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ABSTRACT  

Thesis Supervisor: Professor Louis Gosselin 

 The growth process in crustaceans is periodic and can be affected by a variety of 

environmental factors. Photoperiod has been hypothesized to indirectly affect growth by altering 

feeding behaviour; in addition, previous studies have found that light quality directly affects eye 

development in many crayfish species both externally through ommatidia development and 

internally by altered pigments present in the eye. However, it is not known at what stage in life 

these changes occur. A key characteristic in crayfish growth is allometric (proportional) growth 

exhibited between body size and sexually selected characteristics such as cheliped size. This 

study examined whether specific light wavelengths (blue, red, white, and no light) influence the 

growth and morphology of the orange dwarf crayfish, Cambarellus patzcuarensis, in terms of 

body size, eye size, and specific eye parameters of ommatidia size and density in both juveniles 

and adults. Crayfish were raised from one-week old juveniles to adult (16 weeks) or juvenile (7 

weeks) life stages in controlled environments. Upon sampling, digital photographs of each 

individual were taken to assess body size and colouration and both eyes were removed. The left 

eyes were fixed and scanning electron micrographs taken to document surface features of the 

eye. Eyes were then embedded in resin and sectioned to measure the depth of ommatidia inside 

the eye. The right eyes were pooled by treatment, homogenized, and pigments suspended into 

solution before absorbance spectra over the visible light range were taken using a 

spectrophotometer. The light wavelengths experienced during juvenile growth did not 

significantly influence body growth or the development of external morphological characteristics 

of the eye such as eye size, ommatidia size or ommatidia density in individuals of either life 

stage (P > 0.05). The absorbance spectra of homogenized eye tissues suggests light wavelengths 

did influence the production of pigments in the eyes.  In particular, the eyes of individuals grown 

under blue light had lower absorbance in the 550-570 nm range and through to 750 nm, which is 

consistent with the absorption spectrum of ommin pigments. Eye size as well as ommatidia size 

and density developed proportionally with body size in juveniles (P <0.05); however, this 

allometry did not appear to be maintained into adult life. Ommatidia size and density were also 

correlated in juveniles in relation to eye size (P < 0.05); however, only ommatidia density 

remained correlated with eye size in adults. External morphology was not found to differ 

between treatments, but absorbance spectra appeared to differ from 550-750 nm (yellow-orange).     
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INTRODUCTION 

Growth process and patterns in crayfish  

Growth is a key component in the existence of an organism. For crustaceans, growth 

occurs in periodic dimensional increases, rather than continuous growth as observed in many 

other taxa. This method of growth entails two phases: (1) a phase of cell division and protein 

synthesis and (2) a molting phase (ecdysis), which is the process of shedding the calcified 

exoskeleton to allow expansion of the soft tissue beneath, before a new exoskeleton reforms 

(Aiken and Waddy 2015).  The molt stage of an individual can be estimated by hardness of the 

shell or by colouration of the shell, as it becomes progressively darker leading up to a molt 

(Needham and Brunet 1957, Ramalho et al. 2008; Stumpf et al. 2011). The growth of crayfish 

can show high variation in parameters such as molt frequency and size increase per molt; 

however, crayfish exhibit the characteristic of allometric or relative growth, which is the 

proportional growth of two changing dimensions (Lovett and Fedler 1989). Studies across many 

species of crayfish have revealed allometric growth between body size and sexually selected 

characteristics such as cheliped size and abdomen width (Boyd and Page 1978; Buřič et al. 2010; 

Mariappan et al. 2004).  

An individual’s molt cycle can be affected by the environmental conditions it 

experiences, such as temperature, seasonality, water movement cycles, density/crowding, habitat 

substrate, water quality, nutrition, and photoperiod (Aiken and Waddy 2015). In comparison to 

other environmental factors, less work has been done to investigate the effect of photoperiod on 

growth. Photoperiod is hypothesized to only indirectly affect growth through altering behaviour 

and feeding activity (Aiken and Waddy 2015); however, other properties of light, such as light 

quality, have directly affected eye structure and development, which has been well described 

(Culver 1987; Mejía-Ortíz and Hartnoll 2005; Cooper et al. 2001; Tokarski and Hafner 1984; 

Walcott 1974).   

Eye structure and development in crayfish  

The compound eye allows animals like the crayfish to achieve a large field of view with a 

small spherical eye structure (Cao et al. 2015). The small size of the compound eye allows 

crayfish to not expend additional energy in the creation of a large eye, as well as allows for less 

total weight of the individual allowing for quicker movement and escape from predators (Aiken 

and Waddy 2015). The compound eyes in arthropods are divided into individual ommatidia, each 
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containing pigments, cone cells, or secreted lenses depending on the species (Callaerts et al. 

2006). Crayfish have a type of compound eye referred to as superposition eyes, which are 

deemed complex because they can form complete images and contain large amounts of 

photoreceptor and pigment cells (Erclik et al. 2009). In the compound eye, an image is formed 

by integration of input from each ommatidia to form a single image at the retinal surface, 

allowing crayfish to see in greater detail from further distances than vertebrates (Land 1990, 

Erclik et al. 2009). 

The compound eye observed in crayfish is composed of layers containing dioptric (light 

refracting and absorbing) structures and a rhabdomere, which is equivalent to a retina in 

vertebrates (Figure 1) (Meyer-Rochow 2001, Chen and Hua 2016). Within the dioptric zone of 

the compound eye, there is a pigment screen, which consists of cells that either absorb or reflect 

light, called pigments (Struwe et al. 1975). These pigments have been broadly classified into 

ommochromes (absorptive pigments), and pteridines (reflective and/or fluorescent pigments) 

(Struwe et al. 1975). Previous studies have found that reflecting pigments remain stationary, 

whereas the absorptive pigments are able to migrate between cells in the eye (Bryceson 1986). 

The structure and composition of this pigment screen has been found to alter the spectral 

sensitivity of the eye in arthropods (Struwe et al. 1975).  

The superposition compound eye is able to morphologically adapt to allow for maximum 

optical information in the natural environment. Characters of the eye that have been observed to 

differ between habitats include ommatidial facet diameter, interommaditial angle, photoreceptor 

presence and arrangement, and the dimensions of the rhabdomere (Chen and Hua 2016). 

Changes in the structural shapes of cells as well as cell contents can occur to maximize the 

performance of the visual system and have been observed to change over the lifetime of a single 

individual and be triggered by ambient light conditions, stressing the need to develop a clear 

understanding of eye development in crayfish throughout life (Meyer-Rochow 2001). This 

adaptation occurs throughout the development of the ommatidia, which can take place in one of 

two ways: the "row by row" fixed development type in which ommatidia are all created of equal 

size and are unable to change beyond formation, or the "morphogenetic front" continuous 

development type in which ommatidia can change in size after being formed (Harzch and Hafner 

2006). The morphogenetic type of development is typically exhibited in crustaceans (Harzch and 

Hafner 2006).  
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Figure 1. Longitudinal section of a crayfish eye showing layers within the eye.                               

Source of figure: Meyer-Rochow (2001). 

Many studies, such as those carried out by Culver (1987), Mejía-Ortíz and Hartnoll 

(2005), Cooper et al. (2001), Tokarski and Hafner (1984), and Walcott (1974), have found 

differences in eye structures between species of crayfish from habitats with different levels of 

light exposure, including facet size, cone length, pigmentation, and rhabdomere size. For 

example, crayfish that inhabit caves with little light exposure tend to have smaller eye size and 

ommatidia when compared to crayfish living in areas with high light exposure such as a shallow 

spring (Culver 1987). What these studies did not take into account was ontogeny as the eye 

continues to develop throughout life, as well as the influence of specific light wavelengths.  

The present study aimed to determine the effects of exposure to certain, controlled 

wavelengths of light on the development and morphology of the eye in the orange dwarf 

crayfish, Cambarellus patzcuarensis, as well as relate the development of the eye to the 

allometric growth patterns observed in other quantitative features of crayfish. This species is 

commonly sold for aquarium use and therefore is subjected to a variety of light conditions 

depending on the tank in which they are housed. The specific objectives of this study were to 

determine: (1) if the development of eye parameters (eye size, ommatidia size, ommatidia 
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density, ommatidia depth, and pigments present in the eye) is influenced by the wavelengths of 

light to which individuals are exposed to during juvenile life; and (2) whether or not any of 

dimensional parameters of the eye (eye diameter, ommatidia size, ommatidia density, and 

ommatidia depth) exhibit allometry between each other or with body size of the individuals at 

both juvenile and adult life stages. 

METHODS AND MATERIALS 

Rearing of crayfish: tank setup and maintenance 

Nine large tanks (38 L) and two small tanks (7.5 L) were set up with all components 

needed to simulate a semi-natural crayfish habitat, including protective shelters and sediment in 

which they can burrow. Water chemistry (pH, nitrates, nitrites, ammonia) was monitored on a 

weekly basis. Each large tank contained 22 litres of water, and each small tank contained 2 litres 

of water at all times (see Appendix A for detailed tank setup).  

Strings of light-emitting diode (LED) lights were embedded into the wire mesh of the 

tank lids and the intensity of the light at the surface of the sediment was standardized to 0.6 

W/m
2
 by immersing a photometer in the tanks with the sensor at the surface of the sediment (see 

Appendix B for spectra of LED lights). Light intensity was recorded in seven locations (each of 

the four corners, and three evenly spaced samples down the center line of the tank) in each tank 

by moving the photometer’s sensor around the tank to assess the average light intensity 

throughout each tank. Light bulbs were then added or removed from the string, as needed, and 

arranged in a way that the intensity of the light was even, both throughout each tank as well as 

among all colour treatments (red, blue, and white). The tanks were completely covered with 

opaque black rubber sheeting to prevent all external light from entering the tanks. The rubber 

sheeting did not affect the water temperature, which remained constant at 23° C for the entirety 

of the experiment. 

One week prior to the arrival of the crayfish, the tanks were set up and sinking fish food 

was introduced into each tank for the week to establish a bacterial bed to prevent New Tank 

Syndrome, a common aquarium disease in which high mortality is observed due to lack of 

established bacterial colonies. Once established, the food was removed and fifty-nine young 

crayfish, purchased from Shrimpkeepers Anonymous Ltd. (Calgary, AB, Canada), were 

introduced into the tanks and acclimatized using an established protocol (available online: 

www.merlan.ca).  Six crayfish were introduced to each of the blue, red and white tanks, and the 
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remaining five crayfish were placed into the two small tanks (two into one tank, three into the 

other) as a secondary control with zero light exposure (referred to as the “dark treatment”). The 

lights for the tanks ran on timers so that the tanks (other than the dark tanks) were exposed to 12 

hours of light followed by 12 hours of darkness each day. The crayfish were fed crustacean food 

(Crab Cuisine brand) in excess every second day and any uneaten food was removed the next 

day from the tank. Tanks were cleaned using a gravel vacuum once per week, removing 20% of 

the total water volume at each cleaning and replacing it with an equal amount of de-chlorinated 

tap water at a pH of 7.6. 

Juveniles aged approximately 1 week and measuring approximately 2.5 mm carapace 

length were placed in the experimental tanks on 15 June 2016.  This cohort, referred to as 

generation 1, was held in the tanks until the end of the experiment on 5 October 2016, at which 

time they had reached the age of 16 weeks. Several crayfish in generation 1 reached maturity in 

August and produced a set of juveniles.  A set of 20 of these juveniles, referred to as generation 

2, were then also placed in the same four experimental tanks on 24 August 2016, with 5 juveniles 

of generation 2 per light treatment.  At the time of assigning juveniles of generation 2 to the 

experimental tanks, they were aged approximately 8 days and were comparable in size to 

juveniles of generation 1 on June 15. Juveniles of generation 2 were reared in the experimental 

tanks up to 12 October 2016, at which time these juveniles had reached the age of 7 weeks. 

Imaging and eye removal at end of experiment  

All individuals remained in the light treatments until they were permanently removed from 

their tank and used for measurements. Crayfish were collected from the tanks and used for 

measurements after exposure to the light treatments for 16 weeks, and thus as adults (generation 

1) or after only 7 weeks and thus still as juveniles (generation 2). At the end of each trial, 

individual crayfish were haphazardly selected, removed from the tanks, and put into 

individually-labelled dishes. All sampled individuals were in-between molts and had hardened 

exoskeletons. Prior to eye removal, a digital photograph of the individual was taken using a dark-

field dissection microscope, and this image was later used to measure exoskeleton colouration 

and external body size. Both eyes were then removed at the eyestalk using dissection scissors, as 

carried out by Smith (1940) and Walcott (1974).  The left eye was used in spectrophotometry 

analysis of eye pigments, while the right eye was used in microscopy analysis of the ommatidia. 
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Exoskeleton colour brightness and external body measurements 

Digital photographs, taken of each individual prior to eye removal, were used to measure 

body size and exoskeleton colour brightness. All images were analyzed using the software 

ImageJ version 1.51h (Rasband 1997-2016). To ensure a consistent imaging of body colouration 

among crayfish, a requirement for comparisons among individuals or among light treatments, the 

setup of the dissection microscope (light arm positioning, magnification, and top-mounted 

camera settings) remained constant throughout the imaging of all individuals from both 

generations. In addition, a white reference object as well as a ruler were present in each of the 

photographs to calibrate the white balance and distance measures, respectively, when analyzing 

the photograph with ImageJ. For each digital image, the white reference object was set to 

indicate the highest level of brightness (140) and the brightness of two areas of the carapace were 

then measured on a scale of 1 to 140, with 1 representing pure black and 140 representing pure 

white. The first area (label A in Figure 2), located along the center line of the posteriomedial 

edge of the carapace, appeared translucent and did not show significant variation between 

individuals; it is therefore said to be the “unpigmented region”. The brightness of the second area 

(label B in Figure 2) varied substantially among individuals, ranging from very lightly pigmented 

and almost as bright as the unpigmented region in some individuals to well-defined dark orange 

stripes in other individuals. This region is referred to as the “pigmented region”.  The ImageJ 

software was then calibrated using the ruler before measuring the carapace length (from the tip 

of the rostrum to the posteriomedial edge of the carapace – label C in Figure 2). 

 

Figure 2. Exoskeleton brightness sampling areas for unpigmented (A) and pigmented (B) regions 

as well as carapace length measure (C). 
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Effects of controlled wavelength exposure on absorption spectra of the eye  

 The left eye of each crayfish was immediately placed into individually-labelled 

Eppendorf tubes containing 50 µL of 100% anhydrous ether alcohol and stored at -71ºC until 

processing. Due to their small sizes, the left eyes of all crayfish from a same light treatment, 

including both generations, were then pooled together to have enough eye material for 

spectroscopic analysis (i.e. minimum of 8 eyes per treatment). The dark treatment was not 

analyzed due to the small number of eyes (only 2) leading to an inadequate sample volume. The 

eyes were then transferred to 2 mL tubes containing 1 mL of 100% anhydrous ether alcohol. 

Two zirconia beads were then added to each of the three vials (blue, red, and white treatments) 

and each vial was shaken on a Biospec Mini Beadbeater for three 60 second intervals to break up 

the eye tissue, waiting two minutes between each interval to ensure that the solution did not 

reach a temperature that might cause protein denaturation. The zirconia beads were then removed 

from each vial and discarded. Vials were then sonicated for three 30 second intervals to lyse the 

cells and release pigments into solution, again waiting two minutes between intervals to prevent 

denaturation. The vials were then put onto an aliquot mixer overnight to allow the pigments to 

fully dissolve into the alcohol. Next, the vials were centrifuged for five minutes to create a dense 

pellet at the bottom of the vial and the supernatant was removed via needle into a 3 mL syringe. 

A 0.2 µm syringe filter was then placed onto each syringe and the samples were run through the 

filter into a new Eppendorf tube. The vials were then vacuum centrifuged at 30ºC for thirty 

minutes, at which point each vial contained approximately 250 µL of solution. A portion of each 

sample was transferred to a quartz 200 µL microcuvette and run through a scanning 

spectrophotometer to give absorbance readings for the range of the visible light spectrum (390 

nm – 800 nm). The spectrophotometer was set to provide as many readings as possible for each 

sample; however, the spectrophotometer provided a different number of readings per sample and 

sampled at irregular wavelength intervals. 

 To account for differing total eye volumes between treatments, the volume of each eye 

that was included in a sample was calculated with the equation for the volume of a sphere, and 

using the diameter of the right eye as measured with the scanning electron micrographs, 

assuming that both left and right eyes of each individual were of equal size and that each eye is 
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spherical. The sums of the eye volumes for each treatment were used to calculate a standardized 

absorbance spectrum per unit eye volume. 

Growth of eye parameters 

The right eye of each crayfish was immediately placed into individually-labelled and 

sealed sample vials containing Karnovsky’s fixative (25% glutaraldehyde, 4% 

paraformaldehyde, pH 6.8) and put onto an aliquot mixer for 48 hours at room temperature, after 

which the samples were removed from the mixer and put into a 4°C refrigerator. Once ready to 

process, the samples were washed with 0.025 M potassium phosphate buffer and returned to the 

refrigerator for 15 minutes. Two subsequent washes took place using the same potassium 

phosphate buffer at room temperature in the fume hood, waiting 15 minutes between washes. All 

samples were then washed three times with room temperature distilled deionized water, waiting 

20-30 minutes between each wash. Samples were mounted on aluminum stubs using carbon tape 

and put into an environmental scanning electron microscope (Zeiss Life Sciences (LS) 15 EVO) 

and micrographs of the surface of each eye were taken under extended pressure (45 Pa) with as 

low voltage as possible (20.00 kV) to clearly see the ommatidia.   

After taking micrographs, the eyes were returned to the vials and dehydrated through a 

series of successive alcohol washes using anhydrous ether alcohol of increasing concentrations 

(30%, 50%, 70%, 85%, and finally 90%), waiting 20 minutes between washes. Three washes 

were then performed, all with 100% anhydrous ether alcohol, and with 20 minute intervals 

between washes. The vials were then drained and filled with a 1:1 mixture of 100% anhydrous 

ether alcohol and LR White resin and put on an aliquot mixer in the fume hood for 24 hours. The 

solution was then replaced with a 3:1 mixture of 100% anhydrous ether alcohol and LR White 

resin and returned to the aliquot mixer for 24 hours. Three subsequent washes of 100% LR 

White resin were carried out on the aliquot mixture, each lasting 24 hours. The samples were 

then embedded in LR White using embedding capsule moulds with the eye oriented to be 

sectioned longitudinally. The LR White resin and accelerator were mixed in a 10:1 ratio and 

poured into the moulds. The moulds were then placed in a 60 °C oven to harden for 48 hours in 

Leica Ultracat incubator. 

Once hardened, the samples were removed from the mould and sectioned in 2 µm 

increments. All sections were then mounted onto glass slides, using a slide warmer at 45° C to 



9 

 

ensure the sections adhered to the slide. The slides were then stained with Crystal Violet and 

viewed under the light microscope.  

 The scanning electron micrographs were used to calculate the surface properties of each 

eye using ImageJ. Eye diameter was determined for each individual by measuring the distance 

across the eye at the widest point (distance B in Figure 3). Ommatidia size was calculated by 

measuring the average and standard deviation of 10 ommatidia along the base of the eye lying 

perpendicular to the electron beam to ensure that the area reading was accurate. As was carried 

out by Culver (1987), ommatidia density was calculated by measuring the surface area of 16 

ommatidia perpendicular to the electron beam. Density was calculated by dividing 16 by the 

measured area which was then converted to number of ommatidia per mm
2
. Finally, the 

percentage of the eye covered with ommatidia was calculated by measuring the linear distance, 

from the tip of the eye towards the eyestalk, to the point at which the ommatidia stopped 

(distance A in Figure 3). This value was then divided by the previously measured eye diameter 

(distance B in Figure 3) under the assumption that the eyes were spherical. 

 

Figure 3. Scanning electron micrograph of eye showing distances measured to calculate percent 

eye covered by ommatidia (A) and eye diameter (B). 

 To calculate ommatidial depth, a microtome section from the center of the eye was 

selected, as confirmed by comparing the measure of the diameter of the section (distance A in 

Figure 4) compared to the eye diameter observed in the scanning electron micrograph (distance 

B in Figure 4). The depths of ommatidia in two locations (one on each side, corresponding to the 

base of the eye – B and C in Figure 4) were averaged to produce a single ommatidia depth 

measure.    
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Figure 4. Light micrograph of cross-section of eye showing diameter (A) and sampling points to 

measure ommatidia depth (B and C). 

Statistical analyses 

To determine the effect of the light colour treatments, One-Way Analysis of Variance 

(ANOVA) tests with Tukey Pairwise Comparisons were used to compare each of the eight 

morphology measures (carapace length, unpigmented area colouration, pigmented area 

colouration, eye diameter, ommatidia size, ommatidia density, ommatidia depth, and percent of 

eye covered with ommatidia) among the colour treatments. To analyze growth patterns in the 

individuals, Pearson Correlations were run between the same eight parameters. 

 

RESULTS 

Effects of controlled wavelength exposure on growth and morphology 

 Body size, as determined by carapace length, was not significantly affected by the light 

treatments during either the first 7 weeks of juvenile life (generation 2: ANOVA, F3,8=1.70, 

p=0.244) or over a 16 week period (generation 1: ANOVA, F2,16=0.54, p=0.593) (Figure 5). The 

five measured morphological traits associated with the eye were not significantly affected by the 

light treatments during the first 7 weeks of juvenile life or over a 16 week period: eye diameter 

(generation 1: ANOVA, F2,13=0.68, p=0.524; generation 2: ANOVA, F3,8=0.86, p=0.500), 

ommatidia size (generation 1: ANOVA, F2,13=1.60, p=0.420; generation 2: ANOVA, F3,8=3.45, 

p=0.072), ommatidia density (generation 1: ANOVA, F2,13=0.11, p=0.893; generation 2: 

ANOVA, F3,8=3.93, p=0.54), percent of the eye covered with ommatidia (generation 1: 

ANOVA, F2,13=2.21, p=0.149; generation 2: ANOVA, F3,8=0.50, p=0.694), and ommatidia depth 

(generation 1: ANOVA, F2,13=0.49, p=0.626; generation 2: ANOVA, F3,8=, p=0.968).  
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Figure 5. Body size (as measured by carapace length) of individuals at end of experiment as a 

function of colour treatment and life stage (Juvenile= Generation 2; Adult = Generation 

1). Differences among treatments are not quite significant, possibly due to small sample 

size in the dark treatment (Blue = 9 crayfish, Red = 11 crayfish, White = 9 crayfish, 

Dark = 2 crayfish). Error bars represent standard error of the mean. 

Effects of controlled wavelength exposure on absorption spectra of the eye 

 Differences in the absorption spectra of homogenized eyes among light treatments were 

observed (Figure 6). Eyes from all light treatments exhibited very similar absorption spectra at 

wavelengths ranging from 390 – 525 nm and from 750 – 800 nm, including a peak at 450 nm 

(label A in Figure 6). The absorbance spectra diverged among treatments, however, through the 

range of 550 – 750 nm.  In this range, absorbance readings were generally highest for eyes from 

the white light treatment, intermediate for eyes from the red light treatment, and lowest for eyes 

from the blue treatment (Figure 6). In addition, absorbance declined across these wavelengths in 

eyes from all treatments, with the exception of a peak from 550- 570 nm (label B in Figure 6) 

and a modest absorbance peak at 670 nm for eyes from the red light treatment (label C in Figure 

6). Due to equipment limitations, the spectrophotometer provided fewer absorbance readings for 

the blue light treatment than for the other treatments, precluding the ability to establish whether 
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there are absorbance peaks at wavelengths >550 nm for eyes from the blue light treatment; 

however, all readings for the blue treatment were below those of both the red and white 

treatments for the entire range of 550 nm-700 nm.  

 

Figure 6. Absorbance of eyes (grouped by treatment) over the range of the visible spectrum. 

Inset shows the full range of tested wavelengths; main graph shows an expanded view 

of results over the 525 – 750 nm range.  Point A represents peak characteristic of 

xanthommatin. Point B represents absorbance range of ommin pigment. Point C 

represents unidentified peak in red light treatment spectrum. Absorbance values have 

been standardized by eye volume. 

Exoskeleton colour brightness 

 Exoskeleton colour brightness did not differ among light treatments in either the 

pigmented region (generation 1: ANOVA, F2,13=0.98, p=0.398; generation 2: ANOVA, 

F3,8=0.25, p=0.862) or the unpigmented region (generation 1: ANOVA, F2,13=1.32, p=0.295; 

generation 2: ANOVA, F3,8=0.05, p=0.986). However, colour brightness of the pigmented region 

of the carapace was significantly related to that of the unpigmented region in both juveniles 
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(n=12, p=0.002) and adults ( n=19, p<0.001), with brightness values showing a high degree of 

overlap between the two life stages (Figure 7).  

 

Figure 7. Brightness values of pigmented and unpigment regions of the exoskeleton of juvenile 

and adult crayfish. A brightness value of 1 represents pure black, and a value of 140 

represents pure white. 

Growth of eye parameters 

 The two life stages (juvenile and adult) did not exhibit the same relationship between eye 

parameters and carapace length. Overall eye size, as measured by eye diameter, was found to be 

correlated with carapace length in juveniles (Pearson correlation: r=0.901, n=12, p<0.001) but 

not in adults (Pearson correlation: r=0.274, n=19, p=0.304) (Figure 8). Average ommatidia size 

revealed the same pattern, with juveniles exhibiting proportionality with body size (Pearson 

correlation: r=0.883, n=12, p<0.001) while adults showed no such relation (Pearson correlation: 

r=-0.099, n=19, p=0.716) and had a much higher variation in ommatidia size per eye than 

juveniles (Figure 9A). Ommatidia density exhibited proportionality with body size in juveniles 

(Pearson correlation: r=-0.866, n=12, p<0.001) but this relationship was not present in adults 

(Pearson correlation: r=-0.225, n=19, p=0.401) (Figure 9B). Neither adults nor juveniles showed 
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a relationship between ommatidia depth and carapace length (Pearson correlation: adult crayfish, 

r=-0.187, n=19, p=0.522; juvenile crayfish, r=-0.263, n=12, p=0.434). 

 

Figure 8. Eye size (diameter) as a function of body size (carapace length). Regression line is for 

juveniles only.  
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Figure 9. A: Ommatidia size as a function of body size (carapace length). Error bars show 

standard deviation. B: Ommatidia density as a function of body size (carapace length). 

In both graphs, the regression line is for juveniles only. 
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 Ommatidia depth was not proportional with eye diameter in 7 week old juveniles 

(Pearson correlation: r=-0.242, n=12, p=0.474) or in 16 week old adults (Pearson correlation: r=-

0.454, n=19, p=0.103). Ommatidia depth was not proportional to eye diameter in either juveniles 

(Pearson correlation: r=-0.719, n=12, p=0.694) or adults (Pearson correlation: r=0.399, n=19, 

p=0.157). Ommatidia size was proportional to eye diameter in juveniles (Pearson correlation: 

r=0.743, n=12, p=0.006); however, this relationship was lost in adults (Pearson correlation: 

r=0.312, n=19, p=0.239) (Figure 10A). Ommatidia density decreased with eye diameter in both 

the juveniles (Pearson correlation: r=-0.719, n=12, p=0.008) and adults (Pearson correlation: r= -

0.731, n=19, p=0.001) (Figure 10B).  

 

DISCUSSION 

Effects of controlled wavelength exposure on growth and morphology  

Under controlled environmental conditions (temperature, pH, food, substratum, 

photoperiod), exposure to differing light wavelengths did not affect the growth rate of 

Cambarellus patzcuarensis. The small sample size (n=2) of juveniles in the dark treatment 

(generation 2) was likely responsible for the lack of significant difference between this treatment 

and the other light treatments. Casual observations suggest that juveniles reared in tanks with 

fewer adults may have grown faster than juveniles in tanks with several adults, accounting for 

some of the variation in their size at sampling; however, this was not formally quantified. The 

number of individuals in each tank were not standardized at all times across the different tanks 

and was often unequal due to mortality and the addition of generation 2 individuals to the tanks 

in week 10 of the experiment. This may account for the differing sizes at the time of sampling, as 

increased density and crowding have been found to have a direct effect on growth rate in crayfish 

(Aiken and Waddy 2015).  

The present study revealed that eye morphology parameters (eye diameter, ommatidia 

size, ommatidia density, and ommatidia depth) did not differ among light treatments. This 

finding contrasts sharply with reports by Culver (1987) and Mejía-Ortíz and Hartnoll (2005) in 

which eye parameters appeared to vary in habitats with different levels of light exposure. This 
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difference may have occurred because those previous studies had sampled fully-developed adults 

directly from their natural habitat, whereas the present study used juvenile 

 

Figure 10. A: Ommatidia size as a function of eye size (diameter). Regression is for juveniles 

only. Error bars represent standard deviation. B: Ommatidia density as a function of eye 

size (diameter). 
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crayfish originating from rearing facilities and then further reared under controlled light 

conditions. The present study suggested that ommatidia are able to develop beyond maturity 

based on the higher degree of variation in ommatidia size in adults compared to juveniles, so it is 

possible that the adults sampled in previous studies (likely at an age greater than 16 weeks as 

crayfish can live for many years) had further developed ommatidia than our 16 week old adult 

population. In addition, previous studies have collected crayfish in natural habitats with either 

bright (streams) or dark (caves) light conditions. The light conditions in those habitats therefore 

were likely very different from the light conditions in the present experiment and it is possible 

that the individuals are unable to adapt their eye morphology to the same degree within the 

wavelength range used in the present study.  With the shallow depth of the water used in this 

experiment, it is unlikely that any wavelengths of light would be filtered out of the water before 

reaching the crayfish. 

Effects of controlled wavelength exposure on absorption spectra of the eye   

While the exposure to different light wavelengths during juvenile growth did not affect 

the external morphology of the eye, the chemical composition of the eye did appear to differ 

between light treatments. In this study, pigments were identified by characteristic peaks rather 

than identification through chemical analysis of the homogenized solution, introducing an 

inherent possibility of error. The peak absorbance of homogenized eye tissues observed in all 

light treatments at 450 nm is common amongst crustaceans, and is consistent with the peak 

absorbance of the xanthommatin pigment. Xanthommatin exists in the pigment screen of the eye, 

within the dioptric zone, and functions to absorb light (Struwe et al. 1975). The white and blue 

lights used in this study produced wavelengths that peaked at 450 nm and 460 nm, respectively; 

however, individuals reared in red light exhibited an equal peak to those in blue or white which 

suggests that the production of this pigment may be irrespective of the environmental light 

conditions. In addition, the slight peak at 515 nm recorded here, and also in other Crustacea, is 

associated with metarhodopsin, a photoreceptor located in the rhabdomere (Cronin and 

Goldsmith 1982). The absorbance of eye tissues differed among treatments at wavelengths of 

550 - 570 nm, a range that is known to contain the ommin pigment (Evans et al. 2015). Since 

ommin is known to exist within the pigment screen and functions in blocking out or reflecting 

incident rays of light to avoid over-stimulation of receptors, the decreased concentration of this 

pigment in crayfish that were reared under short (blue) wavelengths suggests this pigment may 



19 

 

reflect longer wavelengths of light (Evans et al. 2015). In addition, the production of this 

pigment may be influenced by the light wavelengths experienced during juvenile life. The peak 

observed from individuals in the red light treatment, although unidentified, may be related to the 

wavelength of light to which they were exposed to as the red lights emitted wavelengths that 

peaked at 640 nm. Homogenizing the entire eye and suspending the pigments in solution allowed 

us to demonstrate total pigment content of the eye, considering both the pigment screen as well 

as the rhabdomere, whereas previous studies had separated the different regions of the eye prior 

to analysis, providing the presence as well as location of each pigment (Struwe et al. 1975).  

Exoskeleton colour brightness 

Pigments found in the eyes, such as xanthommatin, have also been observed in the 

exoskeletons of crustaceans (Needham and Brunet 1957). These pigments, along with others, are 

responsible for the colour brightness observed in the exoskeleton of the crayfish. The brightness 

of the exoskeleton can vary with physiological changes such as nutrition and stage in the molt 

cycle (Aiken and Waddy 2015, Needham and Brunet 1957). The longitudinal striping along the 

exoskeleton of Cambarellus patzcuarensis allowed for a comparative analysis within individuals 

to determine if both the pigmented (stripe) and unpigmented areas are related. The positive 

correlation between these areas suggests that, since individuals were unlikely to be all at the 

exact same point in the inter-molt stage, that both the pigmented and unpigmented areas respond 

the same within the molt cycle.  The overlap between the colouration of juveniles and adults 

suggests the pigmentation of the exoskeleton is fully developed by the age of 7 weeks, and that 

exoskeleton brightness does not develop progressively through to maturity. It has been 

hypothesized that vibrant exoskeleton colouration is sexually selected for in some species of 

crayfish (Aiken and Waddy 2015). Since generation 1 individuals reached maturity within 

approximately 11 weeks of age, it is possible that the colouration observed in the 7-week old 

generation 2 individuals is a result of those individuals approaching the point of maturity.   

Growth of eye parameters  

 Juvenile C. patzcuarensis exhibited gradual changes in eye diameter, ommatidia size, and 

ommatidia density in relation to body size (carapace length).  These allometric changes in eye 

size and structure suggest the development of the eye takes place proportionally with body size 

up to maturity. Once at maturity, eye size did not increase at the same rate as in juvenile life, 

likely due to the limitations of eye growth in crayfish. Crayfish are able to have small eyes due to 
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the ability of the compound eye allowing crayfish to take in adequate visual information while 

not expending additional energy in the creation of a large eye, as well as allows for less total 

weight of the individual to be able to move more quickly (Aiken and Waddy 2015). The 

observed increase in ommatidia size relative to eye size (diameter) suggests that individual 

ommatidia become enlarged to occupy more of the eye surface rather than new ommatidia being 

created to fill the space between existing ommatidia as the eye grows. In addition, the observed 

decrease in ommatidia density with an increase in eye size is consistent with the ommatidia 

becoming larger. The loss of these trends in adults and the increased variation of ommatidia size 

of adults in the present study suggests that this species exhibits the morphogenic front type of 

development. In this method of development, ommatidia equal in size are produced early in life 

but are then able to continue to develop both in size and contents after initially being formed. 

The proliferation (creation) and adaptation (further development) of the ommatidia are two 

defined steps in this mode of eye development, being defined both temporally and spatially (i.e. 

ommatidia must be completely formed before being able to adapt and new ommatidia are always 

formed toward the eyestalk) (Harzch and Hafner 2006).  

Future directions 

 This study was the first to explore the ontogeny of crayfish eye parameters.  However, 

the small sample sizes of crayfish used in these experiments likely limited my ability to detect 

trends that might have been revealed by a larger sample size. While previous literature 

demonstrated interspecific variation of ommatidia parameters (size, density, and depth) in 

habitats with extremely different light exposures, this study did not reveal the same trends when 

the wavelength of light was manipulated. With regards to the production of eye pigmentation, 

future work using liquid chromatography-mass spectrometry (LCMS) would aid in furthering the 

findings of this study. Liquid chromatography could be used to separate the pigments in solution 

based on both size and polarity, while mass spectrometry would identify atoms present in each of 

the pigments. This would allow for the derivation of possible molecular structures for each 

pigments to confirm the identities of the pigments present in the eye that are affected by light 

wavelength, which could then be related to their function through comparison to known 

pigments of which we know both structure and functions.    
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APPENDIX A: TANK SETUP 

The setup of all 38 L tanks was identical, as shown below. For the dark treatment in 

which 7.5 L tanks were used. The two small tanks were used for the dark treatment due to 

equipment shortage and being unable to embed lights into the lid design of the smaller tanks. The 

same amount of sediment (2 cm thick) was used in the small tanks but fewer shelters were placed 

in the tanks as well as a smaller filter (Aquatop CAF-10 as compared to the larger Aquatop CAF-

40) to account for the lesser water volume. It was assumed that since fewer individuals were in 

these tanks compared to the blue, red, and white light treatment tanks that fewer shelters did not 

affect the crayfish. In all tanks, there were always more shelters than crayfish, allowing for all 

individuals to be in hiding at once. The shelters (as shown below) were transparent plastic tubes; 

this ensured that even if an individual was in a shelter, they were still exposed to the full 12-

hours of light in the photoperiod.  

 

(note: the white spots in the above photo are reflections on the water’s surface of the lights 

embedded in the lid of the tank) 
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APPENDIX B: LED LIGHT SPECTRA 

 An Ocean Optics USB 2000 Spectrometer was used to measure the wavelengths of light 

emitted by each of the colours (blue, red, white) of lights (see below). 

Red light spectrum: 

 

Blue light spectrum:  

 

White light spectrum
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