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ABSTRACT 

Novel metabolomics methods using the NMR (nuclear magnetic resonance) spectrometer at 

Thompson Rivers University were developed. This will lead to better utilization of the NMR by 

opening up new applications of this powerful instrument. The method was applied to three 

different samples: a simple four compound mixture, a previously analyzed Escherichia coli 

lysate, and an extract of Grindelia squarrosa, which has not heretofore been analyzed using a 

metabolomics approach. The fractionated crudes extracts returned 597 compounds from the 

Biological Magnetic Databank, using HSQC peak chemical shifts. Results for the four-

compound mixture were visualized as raw two-dimensional spectra, showing resolution of the 

peaks. The E. coli lysate provided invaluable insight into the necessity of high sensitivity as well 

as resolution in metabolomics. The future directions of this project are discussed, outlining the 

power of this technique for different mixtures and refining the experimental setup to reduce the 

necessity of relying on the currently available databases.  

Thesis supervisors: Dr. Bruno Cinel and Dr. Donald Nelson 
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1 INTRODUCTION 

1.1 METABOLOMICS 
Metabolomics is the evaluation of all metabolites present in an organism. It is sometimes used 

interchangeably with metabonomics, which is the evaluation of metabolites as they change in 

concentration and composition, due to a change in a variable affecting an organism.1 Due to the 

low concentrations of metabolites present in organisms, the full elucidation of the metabolites 

present is unfeasible with current instrumentation. Even so, a metabolomics approach allows for 

the identification of many compounds at once, and has the potential to reduce the number of 

rediscovered compounds, an issue in natural product chemistry. Additionally, it supports an 

untargeted approach, wherein the compounds present can be identified independently of their 

biological activity; as opposed to traditional isolation, where the active fraction must be 

constantly identified after each fractionation step in order to isolate a single active component. 

Two main metabolomics methods are used to identify the metabolites present. Gas or Liquid 

Chromatography-Mass Spectrometry (GC/LC-MS) is the most common, due to high sensitivity 

and ease of automation. However, Nuclear Magnetic Resonance (NMR) spectroscopy is also 

used; the advantages of NMR are the wealth of structural information gleaned as well as the 

ability to detect any organic compound.2 Massive databases must be compiled of retention times 

and masses for GC/LC-MS and chemical shifts for NMR spectroscopy in order to get accurate 

results. Metabolomics also allows a library of compounds to be compiled for testing against 

multiple targets. 

1.1.1 NMR-BASED METABOLOMICS 
As NMR spectroscopy provides a relatively unique chemical shift value for each hydrogen, these 

values can be queried against an appropriate database of known compounds. However, due to the 

complexity of most natural product libraries, a 1-dimensional spectrum quickly becomes too 

crowded to parse out individual chemical shift values. Some of the techniques that researchers 

have developed to get around this problem are bucketing,3,4 multivariate analyses,5,6 and the use 

of 2-dimensional NMR spectroscopy.7  

One of the main advantages of NMR-based metabolomics is the inherent ability to glean 

structural information of the metabolites present. NMR-based metabolomics has not gained the 

same following that chromatographic methods have, especially as there is no industry standard 
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for NMR spectroscopy methods. This is part due to the many approaches that can be used. 

Beyond the different types of pulse programs, which probe different interactions between 

nuclides, there are many different methods of sample preparations and data processing.  

Some of the different pulse programs commonly used for metabolomics are: 1D proton, J-

resolved proton, 1D {1H}13C, 2D 1H-1H COSY, 2D 1H-13C HSQC, 2D 1H-13C HMBC, and 2D 
1H-13C TOCSY-HSQC. 1D proton views all of the individual chemical and magnetic 

environments of a proton (1H) in a molecule. Its downfall is the limited range over which the 

protons are spread out from (typically 0 to 12 ppm). This leads to many overlapping peaks when 

used for analyzing complex mixtures. One way of dealing with this, without adding too much 

complexity, is the use a J-resolved proton pulse sequence. This sequence separates a 1D proton 

spectra based on the strength of the coupling constant, J, which causes the peaks produced by 

nuclides to split into higher and lower energy states based on the spin state of neighboring 

hydrogens. This allows protons that appear at identical chemical shifts, but have different 

coupling constants (which are typically on the range of 1-6 Hz), to be differentiated from each 

other. 1D {1H}13C is a carbon-13 spectra that is decoupled from proton couplings. This 

decoupling simplifies the carbon-13 spectra, giving a single peak for each environment. This 

fact, along with the greater range that a carbon-13 spectrum is spread over (typically 0 to 200 

ppm) increases the likelihood that each peak is at a unique chemical shift.  

While one-dimensional spectra have decent sensitivity within a 20-minute time period, 2-

dimensional pulse sequences trade some of that sensitivity for high resolution of peaks. In 

essence, each peak that appears in the 2-dimensional plot represents the interaction of nuclides 

that neighbor each other on a molecule. As a consequence, it is possible to determine two 

chemical shifts that are theoretically on the same molecule. This increases the certainty of 

chemical identification. Two-dimensional NMR spectroscopy can be divided into two categories: 

homonuclear and heteronuclear. Homonuclear experiments look at coupling between the same 

types of nuclides. For example, 1H-1H COrrelated SpectroscopY (COSY) looks at hydrogens that 

are within three bonds of each other on a molecule. This gives symmetrical spectra with peaks 

along the diagonal (the same x and y coordinates) representing protons coupling with themselves 

and off-diagonal peaks representing the interaction of two different protons. This type of spectra 

can be “walked” along, going from off-diagonal peak to off diagonal peak along the same x or y 
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coordinate, to determine substructures of entire spin systems. Unfortunately, wherever a tertiary 

carbon appears, there is a break in the coupling hydrogens, making it hard to determine the entire 

structure of a molecule. At the tradeoff of sensitivity, the distance of coupling detected can be 

increased with a TOtal Correlation SpectroscopY (TOCSY) experiment. This pulse sequence 

increases the time that the protons can influence each other through coupling, as well as 

represses the signal of 3-bond coupling. An additional way to get around tertiary carbons is to 

use a 13C-13C COSY experiment. This detects 1 bond 13C-13C couplings, similar to how the 

proton variation detects three bond correlations. Unfortunately, carbon-13 has such a low natural 

abundance that the chance of two neighboring carbon atoms being carbon-13 is 1: 10,000. To be 

functional, the metabolites must be isotopically-labeled with carbon-13, by introducing labeled 

feedstock to the growing organism. This is particularly useful for determining metabolic 

pathways that metabolites were produced from, as there is high sensitivity for molecules that 

incorporate the feedstock while other molecules are fainter.8,9  

The other type of 2-dimensional NMR spectroscopy experiment is heteronuclear. This is the 

detection of coupling between two different nuclides, usually 1H and 13C, though 15N can also be 

used instead of carbon-13 if the sample has been isotopically-labeled. Heteronuclear single 

quantum coherence spectroscopy (HSQC) probes one bond 1H - 13C interactions. One useful 

feature of heteronuclear experiments is that, because the coupling is between different nuclides, 

there is no peak from self-coupling. That is to say, there is no large diagonal mass of peaks, 

which obscure the peaks produced by the coupling of protons of similar chemical shift. As well, 

HSQC is an asymmetrical spectra, removing the redundancy present in COSY type spectra. 

HSQC has additional simplicity, because each proton and carbon theoretically produces only a 

single peak in the spectra. This is complicated somewhat from noise due to very large peaks, 

such as solvent peaks. Heteronuclear Multiple Bond Correlation spectroscopy (HMBC) looks at 

the coupling between carbon-13 and protons within three bonds by suppressing the signal from 

single bond coupling. A similar pulse program, TOCSY-HSQC, also includes a TOCSY mixing 

time to allow spin coupling to spread further throughout the molecule.  

1.2 DRUG DISCOVERY 
As the field of medicine is developing and more of a focus is being placed on personalized 

medicine, there is a large push in the field of chemical biology to develop new therapeutic agents 
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to treat a variety of ailments. In order to do this, large collections of chemical libraries must be 

screened against biological targets. These chemicals can then be synthesized in lab in various 

diversity- and target-oriented synthesis approaches. These approaches have the potential to 

produce wide varieties of chemical scaffolds; however, they are limited by the synthetic 

methodologies available, are time consuming to synthesize, and (particularly in diversity-

oriented synthesis) produce many compounds without biological activity. In contrast, organisms 

synthesize natural product libraries, so many complicated organic reactions are catalyzed by 

enzymes in high yield, reducing time and money.10 Additionally, biological molecules are 

considered optimized through evolution to act within biological systems and on biological 

targets. However, these advantages are offset by the need to identify and isolate the natural 

products from a complex mixture. Unfortunately, the traditional method of activity directed 

isolation, wherein the extract is screened against a biological target and any active components 

isolated, suffers from a high incidence of rediscovery. This is due to the compounds only being 

characterized after isolation. As mentioned in section 1.1, one method that has the potential to 

deal with this issue is untargeted metabolomics. 

If constituents in an extract can be identified in a metabolomics experiment before or concurrent 

with assaying for biological activity, then previously discovered active compounds can be 

identified and priority placed on novel compounds. This opens up new possibilities from sources 

that have previously been investigated using traditional methods. Using metabolomics allows for 

new compounds to be detected, and the activity of compounds that are in low concentration to be 

elucidated.  

1.3 GRINDELIA SQUARROSA AS A SOURCE OF NATURAL PRODUCTS 
Exploring plants used in traditional medicine as a source of natural products could lead to the 

development of new therapeutics. However, many plants have already been thoroughly 

characterized. Either new plants must be investigated or new approaches, such as metabolomics, 

used to characterize more compounds present in the natural product “library”. G. squarrosa is a 

common plant in the southwest interior of British Columbia. It has a yellow, bulbous flower and 

is covered in a resinous exudate.  G. squarrosa is known in indigenous medicine as an 

expectorant; that is, it induces mucous to be expelled from the lungs. Recent research reports the 

crude extract to have modest antibiotic activity. This makes the plant a promising source of 
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bioactive molecules. Previous research has been done to identify the components of the essential 

oil of G. squarrosa by GC-MS,11 though little work has been done on the more polar 

constituents, or using a metabolomics approach.  

2 MATERIALS AND METHODS 

2.1 COMPOSITE MIXTURE 

2.1.1 SAMPLE PREPARATION 

 

Figure 1. The structures of the four compounds used in the composite mixture. The compounds 
are (A) coumarin, (B) limonene, (C) vanillin, and (D) menthol. The colours of the structure 
corresponds to the colour of the spectra in Figure 2, shown in the discussion. 

Solutions of 0.0197 g limonene, 0.0226 g menthol, 0.0217 g vanillin, and 0.0244 g coumarin in 

0.5 mL chloroform-d were prepared to give solutions of 0.289 M, 0.289 M, 0.285 M, and 0.334 

M, respectively. NMR analyses were done with the parameters described in section 2.1.2, then 

the solutions were mixed pair-wise (limonene and menthol, vanillin and coumarin) in a 1:1 ratio. 

These samples were analyzed before being mixed in equal volumes to give a final concentration 

of 0.0723 M limonene, 0.0723 M menthol, 0.0713 M vanillin, and 0.0835 M coumarin. This 

final solution was also analyzed by NMR spectroscopy. 

2.1.2 NMR ACQUISITION PARAMETERS 
1D proton (number of scans (NS)=16), and 2D COSY spectra (NS=8) for each sample in 0.5 mL 

chloroform-d were obtained on a Bruker Ultrashield™ Plus Avance III 500 MHz NMR 

spectrometer with a 5 mm PATXI 1H/D-13C/15N Z xgradient probe. Each spectrum was coloured 

and overlaid to show the unique cross peaks between samples.  



6 

2.2 E. COLI LYSATE PREPARATION 

2.2.1 GROWTH CURVE 
DH5-α E. coli were grown in 20 mL M9 minimal media in a 100-mL side armed flask at 37°C 

and 240 rpm by inoculating with 2 mL of an LB overnight broth. Optical density at 600 nm (OD) 

measurements were taken every 30 minutes to determine the time required for culture saturation. 

As the OD failed to reach 3.0, as previously reported in the literature,12 the growth curve of E. 

coli grown in LB broth was determined to establish a theoretical maximum.  

2.2.2 SAMPLE PREPARATION 
DH5-α E. coli were grown in 1 L of M9 minimal media in four 250 mL portions each in a 1-L 

Erlenmeyer at 37°C and 240 rpm. The culture was split into four 250 mL portions, which were 

each inoculated with 10 mL LB broth overnights. The cultures were grown for 24 hours, then the 

cells were collected by centrifugation at 8000 xg and 4°C. The pellets were combined and 

washed with three 15 mL portions of 50 mM phosphate buffer (pH 7.0). The cells were pelleted 

and resuspended in 10 mL deionized water. This suspension was frozen for 2 hours at -20°C, 

then thawed. This was repeated two more times, before the cell fragments were collected by 

centrifuging at 16,000 xg at 4°C. The supernatant was retained and 10 mL of methanol was 

added, then 10 mL of chloroform. The container was agitated, then left for 12 hours for the 

organic and aqueous layers to separate. The chloroform was removed by transfer pipette and the 

methanol removed by 1 hour of nitrogen blowdown. The water was removed under vacuum 

centrifugation for 3 hours at 30°C. The residue was resuspended in 1 mL of D2O and centrifuged 

for 5 minutes at 14,000 xg to pellet undissolved compounds. 

2.2.3 NMR ACQUISITION PARAMETERS 
1D proton (NS=16), 2D COSY spectra (NS=16, time domain (TD)=4096x256, offset 4.7 ppm, 

spectral width (SW)=10.9920 ppm*10.9920 ppm), 2D TOCSY(NS=8, TD=4096x2048, offset 

4.7 ppm, SW=10.9920*10.9920, mixing time=0.090 s), 2D HSQC-TOCSY (NS=128, 

TD=2048x512, proton offset 4.7 ppm, carbon-13 offset=85.0 ppm, SW=10.9920 ppm*170.9149 

ppm, mixing time=0.080 s), and 2D HSQC (NS=64, TD=2048x512, proton offset 4.7 ppm, 

carbon-13 offset=85.0 ppm, SW=10.9920 ppm*170.9149 ppm) were used to analyze the aqueous 

portion of the extract. 
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2.3 GRINDELIA SQUARROSA 

2.3.1 SAMPLE COLLECTION 
Samples were collected from the side of the Red-Tailed Hawk trail in Kenna Cartwright Park in 

Kamloops, BC. Initial samples (numbered 1-18) were collected by cutting the stem three inches 

below the sepals, labeling with masking tape and placing in a brown paper bag to dry for three 

weeks.  For subsequent samples, the entire plant, including roots, was removed from the soil and 

placed in a dark box to dry, also for three weeks.  

2.3.2 SAMPLE PREPARATION 
The dried G. squarrosa flowers were weighed and ground with a mortar and pestle. 2 mL of 

hexanes (ACS grade, BDH) were added, and the grinding continued until the plant matter 

appeared homogenous. The sample was transferred to a 50-mL Erlenmeyer flask, 8 mL more 

hexanes added for a total volume of 10 mL, sealed with parafilm and extracted for 24 hrs. The 

hexanes fraction was filtered through a coarse filter paper, and the solid returned to the 

Erlenmeyer flask. 10 mL of acetone (ACS grade, BDH) was added, the flask was sealed with 

parafilm, and the flask was left for 24 hrs to extract. The acetone fraction was filtered through a 

coarse filter paper, and the solid returned to the Erlenmeyer flask. 10 mL of methanol (HPLC 

grade, BDH) was added, the flask was sealed with parafilm, and the flask was left for 24 hrs to 

extract. The methanol fraction was filtered through a coarse filter paper, and the solid returned to 

the Erlenmeyer flask. The acetone and methanol fractions were evaporated to dryness by 

nitrogen blow down and combined.  

For the sample fractionation, 3.72 grams of plant material (2.97 g flower heads and 0.75 g 

leaves) were prepared as described above except that the sample was dried by rotary evaporation 

instead of nitrogen blow down. This gave a total fractionated mass of 0.4465 g, or 12% yield. 

The acetone and methanol fractions were resuspended in 20 mL of methanol and stored at 4°C 

for 1 week. The methanol was dried by nitrogen blow down to produce a dark green oil. The oil 

was suspended in 50:50 methanol to water by ultra-sonication bath for one minute and partially 

dried by nitrogen blow down. 10 mL methanol was added and the oil was resuspended and 

transferred to a 50-mL round bottomed flask. 
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2.3.3 SAMPLE FRACTIONATION 
Preparative C-18 125 Å 55-105 µm Waters silica solid phase was added to the resuspended crude 

extract form a loose slurry. The mixture was dried to a thick paste, and then transferred to the top 

of a 3x10 cm C-18 column. As shown in Table 1, the sample was eluted with gradients from 

35:65 methanol: water to 100% methanol and subfractions collected in approximately 12 mL 

portions. Methanol was applied until the visible dark band was eluted, with these later fractions 

collected in 100 mL portions.  

Table 1. The eluent composition and fractions collected from each polarity solvent gradient. The 
eluent ranges from most polar (35% methanol:65% water) to least polar (100% methanol). The 
subfractions are volumes collected directly from the column. 

% Methanol % Water Volume (mL) Subfraction range 

35 65 100 1-7 

45 55 100 8-13 

55 45 100 14-19 

65 35 100 20-26 

70 30 100 27-32 

75 25 100 33-38 

80 20 100 39-44 

90 10 100 45-49 

100 0 800 50-71 

 

Fractions were combined based on a visual comparison of colour and fluorescence based loosely 

around the polarity of the eluents. Details as to which fractions were combined are shown in 

Table 2. Each combined fraction was evaporated to dryness by rotary evaporation. The fractions 

were transferred to test tubes with five 2 mL portions of methanol, apart from fraction 1, which 

was relatively insoluble in methanol. As such, fraction 1 was transferred with three 2 mL 

portions of methanol and three 2 mL portions of deionized water. The combined fractions were 

then evaporated to dryness by nitrogen blow down, weighed, and stored at 4°C until analysis.  
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Table 2. The range of subfractions pooled to give each fraction, which were analyzed by NMR 
spectroscopy. 

Fraction number Subfraction range Mass (g) 

1 1-8 0.2227 

2 9-14 0.0138 

3 15-20 0.0144 

4 21-28 0.0552 

5 29-34 0.0233 

6 35-45 0.0414 

7 46-50 0.0281 

8 51-55 0.0222 

9 56-60 0.0106 

10 61-65 0.0049 

11 66-71 0.0099 

 

With the exception of fraction 1, each fraction was dissolved in 1 mL of methanol-d4 and a drop 

of tetramethylsilane (TMS) was added as a standard. The test tube was ultra-sonicated to suspend 

metabolites adhered to the glass, and then centrifuged for five minutes to remove undissolved 

particles. The supernatant was then transferred to an NMR tube and analyzed by NMR 

spectroscopy. Fraction 1 was treated like the rest of the fractions, except that it was dissolved in 

1 mL of DMSO-d6 instead of methanol-d4.  

2.3.4 NMR ACQUISITION PARAMETERS 
1D proton (NS=16), 2D COSY spectra (NS=128, TD=8192x256, offset 4.7 ppm, SW=10.9920 

ppm*10.9920 ppm), 2D HMBC (NS=128, TD=4096x256, proton offset 4.7 ppm, carbon-13 

offset=85.0 ppm, SW=10.9920 ppm*172.9149 ppm), and 2D HSQC (NS=64, TD=2048x512, 

proton offset 4.7 ppm, carbon-13 offset=85.0 ppm, SW=10.9920 ppm*172.9149 ppm) were used 

to analyze all fractions and crude extracts.  
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2.4 COMPUTATIONAL PROCESSING 

2.4.1 PEAK DECONVOLUTION 
A list of peaks was compiled by the peak picking command in Bruker Topspin v2.1, with the 

lowest contour level visually set to just above the baseline. These peaks were exported to a 

comma separated values (csv) file with four columns: Peak, containing an arbitrary unique 

identifier; ?(F2) [ppm], containing a list of the F2 chemical shifts; ?(F1) [ppm], containing a list 

of the F1 chemical shifts; and Intensity [abs], containing the peak integration values. A sample of 

the output is shown in Appendix A, Table 4.  

In order to compile sets of multiple peaks belonging to the same substructure, a Python 3.7 

program was developed in Spyder v3.13 using the Pandas library. The script is included in 

Appendix B as NMR_reader.py. In essence, the NMR_reader.py program took a table of two-

dimensional chemical shifts and condensed the redundant chemical shifts in one column by 

appending the corresponding chemical shifts in the other column to one, unique value. This 

simplified the dataset by taking a list of approximately 2000 chemical shifts pairs and reducing it 

to a list of approximately 500 unique entries without loss of information.   

2.4.2 DATABASE QUERYING 
The NMR_reader.py program was executed on the sets of COSY data from the composite 

mixtures. The sets of substructures from the NMR_reader.py program were converted to a csv 

format, and then the individual substructures were inputted into the TOCCATA database.12  

The csv peak list of the HSQC experiments was manually converted to a tab separated value 

(tsv) file with two columns (?(F2) [ppm] and  ?(F1) [ppm]) by uploading the csv files of the 

HSQC experiments to Google sheets and exporting the two desired columns as a tsv file. This tsv 

file was uploaded to the BMRB database website13 in the “Search 2D HSQC lists” submenu. A 

list of potential compounds was returned for each peak list uploaded, which was then 

downloaded as a tsv file, and converted to a csv file.  

2.4.3 CONSTRUCTING COMPOUND MAPS 
The csv files from the BMRB database of fractions 1-4, 6, and 7 were concatenated. The entries 

in the first column were changed to the fraction name that the compound came from without 

spaces (e.g. “Fraction1”). The name of the first column was changed to “Fractions”. The column 

that contained the compound names was renamed to “compounds”. The scoring value supplied 
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by the BMRB database, “Peak Match”, was renamed to “weight” in order to align better with the 

graphing program. A new spreadsheet was made that contained one column, “Nodes”, that 

contained all entries from the compound column and a single entry for each fraction.  

These csv files were used as inputs for a network parsing Python program, NMR_network.py. 

Refer to Appendix B for details; but in brief, this program dealt with all duplicate values and 

parsed the data into a format that could be read by Cytoscape, a network visualization platform.14 

NMR_network.py wrote an xml file, which was inputted into Cytoscape as a network file. In 

Cytoscape, the layout was set to Edge-weighted Spring Embedded Layout, based on the weight 

parameter. Then from the Tools drop down menu, Workflow was opened and the “Analyze 

selected networks and create custom styles” was selected. This option returned metadata about 

the networks as well as adapted the network to highlight key features. In order to clean up the 

number of edges displayed, Layout | Bundle Edge | All Nodes and Edges was selected.  

An additional map for clearer understanding was constructed from fractions 1, 2, and 3. As well, 

a simplified complete map was made by deleting all edges that had a weight value equal or less 

than 0.10.  

3 RESULTS AND DISCUSSION 

3.1 PULSE SEQUENCES 
In order to optimize peak resolution and sensitivity many pulse sequences were investigated over 

the course of this project. The TOCSY and TOCSY-HSQC were initially chosen due to their 

integration with the TOCCATA database.12 These pulse sequences are advantageous because 

they have very narrow peaks in the indirect dimension on the spectra, meaning that horizontal 

one dimensional “slices” of the spectra should only contain peaks from one spin system. The 

result is a one-dimensional spectrum that contains only the peaks from one spin system. 

Unfortunately, the spectra produced from the E. coli lysate did not appear to be well resolved or 

sufficiently sensitive to isolate individual spin systems from the raw spectra, as shown in Figure 

4. The COSY pulse program also provides connectivity information, and is more sensitive than 

TOCSY. Unfortunately, COSY shows less information than TOCSY, so additional 

computational steps must be done to isolate complete spin systems. COSY spectra are more 

powerful than 1D proton NMR spectra, clustering more consistently in statistical treatments15. 
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The computer program, NMR_reader.py attempted to take the high sensitivity of COSY spectra 

and convert it into the structural information provided by TOCSY slices.  

HSQC has lower sensitivity than heteronuclear experiments by virtue of the low sensitivity of the 

carbon-13 nuclide. This is offset by the high resolution afforded by the expanded carbon-13 

dimension compared to the proton dimension.16 HSQC is also advantageous as every nuclide 

appears only once in the two-dimensional spectrum. One interesting advantage of HSQC is it is 

possible to determine qualitative amounts of metabolites, by varying delay times and 

extrapolating backwards to determine peak intensity at t = 0.17  

3.2 COMPOSITE MIXTURE 
Compounds were selected because recent research identified some of them in the essential oil of 

G. squarrosa (limonene, menthol)11 and others were similar in structure to acetylsalicylic acid 

(vanillin). The analysis of the composite mixture allowed any peaks that may arise from the 

pulse sequence to be identified and be considered in more complex mixtures. In Figure 2, the off 

diagonal peaks are clearly resolved between compounds, while the diagonal “self-coupling” 

peaks show a large degree of overlap. Querying the COSY peak list of the 4 compounds against 

the BMRB database returned a list of 815 compounds. Unfortunately, the BMRB database was 

not setup to allow the querying of multiple related COSY peaks, so each compound was based 

on a single peak assignment. This probably contributed to the extremely high incidence of false 

positives. The expected compounds were present in the data output; they appeared in the first 

100 compounds with high peak match score with the exception of limonene, which only 

appeared as limonene oxide. This is probably due to a limitation of the database, because 

limonene is not present in the dataset. However, limonene is also prone to autooxidation in the 

presence of oxygen, so this could be another contributing factor. Further work need to be done in 

order to increase the fidelity of the results. Querying the output of NMR_reader.py against the 

TOCCATA database in order to reference more peaks was unsuccessful due to the limitations of 

the TOCCATA database. Though the database allows for substructures gleaned from multiple 

bond coupling relationships in TOCSY-type experiments, the compounds contained in it are 

derived from the human metabolome database (HMDB). As such, exogenous compounds are not 

present in the reference dataset. This limits the applicability of the TOCCATA database to 

natural product extracts.  
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Other databases were considered. NAPROC-1318 has an excellent selection of natural products.19 

Unfortunately, the database relies exclusively on carbon-13 assignments, and only a single 

substructure at a time can be queried. This makes it ideal for two-dimensional 13C-13C COSY 

experiments with carbon-13 labelled feedstock, but requires elaborate processing to make it 

useable with carbon-13 in natural abundance. The Madison Metabolomics Consortium Database 

allows many parameters to be inputted at once, including two-dimensional COSY.20 When the 

composite mixture was queried, only six compounds were returned, a large improvement over 

the BMRB database; however, only one compound (coumarin) was returned that was in the 

composite mixture. 



14 

 

 

Figure 2. (A), (B), (C), and (D) are the individual COSY spectra of 0.334 M coumarin, 0.289 M 
limonene, 0.285 M vanillin, and 0.289 M menthol in chloroform-d, respectively. The individual 
spectra were overlaid to give (E), which can be compared with (F), the actual COSY spectra 
produced by a mixture of all four compounds.  

The spectra produced from the four compounds are shown in Figure 2. Figure 2 A-D shows the 

individual spectra of each compound. In retrospect, it may have been advantageous to select 

some compounds with more complex chemical scaffolds, as these compounds would produce 

more off diagonal peaks in the COSY spectra. The compounds that were chosen had few 
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neighboring hydrogens, which are what a COSY pulse sequence detects. This is particularly 

noticeable in Figure 2 C, vanillin, which only shows one off-diagonal peak produced by 

neighboring hydrogens.   

3.3 E. COLI LYSATE 

3.3.1 GROWTH CURVE 

 

Figure 3. The growth curve of DH5-α bacteria grown in M9 minimal media at 37°C and 240 
rpm. The data appears to level off at optical density of 0.2. 

As shown in Figure 3, the DH5-α E. coli grew to ~0.2 optical density (OD) after 7 hours of 

growth. This culture saturation was considerably lower than reported in the method followed, 

with an absorbance of 3.0. This contributed to low sensitivity in the NMR spectra. It is possible 

that the cultures needed to be incubated for longer, in order to maximize cellular concentrations 

and, more importantly, maximize the production of secondary metabolites. The low OD may also 

be due to low oxygen levels, which could be alleviated by increasing the shaker speed and 

further splitting the culture into more Erlenmeyer flasks. Changing the concentration of glucose 
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did not seem to affect the final OD, meaning that glucose was not the limiting component of the 

media. Changing the media to LB broth doubled the final OD, but it did not approach the order 

of magnitude increase that was reported in the literature, indicating potential discrepancies in the 

methods of Bingol et al.12 The two main possibilities are that the culture was measured with a 

path length of 10 cm instead of 1 cm, or culture saturation was simply assumed to have an OD of 

3 without any sort of spectrophotometric measurements to confirm. As contacting the researcher 

received no response, the analysis of the 0.3 OD 1-L culture was done.   

3.3.2 NMR SPECTRA 
Figure 4 shows the four different spectra produced by NMR analysis of the E. coli lysate. Note 

the poor sensitivity displayed in Figure 4 C, which causes it to have the same or fewer peaks than 

the corresponding near coupling spectra, while the opposite should be the case. The TOCSY 

spectrum (Figure 4 A) has the opposite issue, where there is so much signal, that almost no 

resolution can be observed. Sensitivity was low, in part due to the low cell concentrations 

already mentioned, but also because the parameters were poorly optimized for the E. coli lysate. 

The number of scans should be increased, and the resolution in the time domain decreased. There 

were also issues with the HSQC-TOCSY pulse sequence, and to a lesser extent the TOCSY pulse 

sequence, where the sample became hot over the course of the experiment. Part of this can be 

attributed to the exothermic mixing time inherent in TOCSY pulse programs; however, the 

HSQC-TOCSY was an adiabatic variant, due to some corruption in the parameter files of the 

basic pulse program. What effect, if any, this had on the increase in temperature is unclear. Heat 

is undesirable due to averaging of signals that are separate at room temperature (which most of 

the database spectra have been collected). Additionally, the change in temperature can 

decompose analytes and cause solvent to rapidly evaporate. A CryoProbe can be used to keep the 

temperature of an NMR experiment constant, but our instrument used is not equipped with that 

probe. This lead to a preference for lower energy pulse sequences–such as HSQC, HMBC, and 

COSY–in the rest of the analyses done by NMR spectroscopy.  
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Figure 4. The spectra used to analyze the E. coli lysate. (A) shows a TOCSY spectrum, (B) a 
COSY spectrum, (C) an HSQC-TOCSY spectrum, and (D) an HSQC spectrum.  
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3.4 GRINDELIA SQUARROSA 

3.4.1 CRUDE SAMPLES 
The extraction with hexanes gave a viscous, yellow oil that had a strong, resinous scent that was 

completely miscible in hexanes. The acetone extraction was a vivid yellow, with a faint green 

hue that varied in intensity based on the amount of photosynthetic material included in the plant 

sample. The methanol fractions were an off-yellow colour that was quite weak in intensity.  

Solvent-wise, the DMSO-d6 dissolved the most extract. However, this was mitigated somewhat 

by the large, broad solvent peak produced by DMSO that overwhelmed the weaker peaks next to 

them. The 1:1 D2O: acetone-d6 dissolved the least amount of the extract and had the added issue 

of two solvent peaks, one broad peak from HOD, and one intense peak from the six equivalent 

protons in acetone. These peaks produced unwanted noise and overlapped with low intensity 

analyte peaks.  Methanol-d4 showed a compromise between these two extremes. Most 

compounds were soluble in the methanol, as that was one of the two solvents that comprised. 

The methanol has two solvent peaks; one at 3.31 ppm and the OH proton at 4.78 ppm. The 

hydrocarbon portion allows methanol to dissolve moderately nonpolar compounds. The OH 

group allows for hydrogen bonding with compounds with hydrogen bond donors and acceptors. 

The OH group also allows the solvent to be buffered to increase the reproducibility of the 

chemical shifts. Unfortunately, buffering was neglected in this experiment, which may have led 

to inconsistencies in the chemical shifts. Querying the BMRB database returned between 217 

and 477 compounds. These compounds were compared against the results of the networks 

produced from the fractionated compounds (Figure 5). The sample dissolved in methanol 

displayed 54 new compounds that were not present in any of the fractions analyzed; this is 

probably due to the incomplete analysis of the fractions, but may indicate that the BMRB 

database requires very few compounds in order to reduce the number of false positives.  
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Table 3. A selection of results returned from sample 15 from the BMRB database. The displayed 
compounds were chosen based on structural complexity and the presence of functional groups. 

Peak match Structure Name 

1 

 

scyllo-Inositol 

0.8 

 

D-(+)-Threo-isocitric acid 

0.78 

 

O-Phospho-L-serine 

0.75 

 

D-Saccharate 

0.73 

 

Pimelic acid 

0.67 

 

O,O-diethyl thiophosphate 
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0.57 

 

2-Aminoethyl dihydrogen phosphate 

0.53 

 

Nepsilon-Acetyl-L-lysine 

0.5 

 

4-Chlorophenol 

0.5 

 

Guaiacol 

0.5 

 

4-Guanidinobutyric acid 

0.5 

 

L-(-) Arabitol 
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3.4.2 FRACTIONATED SAMPLES 
The fractions were unevenly split in the mass of the isolated compounds, varying from 0.0049 g 

to 0.2227 g, as shown in Table 2. This indicates, at a very superficial level, that the way that the 

subfractions were pooled needs to be reevaluated. Ideally each fraction would contain an equal 

number of compounds, and those compounds would be in relatively equal concentrations. 
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Figure 5. The connectivity network produced from six of the fractions showing the compounds 
present in each fraction. The large blue nodes represent the fractions, while the 594 unique 
compounds returned by the BMRB database are the small white nodes. Blue edges represent 
connections that result from a single fraction/compound pair, showing compounds that only 
appear in one fraction. The size of the nodes is proportional to the number of compounds 
returned by the database for each fraction, while the length of the edges is proportional to the 
inverse of the scoring value returned by the BMRB database referred to as ‘Peak Match’. (A) 
shows the complete dataset from the BMRB database with no editing. (B) shows a simplified 
graph with only fractions 1, 2, and 3 shown. This allows for the easy visualization of compounds 
belonging only to 1 fraction (blue edges and on the peripherals), 2 fractions (grey edges and on 
the peripherals) and all three compounds (center of the graph).  

Ideally, each fraction should contain at most 20 compounds. One way to do this would be to 
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keep the 71 subfractions separate and characterize each one individually. However, analyzing 71 

subfractions at 20 hours a fraction would take over two months. One way to minimize the 

analysis time would be to reduce the acquisition time to only 20 minutes, which would require a 

more manageable 30-hour timeframe. This may be feasible for the smaller number of compounds 

present in each fraction, as they may require less sensitivity to detect each compound.  

The large number of common compounds clearly visualized in Figure 5 B, and suggested in 

Figure 5 A, indicates poor separation of the crude extract. This could be due to overloading the 

C-18 chromatography column. Either decreasing the amount of extract that is separated or 

increasing the amount of column packing material to increase resolution of compounds should be 

done. Unfortunately, decreasing the amount of extract loaded on the column would greatly 

impact sensitivity. Therefore, the more prudent choice would be to increase the amount of 

column material, even though there will be more solvent to remove before analysis.  

As shown in Figure 5, the networks allow one to decide upon a different order to pool fractions. 

Fraction 1 and 3 are quite large nodes, indicating a large number of compounds being returned 

from the database. If these fractions were separated in more, smaller fractions, the compounds 

would be easier to identify. Additionally, fractions 6 and 7 are quite small and close together on 

the network. This seems to indicate that they contain similar compounds because similar forces 

from the compounds affect them. They should be pooled together to increase sensitivity and 

reduce network complexity.  

Ideally, the network would be constructed from the peaks, rather than compound assignments 

from the database. This would remove some of the uncertainties and limitations of the databases, 

such as very limited amounts of compounds in the databases and the uncertain assignment of 

compounds that are in the database. Additionally, incorporating only the peaks reduces analyst 

bias, where compounds that are not expected to be bioactive are dismissed out of hand. 

Unfortunately, due to slight changes in temperature and solvent composition, there is minor 

variation in the chemical shift of the same peak between runs. This means that a single peak 

coordinate cannot be used as a common compound identifier between fractions. Instead, a 

bucketing approach3,4 must be used, dividing the two dimensional spectra into a grid. The 

increments in NMR bucketing are typically 0.04 ppm for a one-dimensional spectrum, though 

due to the approximately 10-fold increase in ppm range for 13C, it seems reasonable to believe 



24 

that increments of 0.4 would provide sufficient resolution for a 13C spectra. Thus, a 2D HSQC 

spectra, such as the one used for the compilation of the networks, consisting of 10.992 ppm in 

the 1H dimension and 173 ppm in the 13C dimension would consist of a 275 1H buckets X 433 
13C buckets for a total of 119075 data points. If the apex of a peak falls in a bucket, the 

corresponding intensity is considered the value for the entire bucket, and the peak can be related 

to peaks in other fractions that fall in the same range. One of the downsides of this method is 

when multiple peaks appear in the same bucket. In this case, some sensitivity is lost as the peak 

intensity are added together, but as such deviation could not be detected by a database due to the 

database treating each peak as a range, such points are academic at best. The bioinformatics 

programs to do this sort of bucketing already exist for LC-MS,21 where the two dimensions are 

the retention times and the masses of the compounds being detected instead of 1H and 13C 

chemical shifts. Therefore, it would be relatively simple to adapt these programs for two-

dimensional NMR spectra. 

4 CONCLUSIONS AND FUTURE WORK 

4.1 COMPLEX MIXTURE 
There is still more interpretively useful data to be gleaned from simple, few compound mixtures, 

both of the compounds discussed here and of other mixtures. A dilution series of the mixture 

should be done to determine the limits of detection and optimize the instrumental parameters to 

give a balance between sensitivity and experiment time. An experiment that was not done was an 

HSQC analysis of the composite mixture. This would allow the effects of querying multiple 

peaks on the certainty of assignment to be empirically determined. Additionally, compounds that 

vary only slightly (alcohol group versus methoxide group) should be examined to explore 

whether this technique can differentiate between analogues of the same compounds, or if the 

technique is limited to only determining classes of compounds. However, even if NMR 

metabolomics can only identify classes of compounds, the technique is still a powerful tool for 

characterizing natural product extracts.  

The complex mixture also provides a useful platform for examining the effects of buffering the 

NMR solvent on chemical shifts. This is important because chemical shifts of nuclides can vary 

up to 1 ppm for 1H and up to 10 ppm for 13C depending on whether the molecule is in the 

protonated, acidic form, or the deprotonated, basic form.22 Different solutions of methanol-d4 can 
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be made with varying concentrations and pH values. Chemical shifts of known compounds could 

be compared at these different conditions. Ideally, the buffering of methanol would prove 

unnecessary, as buffering either requires expensive deuterated buffers, or introduces a large 

water peak into the NMR spectra, which obscures many finer peaks. Typically, the suggested pH 

is around 7.3, probably due to that being close to physiological pH.  

4.2 E. COLI LYSATE 
The E. coli lysate provided valuable insight into the importance of pulse program selection, as 

well as clarifying the effects of the TD and NS parameters on spectra sensitivity and resolution. 

For the purpose of this experiment, it was only included in order to produce a defined, complex 

mixture to confirm the database results from. Due to the poor sensitivity displayed, the spectra 

gathered did not display enough information to query the peaks correctly. However, beyond this 

experiment, examining the metabolic profile of bacteria allows perturbations, be it genetic based 

or chemical, to be examined on a metabolomics level. This could be applied to examining the 

biosynthesis of natural products from bacterial transformants in order to optimize feedstock and 

minimize side reactions. Introducing carbon-13 labeled feedstock could increase sensitivity. This 

would increase sensitivity 100-fold in experiments involving carbon, as well as distinguishing 

the metabolites of the feedstock from the rest of the metabolome. Changing the focus of the 

lysate to examine more nonpolar constituents is also a possible direction. To do so, size 

exclusion chromatography packing is introduced to the bacterial culture. Exuded small molecules 

are adsorbed by the packing material, and after the bacterial culture is grown to saturation, the 

small organic molecules are extracted by methanol.23 The gathered compounds are more 

nonpolar than those gathered through methanol/chloroform extraction. These compounds can 

then be analyzed through metabolomics experiments to compile a natural product library.  

4.3 G. SQUARROSA EXTRACTS 
One of the first things that still needs to be done with the G. squarrosa extract is to analyze the 

remaining fractions by NMR spectroscopy, as only fractions 1-7 and fraction 11 were analyzed. 

The database results of all the fractions should be visualized on a network. This network can be 

used to determine which fractions have more compounds–and thus should be further split into 

more fractions–and which fractions display very similar compounds–which should be pooled. 

This information should guide the subfraction pooling of a second reverse phase column 
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chromatography with identical parameters to the first, described in section 2.3.3. 

The new fractions should be analyzed by NMR spectroscopy and queried against the BMRB 

database. The results would then be visualized in a network; this network would be used to 

determine the uniqueness and number of constituents of each fraction. The list of unique 

compounds from each column chromatographic separation should be compared to indicate the 

reproducibility of both the database results and the plant composition.  

Once that is done, the fractions should be tested for activity. The purpose of this step is to gain 

biological profile, rather than looking for specific bioactive constituents. Several different 

approaches exist for biological profiling. One such method is to compare the expression levels of 

several reported genes upon treatment with the fractions.24 The expression levels can be 

compared with the expression levels upon treatment with compounds of known modes of action, 

or upon treatment with siRNAs (genetic knockdown). In either case, similar expression levels 

between fraction and known perturbagen is interpreted as a compound that acts on the same 

pathway as the known perturbagen.  

In a similar way, cell morphology can be visualized using fluorescent dyes.21,23,25 Changes in 

morphology can be statistically correlated between fractions, as well as with known 

perturbagens. One large advantage of this platform is that it already designed to integrate with a 

network compiled from MS-based metabolomics. The network changes from visualizing the 

relationship between compounds and fraction to visualizing the relationship between compounds 

and fraction activity. This process is improved through increasing the number of fractions 

analyzed, as the fewer compounds present in a fraction to be tested for activity the easier it is to 

identify the single compound causing that activity.  

Even without added biological activity, the fraction networks can be further analyzed. If the 

weight of the lines were changed to peak intensity, normalized to the TMS added in a constant 

concentration, the edge lengths would be related to concentration, rather than the peak match 

value returned by the database. Unfortunately, the peaks in two-dimensional spectra are not 

directly related to concentration, as in one-dimensional proton NMR. Other factors, such as 

magnitude of the coupling constant, J, and NMR parameters such as using a decoupling 

irradiation pulse, and changing mixing time in TOCSY type experiments also influence the 

intensity of the peaks. However, as long as the instrument parameters are constant, the influences 
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other than compound concentration should also remain constant. When linking metabolomic 

profile with biological profile, having some indication of molecular concentration allows a dose 

response relationship to be observed, helping to narrow in on the biologically active compound. 

4.4 THE DIRECTION OF BIOINFORMATICS 
The programs developed over the course of this project were limited in function. Ideally, there is 

more functionality that should be included in each program, particularly NMR_reader.py. Noise 

can be filtered from HSQC type spectra by incorporating the intensity of each peak into the 

output of NMR_reader.py. Then the highest intensity peak would be retained, discarding the 

smaller, noise peaks. Noise can also be visualized in COSY spectra. If the spectra are not 

symmetrized, noisy peaks show up as intense vertical lines. Any peaks in the output of NMR 

reader that have more than four peaks in it should be discarded, as they are most likely the result 

of noise. Another feature that would be useful is to add a way to “walk” along related peaks by 

referencing entries in the list of F2 chemical shifts to the key of the reversed library, eventually 

compiling entire substructures in one table entry. 

Ideally, the NMR data should be manipulated so as to return excellent results in the MMCD.20 

This database contains the largest number of compounds and allow multiple inputs to be queried 

at once, increasing the validity of the results.  

4.5 CONCLUDING REMARKS 
Metabolomics methods using the NMR spectrometer were developed. After considering several 

pulse programs, HSQC showed the greatest promise for producing well resolved and simple 

spectra. Querying the list of peaks produced from the HSQC NMR spectra of the fractionated G. 

squarrosa extract against the HMBC database returned 597 unique compounds. Querying the 

crude extract in the same manner returned between 217 and 477 compounds.  The four-

compound mixture returned 815 compounds from the querying of one-dimension of the COSY 

spectrum. This large number of compounds returned from a relatively simple mixture raised 

questions about the quality of the database assignments. To improve the assignment, more peaks 

known to be on the same molecule need to be queried against the database. As the databases are 

not configured to accept multiple related sets of peaks at a time, relating peaks with biological 

activity, and only analyzing those subsystems that correlate with biological activity is proposed 

as a potential work around. This reduces the number of peaks that need to be analyzed. This 
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integration would result in a powerful technique that is complementary to the currently used MS-

based metabolomics, further exploring chemical space. 
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APPENDIX A 

 

Table 4. A sample of the first 20 peaks with the highest intensity from the combination of the four 
trial samples (limonene, vanillin, coumarin, menthol). 

Peak (F2) [ppm] (F1) [ppm] Intensity [abs] 

1 1.6561 7.0413 31298 
2 7.0456 1.6568 31298 
3 5.7015 5.7114 31338 
4 5.7146 5.6984 31338 
5 1.2646 1.5134 31366 
6 1.5126 1.2657 31366 
7 1.1211 1.396 31396 
8 1.3951 1.1223 31396 
9 1.6953 7.4063 31554 
10 7.411 1.6959 31554 
11 0.7557 1.5264 31558 
12 1.5256 0.7572 31558 
13 2.0085 2.2956 31632 
14 2.2955 2.0088 31632 
15 7.4241 7.8235 31756 
16 7.8286 7.4194 31756 
17 0.8731 3.9514 31970 
18 3.9529 0.8745 31970 
19 1.7475 7.6931 32008 
20 7.6981 1.7481 32008 
 

Table 5. The first 28 rows of the output of NMR_reader.py using the four compound mixture as 
an input. 

F1 (ppm) F2 (ppm) 
0.9006 0.9006      
0.9137 0.9137      
-0.0118 -0.0118 7.7062 7.1065 7.4194 7.5237 7.4976 
7.2629 7.2629 7.3411 6.4285    
-0.1422 -0.1422      
1.6438 1.6438      
0.8224 0.8224 7.2108 7.2629 7.289   
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3.9775 3.9775      
1.6698 1.6698      
4.6945 4.6945 6.598     
4.0035 4.0035 2.1783     
7.4194 7.4194 9.6227     
0.7963 0.7963 7.6149 7.4324    
9.8182 9.8182      
1.722 1.722      
0.9267 0.9267 7.0934 7.4976    
0.1444 0.1444      
0.1053 0.1053      
0.0793 0.0793      
0.001 0.001 1.722     
0.8745 0.8745 3.9775     
0.8094 0.8094 4.7076 9.6227    
0.8615 0.8615 7.5497 7.4715    
2.1392 2.1392      
2.1913 2.1913      
2.1653 2.1653 1.6307 0.8094 7.4194 1.722 9.6227 
1.5264 1.5264      
1.5916 1.5916 4.4207 4.4729 1.6568   
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APPENDIX B 

 

#NMR_reader.py 
  
'''To compile peaks with the same chemical shift as one entry in a dictionary''' 
import pandas as pd 
import numpy as np 
  
  
def F1(table, number): 
   '''defines the F1 direction in an easy to reference way''' 
   return table.loc[number, '?(F1) [ppm]'] 
  
def F2(table, number): 
   '''defines the F2 direction in an easy to reference way''' 
   return table.loc[number, '?(F2) [ppm]'] 
  
  
def dict_maker(file): 
   '''converts the table of peaks into a dictionary, where the F2 peak is the 
   key and all F1 chemical shifts attached to the key are compiled into a list. 
   This removes redundant F2 peaks''' 
   spectra = pd.read_csv(file) 
  
   peaks = {} 
   for number in range(spectra.shape[0]): 
       peak = [F2(spectra, number)] 
  
       connected = [] 
        
       true_spectra = spectra.isin(peak) 
  
       if F2(spectra, number) not in peaks: 
           for x in range(number, spectra.shape[0]): 
               if F2(true_spectra, x) == True: 
                   connected.append(F1(spectra, x)) 
                    
               peaks[F1(spectra, number)] = connected 
                
   return peaks 
  
def dict_maker_rev(file): 
   '''converts the table of peaks into a dictionary, where the F1 peak is the 
   key and all F2 chemical shifts attached to the key are compiled into a list. 
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   This removes redundant F1 peaks''' 
   spectra_rev = pd.read_csv(file) 
   peaks_rev = {} 
   for n in range(spectra_rev.shape[0]): 
       #returns the reverse of the dict_maker loop 
       peak_rev = [F1(spectra_rev, n)] 
       connected_rev = [] 
       true_spectra = spectra_rev.isin(peak_rev) 
       if F1(spectra_rev, n) not in peaks_rev: 
           for x in range(n, spectra_rev.shape[0]): 
               if F1(true_spectra, x) == True: 
                   connected_rev.append(F2(spectra_rev, x)) 
               peaks_rev[F1(spectra_rev, n)] = connected_rev 
  
   return peaks_rev 
  
  
'''runs both the dict_maker and dict_maker_rev functions on one data set''' 
file = input("What is your filepath? ") 
product = input("Where should this be written? ") 
product_rev = input("Where should the reverse be written? ") 
  
lysate = dict_maker(file) 
  
lysate_rev = dict_maker_rev(file) 
                                
output = open(product, "w") 
  
for key in lysate: 
   print (key, lysate[key], file = output) 
output.close() 
                                
output_rev = open(product_rev, "w") 
  
for key in lysate_rev: 
   print (key, lysate_rev[key], file = output_rev) 
output_rev.close() 
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# NMR_network.py 
  
import networkx as nx 
import pandas as pd 
  
# makes empty graph and empty nodes list 
G = nx.Graph() 
listything = [] 
  
# open csv file that contains the list of nodes as a dataframe 
# make sure to label the column containing the nodes as "Nodes" 
fraction_1 = pd.read_csv("/Users/jasonmcfarlane/Downloads/nodes.csv") 
  
'''iterates through the "Nodes" column and inputs each entry into the empty 
nodes list. G.add_nodes_from()creates a nodes table from this list, ignoring 
any redundant entries''' 
for n in range(len(fraction_1.index)): 
   s = fraction_1["Nodes"] 
   listything.append(s[n]) 
G.add_nodes_from(listything) 
  
'''Makes a dataframe from a table of edges. The first column contains a list 
of fractions and is labelled "Fractions". The second column contains the 
compounds returned in each fraction. The weight column is a value returned from 
the database, and represents the certainty of the compound assignment. A "1" is 
a high likelihood, while "0" is low likelihood.''' 
edges_list = pd.read_csv("/Users/jasonmcfarlane/Downloads/yuple_edit10%.csv") 
  
for n in range(len(edges_list.index)): 
   first = edges_list["Fractions"] 
   second = edges_list["compound"] 
   weight = edges_list["weight"] 
   G.add_edge(first[n], second[n], weight=float(weight[n])) 
  
'''Writes the graph to an xml file for easy visualization using Cytoscape''' 
nx.write_graphml(G, "/Users/jasonmcfarlane/Desktop/weightedgraph_edit10%.xml") 
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Figure 6. This shows the same six fractions shown in Figure 5 with all compounds that had a 
Peak Match in the BMRB database equal or lower to 0.10. This filter removed 60 compounds 
from the dataset leaving 534 compounds. 
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