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Abstract

We develop the theory for a broadband constant-beamwidth transducer (CBT) formed by a
conformal circular-arc line array of dipole elements. Appropriate amplitude shading of the source
distribution leads to a far-field radiation pattern that is constant above a cutoff frequency determined
by the prescribed beam width and arc radius. We illustrate the theory with examples, including
numerical simulations of magnitude responses, full-sphere radiation patterns and directivity index.
Unlike a circular-arc array of monopole elements, a dipole CBT maintains directivity control at low
frequency. We give an example of one such array that achieves just 1dB variation in directivity

index over all frequencies.

1 Introduction

There is considerable interest in the design of
acoustic sources that exhibit broadband constant
directivity, i.e. a radiation pattern that is indepen-
dent of frequency. In sound reproduction, much
of this interest stems from extensive work by
Toole and others (see [1] and references therein)
showing that constant directivity is correlated
with subjective perception of quality in stereo
reproduction.

Keele [2, 3, 4, 5] has reported extensively on
a constant-beamwidth transducer (CBT) formed
by a circular-arc array with amplitude shading.
Keele’s work is based on that of Rogers and Van
Buren [6], who showed that a transducer with
very constant beam pattern can be formed by a ra-
diating spherical cap with frequency-independent
amplitude shading based on a Legendre function.
In our recent work [7] we developed the theory
for such arrays, and derived improved shading
functions.

Building on this recent work, the present pa-
per considers a variation on the CBT concept: a
constant-directivity source based on a circular-arc
array of dipole sources. In keeping with past ter-

minology, we refer to such an array as a Dipole
CBT. In the following section we develop the
theory for acoustic radiation from such an ar-
ray. We then use this theory to derive condi-
tions on the shading function that guarantee a
frequency-independent beam pattern; while previ-
ous work in this area has considered only arrays
of monopole sources, we extend our theory to
dipole arrays. We then present results of numeri-
cal simulations that illustrate the efficacy of our
new shading functions as well as some of the basic
properties of dipole versus monopole arrays.

2 Circular Array of Dipoles: Theory

Consider a time-harmonic line source in the form
of a circle of radius a, in free space, as shown
in Fig. 1. The source elements are taken to be
radially-oriented dipoles. (Such an array is said to
be conformal [8], in that the element orientation
changes with the orientation of the array surface.)
We adopt a coordinate system in which the circle
lies in the zz-plane, with its center at the ori-
gin. We take the z-axis (§ = ¢ = 0) to be the
primary “on-axis” direction of the resulting radi-
ation pattern. We assume the source distribution
is continuous and iso-phase and continuous, with
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Fig. 1: Geometry of a circular line source of
dipoles.

strength that varies with polar angle a accord-
ing to a dimensionless and frequency-independent
“shading function” S(a) (sometimes also called
the amplitude taper).

Referring to Fig. 1, the pressure at O in the far
field due to a dipole source at @, with unit accel-
eration amplitude, is given (up to a multiplicative
constant) by
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where k is the wave number [9, p. 312]. Summing
such source contributions around the circle gives
the total (complex) pressure p via the Rayleigh
integral
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where
R = \/a? + 2 — 2ar cos ¢ cos(6 — a)
~ T —acos@cos(fd — ) (r>a). (3)

On making the usual far-field (r > a) approxi-
mations and the change of variables u = o — 8,
equation (2) gives
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We assume the shading function S(a) is even, so
it can be expressed as a Fourier cosine series

S(a) = i an cos(na)

n=0

(5)

(sometimes called an expansion in circular har-
monics). On substitution into equation (4) this
gives the far-field radiation pattern
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where J,, is a Bessel function of the first kind [10).
Remarks

e Equation (6) shows that each circular har-
monic shading mode is mapped to a corre-
sponding far-field radiation mode by a factor
fn (the “mode amplitude”) that depends
only on ¢ and the dimensionless frequency
ka.

o Therefore, for any single-mode shading
S(a) = cos(na) the far-field radiation pat-
tern is identical to the shading function at
all frequencies, at least in any vertical plane
through the origin (constant ¢).

e For any single shading mode, destructive
interference between opposite sides of the
array causes a series of nulls in the frequency
response, as illustrated in Fig. 2 which plots
the mode amplitude |f,(ka)| for the first
several modes. Equations (6)—(7) show that
these nulls occur when kacos¢ coincides
with an extremum of J,(z).

e Owing these frequency response nulls, a full-
circle dipole array with single-mode shad-
ing cannot produce a usable broadband re-
sponse.
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Fig. 2: Mode amplitudes: on-axis far-field pres-
sure, as a function of dimensionless fre-
quency ka, for radiation from a circular
array of dipole elements with cos(nf)
amplitude shading.

2.1 Low Frequency Limit

If a; # 0 then using the asymptotic form [10]

r\n
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in equation (6) gives, to leading order in ka,

(z<1) (8)
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Thus, at low frequency the array as a whole ra-
diates like a single dipole at the origin, oriented
along the z-axis, with strength determined by the
coefficient a;. As Fig. 2 and equation (6) show,
all other shading modes radiate more inefficiently;
at sufficiently low frequency their contribution to
the far-field radiation is negligible.

3 Conditions for Constant Beam
Pattern

Here we derive conditions on the shading func-
tion S(a) such that the radiation pattern (4) is
independent of frequency. The Bessel functions
have the asymptotic form [10]

Jn(z) = \/%cos(a: -nf-%) (z>n), (10)

which on substitution into (7) gives, after some
algebra,
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Thus, provided
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for all non-negligible terms in (6), we obtain
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where
Se(8) = Y ancos(nf), ,
n even (14)

So(6) = ) ancos(nb).

n odd

Equation (13) gives the pressure magnitude
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If |Se(8)| = |So(8)]| for all @ then we obtain the

far-field pressure

1
lp| = ~V/8rka cos 3|S,(8)|-

Note that the amplitude of this radia-
tion pattern varies with frequency, but its
shape does not.

Thus, the far-field radiation pattern of an
amplitude-shaded circular array of dipoles will be
independent of frequency, provided the shading
function S(c) satisfies the following conditions:

Ip| =

(16)

1.8 = S, + S. with S,, S, given by equa-
tion (14) and |Sy(a)| = |Se(ax)] for all a.

2. For all non-negligible coefficients a,, in the
cosine series (5) for S(a) we have ka cos ¢ >
n.



These conditions are identical to those discussed
in [7] for a circular array of monopole elements.
Hence, the same conclusions follow. The most
important of these are as follows:

e Condition 1 is satisfied if the array is active
only on a half-circle on one side of the yz-
plane in Fig. 1, i.e. if S(a) = 0 for |a| > 7
In this case the vertical radiation pattern
given by equation (16) is [S(4)|/2 and thus
is identical to the shading function in any
vertical plane through the origin (constant

9).

e Condition 2 ensures a constant radiation pat-
tern above a cutoff frequency determined by
the requirement that ka cos ¢ > npay where
Nmax iS the largest n for which the cosine
series coefficient a,, is non-negligible. This
condition results in a higher cutoff frequency
at greater off-axis angles.

e For frequencies above cutoff, equation (16)
predicts that the far-field pressure decreases
at 3dB/oct with decreasing frequency. Im-
portantly, the response nulls seen for single-
mode shading (Fig. 2) are absent.

e The limiting radiation pattern given by equa-
tion (16) is symmetric across the vertical (yz)
plane, although the array is not.

4 Optimal Shading

To minimize the cutoff frequency (and thereby
achieve a constant radiation pattern over the
widest possible band) we require that condi-
tion (12) be satisfied down to the lowest frequen-
cies possible. Thus we require a shading function
whose Fourier spectrum is concentrated in its
lowest-order terms. This criterion is identical to
that encountered for circular arrays of monopole
elements [7], so that shading functions for that
case are equally suitable here.

In (7] we derived circular-arc shading functions
of the form

S(0) = {f(0) 6] < 60

. (17)
0 otherwise

where fp is the given half-angle of the circular arc
on which the array is active. To concentrate the
cosine series coefficients a, in the lowest-order
terms, we found that good candidates for the
function f() are

f(6) = cos (g . 0;00) (18)
and 1+ '9
cos
sO=1v (2522 1) ()

where Ty is a Chebyshev or Legendre polynomial
of degree N. The parameters 8y and N determine
the arc coverage and the beam width in the plane
of the array.

For the special case 8y = %, Jarzynski and
Trott [11] showed that the shading function

8(0) = z57 cos™ 0 + cos™ 6 + etk cos™ 2 g
(20)
is also a good candidate. Here the parameter n
controls the beam width.

5 Examples

Here we illustrate our theory by investigating the
radiation patterns of circular-arc arrays based
on two particular shading functions. One is the
degree-6 Chebyshev polynomial shading

. 14cosf _ < °
5(6) = Ts (2 T+cos 52° 1) 6] < 52 (21)
-\ 6] > 52°

which has a —6dB half-angle of 25° in the plane
of the array. The other is the cosine shading

9 < 70°
5(6) = cos (26) 16| <70
0 16] > 70°

which has a fairly wide —6 dB half-angle of 47°.

Below we present numerical simulations of the
radiation patterns that result in these two cases.
To facilitate comparison with previous work on
CBT arrays of point sources [2, 3, 4, 5, 7], we
present results for arrays of both monopole and
dipole source elements with identical shading. For
the dipole case we have calculated the radiation
patterns by numerical quadrature (adaptive Simp-
son’s rule) of the Rayleigh integral in equation (4).
For the monopole case we used equation (3) of [7].

(22)
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Fig. 3: Far-field magnitude response at various
angles @ in the plane of a dipole array
with the Chebyshev shading of equa-
tion (21).

5.1 Magnitude Response

Fig. 3 shows the raw (unequalized) far-field mag-
nitude responses at various angles 6 in the plane
of a circular-arc array of dipole elements, with the
narrow-beam Chebyshev shading of equation (21).
The responses are plotted against the dimension-
less frequency ka (for reference, an array of radius
a = 1m has ka = 1 at 54 Hz). Fig. 3 confirms
several aspects of the theory outlined above:

e There is a clear cutoff frequency (near ka ~
10) above which the radiation pattern tran-
sitions from a dipole pattern to a frequency-
independent pattern determined by the shad-
ing function.

e Below cutoff the level drops at 6dB/oct to-
ward low frequency, as predicted by equa-
tion (9).

e Above cutoff the level rises at 3dB/oct, as
predicted by equation (16).

e As expected, the cutoff frequency is higher
at greater off-axis angles. On-axis the transi-
tion band between low- and high-frequency
regimes spans about one octave; at greater
off-axis angles the transition band is wider.

In sharp contrast with the single-mode responses
of Fig. 2, there are no nulls or even significant

ripples in the far-field responses shown in Fig. 3.
The array provides a usable broadband response,
albeit one that requires significant equalization.

The raw response of a dipole CBT line ar-
ray is quite different from that of a CBT array
of monopole elements, for which the response
is 0dB/oct below cutoff and —3dB/oct above
cutoff [7). The difference is 6 dB/oct across all
frequencies, as might be anticipated in going
from monopole to dipole elements. The required
equalization curves are correspondingly different:
whereas an array of monopole elements requires
+3dB equalization above cutoff, the correspond-
ing dipole array requires —3 dB equalization to-
gether with a low-frequency dipole equalization
of 6 dB/oct.

For both monopole and dipole source elements,
Fig. 4 shows far-field magnitude responses normal-
ized to the on-axis (6 = 0) response, for circular-
arc arrays with the narrow-beam Chebyshev shad-
ing (21). Above ka ~ 10 the constant magnitude
responses indicate a frequency-independent beam
pattern in the plane of the array; this pattern
is the same for both monopole and dipole cases,
and is determined by the shading function. Fig. 4
also confirms that, as expected, at low frequency
the array of monopole elements tends to an omni-
directional pattern while the array of dipole el-
ements tends to a dipole pattern (—6dB at 60°
off-axis).

Fig. 5 shows the corresponding responses in
the case of the wide-beam cosine shading of equa-
tion (22). The cutoff frequency ka = 3 is now
lower, and there is some ripple (about +1dB)
in the transition band. In the case of dipole ele-
ments, this ripple is much reduced. In all other
respects the response curves in Fig. 5 are exactly
as as our theory predicts.

5.2 Full-Sphere Radiation Patterns

To further illustrate the differences between
circular-arc arrays of dipole vs. monopole source
elements, Fig. 6 shows the full-sphere radiation
patterns (polar balloons), normalized on-axis, for
arrays with the wide-beam cosine shading of equa-
tion (22). Fig. 6 illustrates several key aspects of
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Fig. 4: Far-field magnitude responses at various angles 6 in the plane of the array, normalized
to the on-axis (§ = 0) response, for a circular-arc array of (a) a monopole sources, and
(b) dipole sources. The shading in both cases is the narrow-beam Chebyshev shading of
equation (21).
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Fig. 5: Far-field magnitude responses at various angles § in the plane of the array, normalized to
the on-axis (6 = 0) response, for circular-arc arrays of (a) a monopole sources, and (b)
dipole sources. The shading in both cases is the wide-beam cosine shading of equation (22).



the theory developed here and in [7]:

e At low frequency the array of monopole ele-
ments exhibits a monopole pattern; the array
of dipole elements radiates in a dipole pat-
tern.

o Above cutoff (ka =~ 5) both arrays transition
to a frequency-independent pattern, which is
the product of a vertical pattern determined
by the shading function and a horizontal pat-
tern of the form 1/+/cos ¢ (monopole case) or
Vcos ¢ (dipole case). At greater off-axis an-
gles the pattern takes longer to settle down.

o The response peaks along the y-axes in the
monopole case (due to in-phase superposi-
tion of radiation from all source elements)
are absent in the dipole case, since in the
far field each dipole element presents a null
along the y-axes.

e As a result, in the dipole case the radiation
pattern is much more consistent between the
high- and low-frequency regimes, which leads
to much less variation in directivity.

5.3 Directivity Index

The directivity index characterizes the directivity
of a radiation pattern p(r,8,¢) in terms of the
ratio of the on-axis intensity to that of a point
source radiating the same total power [12]. For
the coordinate system of Fig. 1 the directivity
index is given by

4n|p(r, 0,0)[?

o T2, lp(r, 6, 6)[2 cos ¢ dg df
(23)
For both our narrow- and wide-beam shad-
ing examples, and for both monopole and dipole
source elements, Fig. 7 shows the directivity index
as a function of dimensionless frequency ka, cal-
culated by numerical quadrature of equation (23).
In the dipole case equation (4) was used for the
radiation pattern; in the monopole case we used
equation (3) from [7).

DI = 10log,,

As expected, at low frequency the monopole
arrays exhibit 0 dB directivity (monopole radia-
tion) while the dipole arrays have 4.7dB direc-
tivity (dipole radiation). All four examples show
increasing directivity in a transition band around
the cutoff frequency, above which the directivity
becomes constant as determined by the shading
function. For both shading functions the dipole-
element case comes closer to achieving constant
directivity, since there is less loss of directivity at
low frequency.

Our cosine-shaded dipole array (Fig. 8, solid
line) in particular exhibits remarkably constant
directivity (£0.5dB) across ell frequencies. For
this array there is very little difference between
the radiation patterns above and below cutoff; a
slight widening in the horizontal pattern is com-
pensated by a narrowing in the vertical pattern
(see Fig. 6).

6 Conclusion

We have shown that a constant-directivity source
can be formed by a circular-arc array of dipole
source elements with frequency-independent am-
plitude shading. The theory developed here is
a natural extension of that presented in (7] for
circular arrays of monopole elements, which in
turn is an adaptation of the corresponding theory
for spherical-cap arrays [6, 11]. An appropri-
ate choice of shading function leads to constant-
directivity behavior. Several suitable shading
functions appear in the literature, giving the de-
signer access to a variety of beam shapes and
widths. The shading function directly determines
the radiation pattern in the plane of the array
and, together with the arc radius, also determines
the cutoff frequency above which a frequency-
independent radiation pattern is achieved.

In terms of managing directivity, a dipole CBT
array has several advantages over previous CBT
designs based on monopole elements [2, 3, 4, 5, 7].
A conventional CBT array becomes omnidirec-
tional below its cutoff frequency (when the array
arc is smaller than the acoustic wavelength). This
necessitates very large arrays if constant directiv-
ity is to be achieved over the whole audio band.



Monopole Elements Dipole Elements
ka =1
ka = 5:
ka =10
ka =20
ka = 50

Fig. 6: 3D radiation patterns for circular-arc aﬁ‘ays of both monopole and dipole elements, with
the wide-beam cosine shading of equation (22). The array is oriented as shown in Big: 1.
All plots are normalized on-axis.
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Fig. 7: Directivity index vs. frequency for circular-arc arrays with (a) the narrow-beam Chebyshev
shading of equation (21), and (b) the wide-beam cosine shading of equation (22). In both
cases, results are shown for arrays of both dipole [solid] and monopole [dashed] source

elements.

By contrast, a CBT array of dipole elements ra-
diates with a dipole pattern (hence with 4.7dB
greater directivity) at low frequency. This makes
it possible to achieve broadband constant direc-
tivity with small arrays.

At high frequency, a conventional CBT array
presents a strong amplitude peak (tens of dB
relative to the on-axis radiation) along the axis
of the circular arc. Although this peak radiates
into a small solid angle, and so has little effect
on overall directivity, it may nevertheless be un-
desirable in some applications. A dipole CBT
avoids this issue, by placing the dipole null of in-
dividual source elements where these peaks would
otherwise occur. '

Dipole sources are very inefficient radiators,
with a response that falls off at 6 dB/oct at low
frequency. In a practical implementation this
must be compensated by equalization, together
with a large radiating area (e.g. in the case of elec-
trostatic panels) and/or large linear displacement
(e.g. in the case of conventional piston drivers
in an open baffle). This leads to considerable
engineering challenges, since large displacement
typically incurs high distortion, while to main-
tain a frequency-independent radiation pattern
one requires that the source be acoustically small.
CBT dipole arrays address both these issues: be-
ing acoustically large by design, a dipole CBT

provides a scalable way to increase radiating area
without compromising the radiation pattern. In-
deed, making a CBT array larger actually in-
creases the bandwidth over which constant direc-
tivity is achieved.

The low-frequency roll-off of a dipole CBT ar-
ray must be compensated by equalization if the
goal is a flat magnitude response. A naked dipole
requires 6 dB/oct equalization at low frequency,
which quickly runs into practical limits on driver
excursion and signal headroom. However, the raw
responses shown in Fig. 3 give an indication of the
milder equalization required by a dipole CBT ar-
ray: above cutoff the slope is only 3dB/oct. Only
below cutoff does the slope increase to 6 dB/oct;
with larger arrays the bandwidth of this more
demanding regime is reduced. The equalization
required for a dipole CBT is quite different from
that for an array of monopole elements, which
requires only a +3 dB/oct boost above cutoff.

A practical device implementing our theory
could be formed by a discrete array of conven-
tional drivers, much like that in [4] but with an
open baffle. Such a device would necessarily be
an approximation of the continuous line source
considered here. Several engineering issues arise
that are beyond the scope of the present work.
‘These include effects of discrete sampling of the
continuous shading function, spatial aliasing due



to finite source spacing, the finite size of both
source and baffle, and the departure of radiating
elements from ideal dipole behavior. Much of the
relevant theory is presented in [8], and we plan
to address these practical issues in subsequent
work.
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