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ABSTRACT 

Marine invertebrates experience a substantial amount of mortality during the early benthic 

phase which can influence a population’s future abundance and distribution as well as exert 

selective pressure, driving its evolution. Some causative agents of intertidal juvenile marine 

invertebrate mortality have already been elucidated, such as predation and desiccation stress, 

but the influence of bacterial infection on early benthic phase mortality is not known. The 

purpose of this study is to evaluate the role of infectious agents in generating the high 

mortality rates observed amongst wild populations of juvenile invertebrates living in the 

intertidal zone. 

In this study, five antibiotics were administered to juvenile Mytilus trossulus (mussels) and 

Nucella ostrina (snails): oxytetracycline (OTC), chloramphenicol (CM), kanamycin sulfate 

(KS), and trimethoprim and sulfamethoxazole (TxS). The juveniles were placed in small 

cages and were constantly submerged off of the Bamfield Marine Sciences Centre docks. M. 

trossulus and N. ostrina were soaked in a mixture of the antibiotics for a half hour three times 

per day for five days. After five days the mortality in the treatment and control groups was 

compared. 

Mortality was low in the control treatment for both species, ranging from 0 - 3.7% (M. 

trossulus) and 0.5 - 4.0% (N. ostrina), indicating that infectious stress is not a major cause of 

mortality of juvenile marine invertebrates. Further, no significant difference in mortality was 

observed between the antibiotic treatment and control treatment for either M. trossulus or N. 

ostrina (Friedman block test P>0.99 S<0.01 (M. trossulus); Friedman block test P=0.564 

S=0.33 (N. ostrina)), indicating that bacterial infection is not causing mortality of juvenile 

marine invertebrates. 

Thesis Supervisor: Professor, Louis Gosselin, PhD 
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INTRODUCTION 

During the early benthic phase at the beginning of juvenile life, many marine invertebrate 

species experience a substantial bottleneck effect, often with more than 80% of individuals 

dying within the first 4 months. In fact, mortality is often highest within the first few hours or 

days of benthic life (Gosselin and Qian 1997). A number of factors are known to play a role 

in causing this high mortality rate, including predation, temperature and desiccation 

(Gosselin & Chia, 1995a, 1995b; Griffiths & Gosselin, 2008; Jenewein & Gosselin, 2013); 

wave action (Naylor & McShane, 2001); and ultraviolet (UV) radiation (Gosselin & Jones, 

2010). Other factors may be involved, however, and infections such as those caused by 

bacteria or by viruses, fungi, and protozoa are likely candidates that have yet to be examined. 

Many infectious agents are known to cause mortality of adult marine invertebrates in the 

wild, although mortality rates are often recorded only during the occurrence of an epidemic. 

The sea star wasting disease currently sweeping along the coast of North America is linked to 

a densovirus infection (Hewson et al. 2014). With regard to bacteria, there are reports of 

bacterial infections sweeping through wild invertebrate populations and causing substantial 

mortality amongst adult animals (reviewed in Fey et al., 2015), such as the 1999 and 2003 

mass mortality occurrences in Mediterranean Sea caused by a Vibrio spp. bacterium which 

impacted invertebrate phyla as diverse as Ascidiae, Bryozoa, Cnidaria, Mollusca, and 

Porifera (Cerrano et al., 2000; Perez et al., 2000; Bonhomme et al., 2003). However, the 

information on mortality during reported epidemics refers only to the adult animals, and there 

is no information on the impact of epidemic or basal levels of bacterial infections on juvenile 

marine invertebrate mortality rates in a natural setting. 
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The fact that no studies have yet attributed juvenile mortality events in the wild to bacterial 

infection does not mean they are not occurring - bacterial infections do have the ability to 

affect juveniles and are known to cause significant health problems to invertebrates reared in 

the aquaculture industry, causing millions of dollars in damage every year (Wilkenfeld, 1992; 

Paillard et al., 2004). In particular, four bacterial infections are known to cause mortality 

specifically of juvenile bivalves: juvenile oyster disease (Proteobacteria), hinge ligament 

erosion disease (Cytophaga), chronic abcess syndrome (Vibrio), and an event referred to as 

summer oyster mortality (bacterial species not determined) (reviewed in (Paillard et al., 

2004). Thus, juveniles are susceptible not only to adult infections but also to some infections 

unique to this life stage. When these diseases affect aquaculture stock, up to 100% of the 

juveniles may die, although this number is highly variable depending on the infectious agent 

(Goulletquer et al., 1998; Paillard et al., 2004). These high infection and mortality rates likely 

result from the concentrated monoculture nature of the aquaculture systems (Spaargaren, 

1998). Juveniles of species reared in aquaculture, other than bivalves, are also affected by 

bacterial infection, including sea cucumbers, crabs, and shrimp. 

To curb the appearance and spread of bacterial infection in invertebrate aquaculture, 

antibiotics are commonly used (Holmstrom et al., 2003; Thuy et al., 2011; de la Cruz et al., 

2014; Wang et al., 2014). They apparently cause no adverse effects to the health of the 

animals and increase crop yields (Bray et al., 2006). In addition, antibiotics are commonly 

used in invertebrate research to elucidate the cause of certain diseases, improve animal 

health, or evaluate disease responses (Sutton & Garrick, 1993; Boettcher et al., 1999; 

Banerjee et al., 2007; Azam & Narayan, 2013). As such, antibiotics are an appropriate choice 
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to confer invertebrates protection against bacterial infection, and a selection of antibiotics has 

been chosen for use in this study based on those currently in use.  

Mytilus trossulus, a marine bivalve, and Nucella ostrina, a marine snail, were chosen as 

model organisms for the present study due to the availability of early juveniles, their 

importance in intertidal communities, and also because they have different dispersal 

mechanisms before and during the juvenile phase. M. trossulus and N. ostrina can both be 

found abundantly in the intertidal zone from California to Alaska (Palmer et al. 1990; 

Rawson and Hilbish 1995). Both of these species also affect the community structure in their 

habitat (Menge et al. 1994). M. trossulus larvae disperse through the water column and settle 

on filamentous algae where they metamorphose into juveniles (Strathmann 1987). N. ostrina 

juveniles, on the other hand, emerge from egg capsules and crawl away as small juveniles 

(Gosselin and Chia 1995a). Both species reside in the intertidal zone where they are exposed 

to a variety of stressors.  

The purpose of this study was to evaluate the role of infectious agents, and more specifically 

bacterial infections, in generating the high mortality rates observed in wild populations of 

juvenile invertebrates living in the intertidal zone. The specific objectives of this project were 

to determine 1) how much mortality of early benthic phase M. trossulus and N. ostrina 

occurs when these animals are protected from intertidal stressors such as predation, 

desiccation, UV radiation, and wave action, but remain exposed to bacteria, fungi, viruses, 

and parasites, and 2) if the administration of broad-spectrum commercial antibiotics 

[oxytetracycline (OTC), trimethoprim and sulfamethoxazole (TxS), chloramphenicol (CM), 
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and kanamycin sulfate (KM)] produces a significant decrease in early benthic phase mortality 

rates of M. trossulus and N. ostrina held in a natural setting.  

MATERIALS AND METHODS 

Study site and organisms 

This study was conducted at the Bamfield Marine Sciences Center (BMSC) in Barkley 

Sound on the west coast of Vancouver Island, from 26 May to 17 August, 2014. Before 

experimentation began, early benthic phase specimens of the model organisms being used 

(Mytilus trossulus and Nucella ostrina) were collected. M. trossulus juveniles were obtained 

by collecting filamentous algae (Cladophora columbiana) from the upper intertidal zone at 

Prasiola Point (N 48° 81’ 76.0”; W 125° 16’ 84.1”) throughout the summer. C. columbiana 

was gathered and placed into Ziploc™ bags, which were taken back to the laboratory for 

processing. The algae were gently shaken and torn apart in 60% seawater diluted with 

freshwater (3 parts seawater to 2 parts freshwater). This diluted seawater caused M. trossulus 

to close, which helped to separate them from the algae. After the algae had been torn, the 

particulates that had fallen from the algae (and which were suspended in seawater) were 

passed through a series of three sieves: 3 mm, 610 µm, and 102 µm. Particles remaining on 

the 102 µm filter, including small juvenile M. trossulus, were rinsed off into a bowl with full 

strength seawater, and this bowl was placed under the dissection microscope. The smallest 

M. trossulus were removed from the filtrate using a combination of pipette and insect 

tweezers and placed in small cages, 10 mussels to a cage. The cages were made from 

microcentrifuge tubes and 102 µm mesh.  
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Ripe (unplugged) egg capsules of N. ostrina, containing fully developed juveniles that had 

not yet emerged, were also collected in the field at Prasiola Point and taken back to the 

laboratory from mid-July to August. The egg capsules were carefully removed from their 

attachment site by their base with tweezers. Egg capsules were placed in small cages lined 

with 660 µm mesh and submerged in seawater tables; newly hatched juvenile snails were 

removed from the cages 12-24 hours later, after they had crawled out of the egg capsule.  

Size range of M. trossulus used in the experiments 

Unlike early benthic phase N. ostrina which had just emerged from their egg capsules, M. 

trossulus individuals extracted from algae could not directly be aged. To ensure M. trossulus 

collected for experimentation were of the smallest size classes available in the field and had 

just settled, 235 mussels from field experiments 2, 3, and 4 were photographed and digitally 

measured after the completion of the 5 day field experiments. Their sizes were then 

compared to the full size frequency distribution of 208 M. trossulus individuals present in C. 

columbiana collected at our field site, Prasiola Point. The full size frequency distribution was 

obtained by photographing and digitally measuring all M. trossulus present in two samples of 

C. columbiana collected on different dates. The sizes of the mussels used in experimentation 

were then compared to the total size range present in the field to verify that only recently 

settled individuals were being used (Appendix Figure 1). Digital measurements were taken 

using ImageJ version 1.48. 

Extent of M. trossulus exposure to the antibiotic solutions 

Juvenile M. trossulus were also assessed to ensure they were being exposed to the antibiotic 

solution in the experiments described below. N. ostrina have an operculum that does not fully 
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cover the opening of their shell and the soft tissues of these juveniles are therefore 

continually exposed to the antibiotic solution when submerged in such a solution. However, 

M. trossulus can hermetically close their valves and thus needed to be evaluated to ensure 

they were opening their valves and being exposed to the treatment during the soaks. Visual 

assessment of the valve position of M. trossulus was carried out by placing 24 individuals in 

separate wells of a 24-well tray, each well containing 10 mL of the antibiotic cocktail. Every 

individual was observed separately under a dissecting microscope once every five minutes 

throughout the soak at which time their status, open or closed, was recorded.  

Selection of antibiotics 

Oxytetracycline hydrochloride (OTC), kanamycin sulfate (KS), a 1:10 mixture of 

trimethoprim:sulfamethoxazole (TxS), and chloramphenicol (CM) were the antibiotics 

selected for this study. Antibiotics were selected to provide a range of bacteriostatic and 

bactericidal protection, to work via different mechanisms of action, and to target different 

kinds of bacteria in order to create an effective broad spectrum bacterial treatment.  

OTC was selected for use because it is effective against many bacteria known to infect 

juvenile marine invertebrates such as Vibrio spp., Rickettsia spp., and Chlamydia spp. 

(Paillard et al., 2004; Banerjee et al., 2007) and because it has been used safely on juvenile 

mud crabs and shrimp (Banerjee et al., 2007; Azam & Narayan, 2013). TxS combined in a 

1:10 mixture were selected for use because they have a different mechanism of action than 

OTC and inhibit growth of different bacteria, and because sulfonamides such as 

sulfamethoxazole have been widely and successfully used in aquaculture (Boettcher et al., 

1999; Liu et al., 2012; de la Cruz et al., 2014). CM was selected for use because it has a 

different mechanism of action from that of either OTC or TxS, and CM has been 
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administered to clams without causing mortality (Sutton & Garrick, 1993; Joyner et al., 

2003). Finally, KS was selected because it has a different mechanism of action than the 

aforementioned antibiotics, and has been safely used in cephalopods (Meurant, 2012).  

Antibiotics were first tested separately at different concentrations to ensure they did not 

cause mortality of the juveniles, and the highest dosage of each antibiotic found to be 

nonlethal was then combined and tested in an ‘antibiotic cocktail’. This was done to ensure 

there were no lethal additive effects of combining the antibiotics. This cocktail was then used 

in the field experiments. 

Preparation of the antibiotic solutions 

Antibiotic solutions were prepared by dissolving the aforementioned antibiotics in 0.2 µm 

filtered and autoclaved seawater. Concentrated stock solutions of OTC and KS were prepared 

and then subsequently diluted to create each dosage testing solution. Dosage testing solutions 

of the TxS and CM antibiotics were prepared each time from the original powdered 

compounds because they were only slightly water soluble. To dissolve the antibiotics, the 

solutions were mechanically mixed for one to two hours at room temperature and were then 

refrigerated until use. The final experimental solutions used in the field trials, which 

consisted of a cocktail of the antibiotics, were pH corrected with NaOH to a range of 8.2 to 

8.4, matching the pH of local ocean surface water. 

Experiments 

Two sets of experiments were carried out: 1) dosage testing, to determine the highest 

concentration of antibiotics that would cause no detectable effect on the survival of juvenile 

M. trossulus and N. ostrina; and 2) field experiments, to determine if repeated short term 
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exposure to antibiotics leads to a reduction in juvenile mortality in a natural habitat. Dosage 

testing was performed in small cages in laboratory seawater tables, while field experiments 

were performed in cages attached to ropes hanging off of the BMSC docks. 

Dosage trials: individual antibiotic solutions 

Dosage testing was carried out from 19 June to 23 July 2014. Dosage trials of individual 

antibiotics were carried out on M. trossulus; those results were then used as a basis for 

determining the concentrations to be used in the cocktail for field experimentation with M. 

trossulus and N. ostrina. 

Four sets of antibiotics, (OTC, KS, a 1:10 mixture of TxS, and CM) were separately tested in 

dosage trials. Each dosage trial included five treatment groups: a control treatment (no 

antibiotic), a high dose treatment, and three additional treatments in equal increments 

between the control and the high dose group. For each antibiotic, the highest dosage 

treatment was determined based on the Merck Veterinary Manual, previously published 

literature, or home marine aquarium dosage guidelines. 

Juvenile M. trossulus and N. ostrina were kept in groups of 10 in small cages made of 

microcentrifuge tubes with 102 µm mesh screening. This set-up allowed the cages to be 

easily transferred from the seawater tables they were normally maintained in to the 

containers that held the antibiotic solution. At the end of the five day trial, mortality was 

counted in each cage. 

In a preliminary trial with OTC and KS, M. trossulus juveniles were soaked for one hour per 

day for three days. OTC was tested at 0, 25, 50, 75, and 100 mg/L; and KS was tested at 0, 

10, 20, 30, and 40 mg/L. No significant mortality was detected during this first trial (see 
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appendix Figures 2 and 3), and therefore concentrations were substantially increased and the 

method was modified to a half hour soak three times per day for five days. In the subsequent 

definitive dosage trials, OTC was tested at 0, 100, 200, 300, and 400 mg/L; KS was tested at 

0, 5, 10, 15, and 20 mg/L; TxS was tested at 0, 7.5:75, 15:150, 22.5:225, and 30:300 mg/L; 

and CM was tested at 0, 20, 40, 60, and 80 mg/L on M. trossulus juveniles. These dosage 

trials ran from 20 June to 16 July 2014. 

Dosage trials: combined antibiotic solutions 

In the next dosage trials, the highest dose of each antibiotic that had been found to cause no 

mortality in the individual trials was combined into one treatment (the antibiotic cocktail). 

This was then tested to ensure there were no lethal additive effects of exposing the 

invertebrates to these combined antibiotics. The dosage trial for this antibiotic cocktail 

involved a control treatment (no antibiotic) and 4 cocktail concentrations: full strength 

(100%), as well as 75%, 50%, and 25% of full strength. The full strength cocktail included 

the following: OTC at 400 mg/L, KS at 20 mg/L, TxS at 22.5:225 mg/L, and CM at 80 mg/L. 

These represent the maximum dosages which caused no mortality during individual dosage 

testing with M. trossulus. Juvenile M. trossulus and N. ostrina were then exposed to these 4 

treatment solutions to determine the most concentrated cocktail that caused no mortality for 

each species, and thus to determine which treatment would be used in the field experiments. 

This testing was carried out from 17 to 23 July, 2014.  

Effects of antibiotics on mortality in the field 

Field testing was carried out from 25 July to 17 August 2014. Weighted ropes were hung off 

the BMSC docks and the cages containing juveniles were attached to these ropes at depths of 
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0.75-1.25 m. This setup maintained the animals constantly in the surface seawater, isolating 

the juveniles from heat, desiccation, predators, UV radiation, and variations in pH or salinity 

that are typical of intertidal habitats. Three times per day, for five days, one set of replicate 

cages containing juveniles was soaked for a half hour in 500 mL of filtered, autoclaved 

seawater (control treatment) and a second set of cages was placed in 500 mL of antibiotic 

cocktail (antibiotic treatment). M. trossulus were exposed to a 75% antibiotic cocktail 

solution, and N. ostrina were exposed to a 100% antibiotic cocktail solution as determined by 

the dosage testing. Four field trials, each with a different set of animals, were carried out. In 

the first field trial, the pH of the antibiotic solutions was not corrected, but in the three 

subsequent trials the pH of the antibiotic solution was corrected to that of surface water in the 

inlet by adding NaOH until the pH fell between 8.2-8.4, similar to the pH of ocean surface 

water. This pH correction served to counteract the acidifying effects of the antibiotic cocktail 

and eliminate any stress this may have put on the animals during the study. When 

uncorrected, the pH of the antibiotic solution was 6.0 in the 100% concentration treatment 

and 6.5in the 75% concentration treatment.  

Data analysis 

Data were not normally distributed and did not have homogenous variances, therefore 

nonparametric tests were used to analyze the data. The effect of the individual antibiotics and 

combined antibiotics on juvenile mortality was evaluated using Kruskal-Wallis tests; 

differences were considered to be significant if p<0.05. For the field experiment, mortality in 

the antibiotic and control treatments were compared using Friedman’s nonparametric 

randomized block test; results were considered to be significant if p<0.05. All data analyses 

were carried out using Minitab software. 
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RESULTS 

Size range of M. trossulus used in the experiments 

Almost all (98%) M. trossulus used in this study were <0.75mm in shell length and belonged 

to the smallest size classes occurring in the field (Figure 1). Detailed size frequencies of M. 

trossulus juveniles used in field experiments, per imaging date, are reported Appendix Figure 

1. These results confirm that only the smallest size classes of M. trossulus were used in this 

study. No M. trossulus smaller than 250 μm were ever collected from the field. Also note that 

measures of experimental M. trossulus were taken at the end of the five day field trials; these 

mussels would have been smaller at the start of the trials. 
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Figure 1: Size frequency distribution of M. trossulus collected in the field (found in 
filamentous algae) displayed by date of collection, and size frequency distribution of those 
used in field trials 2, 3 and 4 as measured at the end of the five day trials. 

 

Extent of M. trossulus exposure to the antibiotic solutions  

Juvenile M. trossulus were also examined to determine if they were opening their valves 

when exposed to the antibiotic solutions. Of the 24 mussels examined, 17 were observed to 

open at some point in the 30 minute trial (71%) while 7 were never observed open (29%). 

The number open at any one time varied throughout the 30 minute period (Figure 2). 
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Figure 2: Proportion of M. trossulus juveniles that were either open (and thus exposed to the 
antibiotics) or closed during the course of a half hour soak. Twenty-four M. trossulus were 
individually tracked over the course of this evaluation. At each timepoint, each individual 
was observed for ten seconds.  

 

Dosage trials: individual antibiotic solutions 

At the beginning of the experimental period, antibiotics OTC and KS were separately 

administered to juvenile M. trossulus for one hour per day for three days in an effort to 

produce a mortality curve. No mortality resulted, and the detailed results of this experiment 

can be found in Appendix Figures 2 and 3. 

For all four antibiotics that were tested, mortality levels in the dosage treatments (Figure 3) 

were not significantly different from that in the controls (Kruskal-Wallis tests; OTC: 
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H4,4,4,4,4=3.34, df=4, p=0.502; CM: H4,4,4,4,4=5.74, df=4, p=0.219; KS: H4,4,4,4,4=3.68, df=4, 

p=0.451; TxS: H4,4,4,4,4=3.00, df=4, p=0.558). Additionally, the second highest dosage of the 

trimethoprim and sulfamethoxazole mixture was selected for further use as this is almost 

exactly the maximum solubility of sulfamethoxazole in an aqueous solution of a slightly 

basic pH.  
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Figure 3: Percent mortality of newly settled M. trossulus in A) oxytetracycline, B) 
chloramphenicol, C) kanamycin sulfate, and D) trimethoprim:sulfamethoxazole antibiotic 
solutions administered for a half hour three times per day for five days. Each value is based 
on four replicates of 10 individuals.  
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Dosage trials: combined antibiotic solutions 

Given that the highest concentrations of individual antibiotics used in the first set of dosage 

trials did not cause mortality, the highest dosage of each antibiotic (with the exception of 

TxS) were combined into one ‘cocktail’, which was tested on both M. trossulus and N. 

ostrina juveniles in a laboratory setting from 17 to 23 July 2014. 

Mortality of juvenile M. trossulus and N. ostrina in the four dosages of the antibiotic cocktail 

were not significantly different from the control (no antibiotic). For M. trossulus, the 75% 

strength cocktail was selected for use in the field experiment (Figure 4) as it appeared that the 

100% treatment may have caused some mortality that was undetectable by statistical analysis 

(Kruskal-Wallis test, H4,4,4,4,4=5.38, df=4, p=0.251). In N. ostrina, there was no significant 

difference in mortality between any of the groups (Figure 5) and as such the 100% cocktail 

was selected for use in the field experiment (Kruskal-Wallis test, H7,7,7,7,7=5.32, df=4, 

p=0.256).  
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Figure 4: Mortality of M. trossulus in the combined antibiotic dosage trial. Each value 
represents the average of four replicates of 10 individuals. The full (100%) antibiotic cocktail 
used in this dosage trial consisted of oxytetracycline at 400 mg/L, kanamycin sulfate at 20 
mg/L, a 1:10 ratio of trimethoprim:sulfamethoxazole at 22.5:225 mg/L, and chloramphenicol 
at 80 mg/L. These antibiotics were mixed at 100% and then diluted to 75%, 50%, 25%, and 
0% of full strength for the other treatments. 
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Figure 5: Mortality of N. ostrina in the combined antibiotic dosage trial. Each value 
represents the average of seven replicates of 10 individuals. The full (100%) antibiotic 
cocktail used in this dosage trial consisted of oxytetracycline at 400 mg/L, kanamycin sulfate 
at 20 mg/L, a 1:10 ratio of trimethoprim:sulfamethoxazole at 22.5:225 mg/L, and 
chloramphenicol at 80 mg/L. These antibiotics were mixed at 100% and then diluted to 75%, 
50%, 25%, and 0% of full strength for the other treatments. 

 

Effects of antibiotics on mortality in the field 

A first analysis compared mortality in the first trial (not pH balanced) with mortality in the 

three subsequent trials. This analysis found there was no significant difference in mortality 

between the pH-corrected and non-pH-corrected trials (Kruskal-Wallis test; M. trossulus: 

H8,3,5,3=0.99, df=1, p=0.321; N. ostrina: H9,19,5,5=0.04, df=1, p=0.837). A second analysis 

using each of the four field trials as blocked replicates compared mortality in the antibiotic 

SE 
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treatment with that in the control treatment. This analysis found that there was no significant 

difference in mortality between the control and antibiotic treatment for either M. trossulus or 

N. ostrina (Friedman nonparametric randomized block test; M. trossulus: X2
r>0.00, df=1, 

p>0.99; N. ostrina: X2
r=0.33, df=1, p=0.564).  
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Figure 6: Mortality of M. trossulus in field trials 1-4. The 75% antibiotic cocktail used in 
these field trials consisted of oxytetracycline at 300 mg/L, kanamycin sulfate at 15 mg/L, a 
1:10 ratio of trimethoprim:sulfamethoxazole at 16.88:168.75 mg/L, and chloramphenicol at 
60 mg/L. Values of trials 1-4 in the control treatments are based on 8, 4, 5, and 3 replicates of 
10 individuals, while values in the antibiotic treatments are based on 8, 3, 6, and 3 replicates 
of 10 individuals, respectively.  
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Figure 7: Mortality of N. ostrina in field trials 1-4. The full strength (100%) antibiotic 
cocktail used in these field trials consisted of oxytetracycline at 400 mg/L, kanamycin sulfate 
at 20 mg/L, a 1:10 ratio of trimethoprim:sulfamethoxazole at 22.5:225 mg/L, and 
chloramphenicol at 80 mg/L. Values for trials 1-4 in the control treatments are based on 9, 
19, 5, and 5 replicates of 10 individuals, while values in the antibiotic treatments are based 
on 9, 20, 5, and 5 replicates of 10 individuals, respectively.  

 

DISCUSSION 

Size range of M. trossulus used in the experiments 

The juvenile M. trossulus used in this study were of the smallest size classes available in the 

field, most being between 0.250 and 0.750 mm. This size is consistent with the findings of 

Martel et al. (2000), who determined the mean settling size of M. trossulus to be 0.330 mm 

and the early juveniles to range in size up to about 1 mm. 

SE 
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Extent of M. trossulus exposure to the antibiotic solutions 

Most M. trossulus (71%) were observed to open at some point during the 30 minutes of 

exposure to the antibiotic cocktail. The actual proportion opening when placed in an 

antibiotic solution was probably even higher, as mussels reflexively close when disturbed 

and these observations required near constant disturbance of the mussels.  

Dosage trials 

Appropriate dosages of the antibiotics were determined experimentally prior to use in field 

experiments, as very little dosage information is available for juvenile marine invertebrates. 

The highest dosages of the individual antibiotics used in this experiment found to cause no 

mortality of juveniles were: 400 mg/L of oxytetracycline (OTC), 20 mg/L of kanamycin 

sulfate (KS), 80 mg/L of chloramphenicol (CM), and 30:300 mg/L of 

trimethoprim:sulfamethoxazole (TxS), although 22.5:225 mg/L TxS was used in the 

antibiotic cocktail as this concentration approaches the upper limit of solubility of 

sulfamethoxazole (Dahlan et al. 2011). These findings are in line with previous studies using 

these antibiotics, which exposed invertebrates to lower dosages than the maximum dosages 

used in this study’s 100% antibiotic cocktail. However exposed invertebrates to antibiotics 

for longer periods of time than were used in this study, and those longer exposure times did 

not cause mortality of the invertebrates (Azam & Narayan, 2013). 

In the present study, the above antibiotics were then combined into one ‘cocktail’ using the 

aforementioned dosages which was administered to both M. trossulus and N. ostrina at 

various concentrations, and no difference in mortality was observed between the control 

groups and treatment groups. A dose of 75% was selected for the field experiments with M. 
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trossulus, however, as mortality was slightly higher in the 100% concentration treatment and 

the use of small sample sizes may have precluded the statistical analysis from being 

significant.  

Effects of antibiotics on mortality in the field 

The design of this study involved using small cages to house the juvenile invertebrates and 

expose them to antibiotics, thereby (1) isolating the juveniles from non-infectious factors that 

are known to cause juvenile mortality while leaving them exposed to infectious diseases, and 

(2) evaluating if the remaining mortality could be decreased by protecting the juveniles from 

bacterial infection. 

Levels of mortality of both M. trossulus and N. ostrina in the control treatments in the field 

experiments were much lower than natural field mortality rates reported in other studies of 

juveniles over similar time frames. Mortality of M. trossulus in this study was 0 – 6.7% over 

five days. In contrast, Phillips (2002 and 2004) found mortality levels of 77-97% and 69-99% 

in M. trossulus juveniles after two weeks in the field. Meden (2012) reported 54 and 64% 

mortality of Perna perna mussels within two days of settlement over two different sampling 

cycles.  

Mortality of N. ostrina in the present study was 0.5 - 4.0% over a five day period. This is far 

below the mortality rates reported by other studies with juvenile N. ostrina. Moran and Emlet 

(2001) found 35-60% mortality of N. ostrina juveniles after nine days in the field. 

The low levels of juvenile mortality observed in this study are likely because this is the first 

study that used an enclosed cage design, which maintains the juveniles in a protected and 

submerged state, removing many common causes of juvenile marine invertebrate mortality in 



22 
 

the intertidal zone. These include predation, temperature stress, desiccation stress, UV 

radiation stress, and major fluctuations in pH and salinity (reviewed in Gosselin & Qian, 

1997). The cage design also allowed complete recovery of all of the juveniles as opposed to 

the open ‘settling pad’ or walled arena designs normally used and which necessitate use of 

absence as a proxy for mortality. The present findings therefore reveal that infectious agents 

cause very little (≤6%) or no juvenile mortality.  

The low levels of mortality that did occur in the present field trials were not the result of 

bacterial infection. Statistical analyses revealed no difference in mortality between the 

controls and the antibiotic treatments, indicating that bacterial infection did not cause 

juvenile mortality in these two species. The few individuals that did die during the trials may 

have been killed by fungal or viral infections, handling stress, yolk depletion, or 

developmental and genetic failure, all of which remained as potential stressors in the 

experimental design.  

It should be noted that this study did not take into account the potential interactive effects of 

elevated temperature and desiccation stress on an animal’s susceptibility to infectious stress. 

Knowing which factors cause mortality of juveniles is important because the amount and 

timing of juvenile mortality can affect other factors relevant to the species, such as 

abundance and distribution. Knowledge of the selective pressures that are in place early in 

juvenile life can also help to elucidate the evolution of adaptive traits, help focus 

conservation efforts on factors limiting population recovery, and help obtain estimates of 

invertebrate recruitment for fisheries.  
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Implications and future directions 

Low levels of mortality when exposed to the natural microbial community were likely a 

consequence of the nature of the invertebrate immune system. Like any marine organism, 

marine invertebrates are constantly surrounded by potential pathogens. There are anywhere 

from 103 - 106 bacteria and 107 viruses per millilitre of sea water (Austin, 1988; Børsheim et 

al., 1990). As such, marine animals have developed a myriad of ways of coping with these 

stressors. For example, recent research on invertebrate immune systems indicates that 

although they do not possess an adaptive immune system, their innate immune system may 

have ways of responding to subsequent infections more strongly than on the first exposure, a 

model which is being referred to as ‘trained immunity’(Cong et al., 2008; Ng et al., 2014; 

Quintin et al., 2014).  

Invertebrates have also developed ways to pass their immunity on to their offspring, before 

the offspring can protect themselves. Egg masses of many invertebrates, such as polychaetes 

(Benkendorff et al., 2001), cephalopods (Atkinson, 1973), and many species of molluscs 

(Benkendorff et al., 2001; Lim et al., 2007; Hathaway et al., 2010; Peters et al., 2012) have 

been shown to possess antibacterial activity, often in the form of antimicrobial peptides 

passed down from the parent to the egg mass. This includes the leathery egg capsules of snail 

species in the same family as N. ostrina (Benkendorff et al., 2001). The antibacterial activity 

of these egg capsules shows a general trend of being highest when the capsules are freshly 

laid and decreasing as the embryos develop into juveniles, indicating this characteristic is a 

parental investment (Benkendorff et al., 2001). Further, the immune system of marine snails 

appears to become competent only after metamorphosis, the juveniles having relatively high 
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survivorship in a laboratory setting whereas the veligers dying of bacterial infection in a short 

time frame after being removed from the egg capsule (Pechenik et al., 1984; Lord, 1986). 

In species that employ a swimming larval stage for dispersal (such as M. trossulus), the 

parents still protect their offspring from infection until the offspring become immune 

competent. For example, the mRNA expressed by M. galloprovincialis larvae pre- and post-

metamorphosis are different: those expressed pre-metamorphosis are parental investments 

and those expressed post-metamorphosis are actively produced by the juvenile itself 

(Balseiro et al., 2013). Further, the mRNA expressed by the juveniles immediately post 

metamorphosis have a similar range and magnitude to the mRNA expressed by adult M. 

galloprovincialis, indicating that the juveniles have immune systems similar to that of the 

adults immediately after metamorphosis (Balseiro et al., 2013). 

Emerging is a pattern of parental immune factors protecting the offspring until a certain 

point, usually metamorphosis, at which time the juveniles begin producing their own immune 

factors. That pattern could help explain the results found here: no mortality from bacterial 

infection was observed because after metamorphosis the juveniles had already developed a 

competent immune system. This result also suggests that bacterial outbreaks that impact 

adult populations would also affect juveniles and juvenile recruitment.  

Given the findings of the present study, future research should examine the effectiveness of 

the antibiotics used in this study on the bacteria associated with juvenile M. trossulus and N. 

ostrina. This could be achieved by conducting bacterial assays testing (1) the effectiveness of 

the antibiotics themselves, and (2) the types of bacteria harboured by antibiotic-treated versus 

control invertebrates. This assay could be completed by homogenating small samples of M. 

trossulus and N. ostrina, plating the homogenate on marine agar, and observing the number 



25 
 

and types of bacterial colonies grown. A positive assay examining if bacteria can cause 

invertebrate mortality would also be useful and could be achieved by concentrating bacteria 

normally found in seawater, soaking the invertebrates in water with an increasing bacterial 

load, and examining when mortality begins to increase. 

  



26 
 

LITERATURE CITED 

Aiello SE, Moses MA, editors. 2010. Merck Veterinary Manual. [Internet]. Whitehouse 
Station (NJ): Merck & Co Inc; [Cited 2014 Mar 28]. Available from: 
http://www.merckmanuals.com/vet/pharmacology/antibacterial_agents/sulfonamides_
and_sulfonamide_combinations.html  

Atkinson B.G. (1973) Squid nidamental gland extract: Isolation of a factor inhibiting ciliary 
activity. Journal of Experimental Zoology, 184, 335–340.  

Austin B. (1988) Marine Microbiology. CUP Archive.  

Azam K. & Narayan P. (2013) Safe usage of antibiotic (oxytetracycline) in larval rearing of 
mud crab, Scylla serrata (Forsskål, 1775) in Fiji. World Journal of Fish and Marine 
Sciences, 5, 209–213.  

Balseiro P., Moreira R., Chamorro R., Figueras A., & Novoa B. (2013) Immune responses 
during the larval stages of Mytilus galloprovincialis: Metamorphosis alters 
immunocompetence, body shape and behavior. Fish & Shellfish Immunology, 35, 
438–447.  

Banerjee S., Devaraja T.N., Shariff M., & Yusoff F.M. (2007) Comparison of four antibiotics 
with indigenous marine Bacillus spp. in controlling pathogenic bacteria from shrimp 
and Artemia. Journal of Fish Diseases, 30, 383–389.  

Benkendorff K., Davis A., & Bramner J. (2001) Chemical Defense in the egg masses of 
benthic invertebrates: an assessment of antibacterial activity in 39 mollusks and 4 
polychaetes. Journal of Invertebrate Pathology, 78, 109–118.  

Boettcher K.J., Barber B.J., & Singer J.T. (1999) Use of antibacterial agents to elucidate the 
etiology of juvenile oyster disease (JOD) in Crassostera virginica and numerical 
dominance of an alpha-proteobacterium in JOD-affected animals. Applied and 
Environmental Microbiology, 65, 2534–2539.  

Bonhomme D., Garrabou J., Perez T., Sartoretto S., & Harmelin J.G. (2003) Impact and 
recovery from a mass mortality event of the gorgonian Paramuricea clavata 
populations on the French Mediterranean coasts. EGS - AGU - EUG Joint Assembly, 
10676. 

Børsheim K.Y., Bratbak G., & Heldal M. (1990) Enumeration and biomass estimation of 
planktonic bacteria and viruses by transmission electron microscopy. Applied and 
Environmental Microbiology, 56, 352–356.  

Bray W.A., Williams R.R., Lightner D.V., & Lawrence A.L. (2006) Growth, survival and 
histological responses of the marine shrimp, Litopenaeus vannamei, to three dosage 
levels of oxytetracycline. Aquaculture, 258, 97–108.  



27 
 

Cerrano C., Bavestrello G., Bianchi C. n., Cattaneo-vietti R., Bava S., Morganti C., Morri C., 
Picco P., Sara G., Schiaparelli S., Siccardi A., & Sponga F. (2000) A catastrophic 
mass-mortality episode of gorgonians and other organisms in the Ligurian Sea 
(North-western Mediterranean), summer 1999. Ecology Letters, 3, 284–293.  

Cong M., Song L., Wang L., Zhao J., Qiu L., Li L., & Zhang H. (2008) The enhanced 
immune protection of Zhikong scallop Chlamys farreri on the secondary encounter 
with Listonella anguillarum. Comparative Biochemistry and Physiology B-
Biochemistry & Molecular Biology, 151, 191–196.  

Dahlan R., McDonald C. & Sunderland B.V. (2011) Solubilities and intrinsic dissolution 
rates of sulphamethoxazole and trimethoprim. Journal of Pharmacy and 
Pharmacology.  

De la Cruz E., Luisa Fournier M., Garcia F., Molina A., Chavarria G., Alfaro M., Ramirez F., 
& Rodriguez C. (2014) Hazard prioritization and risk characterization of antibiotics in 
an irrigated Costa Rican region used for intensive crop, livestock and aquaculture 
farming. Journal of Environmental Biology, 35, 85–98.  

Fey S.B., Siepielski A.M., Nussle S., Cervantes-Yoshida K., Hwan J.L., Huber E.R., Fey 
M.J., Catenazzi A., & Carlson S.M. (2015) Recent shifts in the occurrence, cause, and 
magnitude of animal mass mortality events. Proceedings of the National Academy of 
Sciences of the United States of America, 112, 1083–1088.  

Gosselin L.A. & Chia F.S. (1995a) Distribution and dispersal of early juvenile snails: 
Effectiveness of intertidal microhabitats as refuges and food sources. Marine Ecology 
Progress Series, 128, 213–223.  

Gosselin L.A. & Chia F. (1995b) Characterizing Temperate Rocky Shores from the 
Perspective of an Early Juvenile Snail - the Main Threats to Survival of Newly-
Hatched Nucella Emarginata. Marine Biology, 122, 625–635.  

Gosselin L.A. & Jones L.A. (2010) Effects of solar radiation in barnacle settlement, early 
post-settlement mortality and community development in the intertidal zone. Marine 
Ecology Progress Series, 407, 149–158.  

Gosselin L.A. & Qian P.Y. (1997) Juvenile mortality in benthic marine invertebrates. Marine 
Ecology Progress Series, 146, 265–282.  

Goulletquer P., Soletchnik P., Le Moine O., Razet D., Geairon P., & Faury N. (1998) 
Summer mortality of the Pacific cupped oyster Crassostrea gigas in the Bay of 
Marennes-Oleron (France). CIEM Conseil International pour l’Exploration de la 
mer. 

Griffiths A.M. & Gosselin L.A. (2008) Ontogenetic shift in susceptibility to predators in 
juvenile northern abalone, Haliotis kamtschatkana. Journal of Experimental Marine 
Biology and Ecology, 360, 85–93.  



28 
 

Hathaway J.J.M., Adema C.M., Stout B.A., Mobarak C.D., & Loker E.S. (2010) 
Identification of protein components of egg masses indicates parental investment in 
immunoprotection of offspring by Biomphalaria glabrata (Gastropoda, Mollusca). 
Developmental & Comparative Immunology, 34, 425–435.  

Hewson I., Button J.B., Gudenkauf B.M., Miner B., Newton A.L., Gaydos J.K., Wynne J., 
Groves C.L., Hendler G., Murray M., Fradkin S., Breitbart M., Fahsbender E., 
Lafferty K.D., Kilpatrick A.M., Miner C.M., Raimondi P., Lahner L., Friedman C.S., 
Daniels S., Haulena M., Marliave J., Burge C.A., Eisenlord M.E., & Harvell C.D. 
(2014) Densovirus associated with sea-star wasting disease and mass mortality. 
Proceedings of the National Academy of Sciences of the United States of America, 
111, 17278-17283. 

Holmstrom K., Graslund S., Wahlstrom A., Poungshompoo S., Bengtsson B.E., & Kautsky 
N. (2003) Antibiotic use in shrimp farming and implications for environmental 
impacts and human health. International Journal of Food Science and Technology, 
38, 255–266.  

Jenewein B.T. & Gosselin L.A. (2013) Ontogenetic shift in stress tolerance thresholds of 
Mytilus trossulus: effects of desiccation and heat on juvenile mortality. Marine 
Ecology Progress Series, 481, 147–159.  

Joyner J.L., Peyer S.M., & Lee R.W. (2003) Possible Roles of Sulfur-Containing Amino 
Acids in a Chemoautotrophic Bacterium-Mollusc Symbiosis. The Biological Bulletin, 
205, 331–338.  

LeBoeuf R. (1971) Thais emarginata (Deshayes): description of the veliger and egg capsule. 
Veliger, 14, 205–211.  

Lim N.S.H., Everuss K.J., Goodman A.E., & Benkendorff K. (2007) Comparison of surface 
microfouling and bacterial attachment on the egg capsules of two molluscan species 
representing Cephalopoda and Neogastropoda. Aquatic Microbial Ecology, 47, 275–
287.  

Liu Y., Zhou Z., Wu N., Tao Y., Xu L., Cao Y., Zhang Y., & Yao B. (2012) Gibel carp 
Carassius auratus gut microbiota after oral administration of 
trimethoprim/sulfamethoxazole. Diseases of Aquatic Organisms, 99, 207–213.  

Lord A. (1986) Are the contents of egg capsules of the marine gastropod Nucella lapillus (L) 
Axenic. American Malacological Bulletin, 4, 201–203.  

Martel A., Auffrey L., Robles C., & Honda B. (2000) Identification of settling and early 
postlarval stages of mussels (Mytilus spp.) from the Pacific coast of North America, 
using prodissoconch morphology and genomic DNA. Marine Biology, 137, 811–818.  

Meden C.E.O. von der, Porri F., & McQuaid C.D. (2012) New estimates of early post-
settlement mortality for intertidal mussels show no relationship with meso-scale 
coastline topographic features. Marine Ecology Progress Series, 463, 193–204.  



29 
 

Menge B.A., Berlow E.L., Blanchette C.A., Navarrete S.A., & Yamada S.B. (1994) The 
keystone species concept – variation in interaction strength in a rocky intertidal 
habitat. Ecological Monographs, 64, 249-286. 

Meurant G. (2012) Pathology in Marine Science. Elsevier.  

Moran A.L. & Emlet R.B. (2001) Offspring size and performance in variable environments: 
field studies on a marine snail. Ecology, 82, 1597–1612.  

Naylor R. & McShane P. (2001) Mortality of post-settlement abalone Haliotis iris caused by 
conspecific adults and wave exposure. New Zealand Journal of Marine and 
Freshwater Research, 35, 363–369.  

Ng T.H., Chiang Y.-A., Yeh Y.-C., & Wang H.-C. (2014) Review of Dscam-mediated 
immunity in shrimp and other arthropods. Developmental and Comparative 
Immunology, 46, 129–138.  

Paillard C., Le Roux F., & Borrego J.J. (2004) Bacterial disease in marine bivalves, a review 
of recent studies: Trends and evolution. Aquatic Living Resources, 17, 477–498.  

Palmer R., Gayron S.D., & Woodruff D.S. (1990) Reproductive, morphological and genetic 
evidence for two cryptic species of Northeastern Pacific Nucella. Veliger, 33, 325-
338. 

Pechenik J.A., Chang S.C., & Lord A. (1984) Encapsulated development of the marine 
prosobranch gastropod Nucella lapillus. Marine Biology, 78, 223–229.  

Perez T., Garrabou J., Sartoretto S., Harmelin J.-G., Francour P., & Vacelet J. (2000) 
Mortalité massive d’invertébrés marins : un événement sans précédent en 
Méditerranée nord-occidentale. Comptes Rendus de l’Académie des Sciences - Series 
III - Sciences de la Vie, 323, 853–865.  

Peters C., Collins G.M., & Benkendorff K. (2012) Characterisation of the physical and 
chemical properties influencing bacterial epibiont communities on benthic gelatinous 
egg masses of the pulmonate Siphonaria diemenensis. Journal of Experimental 
Marine Biology and Ecology, 432, 138–147.  

Phillips N. (2002) Effects of Nutrition-Mediated Larval Condition on Juvenile Performance 
in a Marine Mussel. Ecology, 83, 2562–2574.  

Phillips N.E. (2004) Variable timing of larval food has consequences for early juvenile 
performance in a marine mussel. Ecology, 85, 2341–2346.  

Quintin J., Cheng S.-C., van der Meer J.W.M., & Netea M.G. (2014) Innate immune 
memory: towards a better understanding of host defense mechanisms. Current 
Opinion in Immunology, 29, 1–7. 



30 
 

Rawson P.D., & Hilbish T.J. (1995) Distribution of male and female mtDNA lineages in 
populations of blue mussels, Mytilus trossulus and M-galloprovincialis, along the 
Pacific coast of North America. Marine Biology, 124, 245-250. 

Spaargaren D.H. (1998) Cultivation of Tiger Prawns, Penaeus Monodon Fabricius, 1798 
(Decapoda, Natantia) in Hainan, P. R. China. Crustaceana, 71, 144–157.  

Strathmann M.F. (ed) (1987). Phylum Mollusca, Class Bivalvia, Chapter 14: Reproduction 
and development of marine invertebrates of the northern Pacific coast. University of 
Washington Press, Seattle, WA, p 309−353. 

Sutton D. & Garrick R. (1993) Bacterial Disease of Cultured Giant Clam Tridacna-Gigas 
Larvae. Diseases of Aquatic Organisms, 16, 47–53.  

Thuy H.T.T., Nga L.P., & Loan T.T.C. (2011) Antibiotic contaminants in coastal wetlands 
from Vietnamese shrimp farming. Environmental Science and Pollution Research, 
18, 835–841.  

Wang N., Guo X., Shan Z., Wang Z., Jin Y., & Gao S. (2014) Prioritization of Veterinary 
Medicines in China’s Environment. Human and Ecological Risk Assessment, 20, 
1313–1328.  

Wilkenfeld J. (1992) Commercial hatchery status report: an industry panel viewpoint. 
Proceedings of the Special Session on Shrimp Farming (ed. by J. Wyban), pp. 71–86. 
World Aquaculture Society, Baton Rouge, LA.  

  



31 
 

APPENDIX 

Size range (mm)

0.251-0.50

0.501-0.75

0.751-1.00
1.001+

Pr
op

or
tio

n 
in

 si
ze

 ra
ng

e 
(%

)

0

20

40

60

80

08/13/2014 
08/15/2014 
08/17/2014 

 

Figure 1: Total proportion of Mytilus trossulus used in experimentation displayed by size 
range and date of measurement. A total of 235 individuals were photographed and digitally 
measured, 70 from 8/13/2014, 109 from 8/15/2014, and 56 from 8/17/2014.  
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Figure 2: Mortality of M. trossulus in the oxytetracycline dosage experiment conducted from 
21/06/2014-26/06/2014, mortality being counted on 24/06/2014 (day 3) and 26/06/2014 (day 
5). Between counts some individuals were lost, resulting in some day 5 mortality being lower 
than day 3 mortality. Each value represents the average of five replicates of 10 individuals. 
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Figure 3: Mortality of M. trossulus in the kanamycin sulfate dosage experiment conducted 
from 24/06/2014-29/06/2014, mortality being counted on 27/06/2014 (day 3) and 29/06/2014 
(day 5). Between counts some individuals were lost, resulting in some day 5 mortality being 
lower than day 3 mortality. Each value represents the average of four replicates of 10 
individuals. 
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