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ABSTRACT 

Ontogenetic changes in body colouration are known to occur in some benthic marine 

invertebrates and have been associated with ecological shifts in diet and physiological 

tolerance.  It is not known, however, whether ontogenetic colour changes are common among 

benthic marine invertebrate species or which mechanisms control these changes in body 

colour. This study therefore examines the degree of lightness in body coloration (converted 

to greyscale); the specific goals were to determine (1) the proportion of species that undergo 

a change in body colour lightness from a sample of 15 intertidal species, (2) if changes in 

lightness during ontogeny are associated with changes in microhabitat use, and (3) if diet or 

exposure to light affects the production of shell pigmentation in the snail Nucella ostrina, 

which are known to hatch white but later add coloured pigments to new shell growth.  For 

each of the 15 species that I examined, 60-140 individuals of varying sizes were collected, 

weighed, and their body lightness index was quantified using digital imaging. Six motile 

species were then analyzed for a microhabitat shift during ontogeny. Of the 15 species 

studied, 11 underwent some degree of change in body colour lightness during ontogeny. Six 

of those 11 species had a change in body colour lightness of at least 10% between the 10 

smallest and 10 largest individuals. The study of microhabitat use by six motile species 

revealed only one (a hermit crab) that substantially changed microhabitat use during 

ontogeny; two species partially changed microhabitat use during ontogeny, one other species 

showed no change, and results were inconclusive for the last two species. The last 

experiment revealed that N. ostrina hatchlings raised in the dark remained significantly 

lighter in colour than those exposed to light and that diet did not appear to impact shell 

colour, indicating that the production of dark shell pigmentation in this species is stimulated 

by exposure to bright sunlight. 

 

Thesis Supervisor: Associate Professor Dr. Louis Gosselin 

  



iii 
 

ACKNOWLEDGEMENTS 

This study would not have been possible without funding provided by the UREAP Program. 

A special thanks to the Bamfield Marine Science Centre for use of their outstanding facilities 

throughout the summer. Thanks to the staff and fellow researchers at BMSC for their 

continued support and inspiration. Special thanks to Dr. Gregory Jensen for his extensive 

knowledge of the hermit crab and shore crab species, and his willingness to share that 

knowledge. Thank you to all the other TRU honours students for your continued reassurance 

through late nights and stressful times. Of course a huge thank you to my family and friends 

for listening to my non-stop talk about snails and crabs. A special thanks to Dr. Cynthia Ross 

Friedman for all her help with using the SEM and support throughout this project. Thank you 

to Dr. Brian Heise for agreeing to be a member of my thesis committee. Also, huge thank 

you to my project supervisor, Dr. Louis Gosselin, for making this project a success and the 

endless hours of support, feedback, and encouragement. Also, thanks for letting me use your 

boat all summer. 

  



iv 
 

TABLE OF CONTENTS 

ABSTRACT ........................................................................................................................................... ii 

ACKNOWLEDGEMENTS .................................................................................................................. iii 

LIST OF FIGURES ................................................................................................................................ v 

LIST OF TABLES ................................................................................................................................. v 

INTRODUCTION .................................................................................................................................. 1 

Adaptive significance of body colour in marine invertebrates ........................................................... 1 

Colour change in marine invertebrates ............................................................................................... 2 

Mechanisms of colour change ............................................................................................................ 3 

Objectives of study ............................................................................................................................. 4 

MATERIALS AND METHODS ........................................................................................................... 5 

Proportion of species that undergo ontogenetic changes in colour intensity ...................................... 5 

Relationship between microhabitat change and changes in body colour lightness ............................ 8 

Effect of diet and light exposure on shell lightness index values in Nucella ostrina ....................... 10 

RESULTS ............................................................................................................................................. 11 

Proportion of species that undergo ontogenetic changes in body colour lightness .......................... 11 

Relationship between microhabitat change and changes in colour lightness ................................... 17 

Effect of diet and light exposure on shell colour lightness in Nucella ostrina ................................. 19 

DISCUSSION ...................................................................................................................................... 21 

Proportion of species that undergo ontogenetic changes in body colour lightness .......................... 21 

Relationship between microhabitat change and changes in colour lightness ................................... 22 

Effect of diet and light exposure on shell colour lightness in Nucella ostrina ................................. 23 

Ecological and evolutionary implications ........................................................................................ 25 

Future studies ................................................................................................................................... 27 

LITERATURE CITED ......................................................................................................................... 28 

APPENDIX A .............................................................................................................................. 32 

APPENDIX B ............................................................................................................................... 33 

 

  



v 
 

LIST OF FIGURES  

FIGURE 1. Lightness index of external body covering as a function of body 

weight (mg) for each of the 15 species studied. Each species is represented in 

two graphs; the one on the left shows the full size range of the species (smallest 

juvenile to the largest adult collected) and the one on the right is an expanded 

view of the juvenile body weights (first 10% of the entire body weight range) 

for each species. The vertical dashed line indicates values of the recorded 

hatching or setline size for that species.................................................................. 14 

 

FIGURE 2. Analysis of microhabitat changes for six motile species showing 

the number of individuals collected from each category of body size (mg) that 

were in cryptic or exposed microhabitats. The percent of individuals that were 

cryptic in each size class is represented by the diamond points connected with 

the line. The dashed line indicated the threshold of 50% of individuals that are 

cryptic .................................................................................................................... 18 

 

FIGURE 3. Photographs revealing colouration assumed by snails from each 

light and diet treatment after 21 days ..................................................................... 20 

 

FIGURE 4. Lightness index values of new shell growth in N. ostrina for each 

treatment (1) exposed to light fed barnacles, (2) exposed to light fed mussels, 

(3) in dark fed barnacles, (4) in dark fed mussels. (F=20.37, p<0.001, N=7 per 

treatment) ............................................................................................................... 20 

 

 

LIST OF TABLES 

TABLE 1. Location and number of individuals collected from each species for 

size vs colour analysis….……………………………………………...………......6 

TABLE 2. Weight classes used to determine ontogenetic microhabitat shift….. 9 

TABLE 3. Comparisons of the lightness index values of the 10 smallest and 10 

largest individuals per species. MI= Mean Intensity (lightness index value), 

S=Sessile, M=Motile (during early juvenile life), *= Significant, bolded 

species have >10% change in lightness index values  ........................................... 12 

 

TABLE 4. Two-way ANOVA of lightness index values for Nucella ostrina 

hatchlings placed in light and diet treatments ........................................................ 19



1 
 

INTRODUCTION 

Adaptive significance of body colour in marine invertebrates 

Colouration plays a key role in survival for many invertebrate species. It can aid in 

camouflage, warning colouration, and displaying the reproductive readiness, and temperature 

regulation for many species (Wichsten, 1990; Bandaranayake, 2006). In particular, 

colouration and its role in predator avoidance is a strong selective force placed on marine 

invertebrates such as hermit crabs, snails, and shore crabs (Booth, 1990; Gosselin, 1997; 

Bandaranayake, 2006). If individuals, particularly juvenile individuals, are not well hidden, 

then they are at a higher risk of being eaten. This pressure likely selects for the most 

successful body colouration that allows for the most protection, resulting in adaptations such 

as aposematic, cryptic, camouflage, or disruptive colouration. Aposematic colouration is 

when the individual has bright colouration such as red, green, and yellow, which indicate to 

their predators that they are toxic. Disruptive colouration is body patterns that break up the 

outline of the body. Overall, colour affects many aspects of an invertebrate’s life, and can 

either assist in its survival and reproduction, or impede it. Below I give some examples of the 

significance and ecological importance of colouration in marine invertebrates. Furthermore, I 

mention past examples of ontogenetic colour change found in marine invertebrates, and why 

a study such as this one is important. 

Ontogenetic colour change is a change in body colouration during the lifetime of an 

individual (Booth, 1990; Bandaranayake, 2006). As individuals grow in size, their 

vulnerability to predation changes and generally decreases (Booth, 1990). To avoid 

predation, many juvenile animals utilize mechanisms such as mimicry, camouflage, 

disruptive, and aposomatic colouration to survive (Booth, 1990; Palma & Steneck, 2001; 

Bandaranayake, 2006; Krause-Nehring et al., 2010). Mimicry is often found among marine 

vertebrate species such as Red Sea Blenny and snapper fish, rather than invertebrates 

(Wickler, 1968; Dafni & Diamant, 1984; Booth, 1990). However, mimicry has also been 

seen in some shrimp species (Hacker, 1991). Camouflage and disruptive colouration is 

common among shrimp, lobsters, and crabs, and has been studied extensively (Palma & 

Steneck, 2001; Tlusty, 2009; Manriquez, 2009; Krause-Nehring et al., 2010). Aposomatic 

colouration is seen in opisthobranchs, also known as sea slugs; this warning colouration 

advertises to predators that the organism produces secondary metabolites which are highly 
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toxic (Cortesi & Cheney, 2010). These uses of body colouration for protection against 

predation are generally heritable; however, environmental factors can influence the onset and 

intensity of body colouration (Booth, 1990; Palmer, 1984; Bandaranayake, 2006). 

The effects of body colour on temperature regulation may be more profound in terrestrial 

animals which are exposed to extreme variations in temperature on a daily and seasonal 

basis, as opposed to marine species (Booth, 1990). Due to the greater thermal inertia of 

water, the ocean tends to maintain a consistent temperature range, such that colour likely has 

no significant effect on temperature regulation in subtidal marine invertebrates. However, in 

intertidal species, such as the snail Littorina keenae, which can be exposed to high and low 

tide and therefore marine and terrestrial conditions, its shell colour is found to change the 

internal body temperature by 0.5-2.5˚C (Miller & Denny, 2011). This is due to body 

colouration influencing the amount of solar radiation that is absorbed (Kettlewell, 1973; 

Burtt, 1981). Moreover, as body size increases the surface area to volume ratio decreases; 

larger individuals may therefore be able to maintain their body temperature more effectively 

than small individuals, and smaller individuals may rely on colouration to help them avoid 

extreme temperatures or desiccation (Booth, 1990). The changes in body size or location in 

the intertidal zone (and exposure to extreme temperatures) could therefore be cues triggering 

body colour change in some marine invertebrate species.  

Using colouration for mate attraction is common in many marine and terrestrial species, 

particularly fish and birds (Booth, 1990; Bandaranayake, 2006). For example, gravid females 

of the three-spine stickleback (Gasterosteus aculeatus) consistently chose males with redder 

nuptial colour to mate with when given a choice (Braithwaite & Barber, 2000). It is 

hypothesized that this red colouration is an indicator of male quality: the redder they are the 

better they are (Braithwaite & Barber, 2000). Colouration has also been found to affect how 

female fiddler crabs, Uca mjoebergi, identify potential conspecific male mates (Detto, 2007). 

Therefore, body colouration can provide important information on a potential mate’s species 

identity, reproductive status, and health condition (Booth, 1990). 

 

Colour change in marine invertebrates 

During ontogeny, a marine invertebrate may change its habitat and exposure to the elements 

and predators and will need to adapt to survive; one adaptation is to undergo ontogenetic 
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colour change (Booth, 1990; Bandaranayake, 2006). Throughout ontogeny, other changes 

may occur that have an effect on colouration of a species such as changes in diet, exposure to 

environmental conditions, predators, and reproductive status (Booth, 1990; Bandaranayake, 

2006). Although some marine invertebrates are known to undergo ontogenetic colour change, 

the majority of research on ontogenetic colour change has focused on terrestrial species. 

Some examples of marine invertebrate species known to undergo ontogenetic colour change 

include the red rock crab (Krause-Nehring, 2010) and European green crab (Palma & 

Steneck, 2001). Early juveniles of these species have a variety of colour morphs, which are 

eventually replaced by a monochromatic adult carapace (Todd et al., 2009). This ontogenetic 

colour change is correlated with a change in predators and habitat (Todd et al., 2009). 

Ontogenetic colour change has also been reported in snails (Hacker, 1991; Gosselin, 1997), 

lobsters (Tlusty, 2009), and shrimp (Hacker, 1991; Manriquez, 2009). The frequency of 

occurrence of ontogenetic colour change across marine invertebrate species has never been 

documented. Understanding the role of body colouration for marine invertebrates, as well as 

the cues and mechanisms behind colour change, is important because it gives insight into the 

ecology of the species, their life cycle stages, and evolutionary history.  

 

Mechanisms of colour change 

Colouration in hard bodied animals can be obtained in three ways: (1) metabolic formation or 

ingestion of pigments that are stored in the body structures, (2) formation of structural 

colours through ridges, bumps and striations, and (3) a combination of the first two 

(Kennedy, 1979). It is important to realize that the formation of structural colour does not 

involve pigmentation; rather, it involves the reflectance and absorption of different 

wavelengths of light in ways that cause a perception of colour (Kennedy, 1979). Pigments 

produced through metabolic pathways may either be directly responsible for colouration or 

indirectly by being produced as secondary metabolites and excreted into outer body 

structures (Bandaranayake, 2006). The type of pigments and how these pigments are 

incorporated into body tissues and shells of marine invertebrates varies tremendously. For 

example, colouration in lobsters is determined by the amount and location of deposition of 

the carotenoid pigment astaxanthin (Tlusty et al., 2009). The changing deposition pattern 

allows for variation in colour among lobsters but also over the lifetime of one individual. 
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Background colour and exposure to light affects this deposition of pigments and therefore the 

colour (Tlusty et al., 2009). Crustaceans have specialized cells called chromatophores, which 

contain pigments, and control their body colouration through blood-borne substances such as 

hormones (Fingerman & Couch, 1967). Furthermore, crustaceans moult regularly when they 

outgrow their exoskeletons, and thus changes in colour can occur rapidly (Mellville-Smith et 

al., 2003). Snails and mussels, on the other hand, incorporate polyenes, carotenoids, and 

porphyrin pigments into their shells gradually and ontogenetic colour changes can be seen in 

the areas of early shell growth (Comfort, 1951; Hedegaard et al., 2005; Furuhashi et al., 

2009).  

The physiological mechanisms controlling color change are not well understood, but it is 

known that colouration can be influenced by diet, environmental cues such as light and 

background colour, and can also be influenced by gene expression (Brake et al., 2004; 

Bandaranayke, 2006).  Exposure to light and UV radiation has been found to influence body 

colouration in species of lobsters (Tlusty, 2009) and shrimp (Manriques, 2009; Hacker, 

1991). Exposure to waves also affects body colouration, particularly in snails (Etter, 1988). 

To date, little evidence indicates that diet influences colouration of hard outer body structures 

such as exoskeletons and shells. Understanding why a species undergoes a colour change and 

the mechanisms behind these changes helps us to understand the underlying significance of 

ontogenetic colour change (Booth, 1990).  

A correspondence between ontogenetic habitat changes and colour changes has been found in 

snails (Gosselin, 1997), lobsters (Anderson et al., 2013), crabs (Krause-Nehring, 2010), and 

shrimp (Hacker, 1991). These studies reveal that species change both their habitats and body 

colour during ontogeny; however, they do not reveal any common cue or mechanism 

between the species that could be responsible for initiating colour change. For the snail 

species Nucella ostrina, the ontogenetic changes in habitat and colour occur at approximately 

the same body size (Gosselin, 1997), suggesting that during the transition between habitats, a 

cue initiates a colour change. 

Objectives of study 

This study aims to examine the occurrence of ontogenetic changes in lightness of body 

colouration among benthic marine invertebrates and to determine the cues and mechanisms 

responsible for initiating these changes. Understanding the differences and similarities 
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among species that undergo an ontogenetic colour change will provide insight into their 

ecology and to the functions of colour change for marine invertebrates.  Specifically, this 

study aims to (1) determine the proportion of species that undergo ontogenetic changes in 

body colour lightness by examining 15 species of intertidal invertebrates from three different 

phyla, (2) determine if colour lightness change is associated with habitat change in motile 

species, and (3) determine if colour lightness change can be influenced by environmental 

factors such as diet and exposure to light in the intertidal snail Nucella ostrina. 

 

MATERIALS AND METHODS 

The collections and the experiment described below were carried out at the Bamfield Marine 

Science Centre near the town of Bamfield, BC. Collections were carried out at nearby field 

sites within Barkley Sound on the west coast of Vancouver Island, and occurred during the 

months of June, July and August 2012. See Appendix B for latitude and longitude 

coordinates of sampling sites. For this study, body colour was assessed as a grey-scale value 

from 0-255 (0 being black and 255 being white), these values are referred to as body colour 

lightness index values and are not a direct measure of colour. Ontogenetic colour 

measurements mentioned in the methods, results and discussion refer to  body colour 

lightness index values as determined by this study. 

 

Proportion of species that undergo ontogenetic changes in colour intensity 

Fifteen species of intertidal benthic invertebrates were collected to examine the proportion of 

species that undergo an ontogenetic colour change (Table 1). These 15 species were chosen 

based on their abundance and because they represented species from three separate phyla. 

The study organisms included six snail species (Lirabuccinum dirum, Littorina scutulata, 

Littorina sitkana, Nucella lamellosa, N. canaliculata, Tegula funebralis), one vermetid 

gastropod species (Petaloconchus compactus), one bivalve species (Mytilus trossulus),  two 

barnacle species (Balanus glandula and Chthamalus dalli), two hermit crab species (Pagurus 

granosimanus, P. hirsutiusculus), one crab species (Petrolisthes cinctipes), and two tube 

worm species (Serpula columbiana, Spirorbis bifurcates)(Table 3). It is important to note 

that although care was taken to properly identify each of these species, there is a species of 

hermit crab that is nearly identical to P. hirsutiusculus (Kee Ng & McLaughlin, 2009).  
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To determine if body colour lightness changes as individuals grow, animals of a broad range 

of sizes were collected for each species, from the smallest to the largest available individuals, 

over a period of two months (Table 1). All animals were collected by hand, and each animal 

was then placed in a plastic container; small animals in small containers (approximately 10 x 

10 x 5 cm), and large individuals in larger containers. Each individual was then brought back 

to the laboratory and placed in a tank with flowing seawater until processing could occur. 

Each container had at least two cut-out sides covered by mesh to ensure sufficient water flow 

when placed in a seawater tank. 

 

Table 1: Location and number of individuals collected from each species for size vs colour 

analysis 

Animal Species Name Number 

Collected 

Location of Collections 

Snail Lirabuccinum dirum 134 Scott’s Bay 

 Littorina scutulata 112 Scott’s Bay 

 Littorina sitkana 139 Scott’s Bay, Robber’s Pass, Fleming 

Island 

 Nucella lamellosa 111 Ross Islets, Grappler Inlet 

 Nucella canaliculata 87 Prasiola Point 

 Tegula funebralis 126 Scott’s Bay 

Vermetid 

gastropod 

Petaloconchus 

compactus 

80 Grappler Inlet, Dixon Island 

Mussel Mytilus trossulus 97 Scott’s Bay 

Barnacle 

 

Balanus glandula 

Chthamalus dalli 

101 

92 

Scott’s Bay 

Scott’s Bay 

Hermit crab Pagurus hirsutiusculus 95 Scott’s Bay, Grappler Inlet 

 Pagurus granosimanus 92 Scott’s Bay, Grappler Inlet 

Crab Petrolisthes cinctipes 93 Scott’s Bay 

Tube worm Serpula columbiana 59 Dixon Island, Entrance to Grappler 

Inlet 

 Spirorbis bifurcates 83 Dixon Island 

 

Within 48 h of collection, individuals were removed from the seawater tank, blotted dry, and 

weighed using a digital scale to the nearest 0.001 mg for small animals (between 0.001-1000 

mg) and to the nearest 0.01 mg for larger animals (>1000 mg). Hermit crabs were removed 

from their shells before being weighed; to accomplish this, all hermit crabs were euthanized 

by freezing, then carefully removed from their shells, rehydrated in salt water for two 
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minutes, blotted dry, and weighed. Following weight measurements, the body length of each 

individual was also measured; these measurements were then used to determine the 

relationship between body length and weight by linear regression analysis. These regression 

analysis were used to determine body mass of individuals from each species that may have 

been referred to in other reports, for example, if a report stated that a snail species undergoes 

ontogenetic colour change at approximately 3 mm shell length (SL), I could use my 

regression analysis to determine the approximate body weight. These regression equations 

are shown in the Appendix C. The following size dimensions were measured: shell lengths of 

snails from front of aperture to tip of apex; shell diameter of barnacles; length of right claw 

of hermit crabs; the carapace width for crabs; diameter of tube opening for tube worms; and 

shell length of mussels. 

Each individual animal was then photographed under a dissecting microscope with a top-

mounted digital camera (Olympus Model QCOLOR5). One photograph per animal was taken 

along the area of the body with the newest shell or body growth, and colour intensity from 

these areas was quantified. Photographs of snails were taken near the lip of the aperture; 

photographs of barnacles were taken at the base of their shell; photographs of mussels were 

taken at the margin of their shells; and photographs of tube worms were taken at the margin 

of the aperture. For crab and hermit crab species, the colour of their entire carapace and right 

claw, respectively, were analyzed. For individuals of the crab species Petrolisthes cinctipes 

that were too large to photograph in totality under the dissection microscope, various regions 

of the carapace were captured in numerous photographs (4-7 photographs depending on 

size), analyzed separately, and then averaged.  

All photographs were analyzed for body colour lightness values using Adobe Photoshop 

Elements 2.0 similar to the methods used by Hultgren and Stachowicz (2008) and Tlusty 

(2005); however, instead of analyzing red, blue, and green values I used lightness index 

values on a grey-scale. Each photograph was converted to grey-scale to enable comparisons 

among species and to reduce the effects of light reflection that could alter color intensity 

readings. The area of newest shell or body growth in each photograph was then selected in 

Adobe Photoshop Elements and analyzed. This software then creates a histogram of average 

lightness index of the pixels in the selected area, with values ranging from 0-255, with 0 

representing black and 255 being white. The body colour lightness index value was used to 
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represent the individual’s body colour. Finally, the lightness value of each individual was 

plotted as a function of body mass to visualize ontogenetic trends in body lightness. Finally, 

a comparison of the body colour lightness index values between the 10 smallest and 10 

largest individuals for each species was done to determine the percent change in lightness or 

darkness during ontogeny. The species were divided into three categories; (1) no change in 

body colour lightness, (2) change <10%, and (3) change ≥10%. 

Published reports of the smallest size at settlement or hatching were found for 11 of the 15 

species. For 9 of these 11 species I was able to find and collect the smallest individuals 

available. However, for two species (N. canaliculata and T. funebralis) the smallest known 

individuals were not available for collection at the time of this study. To my knowledge, the 

size at hatching or settling is not known for the other four species (L. scutulata, P. 

compactus, S. columbiana, and S. bifurcates); it is therefore not clear if my samples include 

the full range of sizes for these species.  

 

Relationship between microhabitat change and changes in body colour lightness 

Six species from the first part of the study (see above) were further investigated to determine 

if body colour lightness shifts are specific to species that undergo ontogenetic shifts in 

microhabitat. Species were chosen on the basis of being motile, and therefore capable of 

changing their distribution during ontogeny. These included: four snail species (L. dirum, T. 

funebralis, L. scutulata, L. sitkana), and two hermit crab species (P. granosimanus and P. 

hirsutiusculus). These species were collected from Scott’s Bay and Grappler Inlet. Habitat 

use by other motile species investigated in the first objective, including N. lamellosa, N. 

canaliculata, and P. cinctipes was not examined due to time constraints.  

Habitat use was assessed differently for snails and hermit crabs. For snails, a 10 m transect 

line was haphazardly positioned in the intertidal zone at low tide, parallel to the water line 

within the range of intertidal heights occupied by each species. The methods used to 

determine habitat use are similar to those used by Gosselin (1997). Animals were collected 

within 25 x 25 cm quadrats that were placed at 2 m intervals along the transect line; all 

individuals of the given snail species that could be found within the quadrat without 

disturbing the substratum or algae were collected and placed in a container (Gosselin, 1997). 

These individuals were considered “exposed”. Once all exposed individuals were collected, 
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debris, rocks, and seaweed were then slowly removed and any individuals that were hidden 

by these objects were collected; individuals buried in the sand were also collected. These 

were considered “cryptic” individuals. For each 10 m transect line, a total of five quadrats 

were analyzed. For the snail species L. dirum and L. scutulata, three transects and a total of 

15 quadrats were analyzed for each species. For each of T. funebralis and L. sitkana, only 

one transect with five quadrats were analyzed due to high densities of the species. The above 

method was modified for hermit crab species. During low tide, almost all hermit crabs of 

both species were found to be hidden, probably because crabs are much more motile than 

snails and can therefore travel over relatively large distances and reach shelter within each 

tide cycle. All microhabitats were therefore examined within each quadrat at low tide and the 

hermit crabs that were collected were used to document the size frequency distribution of the 

population. The same habitat was then revisited at high tide and all individuals found 

crawling on exposed surfaces were collected by standing in one location for 10 min and 

capturing all individuals that became visible. These two hermit crab species coexist in the 

same intertidal area. In this way, six different locations were sampled for 10 min each, during 

which both species of hermit crabs were collected.  

All the animals collected as described above were then returned to the laboratory and 

weighed within the next five hours. Data for each species was then organized according to 

weight classes (Table 2). The weight classes were determined by the maximum size of the 

largest adult collected for each species. 

 

Table 2: Weight classes used to determine ontogenetic microhabitat shifts  

Species Size Classes (mg) 

P. granosimanus 0-20, 21-50, 51-200, 201-500, 501-1000, and 1001+  

P. hirsutiusculus 0-20, 21-50, 51-200, 201-500, 501+  

L. dirum 0-50, 51-200, 201-400, 401-1000, 10001-2500, and 2501+  

T. funebralis 50-200, 201-400, 401-600, 601-1000, 1001-2000, and 2001+  

L. scutulata 0-5, 5.1-10, 10.1-15, 15.1-30, 30.1-100, 100.1-200 

L. sitkana 0-2, 2.1-5, 5.1-10, 10.1-15 
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Effect of diet and light exposure on shell lightness index values in Nucella ostrina 

To determine if the timing of ontogenetic changes in body colour lightness is controlled by 

external factors, I examined the lightness index values of new shell growth in Nucella ostrina 

in response to different light exposure and diet treatments. First, I collected N. ostrina egg 

capsules from Scott’s Bay and Grappler Inlet. Egg capsules were collected only when the 

young snails appeared close to hatching; that is, when the capsule’s membrane plug was 

dissolved and hatchlings were clearly visible through the opening. These capsules were 

carefully removed from the rocks to which they were attached using needle-nose forceps. 

They were then brought back to the laboratory and placed in small plastic containers which 

had mesh siding to allow water flow while in the seawater tray in the laboratory. Containers 

were checked every day for newly emerged hatchlings.  

All hatchling snails that emerged from the egg capsules over a period of three days were used 

in the following experiment, carried out in an outdoor seawater tray. The hatchlings were 

placed in one of four treatments: (1) exposed to light and fed barnacles, (2) exposed to light 

and fed mussels, (3) kept in the dark and fed barnacles, and (4) kept in the dark and fed 

mussels. In the barnacle-fed treatments, hatchlings were provided with small rocks colonized 

by Balanus glandula and Chthamalus dalli. In the mussel-fed treatments, the hatchlings were 

fed small (1-3 mm SL) Mytilus trossulus, although these may have included some Mytilus 

californianus since the small juvenile stages are difficult to differentiate. These prey species 

were selected because they are known to be important food sources for newly hatched N. 

ostrina (Gosselin & Chia, 1994, 1996). 

The design of this experiment was as follows: 4 treatments X 7 replicate cages per treatment 

X 10 hatchlings per cage, for a total of 70 hatchlings per treatment and 280 hatchling snails 

for the entire experiment. The cages consisted of small plastic containers with mesh siding; 

in addition, all cages for a given treatment were placed in a larger 30 x 20 x 15 cm container 

which also had mesh siding to allow water flow. The larger containers were then placed in a 

seawater tank of which half was covered by a sheet of opaque black cloth and the other half 

was exposed to full sunlight.  The hatchlings in the dark treatments were placed in the shaded 

side of the tank. At the start of the experiment an additional 10 hatchlings from the same 

group of egg capsules were weighed and photographed to document the initial average size 

and body colour lightness of newly hatched individuals.  
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Hatchlings were reared in the above four treatments for 21 d. Every two or three days, each 

cage was checked and more food was added as necessary. The temperature of the seawater 

tank was checked daily, and once a week the larger containers were removed for 

approximately 20 minutes to clean algal growth in the seawater tank. Given that these are 

intertidal snails, this brief removal from the seawater tank was not expected to negatively 

affect their health. 

At the end of the 21 d study period, all snails were removed from the cages and the number 

of live individuals was determined. Live individuals were individually weighed and 

photographed using the same methods as described earlier. The average shell colour lightness 

was then compared among treatments using a 2 factor ANOVA.  

 

RESULTS 

Proportion of species that undergo ontogenetic changes in body colour lightness 

An examination of body colour lightness throughout ontogeny for 15 species of benthic 

marine invertebrates revealed that a number of these species do indeed undergo a colour 

lightness change during their lifetime. Comparisons of average body colour lightness index 

values between the 10 smallest and 10 largest individuals that were collected for a given 

species revealed that 11 species (73%) underwent statistically significant changes during 

ontogeny (Table 3). These included two barnacles (B. glandula, C. dalli,), a hermit crab (P. 

granosimanus), a crab (P. cinctipes), four snails (L. scutulata, N. lamellosa T. funebralis, and 

P. compactus), a bivalve (M. trossulus), and two tubeworms (S. columbiana, S. bifurcates). 

The ontogenetic changes in lightness index values in these species range from 2-29% (Table 

3). Four species (P. hirsutiusculus, L. dirum, L. sitkana, and N. canaliculata) did not undergo 

a significant change in lightness index values (Table 3).  

Among the 11 species that did change in lightness, species varied in whether they were 

becoming lighter or darker during ontogeny. In four species, adult body colour was darker 

than in the smallest juveniles: P. granosimanus, N. lamellosa, T. funebralis, and M. trossulus, 

whereas adult colouring was lighter than the smallest juveniles in seven species: B. glandula, 

C. dalli, P. cinctipes, L. scutulata, P. compactus, S. columbiana, and S. bifurcates (Table 3).  
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Table 3: Comparisons of the body colour lightness index of the 10 smallest and 10 largest 

individuals per species. MI=Mean intensity (body colour lightness index value); 

S=Sessile; M=Motile (during early juvenile life); *=Significant; Bolded species 

have >10% change in mean colour intensity index 

 

Phylum, Subphylum/Class, 

Species 

Motility MI of 10 

Smallest 

(± STD) 

MI of 10 

Largest   

(± STD) 

P-value 

(t-test) 

Difference 

Arthropoda 

     Maxillopoda 

 

 

 

 

 

 

 

 

 

 

            Balanus glandula 

            Chthamalus dalli 

S 

S 

106 ± 8 

48 ±  3 

155 ± 10 

59 ±  4 

0.001* 

0.022* 

19% lighter 

4% lighter 

   Malacostraca      

            Pagurus hirsutiusculus M 38 ± 4 63 ± 6 0.171  

            Pagurus granosimanus 

            Petrolisthes cinctipes 

M 

M 

73 ± 4 

42 ± 2 

37 ± 2 

28 ± 1 

<0.001* 

<0.001* 

14% darker 

5% lighter 

Mollusca 

    Gastropoda 

 

 

 

 

 

 

 

 

 

            Lirabuccinum dirum  

            Littorina scutulata 

M 

M 

45 ± 5 

26 ± 3 

45 ± 3 

40 ± 3 

0.153 

0.005* 

 

5% lighter 

            Littorina sitkana M 36 ± 5 42 ± 6 0.394  

           Nucella lamellosa M 153 ± 6 81 ± 14 0.030* 29%darker 

           Nucella canaliculata M 86 ± 10 89 ± 8 0.832  

           Tegula funebralis M 34 ± 2 29 ± 1 0.007* 2% darker 

           Petaloconchus 

  compactus 

S 56 ± 6 118 ± 13 <0.001* 24% lighter 

     Bivalvia 

           Mytilus trossulus 

 

M 

 

62 ± 6 

 

22 ± 4 

 

<0.001* 

 

16% darker 

Annelida 

      Polychaeta 

 

 

 

 

 

 

 

 

 

 

           Serpula columbiana 

           Spirorbis bifurcates 

S 

S 

159 ± 11 

148 ± 11 

182 ± 8 

196 ± 10 

0.005* 

0.004* 

9% lighter 

19% lighter 

 

Of the 11 species that did have a significant difference in lightness index values, changes 

greater than 10% were observed in only six species (Table 3). A 10% change (i.e. 25 points 

on the intensity index) was considered a biologically significant threshold because this 

amount of change was detectable to the human eye. Changes of less than 10% (less than 25 

points) could be detected by the digital imaging equipment, but were too subtle to be 

apparent to the naked eye.  

The most pronounced changes in body lightness occurred in three species: P. granosimanus 

(Fig. 1D), P. cinctipes (Fig. 1E), and M. trossulus (Fig. 1M). These species exhibit a rapid, 
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almost exponential, change in colour lightness early in juvenile life and all became darker 

with increasing body size. However, comparisons between the 10 smallest and 10 largest 

individuals for P. cinctipes showed only a 5% difference in body colour lightness index value 

(Table 3). The 4 other species which had a change in body colour lightness index value 

greater than 10%, B. glandula (Fig. 1A), N. lamellosa (Fig. 1I), P. compactus (Fig. 1L) and 

S. bifurcates (Fig. 1O) exhibited a more gradual change in colour lightness. In addition, the 

three sessile species became lighter in colour with increasing body size, whereas the three 

motile species became darker with increasing body size. 

Ontogenetic changes in body colour lightness were not restricted to a single phylogenetic 

lineage. Each of the 3 phyla included some species that exhibited ontogenetic changes in 

lightness as well as species that did not change colour lightness (Table 3). Significant colour 

lightness changes were also recorded in motile as well as in sessile species. 
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Figure 1: Body colour lightness index value of external body covering as a function as body 

weight (mg) for each of the 15 species studied. Each species is represented in two 

graphs; the one on the left shows the full size range of the species (smallest 

juvenile to the largest adult collected) and the one on the right is an expanded view 

of the juvenile body weights (first 10% of the entire body weight range) for each 

species. The vertical dashed line indicates literature values of the recorded 

hatching or settling size for that species. 

 

Relationship between microhabitat change and changes in colour lightness 

For each of the six motile species for which microhabitat use was examined, I compared the 

size frequencies of cryptic individuals with the size frequencies of individuals in exposed 

microhabitats.  This analysis revealed that only one of these six species, the hermit crab P. 

granosimanus, undergoes a clear microhabitat shift (Figure 2A) during ontogeny. The 

frequency of cryptic P. granosimanus individuals shifted from 100% for the smallest 

individuals to less than 20% for the largest individuals (Figure 2A). Two other species, P. 

hirsutiusculus and L. dirum exhibit partial microhabitat shifts (Figure 2B,C). In these two 

species, the frequency of cryptic individuals does not change substantially during ontogeny; 

however, changes between the percent of small individuals that are cryptic to the large 

individuals that are cryptic ranged from 60% to <20% for P. hirsutiusculus, and from 100% 

to <60% for L. dirum (Figure 2B, C).The two other motile species, T. funebralis and L. 

scutulata, did not exhibit an ontogenetic change in microhabitat use (Figure 2D, F). In these 

two species the proportion of cryptic individuals did not increase or decrease substantially 

with increasing body weight (Figure 2D, F). Finally, for L. sitkana, too few individuals could 

be sampled to determine whether microhabitat use changed during ontogeny (Figure 2E). It is 

interesting to note that in my microhabitat use surveys, which for gastropod species were 

carried out at low tide, all size classes of T. funebralis were primarily cryptic, whereas all 

size classes of L. sitkana were primarily found in exposed microhabitats. 
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Figure 2: Analysis of microhabitat changes for six motile species showing the number of 

individuals collected from each category of body size (mg) that were in cryptic or 

exposed microhabitats.  The percent of individuals that were cryptic in each size 

class is represented by the diamond points connected with the line. The dashed line 

indicates the threshold of 50% of individuals that are cryptic. 
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Effect of diet and light exposure on shell colour lightness in Nucella ostrina 

On day 1 of the experiment 10 additional hatchlings were weighed and photographed. The 

average weight of those initial hatchlings was 0.422 mg and the average colour lightness 

index value was 178.63. Over the rearing period of 21 days, there was 34.7% mortality in the 

experiment and the surviving hatchlings had increased in body weight by 62% on average. 

Experimental rearing of Nucella ostrina hatchlings in two diet and two light exposure 

treatments for 21 days revealed significant differences in body colour lightness between light 

treatments but not between diet treatments (Table 4).  

 

Table 4: Two-way ANOVA of body colour lightness index values for Nucella ostrina 

hatchlings placed in light and diet treatments. 

Source df MS F P 

Light 1 152180 190.73 0.001* 

Diet 1 822 1.03 0.312 

Light x Diet 1 320 0.40 0.528 

Residual 118 798   

 

The shells of the 21 day old juvenile snails had become much darker in the “exposed to light” 

treatment than in the “dark” treatment. Body colour lightness index values were 28% lower 

(71±4 points on the body colour lightness index scale), among snails reared in the “exposed 

to light” than in the “dark” treatments, regardless of diet (Figure 3,4).  
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Figure 3: Photographs revealing colouration assumed by snails from each treatment after 21 
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Figure 4: Body colour lightness of new shell growth in N. ostrina for each treatment. (0) 

sample of 10 hatchlings on day 0, (1) exposed to light fed barnacles, (2) exposed to 

light fed mussels, (3) in dark fed barnacles, (4) in dark fed mussels. (F=20.37, 

p<0.001, N=7 per treatment).  Letters above each bar identify groups of values that 

are not significantly different based on ANOVA. 
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  a 
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DISCUSSION 

Proportion of species that undergo ontogenetic changes in body colour lightness 

This study has revealed that a large proportion of benthic marine invertebrate species 

undergo some degree of ontogenetic change in colour lightness. Of the 15 species that were 

examined in this study, comparisons of the smallest and largest individuals revealed that only 

four species (27%) do not significantly changes body colour lightness. However, among the 

11 species that did change significantly, the degree of colour lightness change between the 

smallest and largest individuals varied from small changes of only 2% (Tegula funebralis) to 

substantial changes of 29% (Nucella lamellosa). Significant colour lightness changes <10% 

occurred in 5 species (33%) and colour lightness changes ≥10% occurred in 6 species (40%). 

In the five species with colour changes <10%, there did not appear to be any common trait 

among them that might explain the changes in colour lightness. These included motile and 

sessile species, and four of the five became lighter during ontogeny, but one became darker. 

Based on my observations of the shells or exoskeletons of these animals, changes in colour 

lightness that were <10% appear to result primarily from shell erosion or algal growth rather 

than changes in pigmentation, and therefore may not have adaptive implications 

(Bandaranayake, 2006).  

Previously, casual observations (Gosselin, 1997) had suggested that ontogenetic colour 

changes might be most common among motile species, and less so in sessile or sedentary 

species. This hypothesis was based on the fact that motile species are more likely to change 

their diet, exposure to light and other environmental elements, as well as exposure to 

predators, than sessile species. My study however, revealed that even sessile species undergo 

ontogenetic colour change. Of the six species in which mean colour lightness changed by 

>10%, three were sessile species and three were motile. However, the type of colour 

lightness change differed between sessile and motile species. All three motile species became 

significantly darker during ontogeny, whereas all three sessile species became lighter. Sessile 

species might become lighter during ontogeny because of the process of shell formation and 

growth. From my observations, the calcareous plates or tubes of newly metamorphosed 

barnacles, tubeworms, and vermetid snails are not yet fully calcified and so the tissues and 

rock surface beneath the thin, translucent shell material are thus visible, causing their body 

colour lightness index value to be lower (i.e. darker) than in their adult form when full 
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calcification has occurred and the shells (white in the barnacle and tubeworm species, and 

purple in the vermetid snail) have become opaque. This hypothesis would further explain 

why the colour lightness changes seem to occur gradually in these species. On the other 

hand, in the three motile species, it was apparent that the incorporation of dark pigments to 

their shell or exoskeleton began not long after metamorphosis.  In these species the change in 

colour lightness occurred rapidly over a very short body size interval. 

This study purposely included species from three distantly-related phyla (Mollusca, 

Annelida, and Arthropoda), with the goal of determining if ontogenetic colour changes are 

phylogenetically constrained. This study revealed that each phylum included species in at 

least two of the three categories (no change, moderate change, and extensive changes in 

colour intensity), demonstrating that ontogenetic colour lightness changes are not 

phylogenetically constrained, and suggesting that ontogenetic colour change may have 

evolved separately in each phylum.  

 

Relationship between microhabitat change and changes in colour lightness 

Ontogenetic changes in colour lightness did not occur exclusively in species that are motile 

or only in species that change microhabitats. Of the 10 motile species that I studied, six 

exhibited significant ontogenetic changes in colour lightness, two becoming lighter in colour 

and four becoming darker. On the other hand, all five sessile species exhibited some 

significant degree of ontogenetic change in colour lightness, all becoming lighter in colour. 

Consequently, it appears that ontogenetic colour lightness change occurs independently of 

motility.  

Similarly, not all motile species change microhabitat during ontogeny. This study 

investigated ontogenetic changes in microhabitat use in six motile species, and only one (P. 

granosimanus) displayed an extensive change, from 100% of small juveniles to less that 20% 

of large adults occupying cryptic habitats. Two other motile species (P. hirsutiusculus and L. 

dirum) displayed partial changes in microhabitat use, from approx. 60% of small juveniles 

occupying in cryptic environments to less than 10% for P. hirsutiusculus, and from 100% of 

juveniles to less than 60% of adults occupying a cryptic environment for L. dirum. One other 

species (T. funebralis) did not undergo any ontogenetic change in microhabitat use and, 

finally, for two species (L. scutulata and L. sitkana) an ontogenetic change in microhabitat 
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use was unclear. Although not all motile species undergo ontogenetic changes in 

microhabitat use, it appears that those species that do change microhabitat use also change 

colour lightness during ontogeny. 

The hermit crab species, P. granosimanus, had ontogenetic changes in both colour lightness 

and microhabitat use. These changes in microhabitat use observed in P. granosimanus 

occurred over approximately the same body size range (1-50 mg) as the changes in body 

colour lightness. This suggests the two changes may be synchronized in this species. As the 

hermit crab increased in body size it became darker in colour and moved from a cryptic 

habitat to an exposed habitat.  

There is also evidence of a correspondence between ontogenetic change in colour lightness 

and microhabitat use in other species. Past studies have found that changes in microhabitat 

use also occur early in juvenile life in N. ostrina and M. trossulus (Gosselin, 1997; Jenewein 

& Gosselin, 2013). Nucella ostrina undergoes an ontogenetic colour change at approximately 

2 mg in body size (Gosselin, 1997) and M. trossulus undergoes an ontogenetic colour 

lightness change between 0 and 3 mg (this study). In both species the size at which these 

changes in colour (or colour lightness) occur corresponds with the sizes at which 

microhabitat change occur. 

It is possible that being lighter in colour makes small juveniles more inconspicuous among 

the sand, shells, and rocks among which they live in their cryptic habitat, similar to the white 

hatchlings of Nucella ostrina (Gosselin, 1997). As they increase in body size, however, 

individuals become less susceptible to predation and therefore colour crypsis may not be as 

imperative (Palma & Steneck, 2001; Krause-Nehring et al., 2010). 

 

Effect of diet and light exposure on shell colour lightness in Nucella ostrina 

Shell colour lightness in N. ostrina changed in response to light exposure, but not in response 

to changes in diet. These results suggest that light exposure can act as a cue that initiates 

ontogenetic colour change, but do not support the hypothesis that diet plays a role in 

ontogenetic colour change. Light exposure could be responsible for the colour lightness 

change seen in N. ostrina because this species of snail undergoes an ontogenetic shift in 

microhabitat use, from cryptic to exposed microhabitats, which corresponds to a change in 
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exposure to light (Gosselin, 1997). In this study, hatchling snails were exposed to broad 

spectrum natural light (from the sun), and thus to visible, infrared and ultraviolet light. 

Exposure to broad spectrum light has also been associated with colour change in other 

species. Tlusty et al. (2009) discovered that the American lobster, Homarus americanus, 

changes its pigmentation density (becomes darker) when exposed to broad-spectrum light; 

when specifically exposed to UV light, this colour change was even more more drastic, 

suggesting that UV light has more of an impact on body colouration than broad-spectrum 

light. Vividness of body colour in the shrimp, Litopenaeus vannamei, also increases with an 

increased exposure to light (You et al., 2006). Colouration changes in response to light 

exposure also occur in terrestrial vertebrates such as the Moorish gecko (Vroonen et al., 

2012). Etter (1988) found that snails (Nucella lapillus) that were located in an area with low 

wave exposure and high exposure to heat and UV were white, whereas snails at sites with 

high wave exposure and low exposure to heat and UV were predominantly brown, although, 

this study did not mention a colour change during ontogeny. These past studies each found 

that exposure to light (broad spectrum or UV) affected each species differently, in some 

species high exposure increased pigmentation in their outer body layers, and in some their 

colour remained white, as seen in the snail Nucella lapillus (Etter, 1988). For some species, 

such as the lobsters and shrimp, increased pigmentation results in increased photo-protection 

against harmful UV rays (You et al., 2006; Tlusty et al., 2009); however, in snail species, 

which are protected from the harmful effects of UV by their shells, pigmentation may be 

more important for temperature regulation (Etter, 1988) or predator avoidance. 

Diet did not appear to have any effect on the colour lightness of N. ostrina hatchling shells. 

Past studies examining the effect of diet on colouration of body tissues in other species have 

found that internal or living tissues are more susceptible to colour changes associated with 

diet than shell material (Tume et al., 2009). The three sessile species in which shell colour 

lightness changed by ≥10%, B. glandula, P. compactus, and S. bifurcates, are filter feeders 

and feed on plankton. On the other hand, the three motile species exhibiting ≥10% change in 

colour lightness, M. trossulus, N. lamellosa, and P. granosimanus, have very different diets: 

M. trossulus is a filter feeder and consumes mostly plankton (Gofas et al., 2001), N. 

lamellosa feeds mainly on barnacles and mussels (Kowalewski, 2004), and P. granosimanus 
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feeds on detritus (Hazlett, 1981).  In addition, although several of these species have varied 

diets, it is unclear whether their diet changes during ontogeny.  

 

Ecological and evolutionary implications 

Adult body colour in at least some marine invertebrates is genetically determined (Palmer, 

1984). For example, the snail Nucella ostrina, exhibits vast variation in colour, banding, and 

sculpture of its shell. A study done by Palmer (1984) found three distinct colour morphs of 

this species: black, orange and white, with variation in banding patterns. He found that these 

colour morphs were determined by an autosomal gene and that black colouration was 

dominant to orange, orange was dominant to white, and white was recessive to all. He also 

discovered that the banding pattern was controlled by an autosomal gene, but that it was 

separate from the colour gene (Palmer, 1984; Palmer, 1985). While Palmer discovered that 

overall body colouration is determined by genes, the role of genetic control during 

ontogenetic changes in colour remains uncertain. The occurrence of ontogenetic colour 

change in virtually all individuals of a given species, as seen in P. granosimanus studied here 

for example, suggests that ontogenetic colour change itself is genetically determined; 

however, the timing and intensity of colour change within an individual could be controlled 

by environmental cues. These environmental cues could involve changes in predators, 

habitats, or background colours during ontogeny. 

When an individual relocates to a different habitat, it is likely to be exposed to a different set 

of predators. Past studies suggest that ontogenetic colour changes may allow for the growing 

organism to reduce predation risks by adapting its body colour to its surrounding habitat 

(Bandaranayake, 2006). If an individual undergoes a habitat change during ontogeny, from 

cryptic to more exposed habitats, it may change its colour from matching its background 

(camouflage) to a patterned (disruptive colouration) adult form which makes it more 

inconspicuous to visual predators. For example, in the shrimp Hippolyte coerulescens, small 

juveniles have a solid green or yellow colour whereas adults have translucent banding 

(Hacker, 1991). The juvenile body colouration effectively blends into the leaves and stems of 

the algae on which they live, whereas the banded adults are inconspicuous to predators by 

adopting a disruptive colouration (Hacker, 1991). In both the juvenile and adult colourations, 

the shrimp is attempting to best match its background colour; as juveniles they are matching 
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the fronds of the algae, and as adults they are attempting to match the stems of the algae. As 

well, Todd et al. (2006) discovered that juvenile shore crabs, Carcinus maenas, living in 

macroalgal environments consisting of one colour (monochromatic) had monochromatic 

carapaces, whereas crabs living in mussel beds (polychromatic backgrounds) had 

exoskeletons that were polychromatic. Based on these findings, the authors suggested that 

carapace colour matches background colour; they suggested that disruptive colouration may 

be beneficial to juvenile crabs to avoid detection by predators. Also, as individuals grow in 

body size, their ability to blend into their surroundings will change, as observed in some snail 

and shrimp species (Hacker, 1991; Gosselin, 1997). For example, all juvenile N. ostrina 

hatch from egg capsules with white shells, and small size and white colouration makes them 

nearly impossible to distinguish from small shell fragments and sand grains, but as they 

increase in size a solid white colouration could cause them to be more obvious to predators 

(Gosselin, 1997). Therefore, a change in body colouration likely helps them avoid predation 

risks (Gosselin, 1997). 

Some crab species, such as the red rock crab (Cancer productus) and European green crab 

(Carcinus maenus), lose variation in colour pattern when they reach adult size, presumably 

because adults have fewer predators than juveniles and thus adults no longer benefit from the 

cryptic patterning of the juveniles (Hannaford Ellis, 1984; Palma & Steneck, 2001). Certain 

invertebrate species, such as crabs and lobsters, also have a negative relationship between 

size and predation risk (Hannaford Ellis, 1984; Palma & Steneck, 2001; Anderson et al., 

2013). This explains why small individuals often have cryptic and disruptive colouration, 

which aids in avoiding predation; however, as they grow larger the risk of predation 

decreases and thus they can afford to forgo cryptic colouration (Hannaford Ellis, 1984; Palma 

& Steneck, 2001; Anderson et al., 2013). 

Changes in microhabitat may also lead to changes in exposure to environmental conditions, 

such as wave exposure and light exposure, which have been found to affect colouration in 

some species (Etter, 1988; this study). The effects of UV exposure on body colouration have 

already been discussed, and thus seasonal colour changes for some species may also occur 

due to the variation in exposure to UV and broad spectrum light (Auerswald et al., 2008).  

Although seasonal changes may affect colour in other marine invertebrate species, all of the 



27 
 

species examined in this study were collected during a two month period and thus seasonal 

changes in colouration are unlikely to have affected our findings.  

 

Future studies 

Based on the findings of this study, I suggest that future research examine (A) the occurrence 

of ontogenetic colour change in subtidal marine invertebrate species, and (B) the occurrence 

of ontogenetic changes in pigment types in marine invertebrate species. The first suggestion 

(A) may be addressed by the collection of subtidal species and analysis of their colouration 

using digital imaging analysis similar to this study. If light is the primary cue triggering 

colour lightness changes in invertebrate species, then collection of species at depths >10 m 

should reveal that they do not undergo ontogenetic colour changes because at these depths 

even exposed habitats only receive very low light intensities. The second suggestion (B) 

could be addressed by performing similar collections and image analysis as used here, but 

analysing red, blue, and green hue values to determine if species undergo ontogenetic shifts 

in primary colours (e.g. from red to blue). Furthermore, elemental and composition analysis 

of shell materials could provide more information on the types of pigments in the shell or 

exoskeleton, and comparisons between juvenile and adult shells may show that incorporation 

of different pigment types may be the physiological process by which colour changes in 

some species.  
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APPENDIX A 

 

Collection site names and latitudinal and longitudinal coordinates 

 

Collection Site Latitude, Longitude Coordinates 

Scott’s Bay 48°50.206’N, 125°8.596’W 

Robbers Pass 48°53.823’N, 125°7.251’W 

Fleming Island 48°52.699’N, 125°9.653’W 

Ross Islets 48°52.414’N, 125°9.641’W 

Grappler Inlet 48°49.922’N, 125°7.103’W 

Prasiola Point 48°49.077’N, 125°10.096’W 

Dixon Island 48°51.153’N, 125°7.054’W 

Entrance to Grappler 48°50.254’N, 125°8.011’W 
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APPENDIX B 

 

Regression equations for each species collected. Equations were determined by plotting the 

cube body length in mm
3
 (y-axis) and the body weight in mg (x-axis) for each individual of a 

species. N=number of individuals; P-value= significance. 

 

Species Name N Regression Equation R
2
 Value P-value 

Lirabuccinum dirum 83 y=67.25x 0.9813 <0.001 

Littorina scutulata 112 y=3.89x 0.9520 <0.001 

Littorina sitkana 71 y=2.41x 0.9809 <0.001 

Nucella lamellosa 88 y=7.10x 0.9628 <0.001 

Nucella canaliculata 93 y=6.66x 0.9769 <0.001 

Tegula funebralis 125 y=1.82x 0.9432 <0.001 

Petaloconchus compactus 80 y=0.03x 0.6713 <0.001 

Mytilus trossulus 75 y=10.36x 0.9755 <0.001 

Balanus glandula 102 y=3.17x 0.9284 <0.001 

Chthamalus dalli 94 y=3.72x 0.8926 <0.001 

Pagurus hirsutiusculus 47 y=0.51x 0.9451 <0.001 

Pagurus granosimanus 78 y=0.18x 0.8665 <0.001 

Petrolisthes cinctipes 93 y=0.91x 0.9562 <0.001 

Serpula columbiana 56 y=0.05x 0.7512 <0.001 

Spirorbis bifurcates 83 y=0.09x 0.1524 <0.001 

 


