deteriorates with lateral distance. The deviation can amount to a few
per cent relative to the pipe pressure with a Dirichlet type condition at the outer boundary, or reach as high
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as 1/4 with a Neumann type condition, respectively conforming to partly permeable and sealed cover layers.
Compared to the surface to pipe head loss, the same deviation ranges up to 1/2. These estimates include
the impact of mixed geometry as well as gravity. The error magnitude depends mainly on permeability
parameters of the porous media. The effect of temperature was found to be one order of magnitude less.
Thence it follows that temperature dependent properties such as fluid viscosity will bear minor impact. This
separation between the basic physical landfill parameters and gas characteristics is of the utmost importance
for future studies. For instance, it is now evident that modelling heat transfer due to generation within the
landfill is unlikely to yield results compelling from the vantage point of fluid dynamics or useful in engineering
practices. On the other hand, better modelling of the medium properties might be of interest. In particular
it implies a direct relation between the type of waste, its compactness, the thermodynamic work required to
collect the generated gas and the landfill dimensions that would minimise the interchange of fluid with the
atmosphere.

One perhaps counterintuitive conclusion is that gravity is not as immediately dismissible an effect as is
often surmised. The common assumption is based upon the relatively small depth of the landfill, further
encouraged by the temptation to have one more axis of symmetry and simpler equations. However, the
fluid velocity within the porous sub-domains is quite small, rendering the dynamic pressure comparable with
potential energy. With a permeable cover the pressure is known on the surface and at the pipe, therefore
in between the profile is virtually unaffected by gravity, whilst between the pipe and landfill bottom the
hydrostatic pressure difference due to gravity alone is well measurable relative to the head loss due to
medium resistance. By contrast, with a sealed cover the pressure is known at the pipe alone, and gravity
has a twofold effect: hydrostatic as before, but also an intrinsic modification of the boundary condition: by

(1a) zero flux on the surface implies
∂p

∂y
= −ρg. The magnitude of the right hand side is what causes the

significant disparity between the full and axisymmetric solutions.
A crucial landfill design parameter is the radius of influence, the maximal distance where the well would

effectively collect gas. Former efforts to estimate this quantity met with only partial success. The numerical
solution for the first time attained an unambiguous identification of the radius of influence as well as an
interesting feature to be useful in engineering design: there exists a critical lateral extent that maximises
the radius of influence for a given suction strength. Lateral placement of adjacent landfill cells in accordance
with this threshold should improve the collection efficiency. A vertical placement should be guided by the
asymptotic value, beyond which no collection occurs, so that the wells do not work against one another.
Then it is possible to find the optimal suction, so as to minimise the surface flux (the function, whose root
gives the radius of influence) and thus the exchange of fluid with the atmosphere.

Another revelation of import is that the radial flow does not allow for a sound approximation of surface
flux when extended beyond the formal solution domain. The error thus begotten stems from artificial head
loss over the additional sub-domain the fluid must traverse before reaching the surface, unduly diminishing
the pressure gradient at the surface and hence flux. The current analysis suggests that the radial pressure
profile can be used as a local approximator based on the actual distance of the desired point from the pipe
centre. Hence in the absence of a full numerical solution an estimate of the surface flux might be obtained
by a simple discrete integration of the normal velocity predicted on a dense set of rays from the pipe to
the landfill surface. The radius of influence is estimated as the root of the integrand. This computation is
an accessible tool useful in design as well as functional phases. It was shown that the impact of gravity as
well as anisotropy in waste permeability is smallest near the surface, whereby application of this method
in practice should entail a reasonable approximation for all quantities relevant to the interaction with the
atmosphere.

Appendix A. Base parameters

Table 1 lists the nominal set of parameters used in computations throughout unless noted specifically in
pertinent figure captions. Negative pressure values are relative to the atmosphere.
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parameter symbol value

pipe radius rP 0.0762m (3 in)
tortuosity τ 100
temperature T 15oC
pressure on P pP −3.75kPa
pressure on B pB −0.125kPa
pressure on S pS pbar

generation rate Cb 0.004kg/(m3hr)
segment generation C∆ 12.6kg/(ms)
CH4 molar fraction xCH4

0.5
O2 molar fraction xO2

0.01
CO2 molar fraction xCO2

0.4

parameter gravel waste cover
lamina PA lamina AB lamina BS

depth 1m 8m 3m
φ 0.6 0.4 0.7

r? 0.025m 0.05m 0.005m

Table 1: Parameters common to all examples solved numerically: global (top) and lamina specific (bottom)
values (courtesy of GNH Consulting Ltd.) Negative pressure values are relative to pbar = 1atm.

Appendix B. Solution in elliptic coordinates

B.1 Single sub-domain

Confocal ellipses and hyperbolae form an orthogonal coordinate system known as the elliptic coordinates.
The relation to the Cartesian system is

x = f cosh ξ cos θ, y = f sinh ξ sin θ, (8a)

where f is the focal length, common to all ellipses and hyperbolae and deemed fixed. ξ > 0 is a non-dimensional
curvilinear coordinate running along the hyperbolae and 0 ⩽ θ < 2π is the elliptic arc length, see figure 11.
For the numerical solution in this coordinate system the focal length was taken as f = 0.97rP in order to have
ξ > 0 on all relevant ellipses. The scale factors for the basis vectors hξ and hθ by

(dx)2 + (dy)2 = h2

ξ(dξ)2 + h2

θ(dθ)2 (8b)

are

hξ = hθ = f
√

cosh
2 ξ − cos2 θ , (8c)

and being equal, will be hereinafter renamed as h = hξ = hθ. In any orthogonal system {ê1, ê2, ê3} with

respective scale factors h1, h2, h3 the gradient of a scalar quantity F is given by

∇F = 1

h1

∂F

∂e1
ê1 + 1

h2

∂F

∂e2
ê2 + 1

h3

∂F

∂e3
ê3, (9a)

and the divergence of a vector F = (F1, F2, F3) by

∇ ⋅F = 1

h1h2h3

⎛⎝ ∂

∂e1
(h2h3F1) + ∂

∂e2
(h1h3F2) + ∂

∂e3
(h1h2F3)⎞⎠. (9b)

14



Figure 11: Elliptic coordinate system.

With no gravity the flow equation (1a) within a single sub-domain becomes

⎛⎝ ∂2

∂ξ2
+ ∂2

∂θ2

⎞⎠p2 = −4̃f( cosh(2ξ) − cos(2θ)), f̃ = f2

4k
µRTC. (10)

Due to the dependence of the right hand side on θ and in contrast to the axisymmetric geometry, it is

impossible to obtain a normal flow, i.e. one where
∂

∂θ
( ⋅ ) = 0, when C ≠ 0. For this reason the boundary

conditions used in the solution are modified slightly to accommodate proper matching between sub-domains.
Without loss of generality

p2 = −f̃( cosh(2ξ) + P (ξ) cos(2θ) +Q(ξ, θ)), (11a)

and thence

P ′′ − 4P = −4, ⎛⎝ ∂2

∂ξ2
+ ∂2

∂θ2

⎞⎠Q = 0. (11b)

Solving for P (ξ) is immediate. Seeking a solution by the method of separation of variables for Q(ξ, θ) under
the periodicity p(ξ, θ) = p(ξ, θ+2π) and reflexion conditions implied by the two symmetry axes of the ellipses
p(θ) = p(−θ), p(π

2
+ θ) = p(π

2
− θ), yields

p2 = a0ξ + b0 − f̃( cosh(2ξ) + cos(2θ)) + ∞∑
n=1

(an sinh(2nξ) + bn cosh(2nξ)) cos(2nθ), (12a)

where an, bn, n ⩾ 0, are constants. Any boundary conditions that do not involve the higher harmonics
cos(2nθ), n ⩾ 2, will result in

p2 = a0ξ + b0 − f̃ cosh(2ξ) + (a1 sinh(2ξ) + b1 cosh(2ξ) − f̃ ) cos(2θ). (12b)

Below the parameters k and f̃ will bear the subscripts ( ⋅ )a, ( ⋅ )b and ( ⋅ )s, and the coefficients an, bn the
superscripts ( ⋅ )(a), ( ⋅ )(b) and ( ⋅ )(s) respectively for sub-domains ξP ⩽ ξ ⩽ ξA, ξA ⩽ ξ ⩽ ξB and ξB ⩽ ξ ⩽ ξS .
In particular f̃a = f̃s = 0.
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B.2 Boundary conditions

The domain is [ξP , ξX ] × [0,2π), where ξX = ξB (two sub-domains, cover absent) or ξX = ξS (three sub-

domains, cover present). Some conditions are common to all cases: pressure at the pipe

p(ξP , θ) = √p2P + θP cos(2θ) (13a)

with pP sub-atmospheric and θP constant; and continuity on the contiguity curve ξ = ξA
p(ξ−A, θ) = p(ξ+A, θ), u(ξ−A, θ) = u(ξ+A, θ). (13b)

On the outermost circumference of the domain either pressure or zero normal flux conditions are prescribed:

p(ξX , θ) = √p2X + θX cos(2θ) or u ⋅ n̂ = 0, (13c)

where pX ∈ {pB, pS} and similarly θX ∈ {θB, θS}. If a third sub-domain is present, continuity is imposed on

ξ = ξB identically to (13b). The equations for the coefficients an, bn, n = 0,1 as well as θP and θX , are linear.
Solution existence is determined by the rank of this linear system as compared to the number of unknown
coefficients – four for each sub-domain – and the degrees of freedom θP and θX . The solutions are given
below.

B.3 Cover absent: two sub-domains

Case p2(ξB, θ) = p2B + θB cos(2θ) ∶ (14a)

(a(a)0

a
(b)
0

) = (kb(ξA − ξP) + ka(ξB − ξA))−1×
{(p2B − p2P + f̃b( cosh(2ξB) − cosh(2ξA)))( kbka ) + 2kb f̃b sinh(2ξA)( ξA − ξBξA − ξP)} ,

b
(a)
0
= p2P − a(a)0

ξP ,

b
(b)
0
= p2B − a(b)0

ξB + f̃b cosh(2ξB),
(a(a)1

b
(b)
1

) = ( sinh(2(ξP − ξB)))−1 {( cosh(2ξB) −kb/ka cosh(2ξP)−ka/kb sinh(2ξB) sinh(2ξP) )(θP
θB
)+

f̃b
⎛⎝ kb/ka cosh(2ξP)( cosh(2(ξB − ξA)) − 1)

sinh(2ξP) − sinh(2ξB) cosh(2(ξA − ξP))
⎞⎠
⎫⎪⎪⎬⎪⎪⎭ ,

(a(b)1

b
(a)
1

) = ( sinh(2(ξP − ξB)))−1 {(ka/kb cosh(2ξB) − cosh(2ξP)− sinh(2ξB) kb/ka sinh(2ξP))(θPθB)+
f̃b
⎛⎝
cosh(2ξB) cosh(2(ξA − ξP)) − cosh(2ξP)
kb/ka sinh(2ξP)(1 − cosh(2(ξB − ξA))) ⎞⎠

⎫⎪⎪⎬⎪⎪⎭ ,
θP

ka

kb

sinh(2(ξB − ξA))
sinh(2(ξA − ξP)) + θB = −f̃b

⎧⎪⎪⎨⎪⎪⎩1 +
kb

ka − kb cosh(2(ξB − ξA)) +
ka

ka − kb ×
sinh(2(ξP − ξB)) + sinh(2(ξB − ξA)) cosh(2(ξA − ξP))

sinh(2(ξA − ξP))
⎫⎪⎪⎬⎪⎪⎭.
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Case u ⋅ n̂ = 0 ∶ (14b)

a
(a)
0
= 2̃fb kb

ka
( sinh(2ξB) − sinh(2ξA)),

a
(b)
0
= 2̃fb sinh(2ξB),

b
(a)
0
= p2P − a(a)0

ξP ,

b
(b)
0
= (a(a)

0
− a(b)

0
)ξA + b(a)0

+ f̃b cosh(2ξA),
(a(b)1

b
(b)
1

) = f̃b

cosh(2(ξB − ξA)) (− sinh(2ξB)cosh(2ξB) ) ,
(a(a)1

b
(a)
1

) = kb

ka
{(a(b)1

b
(b)
1

) + f̃b ( sinh(2ξA)− cosh(2ξA))} ,
θP = f̃b kb

ka

⎛⎝cosh(2(ξB − ξP))cosh(2(ξB − ξA)) − cosh(2(ξA − ξP))
⎞⎠.

B.4 Cover present: three sub-domains

Case p2(ξS , θ) = p2S + θS cos(2θ) ∶ (15a)

a
(a)
0
=
⎧⎪⎪⎨⎪⎪⎩p

2

S − p2P + f̃b⎛⎝ cosh(2ξB) − cosh(2ξA) − 2(ξB − ξA) sinh(2ξA) + 2(ξS − ξB)×
( sinh(2ξB) − sinh(2ξA))kb

ks

⎞⎠
⎫⎪⎪⎬⎪⎪⎭/
⎧⎪⎪⎨⎪⎪⎩ξA − ξP +

ka

kb
(ξB − ξA) + ka

ks
(ξS − ξB)⎫⎪⎪⎬⎪⎪⎭,

a
(b)
0
= ka

kb
a
(a)
0
+ 2̃fb sinh(2ξA),

a
(s)
0
= ka

ks
a
(a)
0
− 2̃fb kb

ks
( sinh(2ξB) − sinh(2ξA)),

b
(a)
0
= p2P − a(a)0

ξP ,

b
(b)
0
= b(a)

0
+ ξA(a(a)0

− a(b)
0
) + f̃b cosh(2ξA),

b
(s)
0
= p2S − a(s)0

ξS ,

(a(a)1

a
(s)
1

) = kb f̃b tanh(ξB − ξA)(− cosh(2ξA)/kacosh(2ξB)/ks ) ,
(b(a)1

b
(s)
1

) = kb f̃b tanh(ξB − ξA)( sinh(2ξA)/ka− sinh(2ξB)/ks) ,
(a(b)1

b
(b)
1

) = f̃b {tanh(ξB − ξA)(− cosh(2ξA)sinh(2ξA) ) + (− sinh(2ξA)cosh(2ξA) )} ,
(θP
θS
) = f̃b tanh(ξB − ξA)(kb/ka sinh(2(ξA − ξP))

kb/ks sinh(2(ξS − ξB))) .
The case u ⋅ n̂ = 0 has no solution of the form (12b).
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B.5 Tangential flow components

The boundary conditions at ξP and ξB were allowed a tangential component to obtain the analytical solution
of the form (12b). One must show that the tangential component is sufficiently small throughout the domain.
Moreover, by (14a) for two sub-domains and pressure boundary condition a degree of freedom remains in
the choice of θP or θB. Therefore it is desirable to minimise the resulting azimuthal velocity v or a related

quantity. Both these ends are attained by integrating either v2 or the dynamical pressure
1

2
ρv2. Note that

by v = −k
µ

1

h

∂p

∂θ
the integral thereof vanishes

ξB

∫
ξP

2π

∫
0

vh2dθdξ = 0.

Thus start with

Iv = 1

µ2

ξB

∫
ξP

2π

∫
0

k2
⎛⎝∂p∂θ⎞⎠

2

dθdξ. (16a)

The linear dependence in (14a) between θP and θB can be written for convenience as θB = aθ − bθθP with aθ

and bθ constants. This allows to write the pressure as p2 = A0(ξ)+cos(2θ)(A1(ξ)θP +B1(ξ)). The functions

A0(ξ), A1(ξ) and B1(ξ) are continuous, but not differentiable at ξA, just like p. With this Iv can be shown
to equal

Iv = 2

µ2

ξB

∫
ξP

k2(A1θP +B1)
π/2

∫
0

cos(2θ)× (16b)

⎧⎪⎪⎨⎪⎪⎩ ln
⎛⎝A0 +A1θP +B1 − 2(A1θP +B1) sin2 θ⎞⎠ − ln⎛⎝A0 −A1θP −B1 + 2(A1θP +B1) sin2 θ⎞⎠

⎫⎪⎪⎬⎪⎪⎭dθdξ.
With the identity [9]

π/2

∫
0

ln (1 + a sin2 x) cos(2x)dx = π 1 − √1 + a
1 + √1 + a

defining a1 = 2(A1θP +B1)/(A0 +A1θP +B1) and a2 = 2(A1θP +B1)/(A0 −A1θP −B1) leads to

Iv = 4π

µ2

ξB

∫
ξP

k2
⎛⎝A0 −

√
A2

0
− (A1θP +B1)2 ⎞⎠dξ. (16c)

Differentiating with respect to θP ,

dIv

dθP
= 4π

µ2

ξB

∫
ξP

k2
A1(A1θP +B1)dξ√
A2

0
− (A1θP +B1)2

= 0. (17a)

If an extremum exists, it must be a minimum since

d2Iv

dθ2P
= 4π

µ2

ξB

∫
ξP

k2(A0A1)2dξ
(A2

0
− (A1θP +B1)2)3/2

> 0. (17b)
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With the typical values in appendix A the ratios

RRRRRRRRRRR
A1

A0

RRRRRRRRRRR,
RRRRRRRRRRR
B1

A0

RRRRRRRRRRR are small, thus supposing

RRRRRRRRRRR
A1θP +B1

A0

RRRRRRRRRRR≪ 1 and

expanding in Taylor series gives

θmin ≈ −
ξB

∫
ξP

k2
A1B1

A2
0

dξ / ξB

∫
ξP

k2
A2

1

A2
0

dξ, (17c)

which computation shows to be very small. The exact numerically obtained minimum is very close to this
approximate value and indeed ∣θP ∣≪ 1.

0 5e-08 1e-07 1.5e-07

1

1.018

θP

I
/I mi

n

Figure 12: Minimisation of square azimuthal velocity (Iv, grey) and dynamical pressure (Iq, black) to obtain
an optimal value of θP for two laminae and pressure boundary condition. Respective approximate optima,
(17c) and (19c), are marked in diamonds. Lateral extent: ℓX = rX . All other parameters listed in appendix
A.

Performing a similar analysis for the dynamical pressure is somewhat more complicated, as it is impossible
to simplify the integral

Iq = 1

2µ2RT

ξB

∫
ξP

2π

∫
0

k2p
⎛⎝∂p∂θ⎞⎠

2

dθdξ = 1

µ2RT

ξB

∫
ξP

2π

∫
0

k2(A1θP +B1) cos(2θ) √A0 + cos(2θ)(A1θP +B1) dθdξ
(18)

that at first glance appears reducible to an elliptic integral, but for the compound (A1θP + B1) changing

sign. Nonetheless obtain

dIq

dθP
= 1

µ2RT

ξB

∫
ξP

π

∫
0

k2 cos(2θ)A1√
A0 + cos(2θ)(A1θP +B1)

⎛⎝2A0 + 3 cos(2θ)(A1θP +B1)⎞⎠dθdξ = 0. (19a)
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If an extremum exists, it is a minimum, as

d2Iq

dθ2P
= 1

2µ2RT

ξB

∫
ξP

π

∫
0

k2 cos2(2θ)A2
1

(A0 + cos(2θ)(A1θP +B1))3/2
⎛⎝4A0 + 3 cos(2θ)(A1θP +B1)⎞⎠dθdξ > 0. (19b)

The inequality follows by the expression in the last set of parentheses equalling A0 + 3p2 and A0 > 0.

Expanding as before with
RRRRRRRRRRR
A1θP +B1

A0

RRRRRRRRRRR≪ 1 allows to complete the integration dθ, giving

θmin ≈ −
ξB

∫
ξP

k2
A1B1√

A0

dξ / ξB

∫
ξP

k2
A2

1√
A0

dξ. (19c)

This approximate optimum is very close to the exact value obtained numerically, upholding the same con-
clusions as for the square tangential velocity.

Figure 12 shows a typical variation Iv(θP) and Iq(θP) and the approximate minima based on the foregoing
derivation. Both are small, close to each other and the respective exact minima. Moreover, the minimum is
shallow, and for convenience in the numerical solution it is possible to adopt θP = 0, avoiding an iterative
procedure.
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