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ABSTRACT 

Sex allocation theory predicts that females should bias the sex ratio of their offspring in 

response to differences in the reproductive value of sons and daughters. Offspring 

reproductive value may vary as a result of mate attractiveness, mate condition, or habitat 

quality; therefore, females should bias sex ratio in response to these attributes. Male plumage 

colouration, for example, may signal the direct (e.g., parental care) and indirect (e.g., good 

genes) benefits a female can gain by mating with a particular male. If males inherit good 

genes and receive greater parental care from a high quality dad, sons will have a higher 

chance of reproductive success. Hence, a female mated to a high quality male may produce a 

male-biased brood. Male mountain bluebirds (Sialia currucoides) display full body UV-blue 

structural plumage colouration, which is associated with male attractiveness and condition. In 

this study, I investigated whether female mountain bluebirds produce sex-biased broods in 

response to mate attractiveness or environmental conditions. Brood sex ratios were related to 

male plumage colouration, with male-biased broods resulting when females mated with 

brightly coloured males. This relationship was seen only in broods produced by older 

females, suggesting that a female’s ability to assess male plumage and bias offspring sex in 

response may be related to her breeding experience. Brood sex ratios also became male-

biased with increasing elevation, and male-biased broods were provisioned more frequently 

than female-biased broods when the parents were older birds. In conclusion, these results 

support the hypotheses that female mountain bluebirds bias offspring sex in response to both 

mate attractiveness and environmental conditions.  

 

Thesis Supervisor: Assistant Professor, Dr. Matthew Reudink  
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INTRODUCTION 

Sexual reproduction is common to all vertebrate life, yet the factors controlling offspring sex 

are variable across taxa. Sex determination in vertebrates can be classified into two general 

categories: environmental sex determination (ESD) and genetic sex determination (GSD) 

(Pike and Petrie 2003; Bachtrog et al. 2014). Under ESD, a zygote’s sex is determined post-

fertilization by environmental factors, such as temperature-dependent sex determination, in 

which gonadal differentiation is determined by ambient temperature during the egg 

incubation period (Janzen and Paukstis 1991; Trukhina et al. 2013). ESD is uncommon in 

vertebrates, and such systems are only found in some reptile and bony fish species (Trukhina 

et al. 2013; Bachtrog et al. 2014). GSD systems, however, are more prevalent and found in 

all mammals, birds and amphibians (Trukhina et al. 2013).  

Through GSD, sex is determined by genetic elements, which are typically sex 

chromosomes (Trukhina et al. 2013; Bachtrog et al. 2014). The two main forms of GSD are 

the XY sex determination system, and the ZW sex determination system. In the XY sex 

determination system, males are the heterogametic sex, with one X sex chromosome and one 

Y sex chromosome, while females are the homogametic sex, with two X sex chromosomes. 

The XY system is found in mammals, including humans, and some amphibian, reptile and 

bony fish species (Trukhina et al. 2013; Bachtrog et al. 2014). Unlike XY sex determination, 

ZW sex determination is characterized by female heterogamy, with females defined by their 

one Z sex chromosome and one W sex chromosome, and males by their two Z sex 

chromosomes (Griffiths et al. 1998). The ZW sex determination system is found primarily in 

birds, but also appears in reptiles, amphibians and bony fish (Griffiths et al. 1998; Bachtrog 

et al. 2014). 
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Regardless of the sex determination system, anisogamy, or male and female gametes 

of different sizes, in sexually reproducing organisms results in differences in the cost of 

reproduction between the sexes, with eggs being more costly to produce than sperm. Female 

reproductive success is limited by egg production, whereas male reproductive success is 

limited by the number of eggs they can fertilize. As a result, males tend to experience greater 

reproductive variance than females. The difference in reproductive variance between the 

sexes has been hypothesized to influence both maternal and paternal investment in offspring 

(Burley 1986, 1988). Because the number of offspring a female can produced in her lifetime 

is limited, females should invest time and energy to maximize offspring survival and 

reproduction.  

When the reproductive value of sons and daughters differ, a female may allocate 

more resources to the higher value gender to incur fitness benefits, and by doing so, bias the 

sex ratio of her resulting brood (Trivers and Willard 1973).  Which gender is of greater 

reproductive value is dependent on both intrinsic factors (e.g., her own condition) and 

extrinsic factors (e.g., mate quality and resource availability) (Trivers and Willard 1973; 

Burley 1981). Because males display greater variance in reproductive success than females, a 

high-quality son has the potential to produce more offspring and have higher reproductive 

success than a daughter of the same quality. The opposite is true for low quality sons and 

daughters, as females almost always mate regardless of quality, while a low quality male may 

be unable to reproduce at all (Trivers and Willard 1973). Therefore, a female capable of 

producing high quality offspring would benefit more from producing sons than daughters, 

while a female only capable of producing low quality offspring would benefit more from 

producing daughters than sons (Trivers and Willard 1973). In nature, biased sex allocation in 
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response to parental condition and habitat quality has been documented in many vertebrates 

(Hardy 1997), including numerous bird species (Sheldon 1998) 

In species with GSD, brood sex ratios may be adjusted either internally, in the form 

of biased offspring production, or externally, in the form of biased offspring mortality (Pike 

and Petrie 2003). Sex chromosomes segregate during meiosis in a Mendelian fashion, which 

should result in an equal probability of producing a son or a daughter (Pike and Petrie 2003; 

Bachtrog et al. 2014). Therefore, it would seem unlikely that individuals could adaptively 

deviate brood sex ratios from random internally (Pike and Petrie 2003). However, offspring 

sex ratio bias has been noted in many bird species at laying (Sheldon 1998), indicating that 

the ratio is adjusted internally pre- or post-ovulation (Pike and Petrie 2003).  

In birds, offspring will always inherit a Z chromosome from the father, so it is the 

chromosome inherited from the mother that will determine offspring sex. Therefore, female 

birds may be able to modify the sex ratio of their resulting broods through sex specific egg 

development (Pike and Petrie 2003). Though the physiological mechanisms allowing females 

to control sex specific egg development are poorly understood, the most plausible theories 

suggest female hormonal control (Pike and Petrie 2003; Navara 2013).  

Follicle development, ovulation and egg development in the ovaries of female birds 

are under the control of hormones, including follicular stimulating hormone, luteinizing 

hormone, testosterone, progesterone, and corticosterone (Pike and Petrie 2003; Navara 2013). 

In species that lay multiple eggs, follicles typically develop 24 hours out of phase with one 

another, resulting in a follicular size hierarchy (Pike and Petrie 2003). If the development of 

follicles that will ultimately give rise to males and females have differential sensitivity to 

hormones, different hormonal environments may affect their development and drive 
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preferential ovulation of follicles destined to become one sex over the other (Pike and Petrie 

2003; Navara 2013).  

In addition to controlling follicle development and ovulation within the ovaries, 

female hormones are present within the egg yolk and may affect embryo development (Pike 

and Petrie 2003). Yolk testosterone and estrogen levels differ between eggs containing male 

and female peafowl (Pavo cristatus), with male eggs containing more testosterone and 

female eggs containing more estrogen (Petrie et al. 2001). Testosterone has the potential to 

inhibit the development of female embryos, so yolk hormone levels may control sex-biased 

embryo development (Petrie et al. 2001). Because female hormone levels change in response 

to mate attractiveness, self condition and attractiveness, and resource availability, these 

factors may be reflected in ovarian and yolk hormone levels, resulting in sex specific follicle 

and embryo development and a biased sex ratio (Pike and Petrie 2003).  

Although the physiological mechanisms underlying sex ratio bias in birds are poorly 

understood, the external factors associated with biased sex ratios are becoming unraveled on 

a species-specific basis. In species with bi-parental care, the reproductive value of male and 

female offspring varies as a result of differences in male and female condition/quality, 

parental care and territory quality (Hasselquist and Kempenaers 2002). Accordingly, females 

appear to bias sex ratios in response to these factors (Sheldon 1998).  

Consistent with Triver and Willard’s (1973) sex allocation theory, female condition 

has been associated with brood sex ratio in black-billed gulls (Larus fuscus; Nager et al. 

1999), tree swallows (Tachycineta bicolor; Whittingham and Dunn 2000), peafowl (Pike and 

Petrie 2005), and yellow-legged gulls (Larus michahellis; Alonso-Alvarez and Velando 

2003), with females in better condition producing a greater proportion of males. Though 
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individual quality is influenced by genetic factors, environmental factors, such as habitat 

conditions and resource availability, limit the maximum condition an individual can achieve. 

Therefore, on a high quality habitat with plentiful resources and limited intraspecific 

competition, females would be expected to produce more sons than daughters, while the 

opposite would be expected of females on low quality habitat. In accordance with these 

predictions, great tit (Parus major) broods from high quality deciduous forest habitat 

contained a greater proportion of male offspring than broods from low quality mixed 

woodland habitat (Stauss et al. 2005). In addition, western bluebirds (Sialia mexicana) 

produced more female-biased broods when local resource and interspecific competition was 

high (Dickinson 2004).  

Much research into brood sex ratio variation in birds has focused on the response of 

females to variation in male attractiveness. In species with female mate choice, male 

attractiveness is often associated with sexually selected plumage characteristics, with 

attractive males being those that display more exaggerated forms of plumage (Burley 1986). 

Male plumage signals the direct (e.g., parental care) and indirect (e.g., good genes) benefits a 

female will gain by mating with a particular male (Griffith & Pryke 2006). Thus, a female 

mated with an attractive male should produce a male-biased brood to ensure her offspring 

inherit good genes and are well cared for. Because females experience relatively low 

variation in reproductive success, a daughter would be less impacted by the inheritance of 

lower quality genes than a son would be, suggesting a female-biased brood would be 

adaptive when a female is mated to a less attractive male. Male plumage ornamentation has 

been positively correlated with male-biased broods in collared flycatchers (Ficedula 
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albicollis; Ellegren et al. 1996), common yellowthroats (Geothlypis trichas; Taff et al. 2011), 

blue tits (Sheldon et al. 1999; Griffith et al. 2003), and great tits (Kölliker et al. 1999).  

Although several studies have found evidence supporting avian brood sex ratio 

adjustment, others have failed to do so (Koenig and Dickinson 1996; Korsten et al. 2006; 

Delhey et al. 2007). The current literature is highly contradictory as one study will find a 

relationship in a certain species, while another study on the same species but a different 

population or during a different year will not (e.g., western bluebird: Koenig and Dickinson 

1996, Dickinson 2004; blue tit: Griffith et al. 2003, Korsten et al. 2006, Delhey et al. 2007). 

To decipher these contradictions, multi-year studies on multiple populations need to be 

performed. 

The purpose of this research was to investigate whether female mountain bluebirds 

(Sialia currucoides) produce sex-biased broods in response to mate attractiveness or 

environmental conditions. Mountain bluebirds display UV-blue plumage and are sexually 

dimorphic (Power and Lombardo 1996). Breeding males possess fully-body UV-blue 

plumage, while breeding females have more subdued brown-grey plumage, with duller blue 

on their rump, tail and flight feathers (Power and Lombardo 1996). Unlike carotenoid and 

melanin based plumage colouration that depend primarily upon pigment deposition, UV-blue 

plumage is structurally based and depends upon feather microstructure (Prum 2006). 

Consequently, an individual’s nutritional state during moult affects the resulting feather 

structure and colour (Keyser and Hill 1999; Siefferman and Hill 2005, 2007; Doyle and 

Siefferman 2014). Therefore, structurally based plumage appears to be an honest signal of an 

individual’s condition and quality (Keyser and Hill 2000; Siefferman and Hill 2003).  
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In a Wyoming, USA, population of mountain bluebirds, male plumage colouration 

was positively correlated to male wing size and total (i.e., within-pair and extra-pair) 

reproductive success, suggesting that brightly coloured males are in better condition and of 

higher quality than dull males, and that male plumage colouration is under sexual selection 

(Balenger et al. 2009a). Mountain bluebirds are socially monogamous and show weak 

negative assortative mating in regard to plumage colour (Morrison et al. 2014). Extra-pair 

paternity rates are high in this species (72% of broods; Balenger et al. 2009b), and males who 

sire extra-pair young have brighter UV-blue plumage than males who do not (Balenger et al. 

2009a; O’Brien and Dawson 2011), suggesting the opportunity for sexual selection to act on 

male UV-blue plumage (Balenger et al. 2009b).  

Because the UV-blue structural colouration of a male’s plumage signals his 

attractiveness, condition and quality to potential mates, mountain bluebirds are well suited 

for investigating offspring sex ratio bias in relation to male plumage colouration. To my 

knowledge, brood sex ratios have not yet been studied in mountain bluebirds, although, they 

have been in the closely related eastern bluebird and western bluebird. Nestling sex ratios in 

eastern bluebirds did not deviate from unity (Lombardo 1982); however, brood sex ratios in 

western bluebirds became male-biased as the number of helpers-at-the-nest and local 

resource competition increased (Dickinson 2004). Although mountain bluebirds are not 

cooperative breeders, females may adjust sex ratio in response to local resource competition 

(i.e., habitat quality). 

 Mountain bluebirds are a grassland species, breeding in prairie-forest ecotones with 

moderate tree cover (Power and Lombardo 1996). Grassland plant communities in interior 

British Columbia are characterized by bunchgrass prairies at lower elevations, and increasing 
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deciduous and coniferous tree cover at higher elevations. Because mountain bluebirds 

typically breed on sites with moderate tree cover, habitat quality may increase with elevation. 

In a population of mountain bluebirds inhabiting the Bighorn Mountains, Wyoming, USA, 

both male and females provisioned their young more frequently during the late nestling 

period when they had nested at higher elevation sites, suggesting that prey may be more 

abundant at higher elevations (Johnson et al. 2006).  

Mountain bluebirds are cavity nesting species and readily nest in artificial nest boxes 

(Power and Lombardo 1996). In our study population of mountain bluebirds, pairs nesting in 

hole entrance nest boxes had a greater number of nestlings and greater fledging success than 

birds nesting in slot entrance boxes (Bailey, unpublished data). No difference in clutch size 

was detected between hole and slot entrance nest boxes, indicating that the difference in 

fledging success is due to hole entrance boxes providing a more suitable environment for 

nestling growth (Bailey, unpublished data). In addition, slot entrance nest boxes appear to be 

actively avoided, as they are occupied at a lower frequency than hole entrance nest boxes 

(Bailey, unpublished data). Therefore, females occupying slot entrance boxes may recognize 

they are nesting in low quality sites and bias their offspring sex ratio accordingly.  

Through this study, I tested the hypotheses that female mountain bluebirds adjust 

offspring sex ratio in response to mate attractiveness and habitat quality. Based on Burley’s 

(1981) findings, I predicted that male-biased broods would result when female mountain 

bluebirds mated to males with bright UV-blue plumage. I predicted there would be 

relationships between habitat quality (e.g. elevation, nest box entrance type) and brood sex 

ratios; however, no a priori assumptions were made about the directionality of these 

relationships. Parental provisioning rates may be indicative of individual, mate, and territory 
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quality. Because male-biased brood should result when a female mates with a high quality 

male, and high quality males should provision more frequently, I predicted that both males 

and females would provision male-biased broods more. 

MATERIALS AND METHODS 

Field Methods 

Field work for this project was conducted during the 2011 and 2012 breeding seasons (May-

July) in the Knutsford area of Kamloops, British Columbia, Canada (885-1116 m ASL; 

50°37’N, 120°19’W), using nest box routes established and maintained by the Kamloops 

Naturalist Club. Nest boxes were monitored every one to three days to determine first egg 

date, clutch size, hatch date, number of nestlings and fledging success. Five to ten days after 

eggs hatched, adult males and females were captured at the nest using nest box traps. We 

classified adults as either second-year (SY) or after-second-year (ASY) by examining the 

moult limits of the primary and greater coverts, as described by Pyle (1997). To evaluate 

individual body size and condition, we measured mass, unflattened wing chord, tail length 

and tarsus length. Adults were banded with a single Canadian Wildlife Service aluminum 

band and a unique combination of three plastic colour bands. We collected blood samples 

from adults and nestlings by piercing the ulnar vein and drawing 15-25 µl of blood into a 

micro-capillary tube. We sampled blood from nestlings 9 to 13 days after hatching and from 

adults at the time of banding. At the time of collection, nestlings were banded with a single 

Canadian Wildlife Service aluminum band. 
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Parental Care 

Parental care was quantified by video recording provisioning trips for two-hour periods 

during the early (three to five days after hatching) and late (14-16 days after hatching) 

nestling phases, for a total of four hours per nest. Nest watch videos were recoded using a 

Handycam DCR-SX45 (Sony, Tokyo, Japan) or a HD Hero2 or 3 (GoPro, San Mateo, CA). 

All nest watch start times occurred between 06:20 and 11:15 (mean ± SD, 08:48 ± 92 min). 

Video cameras were placed on the ground approximately two metres in front of the nest box 

and aimed at the box entrance. The videos were analyzed by a human observer to determine 

provisioning rates for both the attending male and female. Provisioning rates were measured 

as the number of trips to the nest per hour per nestling. Female visits to the nest during the 

early nestling phase lasting longer than 30 s were recorded as brooding. Adults were not 

captured at nests within the 48 hours prior to nest watches to avoid modification of parental 

behaviour.   

Feather Colour Analysis 

At the time of capture, we collected ten rump feathers and a single R3 tail feather from each 

adult. Following collection, we mounted rump and tail feathers side-by-side on low-

reflectance black paper. We mounted the ten rump feathers in an overlapping pattern that 

mimicked the way the feathers lay naturally on the bird. We stored mounted feathers in 

separate envelopes until spectrometer colour analysis was performed. We quantified male 

and female plumage colouration by measuring reflectance across the avian visual spectrum 

(300-700 nm) using an Ocean Optics JAZ spectrometer (Dunedin, FL) with a PX-2 xenon 

light source. The fiber optic probe was held in a non-reflective probe holder to measure 
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feathers from a standard 90° angle and 5.9 mm distance. We took ten readings for each 

plumage region (tail and rump) from haphazard locations within the blue regions.  

Using the R-based colour analysis program RCLR v.28 (Montgomerie 2008), we 

calculated three colour variables for each feather reading (brightness, hue and chroma) and 

averaged the value for each variable over the ten readings from each feather sample. 

Brightness was measured as the average percent reflectance across the avian visual spectrum 

(300-700 nm). Chroma was measured as the proportion of reflectance within the blue range 

(400-510 nm) and ultraviolet range (300-400 nm) relative to the total light reflected across 

the avian visual range. Finally, hue was measured as the wavelength at maximum reflectance. 

Due to high colinearity among these three colour variables, we used principal component 

analysis to collapse the three variables into a single variable. Because the first principal 

component (PC1) was found to explain most of the variation for each plumage area, PC1 was 

used to represent overall colour variation (see appendix A).  

Molecular Methods 

Blood taken from adults and nestlings was stored in ethanol at 4°C until later DNA 

extraction. Total genomic DNA was extracted using the standard protocol (E.Z.N.A Blood 

DNA Mini Kit handbook) for the E.Z.N.A Blood DNA Mini Kit (Omega Bio-Tek, Norcross, 

GA) and stored at -20°C.  

Nestling sex was determined by polymerase chain reaction (PCR) amplification of two 

homologous avian sex chromosome genes. P8 (5'-CTCCCAAGGATGAGRAAYTG-3') 

reverse and P2 (5'-TCTGCATCGCTAAATCCTTT-3') forward primers were used to amplify 

the chromo-helicase-DNA-binding (CHD) genes of the Z (CHD-Z) and W (CHD-W) sex 

chromosomes (Griffiths et al. 1998). The P8 and P2 primers have been designed to amplify a 
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region of the CHD genes that includes an intron. The amplified intron region of CHD-W is 

larger than that of CHD-Z, resulting in a larger CHD-W amplicon and allowing for product 

separation (Griffiths et al. 1998). An approximately 300 bp amplicon is produced from the 

CHD-Z gene and an approximately 375 bp amplicon is produced from the CHD-W gene. 

Following electrophoresis, males were identified by the presence of a single 300 bp band and 

females were identified by two bands, one 300 bp band and one 375 bp band (Fig. 1). 

PCR amplification was carried out in a total volume of 25 µl. The final reaction 

conditions were as follows: 10.35 µl H2O; 3.0 µl (3.0 mM) MgCl; 5.0 µl 5x buffer; 0.5 µl 

nucleotide mix; 0.15 µl Taq polymerase; 2.5 µl each 10x P2 and P8 primers; 1 µl genomic 

DNA. All reagents were supplied in the GoTaq PCR Core System II (Promega, Madison, 

WI) and PCR was performed in a MyCycler Thermocycler (Bio-Rad Laboratories, Hercules, 

CA). Genomic DNA was diluted to approximately 380 ng/µl (mean ± SD, 366 ± 120 ng/µl), 

               

Figure 1. 2.5% agarose gel run at 90 V for 120 min. Male ((+) m) nestlings were identified 
by a single 350 bp band from the Z chromosome (CHD-Z), while female ((+) f) nestlings 
were identified by one 350 bp band from the Z chromosome and one 375 bp band from the 
W chromosome (CHD-W).  
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as this was found to be the optimal concentration for amplification (Boyda, unpublished 

data). An initial denaturing step at 94°C for 5 min was followed by 30 cycles of 94°C for 30 

s, 51°C for 45 s, and 72°C for 45 s. A final run of 48°C for 1 min and 72°C for 5 min 

completed the program. PCR products were separated by gel electrophoresis for 120 min at 

90 V in a 2.5% agarose gel (10 cm x 7 cm) stained with GelRed Nucleic Acid Stain 

(Biotium, Hayward, CA), and visualized using a Gel Doc XR system (Bio-Rad Laboratories). 

When tested using DNA from adult birds of known sex (n = 32; females, n = 21; males, n = 

11), the protocol was found to have 100% accuracy (32/32 birds correctly sexed). Only DNA 

samples from broods of four or more offspring and from which both the male and female 

attending the nest had been caught and identified were included in sex ratio analysis.  

Statistical Analysis 

Statistical analyses were performed using JMP 12 statistical analysis software (SAS Institute, 

2015). Because my data did not meet the assumptions of normality required for parametric 

tests, I used non-parametric correlational analysis (Spearman’s rho) to determine 

relationships between brood sex ratios and (1) male and female plumage colouration, (2) 

parental provisioning rates during early and late nestling stages, (3) first egg date, and (4) 

habitat characteristics (elevation and nest box type). Data were analyzed both pooled and 

separately for male and female age classes (SY and ASY). Wilcoxon signed-rank tests were 

performed to determine if the population sex ratio and brood sex ratios deviated from unity, 

and to determine if there were differences in these ratios between years (2011/2012), age 

classes (SY/ASY), and nest box type (hole/slot entrance). 
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RESULTS  

Population and Brood Sex Ratios 

I determined the sex of 204 nestlings from 40 broods in the 2011 (nestlings, n = 133; broods, 

n = 26) and 2012 (nestlings, n = 73; broods, n = 14) breeding seasons. I could not assign 

gender to five nestlings from four broods because no DNA was available (n = 3 nestlings), or 

because I failed to obtain PCR products from those individuals (n = 2 nestlings). Overall, 

52% of the offspring in the population were male, which did not differ from unity (n = 204, 

W = 512.5, p = 0.49), nor did the percentage of male offspring differ from unity within either 

of the two years of the study (2011: 51%, n = 133, W = 100.5, p = 0.80; 2012: 52%, n = 71 W 

= 126.0, p = 0.41). Brood sex ratios are expressed as the proportion of male offspring in a 

brood, and mean brood sex ratio did not differ from 0.50 (combined years: 0.52, n = 40, W = 

82.0, p = 0.27; 2011: 0.51, n = 26, W = 29.5, p = 0.46; 2012: 0.54, n = 14, W = 13.5, p = 

0.53) (Fig. 2). Because mean brood sex ratio did not differ between years (n = 40, Z = 0.12, p 

= 0.91), data were pooled in subsequent analyses. In addition, mean brood sex ratio did not 

           
 
Figure 2. Distribution of brood sex ratios (proportion of male offspring) for 2011 and 
2012. The mean sex ratio, 0.52, did not deviate from unity.  
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differ between age classes for either males (SY: 0.56, ASY: 0.50; n = 40, Z = 1.48, p = 0.14) 

or females (SY: 0.53, ASY: 0.52; n = 40, Z = 0.68, p = 0.49).  

Parental Plumage Colour and Brood Sex Ratio 

 Neither male nor female rump nor tail plumage colouration were associated with brood sex 

ratio whether ages were pooled or unpooled for each gender respectively (see appendix B). 

When male plumage colouration was related to brood sex ratio with regard to female age, 

broods were more male-biased when ASY females mated to males with brighter tail plumage 

(R3 PC1) (n = 24, ρ = 0.52, p = 0.009) (Fig. 3); however, this relationship was not seen in SY 

females (n = 15, ρ = −0.03, p = 0.92). When male plumage colouration was related to brood 

sex ratio with regard to both female and male age together, pairs consisting of an ASY male 

and an ASY female had more male-biased broods when male tail plumage (R3 PC1) was 

brighter (n = 19, ρ = 0.64, p = 0.003) (Fig. 4), but not in any other pair age groups (ASY 

male/SY female: n = 10, ρ = −0.42, p = 0.23; SY male/ASY female: n = 5, ρ = 0.30, p = 0.62; 

SY male/SY female: n = 5, ρ = 0.50, p = 0.39). 

Parental Provisioning Rates and Brood Sex Ratio 

During the early nestling stage, older ASY males provisioned male-biased broods more 

frequently than female-biased broods (n = 27, ρ = 0.41, p = 0.04) (Fig. 5). Both male and 

female provisioning rates during the early nestling stage were greater in male-biased broods 

when both parents were ASY (male provisioning: n = 17, ρ = 0.55, p = 0.02; female 

provisioning: n = 17, ρ = 0.49, p = 0.05). During the late nestling stage, females mated with 

younger SY males provisioned female-biased broods at a higher rate than male-biased broods 

(n = 8, ρ = −0.72, p = 0.04) (Fig. 6).   
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Figure 3. Broods were more male-biased 
when ASY females mated to males with 
bright UV-blue tail plumage.  

 

 

Figure 4. Pairs consisting of an ASY 
female and an ASY male had more male-
biased broods when male UV-blue tail 
plumage was brighter. 

 

 

Figure 5. During the early nestling period, 
older ASY males provisioned male-biased 
broods more frequently than female-biased 
broods. 

 

 

Figure 6. During the late nestling period, 
females mated with young SY males 
provisioned female-biased broods more 
frequently than male-biased broods. 
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First Egg Date and Brood Sex Ratio 

I found no relationship between first egg date and brood sex ratio (n = 40, ρ = 0.22, p = 0.17). 

However, there was an significant relationship between first egg date and male rump PC1 (n 

= 39, ρ = 0.34, p = 0.03), with females mated to more brightly coloured males beginning egg 

laying earlier in the season. 

Environment and Brood Sex Ratio 

Nest box type (slot/hole entrance) was not associated with brood sex ratio (n = 38, Z = 0.12, 

p = 0.90). Elevation, however, was significantly correlated to brood sex ratio (n = 38, ρ = 

0.36, p = 0.03), with broods from higher elevations being more male-biased. 

DISCUSSION  

In this study, I observed support for sex allocation in mountain bluebirds with respect to both 

mate quality and environmental conditions. Consistent with my predictions, male-biased 

broods resulted when female mountain bluebirds mated with more brightly coloured males. 

During the early nestling phase, male-biased broods also received more provisioning from 

older males, and greater male and female provisioning when both parents were older. In 

addition to mate quality, brood sex ratios were more male-biased at higher elevations, though 

there was no difference in brood sex ratio between hole and slot entrance nest boxes. Taken 

together, these results suggest that female mountain bluebirds may bias brood sex ratio in 

response to both mate attractiveness and environmental conditions. 

 Relationships between plumage ornamentation and brood sex ratio have been 

reported previously in several species. Male plumage ornamentation was positively 

correlated with more male-biased broods in collared flycatchers (Ficedula albicollis; 
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Ellegren et al. 1996), common yellowthroats (Geothlypis trichas; Taff et al. 2011), blue tits 

(Sheldon et al. 1999; Griffith et al. 2003), and great tits (Kölliker et al. 1999). Some studies 

have also found parental age to be directly related to sex allocation (Sheldon et al. 1999; 

Griffith et al. 2003). In blue tits, for example, older females tend to produce more male-

biased broods (Griffith et al. 2003). Few studies, however, have investigated brood sex ratio 

in relation to both parental age and plumage colouration (Taff et al. 2011). In a population of 

common yellowthroats, Taff et al. (2011) found that male plumage colouration predicted 

offspring sex when the male was younger. Females mated to younger males with greater bib 

UV brightness were more likely to produce male offspring. No such relationship was found 

in older males or in regard to female age, however, which is contrary to the findings of my 

study. The UV brightness of a male common yellowthroat’s bib is a reliable signal of his 

condition and positively influences his fertilization success, but only for young males 

(Freeman-Gallant et al. 2010). Taff and colleagues (2011) suggest that because these 

relationships are limited to young males, only females mated with young males would realize 

the benefits to producing sex-biased offspring. 

In my study, male-biased broods resulted when older female mountain bluebirds 

mated to males with brighter tail UV-blue tail plumage. This relationship still held when only 

pairs consisting of an older male and an older female were included in analysis. Because 

male plumage does not change with age in this population of mountain bluebirds (Morrison 

et al. 2014), females were not responding to differences in colouration between first-year and 

older males.  

Older females have more breeding experience than females in their first breeding 

season (Fowler 1995), so one possibility is that this experience enables them to gain 
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additional information signaled through a male’s plumage. If true, an older, experienced 

female would be expected to bias the sex ratio of her offspring in response to her mate’s 

attractiveness, while a younger, inexperienced female may not be able to respond to that 

information. Female age has been positively correlated with an increased proportion of sons 

in blue tits (Griffith et al. 2003), however, to my knowledge, no studies have yet found a 

relationship between female age, male attractiveness, and brood sex ratio.  

Both male and female provisioning behaviour were related to brood sex ratio. During 

the early nestling phase, older males provisioned male-biased broods more frequently than 

female-biased broods. If provisioning behaviour reflects individual condition/quality, these 

results may suggest that female mountain bluebirds bias brood sex ratios in response to male 

condition. However, a female would not be aware of a male’s provisioning behaviour prior to 

breeding, so she would have to be assessing other signals of male condition/quality. I found 

evidence to support the hypothesis that females adjust brood sex ratio in response to male 

attractiveness, so a potential explanation is that male plumage colouration is the signal 

linking male condition and provisioning behaviour. Male and female eastern bluebirds in 

better condition have brighter colouration and provision offspring at higher rates, suggesting 

that provisioning rates are condition dependent and reflected in plumage colouration 

(Siefferman and Hill 2003; Siefferman et al. 2005). However, there is no relationship 

between male colouration (i.e., condition) and provisioning rates in this population of 

mountain bluebirds (this study; also see Morrison et al. 2014). 

Alternatively, provisioning rates may be related to territory quality. On high quality 

territories with easily accessible prey, males provision at increased rates (Keyser and Hill 

2000). The quality of the territory a male is able to establish is dependent on his condition 
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and colouration (Keyser and Hill 2000). Female mountain bluebirds paired to male with 

brighter UV-blue rump plumage began laying earlier in the season, indicating that brighter 

males may be able to obtain high quality territories with enough resources to allow females 

to begin breeding earlier. In addition, older males are typically better able to secure high 

quality territories (Hill 1988). During the early nestling phase, older males and females 

provisioned male-biased broods at a higher rate than female-biased broods, suggesting that 

these pairs had nested in high quality habitat. However, no direct measures of habitat quality 

were available to further investigate this relationship. An important next step in deciphering 

this relationship would be to assess food availability and other indicators of habitat quality in 

each male’s territory.  

In a population of mountain bluebirds inhabiting the Bighorn Mountains, Wyoming, 

USA, pairs that nested at high elevation sites (2500 m) provisioned 28% more during the late 

nestling phase than pairs that nested at low elevation sites (1500 m) (Johnson et al. 2006). 

While the reason for this difference was unclear, it is possible that the parents were either 

compensating for the high thermoregulatory costs of living at high altitude, or that prey were 

more abundant or more easily accessible at higher elevations. If prey were more abundant, 

this may indicate that higher elevations provide better quality habitat. In my mountain 

bluebird population, parental provisioning rates did not change with elevation, though there 

was a significant relationship between elevation and sex ratio. The elevational gradient along 

which nest boxes were located was not nearly as great for my study (885-1116 m) as it was 

for Johnson et al. (2006), so the thermoregulatory costs of higher elevation nest sites are 

likely limited. Tree cover (range: 0−50%), however, did increase with elevation (n = 38, ρ = 

0.36, p = 0.03), suggesting that habitat quality may increase with elevation within our study 
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area, as mountain bluebirds typically breed under moderate tree cover (Power and Lombardo 

1996). If higher elevation sites provide higher quality habitat, this could help explain why I 

found more male-biased broods at higher elevations. Brood sex ratios have been shown to be 

modified in response to several indicators of habitat quality, including resource availability 

(Suorsa et al. 2003; Stauss et al. 2005), habitat structure (Suorsa et al. 2003), and 

intraspecific competition (Komdeur et al. 1997; Dickinson 2004).  

Sex allocation theory predicts that females will adjust the sex ratio of their broods in 

response to the differential reproductive value of sons and daughters. Offspring reproductive 

value may vary as a result of mate attractiveness, mate condition, or territory quality; 

therefore, females should bias sex ratio in response to mate characteristics indicative of these 

attributes. As predicted based on sex allocation theory, I found that female mountain 

bluebirds produce more male-biased offspring sex ratios when paired with more attractive 

males (i.e., tail UV-blue plumage brightness). This relationship was dependent on female 

age, suggesting that a female’s breeding experience may influence her ability to assess male 

plumage characteristics and respond accordingly. Brood sex ratio was also associated with 

elevation, suggesting the need for future studies to investigate the interactions between 

extrinsic and intrinsic factors in influencing offspring sex ratios. To my knowledge, this 

study is the only of its kind to find a relationship between female age, male attractiveness and 

brood sex ratio bias.   
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APPENDIX A 

Table A1. Results from a principal components analysis of measures of plumage colouration 
(brightness, hue and chroma). The first principal component (PC1) was used to represent 
overall variation in colour because it was found to explain most of the variation in plumage 
colouration for each plumage area 

 Eigenvalue Proportion of 
variance Colour variable Factor 

loading 
Male tail PC1 1.88 0.63 Brightness 0.61 
   UV + blue choma −0.60 
   Hue 

 
0.52 

Female tail PC1 1.77 0.59 Brightness 0.54 
   UV + blue choma −0.64 
   Hue 

 
0.55 

Male rump PC1 2.2 0.73 Brightness 0.50 
   UV + blue choma −0.59 
   Hue 

 
0.63 

Female Rump PC1 2.09 0.7 Brightness 0.42 
   UV + blue choma −0.64 
   Hue 0.65 
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APPENDIX B 

Table B1. Results of Spearman’s rho correlations between brood sex ratio and male and 
female rump and tail (R3) plumage colouration. Data was analyzed both pooled and 
unpooled in regard to ASY and SY age classes for each sex separately.  

 n ρ p 
Male plumage colouration    

Pooled Ages    
R3 PC1 39 0.25 0.13 
Rump PC1 39 0.11 0.50 

ASY    
R3 PC1 29 0.23 0.23 
Rump PC1 29 0.04 0.82 

SY    
R3 PC1 10 0.46 0.18 
Rump PC1 
 

10 0.04 0.82 

Female plumage colouration    
Pooled Ages    

R3 PC1 40 0.003 0.99 
Rump PC1 40 −0.06 0.73 

ASY    
R3 PC1 25 −0.11 0.60 
Rump PC1 25 −0.11 0.60 

SY    
R3 PC1 15 0.18 0.53 
Rump PC1 15 0.005 0.98 

 

 


