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ABSTRACT 
 

Small mountain streams are neglected under current BC forestry regulations.  Debate 

exists over buffer widths necessary to maintain floristic diversity.  The effectiveness of 

canopy treatments (clear-cut, one-sided or two-sided buffers and continuous forest) and 

buffer width in maintaining riparian bryophyte diversity and promoting community 

reassembly in adjacent harvested uplands was examined using 30 Interior Montane 

Spruce sites.  Analysis found frequency and richness of old-growth associated groups 

(liverworts, perennial stayers, closed canopy, humus or log species) was maintained with 

buffers (one sided and two-sided).  Disturbance associated groups (colonists, open 

canopy and mineral soil/rock species) were more abundant in clear-cut riparian sites.  

Ordination found buffer width and canopy cover within 50 m radius affected bryophytes 

in riparian sites with buffers, whereas disturbance variables affected composition in clear-

cut riparian sites.  Regressions showed the importance of habitat quality variables (soft 

CWD and concavity).  A buffer had no effect on community reassembly in the uplands.  

 

Keywords: small stream, riparian, buffer, bryophyte, functional groups 
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Chapter One 
 
INTRODUCTION AND LITERATURE REVIEW: RIPARIAN ZONES AND BUFFER STRIPS 
    

Riparian zones, the boundaries between water and land, are environmentally 

complex ecosystems and contain large, often unique, assemblages of species (Salo et al. 

1986, Gregory et al. 1991, Naiman et al. 1993, Naiman and Decamps 1997, Sabo et al. 

2005).  Past riparian studies have examined the effect of different environmental 

parameters (e.g. area and height of river edge, substrate heterogeneity, soil pH) on overall 

biodiversity (Renöfält et al. 2005).  Few studies have focused on small first order or 

headwater streams (Moore and Richardson 2003, Richardson et al. 2005); yet, 

collectively these smaller streams make up a large portion of the watershed.  As dynamic 

systems, small order riparian zones influence downstream ecosystems through debris 

flow, sediment deposition, and the storage and transport of organic matter (Gomi et al. 

2002).  All streams are ecologically important for nutrient cycling (N and P), and provide 

valuable habitat for vertebrates, invertebrates and terrestrial plants, including bryophytes 

(Naiman and Decamps 1997, Hagg and Dickinson 2000, Meyer and Wallace 2001, 

Vesely and McComb 2002, Moore and Richardson 2003, Cockle and Richardson 2003, 

Lees and Peres 2008).   

To protect and maintain these important riparian areas, North American logging 

companies have been required to leave standardized buffer strips of trees around streams 

depending on stream channel size, fish presence and whether the streams are part of the 

community watershed (FEMAT (Forest Ecosystem Management Assessment Team) 

1993, Riparian Management Area Guidebook - Forest Practice Code of British Columbia 

Act 1995, Community Watershed Guidebook - Forest Practices Code 1996, BC Ministry 

of Forests and Range 2004 Practices Act).  Brosofske et al. (1997) confirmed the riparian 

microclimate was affected by buffer width and found that some of the prescribed 

dimensions may not be enough to protect the original environmental conditions.  A 

review by Castelle et al. (1994) also recommended a buffer of at least 15 m to maintain 

stream water quality itself which in turn may alter neighbouring plant communities. 

However Hibbs and Bower (2001) found no significant difference in the composition and 
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structure of the vascular plant community in forested riparian buffer strips compared with 

the intact riparian forest in the Oregon Coast Range.  In British Columbia, the efficacy of 

riparian buffer strips in various ecosystems has been evaluated in primarily coastal 

environments with larger stream sizes (Brosofske et al. 1997, Jonsson 1997, Hibbs and 

Bower 2001, Richardson et al. 2005).  The application of these findings may not be 

appropriate for the rest of the province (Bird et al. 2004).  Overall, there is increasing 

concern and disagreement over the efficacy of different riparian forestry practices in 

maintaining ecological diversity (Swanson and Franklin 1992, Brosofske et al. 1997, 

Blinn C.R. and Kilgore M.A. 2001, Hibbs and Bower 2001, Moore and Richardson 2003, 

Richardson et al. 2005, Lees and Peres 2008).  

Plants, particularly bryophytes, are sensitive to changes in the environment and 

are valuable indicators of overall riparian health (Naiman et al. 1993, Berglund and 

Jonsson 2001, Frego 2007).  Bryophytes are an important component of many forest 

ecosystems (Jonsson 1993, Baldwin and Bradfield 2005), accounting for a significant 

amount of overall species diversity and understory biomass, particularly around stream 

banks (Schofield 1976). They are also involved in nutrient cycling (Glime 2001, Turetsky 

2003).  These small nonvascular plants include liverworts (Hepatophyta), mosses 

(Bryophyta) and hornworts (Anthocerophyta) (Goffinet 2000).  Many studies have 

looked at the influence of biotic and abiotic variables on bryophyte diversity i.e. aspect, 

relative humidity, temperature, wind, light, coarse woody debris (CWD), harvesting 

disturbance, elevation, substrate type, pH and vascular plant canopy cover (Brosofske et 

al. 1997, Jonsson 1997, Haeussler et al. 1999, Pharo et al. 1999, Rambo 2001, Ross-

Davis and Frego 2002, Humphrey et al. 2002, Fenton et al. 2003, Mills and Macdonald 

2004, Hylander 2005, Hylander et al. 2005, Hylander and Dynesius 2006).  Due to their 

poikilohydric nature (they have little control of water loss), bryophytes are sensitive to 

changes in their immediate environment (Hylander et al. 2002). Thus, due to their 

ubiquitous and sensitive nature bryophytes have been suggested as potential 

environmental indicators or phytometers (Hylander et al. 2002, Frego 2007). Certain 

bryophyte species can also be used as indicators of red listed bryophyte species which is 
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important for conservation purposes in Swedish forests (Gustafsson et al. 2004).  The 

potential use of bryophytes as indicators is tempered by the acknowledged difficulty in 

accurate field identification for many species. 

The use of plant functional types or functional group classification (rather than 

phylogeny) has been recommended when examining plant response to environmental 

change such as disturbance and increasing landscape fragmentation (Bates 1998, Rusch et 

al. 2003, Verheyen et al. 2003a, Baldwin and Bradfield 2005, 2007, 2010).  Bryophytes 

can be categorized into a priori functional groups based on life history strategies, canopy 

preferences, growth forms and substrate affinity derived from current literature and 

expert knowledge (Table 1 adapted from Baldwin and Bradfield 2005).  Several of these 

functional groups (i.e. colonists and open canopy species versus perennial stayers and 

closed canopy species) can be expected to respond differently in terms of frequency and 

richness to changing environmental factors such as disturbance, moisture and light 

(During 1992, however see Bates 1998).  Harvesting of riparian areas will alter the 

environment directly and indirectly along the artificial edge (Brosofske et al. 1997); 

functional groups (rather than specific species) will be useful in understanding overall 

bryophyte community response to these perturbations (Baldwin and Bradfield 2005, 

2007, 2010). 

Riparian areas have very high bryophyte species richness (Jonsson 1997, 

Berglund and Jonsson 2001) thus there is concern over the effectiveness of standardized 

buffer strips in maintaining this diversity (Fenton and Frego 2005, Dynesius and 

Hylander 2007).  Given the impacts of disturbance on bryophytes, how effective are 

buffer strips in maintaining bryophyte diversity?  Two forms of disturbance may be 

associated with any kind of forest harvesting: altered microclimate and physical 

disturbance (Ross-Davis and Frego 2002).  Disturbance (for example logging, cattle 

grazing, and fire) may result in differing responses by various functional groups and 

overall bryophyte diversity.  Disturbance such as harvesting may negatively or positively 

affect bryophyte diversity in forests (Åström et al. 2005).  In particular, changes caused 

by harvesting to the amount and type of CWD, water pH or soil pH, soil moisture, light, 
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and temperature (Vitt et al. 1995, Mills and Macdonald 2004, Hylander and Dynesius 

2006) often have significant negative effects on bryophyte species richness.  However, 

habitat heterogeneity also strongly influences species diversity (Vitt et al. 1995).  

Increased wind throw due to gaps from harvesting maintains high bryophyte diversity 

(Jonsson and Esseen 1998, Baldwin and Bradfield 2005).  Shields et al. (2007) concluded 

that forest openings result in shifts in community composition due to changes in 

microclimate and substrate availability.  They suggest openings are valuable for the 

maintenance of disturbance - adapted bryophytes. 

 

Table 1.1.  Bryophyte functional grouping based on taxonomic group, reproductive 
strategies (life-history based on During 1992), canopy preferences, growth form and 
substrate affinity (from Table 1 in Baldwin and Bradfield 2005). 
Category Characteristics 
Taxonomic group:  
Reproductive strategies (life-history): 
   Colonists (Co)  
 
 
 
   Short-lived shuttles (Ss)  
 
 
    
  Long-lived shuttles (Sl)   
 
 
 
   Perennial stayers (Ps)   
 
 
 
 
Canopy preference: 
   Open canopy 
   Closed canopy 
   Canopy generalist 

moss (M) or liverwort (LW) 
 
spore size < 20 μm: high sporophyte 
production; life span of few years. Vegetative 
reproduction common; open short turfs and 
thalloid mat growth forms 
spore size > 20 μm: low sporophyte 
production; life span of few years; vegetative 
reproduction rare or absent; short turf or 
thalloid mat growth forms 
spore size > 20 μm: low sporophyte 
production; life span of many years; vegetative 
reproduction common; cushions, rough mat, 
smooth mat, or tuft growth form 
spore size < 20 μm: low sporophyte 
production; life span of many years. 
Vegetative reproduction common; weft, 
dendroid, mats, and large cushion growth 
forms 
 
shade intolerant 
shade tolerant 
shade indifferent 
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Growth form: 
   Turfs 
     Open turfs (OT) 
     Short turfs (ST) 
     Tall turfs (TT) and sphagnoid (Tsp) 
     Cushions (CU) 
   Mats 
      
     Thalloid (TM) and smooth (SM) 
     Thread (TH) and rough (RM) 
     Wefts (WE) and dendroid (DE)           
 Substrate affinity: 
   Substrate generalist 
   Humus 
   Litter 
   Mineral soil/rock 
   Logs                                     

 
erect main shoots 
main shoot 0.1 – 1.0 cm high 
main shoot 0.5 – 3.0 cm high 
main shoot > 3.0 cm high 
erect main shoots from a central point 
main shoot horizontal, descending, or 
ascending 
main shoots 0.1 – 1.0 cm long 
main shoots 0.5 – 3.0 cm long 
main shoots > 3.0 cm long 
 
 
 

   

  Ross-Davis and Frego (2002) compared forest bryophyte communities found in 

naturally regenerating clear cuts with plantations.  They found that the more disturbed 

sites (managed plantations) did not have the predicted increase in pioneer species 

(colonists) but had more perennial stayers such as Pleurozium schreberi (Brid.) Mitt. 

compared to natural regeneration. Their explanation for this apparent discrepancy was the 

more rapid spread by these perennial stayers which likely outcompeted the slower 

growing pioneer species – whoever get there first wins.  The existence of competition 

among bryophytes has been suggested by During and van Tooren (1987) and Rydin 

(1997).  However, Jonsson and Esseen (1998), using experimentally disturbed patches to 

mimic uprooting seen in boreal forests, found recolonization occurred rapidly over four 

years with forest-associated bryophytes such as perennial stayers (Hylocomium 

splendens, Pleurozium schreberi and Barbilophozia lycopodiodes) as well as disturbance-

associated bryophytes such as colonists (Pohlia nutans, Polytrichum juniperinum and a 

few liverworts such as Marchantia polymorpha).  They attributed this rapid response by 
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both functional groups to the different regeneration methods: detached fragments, 

gemmae and spores in the mineral soil. 

Fenton et al. (2003) compared bryophyte richness across several different 

disturbance regimes: an undisturbed riparian buffer (greater than 30 m), undisturbed 

forest, and two increasing disturbed cut areas (indirect – selective logging with minimal 

machinery and direct – clear-cut with all trees removed, machinery, slash plies, 

scarification and also herbicide).  Using a before and after field technique, they found 

increased forest floor disturbance due to machinery (mechanical harvest) resulted in an 

initial reduction in bryophytes due to changes in microclimate and substrate availability.  

Within four years total bryophyte cover and richness recovered, yet species composition 

changed amongst the three guilds: liverworts and “forest habitat moss” (defined as those 

living on trunks, woody debris and humus) decreased while colonist species increased.  

Liverworts, the most sensitive guild to changes in moisture (Söderström 1988), were lost 

and will likely not recover (Ross-Davis and Frego 2002).  Bryophyte diversity has also 

been shown to be affected by patches of disturbance (both logging and fire) at the 

landscape level (Pharo et al. 1999).  Mature forest and harvested areas are often used as 

range/pasture for livestock (Sharrow 2007).  Another form of disturbance, continuous 

grazing within forests can have either a negative effect (Humphrey and Patterson 2000, 

Virtanen et al. 2002) or a positive effect (Väre et al. 1995, Vare et al. 1996) on bryophyte 

diversity.  

Microclimate changes across ecotones in forested ecosystems have been well 

studied for vascular plants (Chen et al. 1999, Whitman and Hagan 2000).  An ecotone is 

an area or boundary across which there is a change in conditions, a phenomenon also 

known as edge effect (Murcia 1995).  These ecotones can be natural such as a transition 

from riparian areas to uplands or artificial such as the ecotones between clear-cuts and 

remnant forest patches.  Riparian forests have a natural ecotone break between the water 

and the land (Gregory et al. 1991, Hagan et al. 2006).  With harvesting close to the 

stream, the microclimate in riparian buffers shifts from conditions similar to an interior 

forest to those more similar to a clear-cut.  The most notable changes within the 
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remaining forest edge are a decrease in relative humidity and an increase in air 

temperature at the stream (Brosofske et al. 1997).  Other resulting microclimate changes 

can be both abiotic (pH, light) and biotic (species composition, diversity, competition, 

substrate type, seed dispersal) (Gehlhausen et al. 2000, Harper and Macdonald 2001).  

Much research has looked at these edge effects in forests from harvesting, especially in 

an increasingly fragmented landscape (Brosofske et al. 1997, Chen et al. 1999).  The edge 

effect on species richness was more pronounced for bryophytes than conifers (Hylander 

et al. 2002, Fenton et al. 2003, Baldwin and Bradfield 2005, Stewart and Mallik 2006).  

The riparian buffer width over which the edge effects persist (depth of edge influence) 

can be greater than 74 m (Chen et al. 1999).  In contrast, Hibbs and Bower (2001) found 

no edge effect when comparing riparian buffer strips of variable width adjacent to a clear-

cut with an intact riparian forest; they point out their study did not sample sites with 

significant wind throw generated CWD which can be an important factor for long term 

stability.  

Bryophyte response to edge effects can vary across spatial scales in both natural 

riparian ecotones and across artificial ecotones created by clear-cut harvesting (Hylander 

et al. 2002, Hylander and Dynesius 2006, Stewart and Mallik 2006, Dynesius and 

Hylander 2007).  In coastal Oregon, distance from stream edge, size of the stream and the 

elevation affects bryophyte species composition at the site level (Jonsson 1997).  Species 

richness was lower for sites of small streams with increasing lateral slopes and high 

canopy cover, whereas sites with increasing rock (gravel and boulders) had higher 

species richness; at the plot level, the amount of CWD was positively correlated with 

species richness.  In conifer dominated boreal forests, Mills and Macdonald (2004) found 

that the most important predictor of bryophyte diversity was the substrate type at the 

micro site level (logs, stumps, tree bases, undisturbed or disturbed 1 m2 forest floor 

patches) rather than the environmental variables at the stand (mesosite) level.  The results 

of these studies indicate that spatial scale must be considered when managing riparian 

buffers.  Most forest managers focus at the landscape and stand level and often do not 

consider the smaller scale where bryophytes exist (however see Huggard and Vyse 2002, 
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BC Ministry of Forests and Range 2004 Practices Act).  Multiple management scales are 

needed for conservation and resource management of the various taxa in a landscape 

(Lindenmayer et al. 2008).  

Microclimate gradients have been detected from the stream edge up into the 

uplands of various forest types (Brosofske et al. 1997, Danehy and Kirpes 2000, Stewart 

and Mallik 2006, Brooks and Kyker-Snowman 2008).  These microclimate gradients 

include soil moisture, pH and temperature, as well as, light, humidity and air temperature, 

and have been shown to influence bryophyte composition (Hylander and Dynesius 2006, 

Stewart and Mallik 2006).  Jonsson (1997) also found significant changes in bryophyte 

species richness with distance from the stream.  Microclimate gradients are influenced by 

the presence of a riparian buffer (Brosofske et al. 1997).  However, more information is 

needed regarding the effect of differing riparian buffers (buffer widths, position relative 

to stream – one sided, two-sided) on the bryophyte compositional gradient from stream to 

uplands. 

Recent riparian studies (Hylander et al. 2005, Hylander and Dynesius 2006, 

Dynesius and Hylander 2007) found there were fewer lost mature forest bryophyte 

species within a 10 m wide riparian buffer strip on each side of a small stream compared 

to clear-cut stream side forests.  Both Haeussler et al. (1999) and Stewart and Mallik 

(2006) determined a 20 m buffer was sufficient for maintaining a microclimate suitable 

for bryophytes, especially at the fine spatial scale.  Relative to clear-cut riparian areas, 

buffer strips may act as refugia for the maintenance of forest moss and liverwort species, 

though a 10 m buffer may not be adequate to mitigate edge effects (Dynesius and 

Hylander 2007).  Other studies suggest standardized buffer widths or homogenous 

harvesting techniques but these may not maintain necessary habitat heterogeneity for 

bryophyte diversity (Rambo 2001, Hylander et al. 2005).  The use of variable harvesting 

techniques with minimal disturbance and a range of buffer widths may be more 

appropriate (Hylander et al. 2002, Fenton and Frego 2005).  However, a recent meta-

analysis review (Rosenvald and Löhmus 2008) of green tree retention cutting (GTR) 

studies in both North America and Europe found that GTR maintained overall 
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biodiversity across most taxa, especially lichens, fungi, birds and small mammals, but 

was less effective for bryophytes and vascular plants.  Using small retention patches in 

high elevation forests, edge effects were seen on both plants and animals; bryophytes 

showed a negative edge effect at least 28 m into the intact forest particularly on the north 

side due to increased exposure and desiccation (Huggard and Vyse 2002).  Overall, due 

to the complex dynamics between species and their environment, Lindenmayer et al. 

(2008) stressed the importance of using adaptive management strategies in order to 

improve our understanding of ecosystems and how they should be successfully managed. 

Adaptive management is an iterative decision making approach involving hypotheses 

testing and evaluation of uncertainty.  

Previous studies of plant communities in fragmented habitats have identified, but 

do not agree on, several important abiotic and biotic factors which influence the resulting 

community dynamics (Pharo and Zartman 2007).  Bryophyte community persistence 

and/or colonization within riparian buffers may depend on the “patch” size and degree of 

isolation from each other (MacArthur and Wilson 1967, Levins 1969, Hanski and 

Ovaskainen 2000).  Fewer bryophyte species may occur in small and/ or more isolated 

patches due to more extinction and less immigration (biogeographic dynamics – sensu 

Saunders et al. 1991).  Pharo et al. (2004) found, however, that substrate was a stronger 

predictor of bryophyte diversity rather than patch or fragment isolation or size; they also 

found that the shape of the patch was influential with strips (long and narrow canopy 

remnants) having more similar bryophyte composition to continuous forests than patches 

(rounder canopy remnants).  Environmental effects, either directly due to physical 

disturbance or indirectly through altered microclimate, may also play a role in changing 

the bryophyte communities (Saunders et al. 1991).  Previous research of vascular plant 

communities in fragmented riparian habitats has shown that abiotic and biotic factors 

influence plant communities at different spatial scales (Holl and Crone 2004). 

Fenton and Frego (2005) looked at the role of remnant canopy patches on 

bryophyte persistence.  They found microclimate changes were significantly different 

between these remnant canopies and clear-cuts (increased temperature, increased 
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photosynthetically active radiation and decreased vapour pressure deficit (synonym for 

moisture).  The remnant canopies contained different bryophyte species (liverwort and 

forest habitat types) than the clear-cuts (pioneer- colonist species) which the authors 

suggested was related to the environmental conditions (mean precipitation, mean and 

maximum temperature) and refugia characteristics (tree size, tree species, tree density, 

and overall patch size).   Fenton and Frego (2005) propose patches may act as refugia for 

the original forest species and a potential source for recolonization when the harvested 

areas re-grow (Franklin et al. 1997, Fenton et al. 2003). 

Baldwin and Bradfield (2005) also looked at forest patches and the maintenance 

of bryophyte diversity in fragmented landscapes in coastal B.C.  They found a 45 m 

distance of edge influence in these patches.  The bryophyte species composition changed 

from interior forest functional groups (liverwort, perennial stayers, closed canopy 

species) to species associated more with clear-cuts (colonists, open canopy species, open 

turf and tall turf growth forms and terricolous species).  Though the actual species 

richness (number of different species) increased with proximity to the edge, the species 

themselves were functionally different with more pioneer type bryophytes such as 

Ceratodon purpureus (Hedw.) Brid. and Polytrichum juniperinum (Hedw.).  This was 

attributed to the disturbance of substrates resulting in less CWD, more mineral soil and 

boulders, and decreased canopy cover.  They concluded that a smaller patch (1.0 ha 

square) with an edge effect of 45 m will result in very little unaltered interior habitat; 

there is a size limit to these small patches below which they are unable to support the 

appropriate forest bryophyte diversity and thus will not act a refugia.  Similar supporting 

results and conclusions were seen in 0.2 ha patches in coastal Washington (Nelson and 

Halpern 2005).  This has implications for narrow (less than 10m) riparian buffers which 

also exhibit edge effect (Hylander and Dynesius 2006).   

Dynesius and Hylander (2007), using paired riparian sample sites, inferred a 

reduction in liverworts and moss forest species would remain for 30- 50 years after clear 

cutting, especially on convex surfaces and woody substrates; the continuing success of 

these refugia, however, needs further long term study.  The long term effect of 
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disturbance on species richness (time influence) was found to be significant for sphagna 

and bog liverworts but not for true mosses and forest liverworts in boreal Picea mariana 

forests; true mosses and forest liverworts were mainly influenced by habitat variables 

(Fenton and Bergeron 2008).  On the other hand, forest age (time since disturbance) and 

soil texture (fine-textured versus coarse textured) was found to be important for liverwort 

diversity and abundance in sub boreal spruce forests (Botting and Fredeen 2006).  Overall 

these previous studies have identified several important abiotic and biotic factors 

(substrate characteristics, patch size and/or shape, environmental or microclimate 

variables such as temperature, radiation and moisture, canopy characteristics, amount and 

persistence of disturbance) which influence the resulting community dynamics of plant 

communities in fragmented habitats, although these factors are not consistent among the 

studies.   

From a management perspective, not only is it important to know what factors are 

influencing bryophyte communities within riparian buffer strips, but it is also important 

to know if riparian buffer strips could affect community dynamics in adjacent harvested 

areas. Few studies, however, have looked at whether the presence of a riparian buffer has 

any mitigating effects on the shift in bryophyte composition in the clear-cut uplands 

themselves.  Schmida and Wilson’s (1985) “mass effects” suggests that forest bryophyte 

propagules from the nearby riparian buffers (remnant patches) might move from their 

normal core habitat out into the unfavourable areas (logged uplands) simply due to spill 

over.  Retention patches including riparian buffer strips , depending on size and shape, 

may act as potential refugia (“lifeboats”) for bryophytes and lichens in managed forests 

by allowing species to survive long enough to recolonize the harvested areas, although, 

sensitive liverworts may not survive the long regeneration time (Perhans et al. 2009).  

More studies are needed to understand the plant population dynamics occurring between 

retention patches (remnant canopies) and the recovering harvested areas (Pharo and 

Zartman 2007). 

The current literature is contradictory on the main drivers of bryophyte 

community reassembly suggesting either dispersal limitations (Rambo 2001, Fenton et al. 
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2003, Sundberg 2005, Kimmerer 2005), propagules sources (Ross-Davis and Frego 

2004), competition (Rydin 1997) or habitat heterogeneity (Fenton et al. 2003).  However, 

testing the hypothesis of dispersal limitations, Hylander (2009) found that closer 

proximity to a propagule source (mature forest) did not result in a higher forest bryophyte 

colonization rate in nearby clear cuts; only a partial recovery (lower richness and 

frequency) was seen in the clear cut compared to mature forest unrelated to distance from 

edge.  Suggested reasons for these inconclusive results included: a higher regional 

background level of spores may have masked the local spore source, in situ survival and 

subsequent reproduction in mesic depressions in the clear cut, or microsite limitations 

such as substrate availability and microclimate changes.  For many bryophyte taxa, 

asexual reproduction by vegetative fragments (propagules) was more successful in 

maintaining populations rather than sown spores (During and van Tooren 1987).  In a 

boreal spruce forest, Jonsson and Esseen (1990) proposed four causes of high bryophyte 

diversity in the disturbed forest floor patches caused by tree uprooting: 1) new space free 

of competitors, 2) higher habitat heterogeneity, 3) continued disturbance of patches by 

erosion, and 4) easier diaspore dispersal across small patch size.  They found succession 

of both early and late bryophyte species occurred soon after the disturbance which 

implied that no facilitation by the earlier species was necessary (see however Økland 

1994, Fenton and Bergeron 2006).  Facilitation has been considered an important factor 

in community reassembly of most plants (Callaway 1995).  Bryophytes seem to share 

similar community organization, other than evenness, with vascular plants (Steel et al. 

2004).  In a subalpine bryophyte study, Bradfield and Sadler (2006) introduced a concept 

called “transient assemblage dynamics” (TAD) to attempt to describe the relationship 

between the assembly of bryophyte communities and habitat heterogeneity at a fine 

spatial and temporal scale.  They found a higher level of TAD in plots with increased 

disturbance (higher stochasticity) and less TAD in plots with more stability.  Dynesius et 

al. (2008) found the retention of logging residues (CWD) in the center of clear-cuts 

resulted in better bryophyte survival due to microclimate buffering, although it had no 

effect near the forest edge.  Little is known about community reassembly of bryophytes 
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in harvested uplands with respect to the type of riparian buffers strips (Ross-Davis and 

Frego 2004).   

Currently, little is known about riparian and upland bryophyte community 

response to buffer strips of differing widths and arrangement in the BC interior.  The 

intent of my research is to fill this knowledge gap and provide forest managers with a 

variety of harvest options.  The purpose of my research is twofold: to evaluate the 

potential environmental influences of buffer strips on bryophyte diversity first in riparian 

areas and second in the associated uplands around small streams in the B.C. Interior 

Montane Spruce forests.  The second chapter of my thesis focuses on riparian areas and 

asks the following questions: 

1. Within riparian areas, does species richness and abundance of different bryophyte 

functional groups vary with different canopy treatments (clear-cut, one-sided 

buffer strips, two-sided buffer strips and continuous forest and/ or buffer width)? 

2. Within these differing canopy treatments, what are the environmental influences 

or physical effects, such as vegetation cover, grazing, coarse woody debris or 

substrate type, on bryophyte species richness and abundance across the various 

functional groups? 

3. At the landscape level, what is the effect of increased fragmentation of the 

surrounding forested areas (biogeographic effect) on bryophyte species richness 

and frequency in the riparian area? 

The third chapter of my thesis focuses on the adjacent uplands and asks the following 

questions: 

1. Does the canopy treatment influence the natural gradient of bryophyte distribution 

from the stream edge up to the uplands?  

2. At the site level, what effect does differing canopy treatments (including buffer 

strips) have on bryophyte community composition (species richness and 

abundance) in the uplands?  
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3. Does having a certain canopy treatment affect the resilience of bryophytes in the 

uplands (measured as changes in functional group representation and species 

composition)? 

Lastly, the fourth chapter of my thesis is a summary of the overall findings and a 

synthesis indicating the applied significance to a broader environmental context.
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Chapter Two  
 
 ASSESSING THE EFFICACY OF BUFFER STRIPS IN SUSTAINING BRYOPHYTE DIVERSITY 

AROUND SMALL MOUNTAIN STREAMS.  
 
 
 Introduction 
 

Small mountain streams make up a large portion of a watershed and provide 

important ecosystem services such as water, nutrient cycling (N and P), sediment 

deposition,  storage and transport of organic matter, and habitat for invertebrates, 

vertebrates such as fish, birds and amphibians, and terrestrial plants (Naiman and 

Decamps 1997, Hagg and Dickinson 2000, Meyer and Wallace 2001, Vesely and 

McComb 2002, Gomi et al. 2002, Moore and Richardson 2003, Cockle and Richardson 

2003, Lees and Peres 2008).  In particular, riparian areas contain high levels of bryophyte 

diversity and abundance (Schofield 1976, Hylander et al. 2005).  Bryophytes are an 

important component of many forest ecosystems (Jonsson 1997, Baldwin and Bradfield 

2005), accounting for a significant amount of overall species diversity and understory 

biomass, particularly around stream banks (Schofield 1976).  They are also involved in 

nutrient cycling (Glime 2001, Turetsky 2003).  Bryophytes, sensitive to changes in the 

environment due to their poikilohydric nature, are considered good indicators of overall 

riparian health (Naiman et al. 1993, Hylander et al. 2002, Frego 2007).  Disturbance 

processes such as logging have been shown to drastically alter the bryophyte community 

particularly around streams (Ross-Davis and Frego 2002, Fenton and Frego 2005, 

Dynesius and Hylander 2007).   

Forest canopy cover is an important aspect of the microhabitat affecting plant 

growth and survival within a forest (Jennings et al. 1999).  The retention of strips of trees 

adjacent to a stream (hereafter referred to as a buffer) has been suggested as a valuable 

management practice to protect both instream biota and adjacent riparian communities 

(Swanson and Franklin 1992, Cockle and Richardson 2003).  Yet small, non fish-bearing 

streams such as those found within high elevation forests are neglected under the current 

BC forestry practice codes (Forest and Range Practices Act - BC Ministry of Forests and 
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Range 2004).  Furthermore, debate exists over the riparian buffer widths necessary to 

protect the environment and maintain floristic diversity (Castelle et al. 1994, Brosofske et 

al. 1997, Jonsson 1997, Lee et al. 2004, Hylander et al. 2005).  In Sweden, buffer strips 

of 10 - 15 m (on each side of stream) have been found to mitigate the negative effects of 

clear cuts and preserve riparian bryophytes (liverworts and mosses) (Hylander 2004, 

Dynesius and Hylander 2007).  Stewart and Mallik (2006) determined a 20 m buffer was 

sufficient for maintaining a microclimate suitable for bryophytes, especially at the fine 

spatial scale.  

Increased fragmentation of forests due to harvesting practices can result in two 

main effects on local populations and communities:  the “biogeographic” effects of 

fragmentation whereby populations are divided up into smaller groups (sensu Saunders et 

al. 1991, Baldwin and Bradfield 2007) and the environmental or “physical” effects of 

increasing fragmentation through disturbance.  Increased stochastic extinctions and 

decreased recolonization (immigration) due to smaller isolated populations can result in 

decreased richness in smaller fragments (Levins 1969).  The surrounding “mainland” of 

intact forest may also influence the “islands” of riparian buffers by acting as a source of 

diaspores, although this is likely distance dependent due to the known dispersal 

limitations of bryophytes (MacArthur and Wilson 1967, Tangney et al. 1990, Fenton et 

al. 2003, Holl and Crone 2004, Lindenmayer et al. 2008).  Of course, the potential of 

intact forest to supply diaspores depends on the persistence of bryophytes within forest 

fragments.  Undisturbed canopy may act as refugia especially for liverworts, the most 

sensitive group (Söderström 1988), and forest mosses (Fenton and Frego 2005), however 

there seem to be size limitations associated with these retention patches (Baldwin and 

Bradfield 2007, Perhans et al. 2009).  The effects of disturbance itself can be “direct” 

through the physical destruction of bryophytes or changes in substrate availability caused 

by harvesting practices (Ross-Davis and Frego 2002, Fenton et al. 2003, Rydgren et al. 

2004), or “indirect” through altered microclimate along the artificial anthropogenic 

ecotone or edge (“edge effect”) (Hylander et al. 2002, Hylander and Dynesius 2006, 

Stewart and Mallik 2006, Dynesius and Hylander 2007).  Edge effect is a change in 
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environmental conditions due to proximity to a natural (Brosofske et al. 1997) or artificial 

boundary (Baldwin and Bradfield 2005).  The width over which the edge effects persist 

can be substantial (greater than 74 m) in coniferous forests of western North America 

(Chen et al. 1999). 

The direct mechanical disturbance of harvesting, altered microclimate (moisture 

and light), and reduction in appropriate substrate can potentially alter the suite of 

bryophytes around the stream edge up to the artificial ecotone.  However, previous 

studies have shown that bryophyte responses to increasing forest canopy can be 

inconsistent, with both increases and decreases in overall bryophyte richness and 

abundance observed (Jonsson 1997, Fenton and Frego 2005, Hylander and Dynesius 

2006).  Although responses to disturbance may be species-specific, detailing the impacts 

on all species may be too time-consuming or costly (Gitay and Noble 1997, sensu 

Saunders et al. 1991).  However, functional classification of plants has been increasingly 

used to understand ecosystem response to large scale environmental perturbations (Diaz 

and Cabido 1997).  Bryophyte functional groups have been used previously to document 

the response of the bryophyte community to altered microclimate and increased 

disturbance from logging (Fenton et al. 2003, Baldwin and Bradfield 2005, 2007, though 

see Bates 1998).  Based on the expected consequences of increasing fragmentation, it is 

possible to group riparian bryophytes into a priori bryophyte functional groups that can 

be expected to respond differently to decreasing levels of canopy cover and increase in 

substrate disturbance.  The use of defined functional groups derived from current 

bryological literature and expert knowledge rather than using the response of species 

observed in our study avoids the possibility of a circular argument (Baldwin and 

Bradfield 2005, Pharo and Lindenmayer 2009).  These functional groupings are based on 

taxonomy, life history strategies (During 1992), and canopy preference, substrate affinity 

and growth form (Baldwin and Bradfield 2005, 2007).  Thus in my study, forest-

associated bryophyte species include liverworts, perennial stayers (long life span, small 

spores, low sporophyte production and frequent vegetative reproduction), closed canopy 

species and epixylics (species preferring logs), whereas, disturbance-associated 
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bryophytes include colonists (short life span, small spores, high sporophyte production 

and frequent vegetative reproduction), open canopy species, and species with an affinity 

for mineral soil/rock. 

However, in addition to the effects of fragmentation, bryophyte diversity has been 

shown to be highly correlated with habitat characteristics, especially at the local scale.  In 

particular, many bryophyte species are influenced by substrate availability of coarse 

woody debris in late decay stages (Rambo 2001, Åström et al. 2005, Hylander et al. 

2005).  These decaying logs act as “biological legacies” (Rambo and Muir 1998, Rambo 

2001, Pharo and Lindenmayer 2009) by providing habitat and thus allowing the 

continued survival of forest bryophytes in the face of disturbance and landscape 

fragmentation (Pharo et al. 2004).  The amount and type (decay class) of retained coarse 

woody debris varies with different silvicultural approaches (green tree retention, thinning, 

variable canopy retention) and may lead to a differential response by sensitive bryophytes 

such as liverworts (Haeussler et al. 1999, Åström et al. 2005, Fenton and Frego 2005, 

Nelson and Halpern 2005).  The amount of deciduous trees has also been shown to be 

important for bryophyte survival (Gustafsson et al. 1992). 

The primary purpose of my research was to examine the effectiveness of different 

riparian canopy treatments (continuous, one-sided buffer, two-sided buffer and clear-cut) 

and buffer width for maintaining the riparian bryophyte community around small 

mountain streams at the landscape level.  Using a functional group approach, I expect 

forest-associated species (liverworts, perennial stayers, closed canopy species and 

epixylics (species preferring logs) to be maintained with increasing canopy cover and 

buffer width.  As continuous forest, two-sided buffer, one-sided buffer, and clear-cut  

represent an increasing disturbance gradient, I would expect disturbance-associated 

bryophytes (colonists, open canopy species, and species with an affinity for mineral 

soil/rock) to increase with no canopy cover (clear-cut).  A second objective was to 

determine which substrate, stand structure and habitat variable was the most influential in 

affecting the riparian bryophyte community at the local scale.   
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Methods  
 
Study area 
 

Study areas were located within the Montane Spruce BEC (Biogeoclimatic 

Ecosystem Classification) Zone (Meidinger and Pojar 1991) which occurs between 1100 

– 1600 m in Interior British Columbia.  The Montane Spruce climate is typified by cold 

winters with moderate snowfall, and short warm summers. The main conifer species 

present are lodgepole pine (Pinus contorta), hybrid white spruce (Picea engelmannii x 

glauca), and subalpine fir (Abies lasiocarpa).  Common vascular plants include 

grouseberry (Vaccinium scoparium), birch-leaved spirea (Spiraea betulifolia), Utah 

honeysuckle (Lonicera utahensis), twinflower (Linnaea borealis) and one-sided 

wintergreen (Orthilia secunda).  The study areas were located in the British Columbia 

Interior Plateau and included sites on the Bonaparte Plateau approximately 50 km 

northwest of Kamloops, Chuwels Mountains approximately 30 km southwest of 

Kamloops, and Greenstone Mountain approximately 70 km southwest of Kamloops 

(Figure 2.1).  Additional sites were located west of Barrière north of Kamloops, between 

Logan Lake and Merritt south of Kamloops, and around Stump Lake also south of 

Kamloops. 
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Figure 2.1. Map of study area of riparian sites sampled 2007 and 2008 (n=30). 
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Site Selection 

 
From the study areas, 30 sampling sites were randomly selected using digital 

ortho-rectified aerial colour photographs and GIS coverage analysis to limit potential 

sites to those within the Montane Spruce subtype (MSxk2 - very dry cool)(Field Manual 

for Describing Terrestrial Ecosystems - BC Ministry of Environment Lands and Parks 

and BC Ministry of Forests- Research Branch 1998).  Forest history maps were used to 

limit potential sites to those harvested within the past five to 25 years in order to limit the 

influence of stand age on the bryophyte response.  Potential sites were also identified to 

minimize location bias and encompass riparian site heterogeneity (Table 2.1).  Stream 

cover class was added to the maps to identify small streams.  Ground-truthing of potential 

sites was done to limit the stream type to 1 – 2 m wide and free flowing in June with a 

distinct channel (S5 or S6 stream channel according to Forest Planning and Practices in 

Coastal Areas Streams – Technical Report (Forest Practices Board 1997)); wet meadows 

and fens (type of wetland) were not sampled due to inherent vegetation differences.  A 

buffer was defined as the original conifer stands and not alder re-growth.  

Final site selections were made to minimize environmental variation in aspect, 

elevation, BEC zone, stream class and incorporated various conifer buffer widths (0 - >30 

m) including continuous (uncut) forest.  In order to sample the full gradient and spatial 

arrangement of forest cover currently found within Montane Spruce forests, I examined 

four canopy treatments: clear-cut, one-sided buffer, two-sided buffer and continuous 

(Figure 2.2).  Clear-cut treatment had no conifer trees on either side of the stream.  In 

comparison, one-sided buffers had continuous forest on the non-sampled side and were 

either cut or had a buffer of trees remaining on the sampled side.  Two-sided buffers had 

two strips of trees remaining around the stream after logging.  Finally, as a comparison, I 

looked at continuous forests that were fully intact on both sides of the stream (no 

logging).  Effort was made to generally restrict buffer strip sites to warm aspects (~165° – 

285°) and to sample separate stream drainages with a minimum distance of 1km between 

sites.   



 22

Table 2.1. Location, canopy treatment and harvest date of all sites sampled in 2007 and 
2008 (n=30). 

Site Location Coordinates (UTM)
Canopy 
Treatment

Harvest 
Date

4 G-branch Watching 671529 5643806 2-sided 1996
7 Strachen Lake 669347 5642418 clear-cut 1990
12 Heller Creek 662911 5651304 2-sided 1995
34 Dominic Lake Spur 400 661375 5603767 1-sided pre1990
36 Dominic Lake 662144 5603565 clear-cut pre1990
39 Chuwels 673430 5600231 clear-cut pre1990
40 Chuwels 674139 5599168 2-sided pre1990
41 Chuwels 673634 5599924 clear-cut pre1990
42 Chuwels 673884 5599120 continuous none
60 Dominic Lake 665448 5606829 continuous none
61 Grace Lake 666883 5605428 continuous none
62 Haybrook 667702 5596073 1-sided 1997
63 Mabel Lake 669913 5599389 1-sided 1998
64 Tranquille 668651 5644932 1-sided 1999
70 Upper Jamieson 677489 5679950 1-sided 2001
71 Jamieson 675559 5679369 continuous none
73 Chataway 639867 5580234 2-sided 2003
74 Helmer 670749 5579561 clear-cut 1992
75 Mabel Lake 671793 5576794 continuous none
76 Mabel Lake 669821 5576054 2-sided 1995
77 Bose 643524 5601464 2-sided 1995
78 Bose 639749 5603319 continuous none
79 Hook 630424 5609298 clear-cut 1990
80 Woods Creek 641786 5600928 2-sided 2002
81 Laura Lake 630063 5594581 2-sided 2002
83 Bonaparte Hills 673131 5684788 clear-cut 1995
84 Jamieson-Bonaparte 678699 5683536 2-sided 2003
85 Frisken 697547 5580368 1-sided 1997
86 Monroe 706870 5579590 1-sided 1999
87 Jewel 711193 5597128 2-sided 2004
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Figure 2.2. Four different canopy treatments (a. = clear-cut, b. = one-sided buffer, c. = 
two-sided buffer, and d. = continuous) showing the spatial arrangement of intact forest     
(     ) and harvested area (x) relative to the stream position (     ). Note: one-sided buffer 
may also have a narrow strip of trees on the right hand side of the steam (not shown). 
 
 
 
 
 

c. 

a. b. 

d.
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Study Design and Analysis 

To capture the peak phenology in the MS forest ecotype, vegetation sampling 

occurred during July and August during 2007 and 2008.  The sampling protocol was 

based on a similar one used by Hibbs and Bower (2001).  At each study site, three sample 

lines were placed 30 m apart and were located at least 25 m from the clear-cut edge.  

Each sample line started at the stream edge and extended 10 m upslope perpendicular to 

the stream edge.  Environmental data, including GPS coordinates, aspect and slope of 

stream and sample line, elevation, stream and sample line bearing and buffer width, were 

recorded along each sample line.  Along each sample line, bryophytes, shrubs, stand 

structure and microhabitat variables were sampled in three (10 x 2 m wide) belt transect 

lines placed perpendicular to each sample line at 1, 5, and 10 m from the stream edge 

(Figure 2.3).  

Bryophyte species presence was sampled within 10 alternately placed microplots 

(0.1 x 0.3 m) along each belt transect (Figure 2.3) and the entire belt transect was 

checked for any additional species (McCune and Lesica 1992).  In order to quantify 

habitat heterogeneity, substrate type, floor type and decay class of log (Maser et al. 1979, 

1988) were noted for bryophyte microplots.  In five shrub plots (2 x 2 m) both species 

and cover class were determined.  Shrubs were classified as either short shrubs (≤1 m) or 

tall shrubs (> 1 m) using average height from the USDA plant data base and EFlora 

online database (Klinkenberg 2007, USDA 2009) similar to Dovčiak et al (2006).  

Percent cover of substrate (disturbed and undisturbed forest floor, mineral soil, coarse 

woody debris, damp ground, boulder and rocks) and cover type (bryophyte, tree, saplings 

and seedlings) were recorded at the belt transect level.  Within the entire belt transect the 

species and cover class of conifers and deciduous trees were recorded.  Cover classes 

used were: 0 = 0%, 1 = 0.1 – 1%, 2 = 1 – 5 %, 3 = 5 – 25%, 4 = 25 – 50%, 5 = 50 – 75%, 

and 6 = 75 – 100%.  The diameter at breast height (DBH) and decay class were measured 

for conifers only.  The diameter and decay class of coarse woody debris (CWD) were 

sampled along a 30 m x 30 m triangle (Van Wagner 1982) with one edge randomly set 

along each sample line, located at 1 m from stream edge (riparian).  Decay classes follow 
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the classification used by B.C. Ministry of Environment, Lands, and Parks, and the B.C. 

Ministry of Forests (Figure 2.4) (Maser et al. 1979, BC Ministry of Environment Lands 

and Parks and BC Ministry of Forests- Research Branch 1998).  Soil bulk density 

samples were taken at 1m from stream edge for each sample line to determine effects of 

grazing on soil compaction.  Soil bulk density was determined by measuring the mass of 

the dry soil per unit volume (g/cc) (GLOBE 2005). 

Voucher samples of the bryophytes were collected and identification was 

confirmed based on Lawton (1971), Koponen (1974) and Godfrey (1977).  Problematic 

species identification was confirmed by Dr. Lyn Baldwin, Michael Ryan and Dr. W. B. 

Schofield.  Identification was limited to the genus level for some bryophytes due to a lack 

of reproductive characters necessary for identification to the species level (i.e. 

Brachythecium spp. and Lophozia spp.).  Voucher specimens are stored in the author’s 

herbarium and TRU herbarium.  Bryophytes were sorted into functional groups based on 

taxonomic group, reproductive strategies (life-history), canopy preferences, growth form 

and substrate affinity (Table 2.2 adapted from Baldwin and Bradfield 2005 and Appendix 

A). 

 

 

Figure 2.3 A typical sample line (one of three located at each site) showing three 10 m 
riparian transects with microplots for each vegetation type. For clarity the symbols are 
not overlaid or repeated in each belt transect (based on Hibbs and Bower 2001). 
  

10m 
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Figure 2.4. Coarse woody debris decay classification (Maser et al. 1979). 

I also recorded evidence of disturbance in each site.  Harvesting disturbance 

varied from zero harvesting impact up to 30 m from the stream to full harvesting with a 

15 m ‘no machine zone’, to full machine harvesting directly over the stream channel.  

Other notable disturbances observed included cattle grazing and ‘pugging’ (hoof prints), 

invasive species, grass seeding, and upstream influences due to road building and 

erosion. 

As aspect and slope of the stream bank sample line or the stream itself is highly 

variable due to its serpentine nature, an “aspect favourability index” (Beers et al. 1966) 

was calculated as: A´ = cos (Amax – A) + 1.0  where A´ is the aspect favorability index , 

which varies from 0.0 to 2.00, Amax is the aspect with the highest favorability, set at 225° 

(Baldwin and Bradfield 2005), and A is the actual measured site aspect. 

In order to quantify landscape structure and its potential influence on the 

bryophyte community, I used GIS analysis of the surrounding conifer cover and the 

riparian buffer sites (ArcView 3.2, ESRI, Redlands, CA).  Concentric circles (50 m, 250 

and 500 m radii) were added to digital ortho-rectified aerial photographs to calculate the 

total hectares of forest surrounding each of the 30 sites (Figure 2.5).  The amount of 
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forested area in each circle was termed “buffering capacity” and this index was examined 

as another variable in influencing bryophyte species richness and frequency.  

 

 

 
 
 
Figure 2.5. Concentric circles (50, 250 and 500 m radii) were used to calculate the 
amount of forested area in hectares surrounding each site which is termed “buffering 
capacity”.  
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Table 2.2. Bryophyte functional grouping with taxonomic group, reproductive strategies 
(life-history based on During 1992), canopy preferences, growth form and substrate 
affinity (based on Table 1 in Baldwin and Bradfield 2005). 
Category Characteristics 
Taxonomic group:  
Reproductive strategies (life-history): 
   Colonists (Co)  
 
 
 
   Short-lived shuttles (Ss)  
 
 
    
   Long-lived shuttles (Sl)   
 
 
 
   Perennial stayers (Ps)   
 
 
 
 
Canopy preference: 
   Open canopy 
   Closed canopy 
   Canopy generalist 
Growth form: 
   Turfs 
     Open turfs (OT) 
     Short turfs (ST) 
     Tall turfs (TT) and sphagnoid (Tsp) 
     Cushions (CU) 
    Mats 
      
     Thalloid (TM) and smooth (SM) 
     Thread (TH) and rough (RM) 
     Wefts (WE) and dendroid (DE)           
 Substrate affinity: 
   Substrate generalist 
   Humus 
   Litter 
   Mineral soil/rock 
   Logs 

moss (M) or liverwort (LW) 
 
spore size < 20 μm: high sporophyte 
production; life span of few years. Vegetative 
reproduction common; open short turfs and 
thalloid mat growth forms 
spore size > 20 μm: low sporophyte 
production; life span of few years; vegetative 
reproduction rare or absent; short turf or 
thalloid mat growth forms 
spore size > 20 μm: low sporophyte 
production; life span of many years; vegetative 
reproduction common; cushions, rough mat, 
smooth mat, or tuft growth form 
spore size < 20 μm: low sporophyte 
production; life span of many years. 
Vegetative reproduction common; weft, 
dendroid, mats, and large cushion growth 
forms 
 
shade intolerant 
shade tolerant 
shade indifferent 
 
erect main shoots 
main shoot 0.1 – 1.0 cm high 
main shoot 0.5 – 3.0 cm high 
main shoot > 3.0 cm high 
erect main shoots from a central point 
main shoot horizontal, descending, or 
ascending 
main shoots 0.1 – 1.0 cm long 
main shoots 0.5 – 3.0 cm long 
main shoots > 3.0 cm long 
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Data analysis 
 

Associations between canopy treatments and riparian bryophyte diversity, 

richness and frequency of bryophyte functional groups, as well as with habitat, stand 

structure and substrate variables were examined using either one-way ANOVA or 

Kruskal-Wallis test and their respective post-hoc tests (pairwise t-test using holm 

correction factor or Wilcoxon rank sum).  Habitat, stand structure or substrate variables 

were either recorded directly at site level or averaged to site level from the nine riparian 

belt transects.  Both richness and frequency were amalgamated from microplot and 

transect level estimates to provide overall site-level estimates.  Shannon-Weiner index 

(H´) was calculated as a measure of diversity and the Pielou’s evenness index (J) was 

calculated to measure evenness (McCune and Grace 2002).  To satisfy the assumptions of 

normality for ANOVA, some of the variables were log transformed; otherwise, the 

nonparametric Kruskal-Wallis test was used.   

Nonmetric multidimensional scaling (NMS), a method of indirect ordination, was 

used to summarize patterns in riparian bryophyte species composition based on site level 

frequencies in relation to canopy treatments.  NMS, a form of multivariate data reduction, 

is a widely accepted approach which essentially is a graphical representation of 

community structure (McCune and Grace 2002).  Using PC-ORD version 4, the Sorensen 

(Bray-Curtis) distance measure and autopilot mode was selected to run the NMS 

(McCune and Medford 1999).  Joint plots were used to show relationships between the 

ordination axes and riparian habitat, stand structure and substrate variables.  However, 

due to the minimal association of the 250 and 500 m buffer capacity with the bryophyte 

community, these variables were not included in the joint plot.  Multi-response 

permutation procedures (MRPP) were performed on the same NMS matrix and tested the 

null hypothesis that the riparian bryophyte communities were similar among the different 

canopy treatments.  

Regression analysis was used to characterize the association between riparian 

species richness and frequency of bryophyte functional groups with the amount of forest 

within 50 m of the stream (50 m buffering capacity).  Different generalized linear models 
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(GLMS) were used depending on the nature of the data and degree of dispersion: a 

Poisson or quasi-poisson error term and logarithmic link function for count data, or a 

quasi-binomial error term and logit link for non-count data (species frequency) (Quinn 

and Keough 2002).  Dendroid growth form species richness required the use of a 

binomial GLM.  In all models, 50 m buffering capacity was square root transformed to 

improve linearity of the relationship.  The slope direction of the regression line was noted 

as a positive or negative association between species richness (or frequency) and 50 m 

buffering capacity.  

Given the known influence of ecological factors working at different spatial 

scales, I used multiple regression analyses to determine the relative influence of 

landscape, stand structure, and microhabitat variables on the richness and abundance of 

bryophyte functional groups.  For the multiple regression analyses, I established a priori 

hypotheses based on ecological factors (immigration and extinction, microclimate and 

habitat quality) previous research has identified as being influential in determining 

bryophyte richness and abundance in harvested or forested landscapes (Table 2.3).  These 

hypotheses were then used to identify potential predictor variables (other than canopy 

treatment) to include in 12 candidate models that were evaluated through multiple 

regression.  The predictor variables included in the candidate models included 50 m 

buffering capacity, Alnus species percent cover, slope, mineral soil/rock percent cover, 

volume of logs in decay class 4 and 5 and concavity.  The percent cover of mineral 

soil/rock was standardized and log transformed (base e) to satisfy normality and linearity 

assumptions of the predictor variables. A GLM with a Poisson error term and logarithmic 

link function was used for count data (species richness).  Due to difficulties with 

overdispersion for the riparian species frequency data, a GLM with a quasi-binomial 

error term and logit link was used along with a quasi-likelihood modification to AICc 

(qAICc) (Quinn and Keough 2002, Anderson and Burnham 2002, Burnham and Anderson 

2004).  

From a set of 12 candidate models, the top models were determined based on the 

information-theoretic approach using a selection criterion, Akaike information criterion 
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(AIC) (Anderson and Burnham 2002, Burnham and Anderson 2004, Canham and Uriarte 

2006, Mazerolle 2006).  Unlike using a null hypothesis and p values to judge statistical 

significance, AIC approach looks at the “strength of evidence” or likelihood that a model 

explains the pattern observed in the data.  AIC also encourages parsimony and penalizes 

a model if there are too many parameters for the number of observations.  The model 

with the lowest AIC value is considered the “best” from the set of models chosen.  To 

correct for small-sample bias (sample size/number of parameters <40), the second order 

Akaike Information Criterion (AICc) is recommended and was used routinely for the 

subsequent analysis (Anderson and Burnham 2002, however see Richards 2005). 

   

Table. 2.3. Select variables, ecological factors and candidate models for generalized 
linear models with riparian species richness and frequency of various functional groups. 
See text for more details. 
 
Select Variables Ecological Factors
50 m buffer capacity Immigration & Extinction
Alnus  spp. percent cover Microclimate
Slope Microclimate
Mineral soil/rock percent cover Habitat quality
Decay class 4 & 5 Habitat quality
Concavity Habitat quality

Candidate models
Immigration & Extinction + Microclimate + Habitat quality
Immigration & Extinction + Microclimate
Immigration & Extinction + Habitat quality
Microclimate + Habitat quality
Immigration & Extinction
Microclimate*
Habitat quality*
Note: *each select variable also run alone for microclimate and habitat quality hence 12 

models were run.  
 

 Comparison of AIC values is only as good as the set of models chosen therefore 

the models must be first examined for goodness of fit.  The fit of the global or most 
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complex model with all the predictor variables is determined using an adjusted D2 

statistic which measures the drop in deviance and takes into account the number of 

observations and predictors in a model (Guisan and Zimmermann 2000).  Adjusted D2 

ranges from 0 – 1 where 1 equals perfect fit.  If the global model fit is fine then the fit of 

any simpler models is considered acceptable.  The log-likelihood (logLik) of a given 

model also reflects the overall fit where larger values indicate better fit.   

Several measures are employed to compare the top models: delta AIC (ΔAIC), 

Akaike weight (w) and the evidence ratio.  Delta AIC is the difference between each 

model’s AIC value and the model with the lowest AIC value.  Models with a ΔAICc 

value of ≤ 2 are considered to have support and inference in explaining most of the 

variation seen in the data.  The Akaike weight (w) is the probability of a model being the 

best model from a set of candidate models.  For instance, a w of 0.75 means there is a 

75% chance of a model being the best.  Lastly, the evidence ratio compares the number of 

times the best model is more likely than another model (highest w/ wi ).  More than one 

candidate model of a set may have a ΔAIC of ≤ 2, or equivalently, evidence ratios of < 

2.7, and thus those are all equally possible.  When using this approach it is important to 

not make conclusions based on only one model with the lowest AIC value and highest 

Akaike weight unless w ≥ 0.90 (Burnham and Anderson 2002). In addition, as a result of 

several top models with different nested variables, more than one variable maybe 

involved in explaining the pattern seen in the data.  Burnham and Anderson (2004) 

recommend assessing the relative importance of these top variables separately by 

summing their Akaike weights from all the models containing them (Σw).  The predictor 

variable with the largest Σw is estimated to be the most important in explaining the 

variation in the response variable (Anderson and Burnham 2002).   
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Results 
 
Comparisons among the canopy treatments 

 

Riparian habitat characteristics, stand structure and substrate availability 

  In terms of riparian habitat characteristics, only buffer width and buffering 

capacity differed among sites (Table 2.4), indicating that the site selection protocol was 

effective in minimizing potential confounding differences in slope, aspect favourability, 

elevation, or soil bulk density.  The range of buffer widths and buffer positions (one-

sided and two-sided) encompassed local variation found within the Montane Spruce 

landscape in the study areas.  The average buffer widths for one-sided and two-sided sites 

ranged from 9.79 m ± 5.22 (SE) to 15.54 m ± 1.84 (SE).  Overall, one-sided and two-

sided buffer sites did not have significantly different buffer widths, or 50 m and 250 m 

buffering capacity.  In comparison, clear-cut sites had significantly lower 50 m and 250 

m buffering capacity than other canopy treatments and continuous sites had significantly 

higher values of 50 m and 250 m buffering capacity than the other canopy treatments.    

In terms of stand structure and substrate variables, the four canopy treatments 

displayed obvious differences related to the disturbance intensity of harvesting (Table 

2.4).  Not surprising, stand basal area, conifer percent cover, bryophyte percent cover, 

and undisturbed forest floor showed significantly increasing values with increasing 

canopy cover (i.e., lowest values found in clear-cuts, intermediate values in one- and two-

sided buffers, and highest values in continuous forest, Table 2.4).  CWD in decay classes 

1 and 2 peaked in two-sided buffers and had significantly lower values in clear-cuts.  

Both the percent cover of disturbed forest floor and associated mineral soil substrate were 

highest in clear-cuts and lowest in continuous forests. However, concavity, pugging (hoof 

prints from ungulates), and damp ground percent cover were not significantly different 

among the four canopy treatments.  
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Table 2.4. Comparison of environmental variable means by canopy treatments in the riparian forest.

Canopy treatment: clear-cut (n=7)
one sided 

(n=7)
two sided 

(n=10) continous (n=6)     Χ2 (Fc)  p

Habitat variables

AFI € 1.58±0.23 0.98±0.35 1.27±0.22 0.96±0.30 1.05c 0.388

Buffer width (m) 0.00±0.00a 9.79±5.22b 15.54±1.84b 54.56±10.99c 22.00 0.000

Elevation (m) 1537.57±33.99 1407.00±72.41 1468.50±34.69 1508.33±54.92 1.23c 0.318

Stream aspect ˚* 213.00±37.68 191.57±46.73 315.90±175.45 157.50±50.01 0.31c 0.817

Site bearing˚ 212.58±24.77 131.28±35.64 206.29±27.68 181.95±41.47 1.31c 0.293

Buffering capacity (ha)¥

50 m 0.003±0.003a 0.446±0.088b 0.378±0.068b 0.773±0.009c 21.64 0.000

250 m 4.082±1.291a 9.973±1.174b 9.315±1.201b 15.178±1.014c 17.35 0.001

500 m 37.325±6.097 51.095±5.189 55.153±2.298 56.514±2.529 5.36 0.147

SBDb (g/cc)* 0.61±0.18 0.75±0.32 0.61±0.13 0.48±0.15 0.05c 0.984

Slope %* 9.62±3.22 8.64±2.73 9.72±2.25 8.22±3.82 0.25c 0.864

Stand structure variables

Stand basal area (m2/ha)$ 0.001±0.001a 0.007±0.003b 0.010±0.002bc 0.018±0.001c 11.45c 0.000

Volume of CWDa (m3/ha) 51.26±14.08 62.37±10.11 67.17±8.29 44.13±10.23 0.97c 0.424

Decay class 1-2 logs 1.67±1.67a 20.36±9.53b 34.39±7.49b 12.48±4.67b 12.45 0.006

Decay class 3 logs 22.76±6.69 29.46±7.9 14.82±3.76 11.80±5.69 4.74 0.192

Decay class 4 logs 24.92±8.24 11.87±3.76 9.45±2.76 17.02±8.18 3.31 0.347

Decay class 5 logs 1.91±1.26 0.68±0.68 8.02±3.50 2.83±1.35 3.97 0.265  
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Table 2.4. Continued. 

Percent cover

Alnus  spp# 14.03±8.71 8.33±4.68 16.42±4.25 2.98±1.53 1.96c 0.145

Boulder/Rock 0.36±0.2 0.43±0.29 0.17±0.14 0.02±0.01 6.66 0.083

Bryophyte 7.05±1.47cd 12.06±1.44ab 10.31±1.3ad 15.25±0.83b 12.22 0.007

Conifer 0.18±0.14c 1.3±0.46a 2.55±0.55ad 3.73±0.84bd 15.10 0.002

Decidious* 3.23±1.84 2.42±1.29 4.02±0.89 0.86±0.25 5.96 0.113

Large shrub* 25.26±11.22 28.95±7.48 31.03±5.21 12.81±2.95 2.26c 0.105

Sapling 2.09±0.38 1.18±0.26 2.07±0.69 1.3±0.34 2.02 0.569

Seedling 1.71±0.98 0.72±0.36 0.71±0.25 0.73±0.42 1.31 0.727

Shrub 40.65±10.56 47.34±7.22 50.93±6.73 37.84±7.44 0.57 0.640

Small shrub* 12.41±3.82 13.62±1.61 14.84±3.86 20.43±4.73 0.89c 0.459

Stand basal area (m2/ha)$ 0.001±0.001d 0.007±0.003a 0.010±0.002ab 0.018±0.001b 11.45c 0.000

Substrate Variables

Concavity 2.86±0.74 3.00±0.72 2.70±1.07 2.50±1.18 1.31 0.727

Percent cover
Disturbed forest 
floor#

8.37±2.65a 4.00±1.16b 2.24±0.66b 1.51±0.87b 7.93 0.047

Mineral soil  1.00±0.45a 0.23±0.15a 0.09±0.04a 0.00±0.00b 11.56 0.009

Pugging  1.16±0.46 1.14±0.52 0.67±0.29 1.00±0.92 2.28 0.516
Undisturbed forest 
floor  7.38±2.43a 8.04±1.37a 12.55±1.15b 14.77±1.03b 11.01 0.012

Damp ground*  1.11±0.36 2.89±0.96 2.01±0.61 0.87±0.20 6.10 0.107  



 36

Table 2.4. Continued. 

 

Note:  Values for the riparian locations are means (± SE) averaged to the site level from the appropriate nine 
belt transects. Other values are recorded at the site level. a Coarse woody debris, b Soil bulk density, c Anova 
F statistic with associated P-value in column to right.

¥ = no site 84 due to lack of available ortho photo (n = 9), $ = squareroot transformation
# = standardization (+ 0.01 or 0.1) & loge transformation, * = loge transformation

Post hoc tests were either pairwise t-test (holm correction factor) for ANOVA or Wilcoxon for Kruskal-Wallis; means  
followed by the same letter are not significantly different. Values of p < 0.05 are bolded.

€ = AFI refers to "aspect favourablilty index" (Beers et al. 1996) using A' = cos(Amax-A) + 1.0 where A' =AFI 
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Riparian bryophyte community characteristics: species diversity, richness and frequency 

  

 In general, the richness and frequency of bryophyte functional groups found in 

clear-cut sites differed significantly from continuous forest sites (Tables 2.5 and 2.6).  In 

comparison the richness and frequency of bryophyte functional groups in one-sided and 

two-sided buffers were intermediate between clear-cuts and continuous forest sites, and 

were significantly different from values found in clear-cuts but not significantly different 

from values observed in continuous forests.  However, the response of individual 

bryophyte functional groups differed among the canopy treatments.  The richness of 

forest-associated functional groups (liverworts, perennial stayers, closed canopy species, 

species with growth forms of either smooth mat or weft, species with an affinity for 

humus and epixylics) were not statistically different  among sites with continuous forests 

and any type of buffer (one-sided and two-sided).  Only when there was no buffer (clear-

cut) did the forest-associated species richness exhibit a significant decline.  Surprisingly, 

disturbance-associated bryophyte species richness (colonists, open canopy species, open 

turf species and mineral soil/rock associated species), as well as moss species richness, 

Shannon-Weiner’s diversity index, and Pielou’s evenness index,  showed no statistically 

significant difference among the four canopy treatments. 

The species richness of short- and long-lived shuttles showed mixed responses in 

sites with different canopy treatments.  Only the richness of long lived shuttles in clear-

cuts and continuous forests were significantly different when canopy treatments were 

compared, whereas the richness of short-lived shuttles showed no significant differences 

among canopy treatments (Table 2.5).  The richness of canopy generalists was 

significantly lower in clear-cuts as compared to one-sided and continuous forests sites, 

but was not significantly different than the richness found in two-sided buffers.  Other 

functional groups (rough mat, short turf/cushion, thread, thalloid and tall turf/sphagnoid 

growth forms, substrate generalists and species preferring litter/scat) showed no statistical 

difference in richness among the four canopy treatments.  
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 While the frequency of bryophytes, specifically mosses, was not significantly 

different among the four canopy treatments, the frequency of liverworts was significantly 

higher in one-sided buffers and continuous forests compared to the other canopy 

treatments (Table 2.6).  Overall, the frequency of forest-associated bryophytes (perennial 

stayers, closed canopy species, smooth mat or weft species, liverworts, species associated 

with logs or humus) showed no statistical difference among sites with any canopy.  Only 

when there was no buffer (clear-cut) did the forest-associated species frequency exhibit a 

significant decline.  Not surprisingly, disturbance-associated bryophytes (colonists and 

mineral soil/rock species) were most frequent in clear-cut sites.  The frequency of 

colonists in one-sided buffer sites was statistically similar to clear-cuts, whereas the 

frequency of colonists in two-sided buffer sites was statistically similar to continuous 

forests.  Thalloid species had a statistically similar frequency in the clear-cut sites as the 

continuous forest and were most frequent in one-sided buffers (thalloid growth forms 

include the disturbance-associated colonist Marchantia polymorpha).  All other 

functional groups (open turf, rough mat, short turf/cushion, thread, and tall turf/sphagnoid 

growth forms, substrate generalists and species preferring litter/scat) showed no 

difference in frequency among the four canopy treatments (Table 2.6).  



 39

Table 2.5. Comparison of diversity indices and species richness of various functional groups by canopy treatments (clear-cut, 
one-sided buffer, two-sided buffer and continuous) in the riparian forest.

Canopy treatment: clear-cut (n=7) 1-sided buffer (n=7)
2 sided buffer 

(n=10)
continuous 

(n=6)  χ2 (Fc) p value
Shannon diversity index 2.34±0.35 2.73±0.17 2.47±0.32 2.49±0.38 5.66 0.129
Pielou's Evenness index 0.72±0.07 0.75±0.04 0.69±0.05 0.69±0.06 5.36 0.147
Species richness

Taxonomic groups
Bryophyte 25.86±2.55a 37.86±2.09b 34.8±2.68ab 36.83±3.66b 9.92 0.019
Moss 21.29±1.92 27.57±1.27 26.4±1.98 25.5±1.98 5.15 0.161
Liverwort 4.57±1.02a 10.29±0.97b 8.4±1.31b 11.33±1.86b 10.81 0.013

Life-history strategy groups

Perennial stayers 9.57±1.13a 15.43±1.09b 14.6±1.38b 16.83±1.38b 5.33c 0.005
Colonists 7.00±0.44 7.43±0.57 6.20±1.00 5.33±1.17 2.81 0.422

Short-lived shuttles 5.29±0.89 6.86±0.51 6.80±0.44 5.67±0.84 1.47c 0.245

Long-lived shuttles 4.00±0.95a 8.14±1.01ab 7.20±1.25ab 9.00±1.21b 3.16c 0.041
Canopy Preference

Closed 8.57±1.86a 19.43±1.78b 18.3±1.63b 19.83±1.70b 8.59c 0.000

Generalist 5.86±0.94a 9.00±0.72b 7.70±0.54ab 8.83±0.87b 3.46c 0.031

Open 10.00±0.44 9.43±0.61 8.80±1.46 8.17±1.74 0.36c 0.786
Growth form groups

Dendroid 0.14±0.14a 0.14±0.14a 0.40±0.16ab 0.83±0.17b 8.40 0.038

Open Turf 2.29±0.36 2.29±0.36 2.70±0.54 2.67±0.42 0.25c 0.862
Rough mat 2.57±0.61 3.71±0.78 3.00±0.39 3.83±0.60 2.61 0.456

Smooth mat 1.86±0.67a 4.57±0.43b 4.20±0.65b 5.00±1.00b 3.73c 0.024

Short Turf/Cushion 9.29±1.04 11.57±0.61 10.90±0.77 11.17±1.17 1.17c 0.339
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Table 2.5. continued. 

Thread 1.71±0.42 3.14±0.46 3.10±0.50 2.67±0.71 1.55c 0.224
Thalloid 0.57±0.30 1.57±0.30 1.00±0.26 1.17±0.48 4.44 0.218

Tall turf/Sphagnoid 5.57±0.37 8.00±0.53 6.70±0.60 6.50±0.85 2.55c 0.077
Weft 1.86±0.46a 2.86±0.26ab 2.80±0.49ab 3.50±0.22b 8.25 0.041

Substrate-affinity groups

Generalists 2.71±0.61 3.57±0.53 2.50±0.27 3.00±0.37 1.16c 0.342

Humus 9.86±1.56a 17.00±0.82b 16.20±1.15b 17.00±1.39b 7.06c 0.001

Litter/Scat 4.43±0.53 5.14±0.55 5.20±0.83 5.50±0.76 0.35c 0.789

Log 2.86±0.70a 6.57±0.72b 6.50±0.82b 7.17±0.95b 5.40c 0.005

Mineral soil/Rock 6.00±0.31 5.57±0.48 4.40±0.83 4.17±0.91 5.01 0.171
Note: Values at the site level averaged across all microplots in transects ( ± 1 SE). c ANOVA F statistic with associated P-value 
in column to right. Bolded values are p<0.05. Letters represent post hoc results for Wilcoxon Rank Sum (Kruskal-Wallis test) 
or pairwise t-test (holm correction factor) (ANOVA) where same letter = no significant difference. 
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Table 2.6. Comparison of species frequency of various functional groups by canopy treatments (clear-cut, one-sided buffer, 
two-sided buffer and continuous) in the riparian forest.

Canopy treatment:
clear-cut 

(n=7)
1-sided buffer 

(n=7)
2 sided buffer 

(n=10)
continuous 

(n=6)  χ2 (Fc) p value
Species frequency

Taxonomic groups

Bryophyte 61.71±5.55 71.14±3.08 65.90±2.70 77.00±2.62 2.95c 0.051

Moss 61.57±5.49 70.43±3.08 65.60±2.66 76.67±2.70 2.88c 0.055

Liverwort 6.71±2.43a 23.00±3.90b 8.90±1.80a 17.67±2.86ab 7.72c 0.001
Life-history strategy groups

Perennial stayers 45.14±5.9a 63.29±3.61b 60.70±3.58b 74.50±2.25b 7.53c 0.001
Colonists 30.29±5.42a 21.14±5.71ab 9.30±1.91b 6.67±1.96b 13.25 0.004

Short-lived shuttles 14.71±4.25 19.43±2.83 18.60±3.30 16.17±2.94 0.38c 0.767
Long-lived shuttles 9.86±3.40 19.43±4.37 10.80±2.03 15.00±3.68 3.72 0.293

Canopy Preference

Closed 39.43±5.85a 61.86±4.16b 57.20±3.83b 71.33±3.66b 7.93c 0.001

Generalist 15.86±2.54a 32.14±3.45b 23.70±2.6ab 26.50±6.79ab 3.02c 0.048

Open 44.00±5.92 28.86±7.03 22.20±5.96 27.17±8.12 2.02c 0.135
Growth form groups

Dendroid 0.00±0.00 0.71±0.71 1.00±0.70 4.00±2.67 7.42 0.060

Open Turf 6.71±3.47 5.86±1.84 4.20±1.14 2.83±1.05 1.39 0.709

Rough mat 33.57±5.50 48.43±3.09 42.70±4.50 49.50±5.05 2.20c 0.112

Smooth mat 2.14±0.88a 11.71±2.01b 7.80±1.02b 6.83±1.92b 14.79 0.002

Short Turf/Cushion 34.14±4.10 39.43±3.84 26.4±3.62 27.50±5.18 2.21c 0.111

Thread 3.57±0.75 5.57±1.15 4.00±1.05 4.50±2.05 1.59 0.661
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Table 2.6. continued. 

Thalloid 1.14±0.99a 6.00±2.41b 0.60±0.27a 1.00±0.52ab 7.85 0.049

Tall turf/Sphagnoid 29.00±7.62 33.00±2.69 24.6±5.14 37.00±4.69 0.98c 0.416

Weft 8.57±4.19a 23.86±7.73b 18.50±3.87b 33.83±8.06b 8.27 0.041

Substrate-affinity groups

Generalists 8.29±4.10 20.86±8.55 16.90±4.38 30.67±9.14 5.91 0.116

Humus 42.71±5.48a 56.71±2.11ab 51.90±4.64ab 63.67±4.67b 3.28c 0.037

Litter/Scat 10.43±1.66 17.86±3.19 15.10±1.89 12.00±2.44 1.91c 0.153

Log 3.14±1.16a 12.00±2.23b 8.20±1.38b 12.17±3.47b 10.40 0.015

Mineral soil/Rock 35.43±4.33a 15.71±5.35b 6.90±1.68b 6.33±2.43b 15.44 0.001

Note: Values are means at the site level averaged across all microplots in riparian transects  (± 1 SE). c ANOVA F statistic 
with associated P-value in column to right. Bolded values are p<0.05. Letters represent post hoc results either Wilcoxon 
Rank Sum for Kruskal-Wallis test or pairwise t-test (holm correction factor) for ANOVA . Same letter = no significant difference. 
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NMS ordination of riparian bryophyte species composition revealed that while 

bryophyte composition in the clear-cut and continuous forests represent ends of a 

gradient,  the one-sided and two-sided buffers occupied intermediate positions between 

clear-cut and continuous forests (Figure 2.6).  Joint plots of environmental variables 

overlaid on the ordination identified that mineral soil/rock percent cover, disturbed forest 

floor percent cover and elevation were strongly correlated with bryophyte composition 

found in clear-cut, one-sided and two-sided buffers (Figure 2.6).  Canopy cover variables 

(50 m buffer capacity, stand basal area, buffer width, tree and undisturbed forest floor 

percent cover), bryophyte percent cover, and slope were associated with bryophyte 

composition found in continuous and some one-sided and two-sided buffer sites. The 

effect of canopy type on bryophyte composition illustrated through the NMS ordination 

was corroborated by the MRPP results which identified significant differences in riparian 

bryophyte species composition between continuous sites and clear-cut sites and no 

significant difference in riparian bryophyte species composition between the continuous 

forest sites and sites with either one-sided or two-sided buffers (Table 2.7). 

 

Table 2.7 Comparison of bryophyte species composition between canopy treatments in 
riparian areas using MRPP.  
 

Riparian
Group comparisons of canopy treatments A p value 
continuous (6)/ clearcut (7) 0.085 0.0012
continuous (4)/ one-sided buffer (7) 0.004 0.3293
continuous (6)/two-sided buffer (10) -0.002 0.4562

clearcut (7)/ one-sided buffer (7) 0.049 0.0407
clearcut (7)/ two-sided buffer (10) 0.047 0.0032
one-sided buffer (7)/ two-sided buffer (10) -0.007 0.5888

Note: number in parentheses indicates the number of sites in each group, A =
Chance-corrected within-group agreement. P values <0.05 are listed in bold.
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Figure 2.6. Joint plot of NMS ordination of bryophyte species composition in different 
canopy treatments: clear-cut (open circles) one-sided (open triangles), two-sided (grey 
triangles) and continuous (black triangles) overlain with stand structure, habitat and 
substrate variables with R2 values of 0.20 in the riparian forests based on species 
frequency data (95 species). Axis 1 accounts of 51.0% of the variation in the data while 
the third axis accounts for 25.4% (total=76.4%). Ordination is based on a three 
dimensional solution, 62 iterations with a final stress of 11.42664 and final instability of 
0.00010.  The strength of the correlation is represented by the length of correlation 
vectors. standbas = stand basal area; UFFperco = percent cover of undisturbed forest 
floor; buf_wid = buffer width; 50mbuffc = 50m buffer capacity; treeperc = tree percent 
cover; bryoperc = bryophyte percent cover; elev = elevation; slope = slope; mspercov = 
mineral soil percent cover; DFFpercov = disturbed forest floor percent cover. 
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Site level modelling of various predictor variables and bryophyte species richness and 
frequency in the riparian forests. 
  

When the amount of forest cover within a 50 m radius of each site was used as a 

predictor variable in simple linear regression models, the richness of most forest-

associated functional groups (liverworts, perennial stayers, closed canopy species, 

dendroids, wefts, species preferring humus, and epixylics) was significantly positively 

associated with increasing 50 m buffer capacity (Table 2.8).  Other functional groups’ 

species richness such as bryophytes, moss, long-lived shuttles and tall turfs also exhibited 

positive associations with increasing 50 m buffer capacity.  No disturbance-associated 

bryophyte (colonist, open canopy species, and mineral soil/rock species) richness 

exhibited a significant association (positive or negative) with 50 m buffer capacity.  

Overall, while the frequency of bryophyte functional groups exhibited fewer 

significant associations, some disturbance-associated bryophytes (colonist and mineral 

soil/rock species) did show a negative relationship with 50 m buffer capacity.  Forest-

associated functional group frequency (liverworts, perennial stayers, closed canopy 

species, wefts, and epixylics) and substrate generalist’s frequency were significantly 

positively associated with increasing 50 m buffer capacity. 
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Table 2.8. Regression analysis summary relating riparian species richness and frequency 
of bryophyte functional groups to 50 m buffer capacity. 
 
Functional Groups Species Richness Species Frequency
Taxonomic slope z value p value slope t value p value

Bryophytes (57) + 4.29 0.000 + 1.796 0.083
Mosses (43) + 2.523 0.012 + 1.752 0.091
Liverworts (14) + 4.168 0.000 + 2.642 0.013

Life-history strategy
Colonists (12) - -1.046 0.296 - -3.972 0.000
Perennial stayers (25) + 4.204 0.000 + 3.468 0.002
Long-lived shuttles (12) + 3.366 0.001 + 1.56 0.130
Short-lived shuttles (8) + 1.127 0.260 - -0.121 0.904

Canopy preference
Closed (24) + 5.643 0.000 + 3.399 0.002
Generalist (12) + 2.205 0.028 + 1.913 0.066
Open (21) - -0.519 0.604 - -1.8 0.083

Growth form
Dendroid (1) + 2.197 0.028 + 1.774 0.087
Open turf (3) + 0.554 0.580 - -1.237 0.226
Rough mat (7) + 1.613 0.107 + 1.239 0.226
Smooth mat (6) + 3.389 0.001 + 2.434 0.022
Short turf/Cushion (19) + 1.171 0.242 - -1.124 0.270
Thread mat (4) + 1.184 0.236 + 0.464 0.646
Thallose Mat (1) + 0.877 0.380 + 0.255 0.800
Tall turf (12) + 2.184 0.038 + 0.677 0.504
Weft (4) + 3.093 0.004 + 3.375 0.002

Substrate affinity
Generalists (6) + 0.623 0.533 + 2.657 0.013
Humus (20) + 3.89 0.000 + 1.886 0.070
Litter/Scat (7) + 1.559 0.119 + 1.082 0.289
Log (11) + 3.302 0.001 + 2.974 0.006
Mineral soil/Rock (12) - -1.236 0.216 - -5.587 0.000

Note: Regression models depended on data type: Poisson log-linear model for all species  
richness (except binomial model for dendroid bryophytes, quasi-poisson models for Tall 
turf & Weft due to underdispersion); quasi-binomial log-linear model for all species frequency 
due to overdispersion. In all models 50 m buffering capacity was square root transformed.  
p values < 0.05 are bolded. Number of total species in each functional group provided in 
parentheses immediately following each group name. The slope of regression is noted as 
positive (+) or negative  (-).  
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Most influential predictor variables affecting the riparian bryophyte community 
 

Many of the candidate regression models were considered top models for 

explaining the variation seen in the species richness data of various functional groups 

(Appendix B).  The top regression models had reasonable fit (global D2 adj. >0.10); a 

ΔAICc ≤ 2 and high Akaike weights (w) indicating the probability that they were the best 

from the set of candidate models (Anderson and Burnham 2002).  However, it is 

important to note that the richness of several functional groups (colonists, open and 

general canopy species, and species with an affinity for general substrates or mineral 

soil/rock) and the frequency of other functional groups (liverworts, perennial stayers, 

short-lived shuttles, general canopy species, and species with an affinity for litter 

substrates) had invalid models due to poor fit (Appendix C).   

Based on summed Akaike weights (Σw), the richness of bryophyte functional 

groups largely conformed to initial expectations that forest-associated functional groups 

would show the greatest association with the 50 m buffer capacity (Table 2.9).  The 50 m 

buffer capacity had a strong positive association with species richness of forest-

associated groups such as liverworts, mosses, perennial stayers, closed canopy species 

and species preferring a humus substrate as well as with overall richness of bryophytes 

and general canopy species (Σw ranging from 0.79 – 0.94).  Furthermore, the association 

of the 50 m buffer capacity with the richness of long-lived shuttles, short-lived shuttles, 

and species preferring litter or log substrates was only moderately positive (Σw ranging 

from 0.32 – 0.54).  In comparison, the association of the 50 m buffer capacity and the 

frequency of bryophyte functional groups exhibited surprising results (Table 2.10).  Not 

only did the 50 m buffer capacity have a strong positive association with the frequency of 

disturbance-associated groups (colonists, open canopy species (Σw ranging from 0.61 – 

1.00)), the association with 50 m buffering capacity was paradoxically moderately to 

strongly negative on the frequency of forest-associated closed canopy species, as well as 

long-lived shuttles and substrate generalists (Σw ranging from 0.39 – 0.77).   

Based on the summed Akaike weights (Σw), the richness of bryophyte functional 

groups did not conform to initial expectations that disturbance-associated functional 
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groups would show the greatest association with microclimate variables, Alnus species 

percent cover and slope (Table 2.9).  Alnus species percent cover had a moderate positive 

association with the richness of bryophytes, mosses, short-lived shuttles, and species 

preferring humus, litter or log (Σw ranging from 0.27 – 0.56) but no association with any 

disturbance-associated functional groups.  Slope had a moderate positive association with 

the richness of bryophytes and species preferring litter (Σw= 0.31 – 0.33), whereas it had 

a moderate but negative association with mosses, short-lived shuttles, and forest-

associated species preferring humus, and logs (Σw ranging from 0.27 – 0.54).  On the 

other hand, the frequencies of bryophyte functional groups did conform to expectations 

that disturbance-associated bryophytes would be strongly associated with Alnus species 

percent cover and slope (Table 2.10).  Alnus species percent cover and slope had similar 

associations with species frequency depending on the functional groups.  Alnus species 

percent cover had a strong positive association with the frequency of disturbance-

associated functional groups: colonists, open canopy species, and species preferring 

general or mineral soil/rock substrates (Σw ranging from 0.76 – 1.00), whereas it had 

moderately negatively association with the frequency of long-lived shuttles (Σw = 0.42).  

Slope also had a strong positive association with the frequency of disturbance-associated 

bryophytes: colonists, open canopy species and species preferring mineral soil/rock (Σw 

= 0.98 – 1.00), whereas it had a moderate but negative association with long-lived 

shuttles and substrate generalists (Σw = 0.61 – 0.78).   

Reflecting habitat quality, mineral soil/rock percent cover, DC 4/5 (soft CWD) 

and concavity had varying associations with the richness of different functional groups.  

Based on summed Akaike weights (Σw), the richness of bryophyte functional groups did 

conform to initial expectations that forest-associated functional groups would show the 

greatest negative association with mineral soil/rock percent cover and greatest positive 

association with concavity, but did not conform to initial expectations that forest-

associated functional groups would show the greatest positive association with DC 4/5 

(Table 2.9).  Mineral soil/rock percent cover had a strong to moderate negative 

association with species richness of bryophytes, long-lived shuttles, as well as forest-
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associated functional groups: liverworts, closed canopy species, and species preferring 

logs or humus (Σw ranging from 0.34 – 1.00).  On the other hand, mineral soil/rock 

percent cover had a moderate positive association with moss species richness (Σw = 

0.36).  Surprisingly, DC 4/5 had a moderate to strong negative association with species 

richness of bryophytes, mosses, long-lived shuttles, as well as forest-associated 

functional groups: liverworts, closed canopy species, and species preferring humus or 

logs (Σw = 0.25 – 0.99).  Lastly, concavity had a moderately to strongly positive 

association with species richness of bryophytes, mosses, long-lived shuttles, as well as 

forest-associated functional groups: liverworts, closed canopy species, and species 

preferring humus or logs (Σw = 0.26 – 0.99). 

In comparison, the association of the mineral rock/soil and the frequency of 

bryophyte functional groups exhibited surprising results (Table 2.10).  Mineral soil/rock 

percent cover had a moderately to strongly positive association with the frequency of 

bryophytes, mosses, and disturbance-associated colonists but also forest-associated 

closed canopy species, and species preferring humus or logs (Σw ranging from 0.50 – 

0.90), and a paradoxically strong negative association with the frequency of disturbance-

associated functional groups: open canopy species and species preferring mineral 

soil/rock (Σw = 087 – 0.92).  DC 4/5 had a moderately positive association with the 

frequency of bryophytes and species preferring logs but also a paradoxically moderately 

positive association with the frequency of colonists (Σw = 0.26 – 0.50).  However, DC4/5 

did have a strong negative association with the frequency of other disturbance-associated 

functional groups: open canopy species and species with an affinity for mineral soil/rocks 

(Σw = 0.89 – 0.92).  Lastly the association of concavity was moderately to strongly 

negative with the frequency of bryophytes and species preferring logs, and disturbance-

associated functional groups: colonists, open canopy species, and species preferring  

mineral soil/rock (Σw = 0.26 – 0.92). 

By averaging the summed Akaike weights of each top predictor variable for the 

six groups considered to be forest-associated bryophytes (liverwort, moss, perennial 

stayer, closed canopy, and species preferring humus or log) for both species richness and 
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frequency one can get a sense of their relative importance (Table 2.11).  Guided by 

ecological processes, several factors explaining forest-associated bryophyte composition 

in riparian areas are listed in decreasing importance: immigration and extinction (approx. 

73% for species richness and approx.16% for species frequency), habitat quality (approx. 

54% for species richness and approx. 45% for species frequency), and microclimate 

(approx. 21% for species richness but zero for species frequency).   
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Table 2.9. Relative importance of top predictor variables using summed Akaike weights (Σω) and coefficient sign on riparian 
bryophyte species richness.  

 Taxonomic Life History Strategy

Bryophyte Liverwort Moss
Perennial 
stayer

Long-lived 
shuttle

Short-lived 
shuttle

Variable
coefficient 

sign Σω
coefficient 

sign Σω
coefficient 

sign Σω
coefficient 

sign Σω
coefficient 

sign Σω
coefficient 

sign Σω

50 buffer 
capacity (ha) pos 0.94 pos 0.44 pos 0.86 pos 0.92 pos 0.39 pos 0.32
Alnus 
spp.cover 
(%) pos 0.33 pos 0.56 pos 0.56
slope pos 0.33 neg 0.54 neg 0.35
mineral 
soil/rock 
cover (%) neg 0.92 neg 0.98 pos 0.36 neg 0.85

DC4/5 neg 0.92 neg 0.92 neg 0.36 neg 0.76

concavity pos 0.92 pos 0.92 pos 0.36 pos 0.76
Canopy Preference Substrate affinity

General Closed Humus Litter Log

Variable
coefficient 

sign Σω
coefficient 

sign Σω
coefficient 

sign Σω
coefficient 

sign Σω
coefficient 

sign Σω
50 buffer 
capacity (ha) pos 0.92 pos 0.79 pos 0.84 pos 0.54 pos 0.54
Alnus 
spp.cover 
(%) pos 0.27 pos 0.40 pos 0.41
slope neg 0.27 pos 0.31 neg 0.41
mineral 
soil/rock neg 1.00 neg 0.34 neg 0.62

DC4/5 neg 0.99 neg 0.25 neg 0.62

concavity pos 0.99 pos 0.26 pos 0.62
Note: Coefficient sign (positive or negative) and summed Akaike weights (Σω) are listed for all variables retained in the best models; blank cells 
indicate excluded variables due to poor fit of the models. Results for Colonists, Open Canopy, Substrate Generalists & Mineral soil/rock groups 
were all invalid and not shown.
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Table 2.10. Relative importance of top predictor variables using summed Akaike weights (Σω) and coefficient sign on riparian 
bryophyte species frequency. 

Taxonomic Life History Strategy

Bryophyte Moss Colonist
Long-lived 
shuttle

Variable
coefficient 

sign Σω
coefficient 

sign Σω
coefficient 

sign Σω
coefficient 

sign Σω
50 buffer capacity 
(ha) pos 1.00 neg 0.47
Alnus  spp.cover 
(%) pos 1.00 neg 0.42
slope pos 1.00 neg 0.61
mineral soil/rock 
cover (%) pos 0.90 pos 0.89 pos 0.50
DC4/5 pos 0.26 pos 0.50
concavity neg 0.26 neg 0.50

Canopy Preference Substrate affinity

Open Closed General Humus Log
Mineral 
soil/rock

Variable
coefficient 

sign Σω
coefficient 

sign Σω
coefficient 

sign Σω
coefficient 

sign Σω
coefficient 

sign Σω
coefficient 

sign Σω
50 buffer capacity 
(ha) pos 0.61 neg 0.39 neg 0.77 neg 0.59 pos 1.00
Alnus  spp.cover 
(%) pos 1.00 pos 0.76 pos 0.98
slope pos 1.00 neg 0.78 pos 0.98
mineral soil/rock 
cover (%) neg 0.92 pos 0.67 pos 0.77 pos 0.57 neg 0.87
DC4/5 neg 0.92 pos 0.30 neg 0.89
concavity neg 0.92 neg 0.28 neg 0.89

Note: Coefficient sign (positive or negative) and summed Akaike weights (Σω) are listed for all variables retained in the best models; blank cells indicate 

excluded variables (poor fit). Results for Liverwort, Perennial stayer, Short-lived shuttle, Canopy Generalist and Litter groups were invalid and not shown.  
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Table 2.11. Averaged summed Akaike weights of top predictor variables for species 
richness and frequency of old growth-associated bryophyte functional groups. 

 

Predictor 
variables

Functional group
Immigration 
& Extinction

Habitat 
quality

Micro- 
climate

SR  Σw SF  Σw SR  Σw SF  Σw SR  Σw SF  Σw

Liverwort 0.44 NA 0.95 NA 0 NA
Moss 0.86 0 0.36 0.89 0.55 0
Perennial stayer 0.92 NA 0 NA 0 NA
Closed canopy 0.79 0.39 1.00 0.67 0 0
Humus 0.84 0 0.30 0.77 0.27 0
Log 0.54 0.59 0.62 0.38 0.41 0
average 0.73 0.16 0.54 0.45 0.21 0

Note: SR= species richness, SF= species frequency, Σw = summed Akaike weights.  

Table 2.12. Averaged summed Akaike weights of top predictor variables for species 
richness and frequency of disturbance-associated bryophyte functional groups. 
 

Predictor 
variables

Functional group
Immigration 
& Extinction

Habitat 
quality

Micro- 
climate

SR Σw
SF  
Σw SR Σw SF  Σw SR Σw

SF  
Σw

Colonists NA 1.00 NA 0.50 NA 1.00
Open canopy NA 0.61 NA 0.92 NA 1.00
Mineral soil/rock NA 1.00 NA 0.88 NA 0.98
average NA 1.00 NA 0.77 NA 0.99

Note: SR= species richness, SF= species frequency, Σw = summed Akaike 
weights, NA= model not valid due to poor fit.
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Discussion 
 
 

The relative influence of ecological processes operating at different spatial scales 

has been an important question in efforts to effectively manage fragmented habitats (Holl 

and Crone 2004, Pharo et al. 2004, Pharo and Zartman 2007).  While the use of buffer 

strips may provide an operational tool to mitigate the immediate effects associated with 

harvesting (Brosofske et al. 1997, Dynesius and Hylander 2007), long-term maintenance 

of plant diversity within riparian areas will require understanding the relative influence of 

ecological processes on the plant community.  The results of this study clearly 

demonstrate that riparian buffers had a significant influence on the understory bryophyte 

community adjacent to small streams in the B.C. Interior Montane Spruce forest.  

However, the results of this study have provided evidence that landscape-level variables 

such as the 50 m buffer capacity demonstrate stronger association with the maintenance 

of forest-associated species than smaller-scale microhabitat variables such mineral soil 

percent cover or concavity. 

 

The influence of canopy treatments on bryophyte functional group representation  
 

One of the most important results of this study was that, in general, riparian sites 

with any canopy cover (one-sided, two-sided and continuous), supported both higher 

richness and abundance of forest-associated bryophytes.  Use of a plant functional group 

approach demonstrated that both the richness and abundance of forest-associated groups 

was similar among sites with any canopy as compared to the richness and abundance of 

forest-associated bryophyte in clear-cuts.  In comparison, the frequency, but not the 

richness, of disturbance-associated groups (mineral soil/rock species and to some extent, 

colonists) was significantly higher in clear-cuts than in sites with canopy cover.  The 

sensitivity of forest-associated bryophyte to anthropogenic disturbances caused by clear-

cut harvesting, edge effects and declining patch size has been clearly demonstrated 

(Fenton et al. 2003, Baldwin and Bradfield 2005, 2007).  In particular, previous work has 

documented declines in both liverwort richness and abundance in clear-cuts (Söderström 
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1988, Ross-Davis and Frego 2002, Fenton et al. 2003, Fenton and Frego 2005, Dovčiak 

et al. 2006), second-growth stands and variable retention harvests (Botting and Fredeen 

2006, Dovčiak et al. 2006).   

In contrast to the clear-cut: continuous forest comparison, I found little difference 

in either the richness or abundance of forest-associated species when buffers (one-sided 

or two-sided) were compared with continuous forest sites.  While the capacity of buffers 

to protect floristic diversity may vary (Brosofske et al. 1997, Hibbs and Bower 2001, 

Stewart and Mallik 2006), the average buffer widths for one-sided and two-sided buffer 

sites observed in this study (9.79 – 15.54 m ± SE) appeared sufficient to protect the rich 

riparian bryophyte diversity in the sampled Montane Spruce forests.  Similarly, narrow 

two-sided buffer strips of 10 m on each side of a stream (Hylander et al. 2002, 2005, 

Hylander and Dynesius 2006, Dynesius and Hylander 2007) maintained forest bryophyte 

diversity in Sweden.  Remnant canopy moderates microclimate (Fenton and Frego 2005), 

specifically humidity and soil moisture, which could offset the anthropogenic edge effect 

created by harvesting (Hylander et al. 2002).   In my study, both buffers and continuous 

forests had some similar habitat, stand structure and substrate characteristics (amount of 

disturbed and undisturbed forest floor, stand basal area, conifer percent cover, 50 m 

buffering capacity, and hard CWD (decay class 1 – 2)) consequently the microclimate 

and habitat quality probably did not differ substantially between them resulting in a 

similar bryophyte community.  Hylander et al. (2002),  Pharo et al. (2004, 2009),  and 

Saunders et al. (1991) have suggested that variation in the buffer type (i.e., differences in 

remnant shape, pattern, size, and or landscape position) may influence bryophyte 

conservation; however in my study, neither the richness nor abundance of forest-

associated species differed in one-sided and two-sided buffers.  Likewise, overall 

bryophyte composition was little influenced by the position of the overall buffer relative 

to the stream (Table 2.7).  It is important to note that given the current state of harvesting 

and forestry regulations in BC, one-sided buffer sites may well become two-sided buffer 

sites during future salvage harvesting.  
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Many of the same studies that have documented the effect of harvesting on forest-

associated bryophytes have also recorded a positive association with harvesting and 

disturbance-associated species (Jonsson and Esseen 1990, Rydgren et al. 2004, Baldwin 

and Bradfield 2005, 2007, 2010, Fenton and Frego 2005).  Similar to Rydgren et al. 

(2004), this study found increasing disturbance was associated with an increase in the 

abundance of disturbance-associated bryophytes (colonists such as Ceratodon purpureus, 

Polytrichium juniperinum or Pohlia nutans) though not species richness.  Disturbed 

mineral soil is a known source of colonists’ diaspores (Jonsson 1993).  In contrast, 

Baldwin and Bradfield (2010) found that both the richness and abundance of many of the 

same disturbance-associated groups significantly increased in clear-cuts in temperate 

rainforest, but only richness increased in forest habitats influenced by edge effects 

(Baldwin and Bradfield 2005, 2007).  The contrasting results between this study and 

Baldwin and Bradfield (2010) may have arisen as a result of baseline disturbance levels 

present in the riparian forests.  It is important to note that none of the bryophyte species 

sampled are exotic species, rather they are species that naturally occur in disturbed 

microsites within the Montane Spruce forest (Schofield 1976).  Similar to many previous 

studies (Jonsson and Esseen 1998, Fenton et al. 2003, Åström et al. 2005), the ordination 

and regression results both indicate that increased mineral/soil substrate and amount of 

disturbed ground (habitat quality) were strongly correlated with the increased abundance 

of disturbance-associated species (Figure 2.6 and Table 2.12).   If baseline disturbances in 

riparian forests maintain the full complement of disturbance-associated species pool, then 

the effects of harvesting is likely to have only increased abundance rather than richness 

(Rydgren et al. 2004, Hylander et al. 2005).  

The different canopy treatments (continuous, one-sided, two-sided and clear-cut) 

examined in my study represent an increasing disturbance gradient due to harvesting 

pressure; however, the pattern of overall bryophyte richness did not support the 

Intermediate Disturbance Hypothesis as richness did not increase with intermediate 

disturbance (Connell 1978).  Similarly, Haeussler et al. (1999) found with increasing 

disturbance there was varying response by the overall cryptogam community – in some 
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cases diversity decreased or remained the same.  Rather than intermediate levels of 

disturbance allowing non-dominant, disturbance-associated species to invade and 

increase overall bryophyte richness (Connell 1978), the impacts of harvesting appear to 

be primarily diminishing the overall richness and abundance of forest-associated species 

with a concurrent increase in the abundance but not diversity of disturbance-associated 

bryophytes.  

 

 

Relative influence of habitat, substrate and stand structure variables 

 

At the landscape level, the presence of intact forest within 50 m radius of small 

streams (50 m buffering capacity) was strongly linked to forest-associated bryophyte 

diversity (Table 2.8).  The relationship between the retention of overstory and increased 

bryophyte conservation (maintenance of diversity and abundance) has been previously 

documented (Rambo and Muir 1998, Fenton and Frego 2005, Nelson and Halpern 2005, 

Dovčiak et al. 2006, however see Jonsson 1997).  In this study both the simple and 

multiple regression analysis supported the strong positive association of the 50 m buffer 

capacity with both the richness and abundance of forest-associated bryophytes (Tables 

2.8 and 2.9).  Nearby intact forest within 50 m radius of small streams may serve as a 

source of diaspores or reproductive propagules of forest-associated bryophytes such as 

Hylocomium splendens (however see Jonsson 1993).  This surrounding “mainland” of 

intact forest may influence the “islands” of riparian buffers through metapopulation 

dynamics of immigration and extinction, although this is likely distance dependent due to 

the known dispersal limitations of bryophytes (MacArthur and Wilson 1967, Tangney et 

al. 1990, Holl and Crone 2004, Fenton and Frego 2005, Lindenmayer et al. 2008).  

Recently, however, Hylander (2009) found that the colonization rate of boreal forest 

bryophytes in harvested stands showed no relationship with increasing proximity to 

mature forests.  Little is still known about the process of dispersal and establishment of 
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bryophytes to new locations (Ross-Davis and Frego 2004, Kimmerer 2005, Hylander 

2009).   

However, it is also important to note that proximity to intact forest could also 

have influenced microclimate at individually sampled sites by slowing the wind and 

possibly shading the site (Chen et al. 1995).  Hylander (2004) looked at the effect of edge 

orientation and prevailing wind (wind effect) on the growth of Hylocomiastrum 

umbratum (a forest bryophyte) and concluded that best microclimate would be obtained  

by establishing an “asymmetric buffer” with most of the trees on the south side of the 

stream opposite to the clear-cut (similar to the one-sided buffers).  

Many of the adverse influences of harvesting on bryophyte communities have 

resulted from changes in stand structure influencing the microclimate (Rambo and Muir 

1998, Fenton and Frego 2005, Stewart and Mallik 2006).  I selected Alnus cover as 

predictor variable in the multiple regression analyses as total shrub cover, including 

Alnus species, has been suggested to be important in creating a suitable microclimate for 

bryophyte species due to relative size differences (Stewart and Mallik 2006, Dovčiak et 

al. 2006).  Interesting, the ordination and regression analyses found that the amounts of 

Alnus species percent cover were positively associated with disturbance- associated 

bryophytes rather than with forest-associated bryophytes (Figure 2.6 and Table 2.12).  

Alnus species may have reduced insolation or increased soil moisture due to fallen leaves 

thus altering the microclimate which allowed for the germination of the colonists’ spores.  

Availability of deciduous trees has been shown to be an important substrate for epiphytic 

bryophyte survival (Rambo and Muir 1998, Perhans et al. 2009) and provide shade and 

higher humidity for sensitive bryophytes particularly on slopes (Gustafsson et al. 1992).   

As my site selection process specifically selected “warm sites” (~165° – 285° - southern 

aspect), it is not surprising that both the ordination and regression analyses found that the 

slope angle (average 9 %) was negatively associated with the richness and abundance of 

forest-associated bryophytes found on humus and logs; however slope was moderately 

positively associated with species richness of all “bryophytes” and those species 

preferring litter.  Similarly in the upper montane tropical forests of Southern Ecuador, 
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Mandel et al. (2009) found on ridges with an average slope of 14% and sunny exposure 

the overall bryophyte, especially liverwort,  species richness decreased compared to 

shaded sites; they suggested microclimate differences due to exposure levels and slope 

affected bryophyte diversity patterns. 

The quality of microhabitat (both its diversity and the abundance of specific 

types) has been identified as an important factor controlling the response of bryophyte 

communities in harvested landscapes (Rambo and Muir 1998, Hylander et al. 2005, 

Fenton and Frego 2005, Botting and Fredeen 2006).  Certainly the amount and specific 

decay classes of CWD has been identified for maintenance of epixylic bryophytes 

typically found on decaying CWD (Jonsson 1997, Rambo and Muir 1998, Rambo 2001).  

Although my study found an inconsistent response to the presence of soft coarse woody 

debris for the richness of most forest-associated functional groups,  the abundance of 

epixylic species did increase supporting the notion of these biological legacies in 

maintaining riparian bryophytes (Rambo and Muir 1998, Rambo 2001, Pharo and 

Lindenmayer 2009).  Habitat heterogeneity and local complexity in substrate form is also 

important for bryophyte diversity (Hylander 2004, Pharo and Zartman 2007, Pharo and 

Lindenmayer 2009).  The results of this study support this contention as the multiple 

regression models found that bryophyte species richness (though not abundance) of both 

liverwort and moss species, were strongly positively associated with the presence of 

concave surfaces (Tables 2.9 and 2.10).  Not surprisingly the presence of mineral soil had 

a negative association with forest-associated bryophyte species richness and abundance 

(Mills and Macdonald 2004); however, mineral soil had an inconsistent association with 

the frequency of disturbance-associated functional groups.  Colonists had an expected 

positive but only moderate association with mineral soil/rock whereas other disturbance-

associated functional groups (open canopy species and species preferring mineral 

soil/rock) had paradoxically unexpected strong negative association with mineral 

soil/rock.  This inconsistent result may have occurred due to basing the inference on a 

single “best” quasi-binomial likelihood model with several variables despite an excellent 

goodness of fit (Appendix C) rather than from several possible models (Burnham and 
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Anderson 2004).  By using only a single model with several variables (global) there is 

less precision (more spurious effects) compared to a model with fewer variables; multi-

model inference or MMI is thus recommended (Burnham and Anderson 2001).  The 

averaged Akaike weights of the models for open canopy species and species preferring 

mineral soil/rock was ≤ 0.90 and it is recommended to not make conclusions based on 

only one model with the lowest AIC value and highest Akaike weight unless w≥0.90 

(Burnham and Anderson 2002).  Models only approximate reality given the data and no 

single model can explain the “whole truth” (Mazerolle 2006).   

While numerous studies have investigated the influence of either landscape 

(Campbell et al. 2003, Verheyen et al. 2003b), stand structure (Berger and Puettmann 

2000, Brose 2001) or microhabitat variables (Guo 1998, Yu et al. 2009) on plant 

communities in fragmented habitats, relatively few have compared the relative influence 

of factors operating at different spatial scales.  Fenton and Frego (2005) found that the 

overall bryophyte community pattern can be attributed to several environmental variables 

in differing amounts such as substrate (approx. 50%), refugia characteristics (approx. 

20%), microclimate (approx. 10%) and canopy itself (approx. 5%).  In comparison, Holl 

and Crone (2004) found that local biotic and abiotic variables (overstorey cover, exotic 

plant cover, bare ground, elevation, and soil texture) explained much of the variance seen 

in richness and cover of riparian understorey vascular plant communities, whereas 

landscape scale variables (distance to river, distance to forest, percentage of surrounding 

forest or fallow land) and variables related to island biogeography theory (patch size and 

time since restoration) explained very little variance.  Based on ecological processes, this 

study found that riparian forest-associated bryophyte community composition (species 

richness and frequency) is largely controlled by the remaining intact forest within 50 m 

(immigration and extinction), and habitat quality with minor contributions by 

microclimate (Table 2.11).  The potential influences affecting disturbance-associated 

bryophyte species richness were inconclusive due to the limitations of the models used.  

However, their abundance was strongly affected by immigration and extinction, habitat 

quality, and microclimate (Table 2.12).  Several studies have suggested that local factors 
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such as habitat and microclimate strongly regulate bryophyte communities due to their 

small size and poikilohydric nature rather than dispersal limitations (Pharo et al. 2004, 

Fenton and Bergeron 2008).  However, the overall effects of fragmentation on bryophyte 

communities are likely to be hierarchical, with multiple ecological processes influencing 

their survival and regrowth (Pharo and Zartman 2007).  While the results of this study 

clearly identify the overall importance of landscape level factors like the 50 m buffer 

capacity, factors operating at smaller spatial scales appear to also contribute to the overall 

response of the bryophyte community.    

Overall, my study found narrow strip shaped buffers with an average width of 10 

– 15 m regardless of position (one-sided versus two-sided) largely mitigated the effects of 

clear-cutting on the riparian community around  small, high-elevation streams. This study 

contributes to the growing body of evidence indicating the value of buffers for 

bryophytes in other ecosystems (Hylander et al. 2002) as well as for other taxa such as 

small mammals (Cockle and Richardson 2003).   Small streams are very sensitive to 

canopy removal and even small buffers help to reduce the overall changes (Richardson et 

al. 2010).  Although the narrow buffers sampled in this study maintained the richness and 

abundance of forest-associated bryophytes, I did not record their vitality by recording the 

proportion of green shoots per plant (Hylander et al. 2002, Stewart and Mallik 2006), nor 

did I record their growth or reproductive rates.  The effectiveness of riparian buffer strips 

may depend in large part on how bryophytes reproduce in small buffer strips (Saunders et 

al. 1991, Hylander et al. 2002).  Certainly the edge effects found within buffer strips 

(Saunders et al. 1991) may be further exasperated by the combined anthropogenically 

created edge owing to logging and the natural riparian upland ecotone along the existing 

microclimate gradient (Brosofske et al. 1997, Stewart and Mallik 2006).  While the 

narrow buffer widths sampled in this study maintained forest-associated bryophyte 

richness and abundance, it is unclear if this would be true in all landscapes.  With steep 

terrain and certain regional climates the recommended buffer width on each side of the 

stream can be up to 45 m or more (Brosofske et al. 1997).   
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Chapter Three  
 
THE INFLUENCE OF RIPARIAN CANOPY TREATMENTS ON UPLAND COMMUNITY REASSEMBLY: 
WHAT HAPPENS TO THE NATURAL GRADIENT OF BRYOPHYTE COMPOSITION FROM STREAM 

TO UPLAND WHEN BUFFERS ARE PRESENT?  
 
 
 Introduction 
 

Riparian areas, zones connecting aquatic and terrestrial habitats, are ecosystems 

supporting a diverse assemblage of plants, invertebrates, amphibians, birds and mammals 

(Gregory et al. 1991, Richardson et al. 2005, Meyer et al. 2007).  All habitats are patchy 

and the ecological gradients linking one habitat patch to another (Harper and Macdonald 

2001, Richardson et al. 2005) contribute to overall biological diversity (Stehli et al. 

1969).  In riparian areas, gradients of soil moisture, pH, and temperature, as well as, light, 

humidity and air temperature extend from the stream bank up into surrounding uplands 

(Brosofske et al. 1997, Danehy and Kirpes 2000, Stewart and Mallik 2006, Brooks and 

Kyker-Snowman 2008).  Species-environment relationships (Hawkins et al. 2003, Francis 

and Currie 2003, Field et al. 2009) have long been recognized as important forces 

structuring plant communities, and abiotic gradients are often strongly correlated with 

gradients in plant composition and richness (Gregory et al. 1991, Stewart and Mallik 

2006, Tinya et al. 2009).  Bryophytes are an important component of many riparian 

ecosystems and both composition and richness may vary with distance from stream edge 

(Jonsson 1997, Hylander and Dynesius 2006, Stewart and Mallik 2006).  Strong gradients 

appear to even influence plant communities adjacent to small headwater streams (Hagan 

et al. 2006).  While the existence of ecological gradients between riparian areas and the 

surrounding uplands has long been recognized (Brosofske et al. 1997, Stewart and Mallik 

2006), it is difficult to predict the effect that large-scale anthropogenic disturbance, such 

as large-scale forest harvesting, will have on the ecological gradients surrounding small, 

high-elevation streams.  Riparian buffer strips have been suggested as a means to mitigate 

the effects of harvesting on in-stream biota (Swanson and Franklin 1992, Cockle and 

Richardson 2003) and are known to influence abiotic gradients surrounding streams 
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(Brosofske et al. 1997), but it is unclear what effect these superimposed anthropogenic 

edges will have on the ecological gradient surrounding small, high elevation streams.  

Disturbances, both small and large-scale, are major factors structuring plant 

communities (Connell 1978).  In forested ecosystems such as the boreal spruce forests, 

treefall disturbance is important for maintaining bryophyte diversity (Jonsson and Esseen 

1998).  In high-elevation Montane Spruce forests in British Columbia, the natural 

disturbance regimes are fire (Smith 1978), drought, and pests such as mountain pine 

beetle (Ebata 2004).  In the past 100 years however, human activities such as fire 

suppression and logging, coupled with a drier warmer climate (Carroll et al. 2004), has 

altered the natural pattern of renewal.  This has led to vast areas of lodgepole pine forests 

of similar stand age which has increased their vulnerability to attack from pine beetle 

(Taylor and Carroll 2004).  Widespread salvage logging over the past six years (Forest 

Practices Board 2009) has led to increased disturbance which may homogenize the 

species-environment relationships in Southern Interior BC landscape (Vellend et al. 2007, 

however see the description of regeneration, Vyse et al. 2009). 

Forest harvesting often creates a matrix of “nonhabitat” where bryophyte species 

composition is drastically different from that in non-harvested forest areas.  Numerous 

studies have documented the effect of clear-cut logging on the bryophyte communities in 

both upland (Fenton et al. 2003, Nelson and Halpern 2005, Dovčiak et al. 2006, Dynesius 

and Hylander 2007, Dynesius et al. 2008, 2009) and riparian forest (Hylander et al. 2002, 

Dynesius and Hylander 2007).  While riparian buffers have been to shown to mitigate the 

effects of clear-cut harvesting on bryophytes, questions remain about not only what 

constitutes the best buffer management practices (i.e. size of buffer, arrangement of 

buffers, and timing of buffer creation (Castelle et al. 1994, Hylander et al. 2002, Moore 

and Richardson 2003), but also if buffers can influence community reassembly in 

adjacent uplands.  

Worldwide there is more matrix than intact habitats (remnant patches) and the 

maintenance or improvement of matrix habitats through adaptive management is 

important for conserving and maintaining biological diversity (Elmqvist et al. 2003, 
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Prugh et al. 2008, Franklin and Lindenmayer 2009).  Specifically, the existence of mass 

effects (Schmida and Wilson 1985), whereby immigration from nearby sources of 

favourable habitat help maintain the species diversity in less favourable or disturbed 

habitats, has been part of the ecological theory underpinning the use of variable retention 

as a means of providing potential refugia (or “lifeboats”) that can allow disturbance 

sensitive species to survive long enough to recolonize the harvested areas.  More studies 

are needed to understand the plant population dynamics occurring between retention 

patches such as riparian buffer strips and the recovering harvested areas (Pharo and 

Zartman 2007).  Franklin and Lindenmayer (2009) stress that in fragmented landscapes 

the matrix surrounding isolated habitat patches may still allow the survival and 

reproduction of specific organisms.   

Depending upon the specific ecological needs of a species, the clear-cut matrix 

can act as a sink or a source (Pulliman 1988).  Logged uplands may be considered a sink 

if populations of former forest bryophyte species are maintained by the continued 

immigration from the nearby more productive forest riparian buffer (Schmida and Wilson 

1985).  Regardless of the immediate impact of disturbance on bryophytes, mountain pine 

beetle salvage harvesting has profoundly altered the proportion of disturbed versus 

undisturbed habitat in pine forests in BC (Taylor and Carroll 2004).  In high-elevation 

forests such as the Montane Spruce forests, there is minimal riparian management around 

small streams, yet these small streams account for a large portion of the overall watershed 

(Forest Practice Code of British Columbia Act 1995, BC Ministry of Forests and Range 

2004, Richardson et al. 2005).  Retention patches including riparian buffer strips, 

depending on size and shape, may act as potential refugia (“lifeboats”) for bryophytes 

and lichens in managed forests by allowing species to survive long enough to recolonize 

the harvested areas (Perhans et al. 2009).  If riparian buffer strips encompass enough of 

the abiotic gradient extending out from streams, they may provide habitats in which an 

assortment of bryophyte species can survive (Elmqvist et al. 2003).  

The degree to which riparian buffer strips represent an important management 

technique for the long-term conservation of upland bryophyte communities will depend 
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upon the resilience of bryophyte communities in adjacent uplands (Holling 1973, Halpern 

1988, Gunderson 2000).  The “engineering resilience” of Holling (1973) has been 

evaluated by comparing species composition in disturbed areas to species composition in 

undisturbed areas (Dynesius et al. 2009, Baldwin and Bradfield 2010). While Dynesius 

and Hylander (2007) demonstrated that a buffer prevented the short term loss of low 

resilience species near small streams, no studies, to date, have looked at whether the 

presence of a riparian buffer confers bryophyte resilience in the clear-cut uplands.  

The influence of riparian buffer strips on bryophyte community reassembly in the 

uplands, as well as on the nature of the bryophyte community gradient extending from 

the stream into the upland, was examined in my study using a natural field “experiment” 

(Diamond 1983).  In the Montane Spruce forests of interior BC, harvesting practices have 

resulted in buffer strips of variable width (0 ->30 m) and spatial arrangement (hereafter 

called one-sided, two-sided and clear-cut canopy treatments) surrounding small, high-

elevation streams.   Studies addressing the overall impact of increasing forest canopy on 

bryophytes have documented variable responses among different bryophyte species 

(Jonsson 1997, Fenton and Frego 2005, Hylander and Dynesius 2006).  Although 

responses to disturbance may be species-specific, detailing the impacts on all species may 

be too time-consuming or costly (Gitay and Noble 1997, sensu Saunders et al. 1991).  

However, functional classification of plants has been increasingly used to understand 

ecosystem response to large scale environmental perturbations (Diaz and Cabido 1997).  

In order to account for species-specific responses to the disturbance associated with forest 

harvesting, bryophytes were assigned to functional groups based on an approach similar 

to Baldwin and Bradfield (2005, 2007, 2010) which was based on a classification system 

proposed by During (1992).  The use of a priori defined functional groups derived from 

current bryological literature and expert knowledge rather than using the response of 

species observed in my study avoids the possibility of a circular argument.  Determining 

functional groups is considered an important step in assessing relative resilience (Allen et 

al. 2005).   
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The objectives of this study were to evaluate the influence of buffers differing in 

spatial arrangement and width, both on the bryophyte gradient extending from the stream 

edge into the upland and on the community reassembly found in the uplands.  Firstly, to 

assess the influence of canopy treatment on the natural bryophyte gradient from stream 

edge out to the uplands, the relative change in select environmental variables as well as 

the richness and frequency of various bryophyte functional groups (taxonomic, life-

history, canopy type, and substrate affinity) were compared.  It is unclear what effect the 

combined ecotonal and clear-cut edges will have on the ecological gradient surrounding 

small, high elevation streams, although Stewart and Mallik (2006) found a dual edge 

effect on bryophyte growth.  It is also unclear what the position of the buffer relative to 

the stream will have on the ecological gradient surrounding small-high elevation streams, 

although Hylander (2005) suggested an optimal microclimate at the stream may be 

maintained by establishing an asymmetric buffer with most trees retained on the northern 

aspect. 

Secondly, to assess the influence of riparian buffer strips on bryophyte 

community reassembly in the uplands, I specifically compared the functional group 

representation and species composition in upland continuous, undisturbed forest with 

bryophyte functional group representation and composition in uplands adjacent to 

streams surrounded by clear-cuts, one-sided buffers and two-sided buffers.  If riparian 

canopy treatment influences bryophyte community resilience in adjacent uplands, then I 

would expect to observe differences in the richness and abundance of bryophyte 

functional groups in uplands adjacent to different canopy treatments.  Based on Hollings’ 

(1973) definition of resilience as the persistence of relationships in the face of change, the 

maintenance of pre-disturbance levels of forest-associated species (liverworts, perennial 

stayers, closed canopy, epixylics (log dwelling species) would indicate high resilience 

and the loss or decline of these species would indicate lower resilience.  Conversely, an 

increase in disturbance associated species (colonists, open canopy and mineral soil/rock 

associated species) indicates the degree of change to the environment (succession).   
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Methods  
 
Study area 
 

Study areas were located within the Montane Spruce BEC (Biogeoclimatic 

Ecosystem Classification) Zone (Meidinger and Pojar 1991) which occurs between 1100 

– 1600 m.  The montane spruce climate is typified by cold winters with moderate 

snowfall, and short warm summers.  The main conifer species present are lodgepole pine 

(Pinus contorta), hybrid white spruce (Picea engelmannii x glauca), and subalpine fir 

(Abies lasiocarpa).  Common vascular plants include grouseberry (Vaccinium 

scoparium), birch-leaved spirea (Spiraea betulifolia), Utah honeysuckle (Lonicera 

utahensis), twinflower (Linnaea borealis) and one-sided wintergreen (Orthilia secunda).  

The study areas were located in the British Columbia Interior Plateau and included the 

Bonaparte Plateau approximately 50 km northwest of Kamloops; Chuwels Mountains 

approximately 30 km southwest of Kamloops, and Greenstone Mountain approximately 

70 km southwest of Kamloops (Figure 3.1).  Additional study areas were located west of 

Barrière north of Kamloops, between Logan Lake and Merritt south of Kamloops, and 

around Stump Lake also south of Kamloops. 
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Figure 3.1. Map of study area for quantification of riparian buffers showing all sites 
sampled Summers 2007 and 2008 (n=30). 
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Site Selection 

From the study areas, 30 sampling sites were selected using digital ortho-rectified 

aerial colour photographs and GIS coverage analysis to limit potential sites to those 

within the Montane Spruce subtype (MSxk2 - very dry cool) (Field Manual for 

Describing Terrestrial Ecosystems - BC Ministry of Environment Lands and Parks and 

BC Ministry of Forests- Research Branch 1998).  Forest history maps were also used to 

limit some of the sites to those harvested within the past five to 25 years in order to limit 

the influence of stand age on the bryophyte response.  Potential sites were also identified 

to minimize location bias and encompass riparian site heterogeneity (Table 3.1).  Stream 

cover class was added to the maps to identify small streams.  Ground-truthing of potential 

sites was done to limit the stream type to 1 – 2 m wide and free flowing in June with a 

distinct channel (S5 or S6 stream channel according to Forest Planning and Practices in 

Coastal Areas Streams – Technical Report (1997)); wet meadows and fens (type of 

wetland) were not sampled due to inherent vegetation differences.  A buffer was defined 

as the original conifer stands and not alder re-growth.  

Final site selections were made to minimize environmental variation in aspect, 

elevation, BEC zone, stream class and incorporated various conifer buffer widths (0 - >30 

m) including continuous (uncut) forest.  In order to sample the full gradient and spatial 

arrangement of forest cover currently found within the local Montane spruce forests, I 

examined four cover treatments: clear-cut, one-sided buffer, two-sided buffer and 

continuous (Figure 3.2).  Clear-cut treatment had no conifer trees on either side of the 

stream.  In comparison, one-sided buffers had continuous forest on the un-sampled side 

and were either clear-cut or had a buffer of trees remaining on the sampled side.  Two-

sided buffers had two strips of trees remaining around the stream after logging.  Finally 

as a comparison, I looked at continuous forests that were fully intact on both sides of the 

stream (no logging).  Effort was made to generally restrict buffer strip sites to warm 

aspects (~165° – 285°) and to sample separate stream drainages with a minimum distance 

of 1 km between sites.  
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Figure 3.2. Four different canopy treatments (a. = clear-cut, b. = one-sided buffer, c. = 
two-sided buffer, and d. = continuous) showing the spatial arrangement of intact forest     
(    ) and harvested area (x) relative to the stream position (     ). Note: one-sided buffer 
may also have a narrow strip of trees on the right hand side of the steam (not shown). 
 
  

a. b. 

c d.
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Table 3.1. Location, canopy treatment, and disturbance date of all sites sampled in 
Summers 2007 and 2008 (n=30). 

Site Location Coordinates
Canopy  
Treatment

Disturbance 
Date

4 G-branch Watching 671529 5643806 2-sided 1996
7 Strachen Lake 669347 5642418 clear-cut 1990
12 Heller Creek 662911 5651304 2-sided 1995
34 Dominic Lake Spur 400 661375 5603767 1-sided pre1990
36 Dominic Lake Spur 400 662144 5603565 clear-cut pre1990
39 Chuwels 673430 5600231 clear-cut pre1990
40 Chuwels 674139 5599168 2-sided pre1990
41 Chuwels 673634 5599924 clear-cut pre1990
42 Chuwels 673884 5599120 continuous none
60 Dominic Lake Spur 400 665448 5606829 continuous none
61 Grace Lake 666883 5605428 continuous none
62 Haybrook 667702 5596073 1-sided 1997
63 Mabel Lake 669913 5599389 1-sided 1998
64 Tranquille 668651 5644932 1-sided 1999
70 Upper Jamieson 677489 5679950 1-sided 2001
71 Jamieson 675559 5679369 continuous none
73 Chataway 639867 5580234 2-sided 2003
74 Helmer 670749 5579561 clear-cut 1992
75 Mabel Lake 671793 5576794 continuous none
76 Mabel Lake 669821 5576054 2-sided 1995
77 Bose 643524 5601464 2-sided 1995
78 Bose 639749 5603319 continuous none
79 Hook 630424 5609298 clear-cut 1990
80 Woods Creek 641786 5600928 2-sided 2002
81 Laura Lake 630063 5594581 2-sided 2002
83 Bonaparte Hills 673131 5684788 clear-cut 1995
84 Jamieson-Bonaparte 678699 5683536 2-sided 2003
85 Frisken 697547 5580368 1-sided 1997
86 Monroe 706870 5579590 1-sided 1999
87 Jewel 711193 5597128 2-sided 2004
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Study Design and Analysis 

To capture the peak phenology in the MS forests, vegetation sampling occurred 

during July and August 2007 and 2008.  The sampling protocol was based on a similar 

one used by Hibbs and Bower (2001).  At each study site, three sample lines were placed 

30 m apart and were located at least 25 m from the clear-cut edge.  Each sample line 

started at the stream edge and extended 10 m upslope perpendicular to the stream edge.  

Environmental data, including GPS coordinates, aspect and slope of stream and sample 

line, elevation, stream and sample line bearing and buffer width, were recorded along 

each sample line.  Along each sample line, bryophytes, shrubs, stand structure and 

microhabitat variables were sampled in six (10 m long and 2 m wide) belt transect lines 

placed perpendicular to each sample line at specific distances from the stream edge 

(Figure 3.3).  In order to compare bryophyte communities from stream edge up to the 

upland, three belt transects were located in the “riparian area” at 1, 5, 10 m from stream 

edge and three others were located in the “uplands” at 5, 15 and 25 m intervals depending 

on the riparian buffer size.  This resulted in three sampling scenarios: 

1. With buffer strip ≥ 10 m to ≤ 30 m: upland transects set at 5, 15 and 25 m from 

actual buffer edge (actual distance from stream edge therefore varies and mean 

distance was based on average width of buffer strips (9.79 – 15.54 m ± SE). 

2. No buffer strip (clear-cut  and one-sided buffer): upland transects set at 5, 15 and 

25 m from the last riparian transect (i.e. fourth transect at  15 m from stream edge, 

fifth transect at 25 m from stream edge,  sixth transect at 35 m from stream edge). 

3. Intact forest (continuous): upland transects set at 5, 15 and 25 m from largest 

buffer (30 m) (i.e. fourth transect at 35 m, fifth transect at 45 m and sixth transect 

at 55 m). 

 Bryophyte species presence was sampled within 10 alternately placed microplots 

(0.1 x 0.3 m) along each belt transect (Figure 3.3) and the entire belt transect was 

checked for any additional species (McCune and Lesica 1992).  In order to quantify 

habitat heterogeneity, substrate type, floor type and decay class of logs (Maser et al. 

1979, 1988) were noted for bryophyte microplots.  In five shrub plots (2 x 2 m) both 



 73

species and cover class were determined.  Shrubs were classified as either short shrubs 

(≤1 m) or tall shrubs (> 1 m) using average height from the USDA plant data base and 

EFlora online database (Klinkenberg 2007, USDA 2009) similar to Dovčiak et al. (2006).  

Percent cover of substrate (disturbed and undisturbed forest floor, mineral soil, coarse 

woody debris, damp ground, boulder and rocks) and cover type (bryophyte, tree, saplings 

and seedlings) were recorded at the belt transect level.  Within the entire belt transect the 

species and cover class (0 = 0%, 1 = 0.1 – 1%, 2 = 1 – 5 %, 3 = 5 – 25%, 4 = 25 – 50%, 5 

= 50 – 75%, and 6 = 75 – 100%) of conifers and deciduous trees were recorded.  

Diameter at breast height (DBH) was measured for conifers only.  The diameter and 

decay class of coarse woody debris (CWD) were sampled along a 30 m x 30 m triangle 

(Van Wagner 1982) with one edge randomly set along each sample line, located at 1 m 

from stream edge, and 5 m from the first upland transect.  Decay classes follow the 

classification used by B.C. Ministry of Environment, Lands, and Parks, and the B.C. 

Ministry of Forests (Figure 3.4) (Maser et al. 1979, BC Ministry of Environment Lands 

and Parks and BC Ministry of Forests- Research Branch 1998).  Soil bulk density 

samples were taken at 1 m from stream edge and 5 m from the first upland transect for 

each sample line to determine effects of grazing. Soil bulk density was determined by 

measuring the mass of the dry soil per unit volume (g/cc) (GLOBE 2005). 

Voucher samples of the bryophytes were collected and identification was 

confirmed based on Lawton (1971), Koponen (1974) and Godfrey (1977).  Problematic 

species identification was confirmed by Dr. Lyn Baldwin, Michael Ryan and Dr. W.B. 

Schofield.  Identification was limited to the genus level for some bryophytes due to a lack 

of reproductive characters necessary for identification to the species level (i.e. 

Brachythecium spp. and Lophozia spp.).  Voucher specimens are stored in the author’s 

herbarium and TRU herbarium.  Bryophytes were sorted into functional groups based on 

taxonomic group, reproductive strategies (life-history), canopy preferences, growth form 

and substrate affinity (Table 3.2 adapted from Baldwin and Bradfield (2005) and 

Appendix A). 
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Figure 3.3. A typical sample line (one of three located at each site) showing six 10 m 
transects (riparian and upland) with the microplots for each vegetation type. For clarity 
the symbols are not overlaid or repeated in each belt transect (based on Hibbs and Bower 
2001).  
 

 
Figure 3.4. Coarse woody debris decay classification (Maser et al. 1979). 
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I also recorded evidence of disturbance in each site.  Harvesting disturbance 

varied from zero harvesting impact up to 30 m from the stream to full harvesting with a 

15 m ‘no machine zone’, to full machine harvesting directly over the stream channel.  

Other notable disturbances were cattle grazing and ‘pugging’ (hoof prints), invasive 

species, grass seeding, and upstream influences due to road building and erosion. 

As aspect and slope of the stream bank sample line or the stream itself is highly 

variable due to its serpentine nature, an “aspect favourability index” (Beers et al. 1996) is 

calculated as: A´ = cos (Amax – A) + 1.0  where A´ is the aspect favorability index , which 

varies from 0.0 to 2.00, Amax is the aspect with the highest favorability, set at 225° 

(Baldwin and Bradfield 2005), and A is the actual measured site aspects. 

In order to quantify landscape structure and its potential influence on the 

bryophyte community, I used GIS analysis of the surrounding conifer cover and the 

riparian buffer sites (ArcView 3.2, ESRI, Redlands, CA).  I added concentric circles (50, 

250 and 500 m radii) to digital ortho-rectified aerial photographs to calculate the total 

hectares of forest surrounding each of the 30 sites (Figure 3.5).  The amount of forested 

area in each circle was termed “buffering capacity” and this index was examined as 

another variable in influencing bryophyte species richness and frequency.  

 

 



 76

 
 
 
Figure 3.5. Concentric circles (50, 250, and 500 m radii) were used to calculate the 
amount of forested area in hectares surrounding each site which is termed “buffering 
capacity”.  
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Table 3.2. Bryophyte functional grouping with taxonomic group, reproductive strategies 
(life-history based on During 1992), canopy preferences, growth form and substrate 
affinity (from Table 1 in Baldwin and Bradfield 2005).   
Category Characteristics 
Taxonomic group:  
Reproductive strategies(life- history): 
   Colonists (Co)  
 
 
 
   Short-lived shuttles (Ss)  
 
 
    
   Long-lived shuttles (Sl)   
 
 
 
   Perennial stayers (Ps)   
 
 
 
 
Canopy preference: 
   Open canopy 
   Closed canopy 
   Canopy generalist 
Growth form: 
   Turfs 
     Open turfs (OT) 
     Short turfs (ST) 
     Tall turfs (TT) and sphagnoid (Tsp) 
     Cushions (CU) 
   Mats 
      
     Thalloid (TM) and smooth (SM) 
     Thread (TH) and rough (RM) 
     Wefts (WE) and dendroid (DE)            
 Substrate affinity: 
   Substrate generalist 
   Humus 
   Litter 
   Mineral soil/rock 
   Log 

moss (M) or liverwort (LW) 
 
spore size < 20 μm: high sporophyte 
production; life span of few years. Vegetative 
reproduction common; open short turfs and 
thalloid mat growth forms 
spore size > 20 μm: low sporophyte 
production; life span of few years; vegetative 
reproduction rare or absent; short turf or 
thalloid mat growth forms 
spore size > 20 μm: low sporophyte 
production; life span of many years; vegetative 
reproduction common; cushions, rough mat, 
smooth mat, or tuft growth form 
spore size < 20 μm: low sporophyte 
production; life span of many years. 
Vegetative reproduction common; weft, 
dendroid, mats, and large cushion growth 
forms 
 
shade intolerant 
shade tolerant 
shade indifferent 
 
erect main shoots 
main shoot 0.1 – 1.0 cm high 
main shoot 0.5 – 3.0 cm high 
main shoot > 3.0 cm high 
erect main shoots from central point 
main shoot horizontal, descending, or 
ascending 
main shoots 0.1 – 1.0 cm long 
main shoots 0.5 – 3.0 cm long 
main shoots > 3.0 cm long 
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Effect of stream distance and/or canopy treatment on gradients from stream edge into the 
uplands 

Transect values (stand structure, habitat and substrate) sampled at 1, 5, 10 and 35 

m (or approximately 35 m for two-sided buffers due to protocol difference) from stream 

edge up into the uplands were averaged across each distance from the stream (10 

microplots per belt transect, 3 belt transects per distance  = 30 microplots per transect) 

(Figure 3.3).  In this analysis, a hypothesis testing approach was used with planned 

comparisons between the canopy treatments and select environmental variables (stand 

structure, habitat and substrate) after accounting for the distance to stream.  A generalized 

linear model (GLM) with a normal error term and identity link (quassian) function was 

employed for non-count variables (stand structure and habitat variables); a GLM with a 

quasi-binomial logistic link was used for frequency data (substrate variables) due to over-

dispersion.  In both cases canopy treatment was entered as a categorical variable.  GLMs 

were also run to assess the influence of stream distance on stand structure, habitat and 

substrate variables after accounting for canopy treatments.  Variables were appropriately 

transformed to satisfy the assumptions of the regression models: distance to stream, 

concavity, slope standard deviation and stand basal area were log e transformed; percent 

cover variables were converted to proportions of one, then arcsine-square root 

transformed (Quinn and Keough 2002).  

The overall importance of stream distance or canopy treatment in the models was 

assessed by the significance of the drop in deviance residual (a measure of the lack of 

model fit) seen when each term was added using the F statistic distribution (Ramsey and 

Schafer 1997).  Significant results comparing the canopy treatments were reported even if 

the overall effect of stream distance was not significant as planned comparisons were 

made versus all possible pairwise comparisons (Ramsey and Schafer 1997).  To see if the 

responses were similar among the canopy treatments the GLMs were rerun to include the 

interaction between stream distance and canopy treatment.  Alder percent cover values 

were non-parametric despite transformations and were analyzed at each transect position 

using Kruskal-Wallis to compare between the canopy treatments instead of GLM’s. 
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To evaluate the influence of canopy treatments on the natural gradient of the 

richness and frequency of bryophyte functional groups existing from the stream edge up 

into the uplands, I compared each non-continuous canopy treatment (clear-cut, one-sided 

and two-sided buffers) separately with continuous sites, after accounting for the distance 

to stream in the model.  A GLM with a quasi-poisson error term and log-linear link 

function was employed for count variables (species richness); a GLM with a quasi-

binomial logistic link was used for species frequency data due to over-dispersion (Quinn 

and Keough 2002).  In both cases canopy treatment was entered as a categorical variable. 

Variables were appropriately transformed to satisfy the assumptions of the regression 

models: distance to stream was log e transformed.  The overall importance of stream 

distance or canopy treatment in the models was assessed by the significance of the drop 

in deviance residual (a measure of the lack of model fit) seen when each term was added 

using Χ2 for count data and the F statistic distribution for frequency (Ramsey and Schafer 

1997).  Significant results comparing the canopy treatments were reported even if the 

overall effect of stream distance was not significant as planned comparisons were made 

versus all possible pairwise comparisons (Ramsey and Schafer 1997).  To see if the 

responses were similar among the canopy treatments the models were rerun to include the 

interaction between stream distance and canopy treatment. 

Finally, I plotted each functional group’s mean species richness and frequency, in 

addition to the frequency of empty microplots, as a function of the distance from stream 

(1, 5, 10 and 35 m) for each of the four canopy treatments.  These plots were not derived 

from the GLM’s themselves but are representative of the interaction between distance 

from stream and canopy type for each functional group’s averaged richness and 

frequency.  Due to variable two-sided buffer widths, the closest transect position to 35 m 

was used (between 33 and 37 m).   

Statistical analysis was done using Excel (Microsoft 2002) and R (R Development 

Core Team 2009).  Generalized linear models were run using R whereas both MRPP and 

NMS were carried out with PC-ORD (McCune and Medford 1999). 
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Effect of canopy treatments on adjacent uplands  
 

I used univariate analyses to determine the effect of canopy treatment on the 

richness and frequency of bryophyte functional groups as well as various substrate, stand 

structure and abiotic variables in the upland areas.  First, species richness and frequency 

were averaged to site level from the nine upland belt transects, each with 10 microplots 

(total = 90 microplots per site).  Environmental variables were recorded directly at site 

level or averaged to site level.  Simple one-way ANOVA models or Kruskal-Wallis test 

and their respective post-hoc tests (pairwise t-test using holm correction factor or 

Wilcoxon rank sum) were used to compare the richness and frequency of bryophyte 

functional groups or environmental variables amongst the canopy treatments.  To satisfy 

the assumptions of normality for ANOVA some of the variables were transformed 

(square root or loge).  Alpha diversity was measured using Shannon-Weiner index (H´) 

and Pielou’s evenness index (J) (McCune and Grace 2002).  

Second, given the fact that upland transects in different canopy treatments were 

located at different distances from the stream, I reran the above analysis using only data 

that was collected with transects located at 35 m.  Sampling in all canopy treatments 

included a transect located at 35 or approx 35 m (31.2-37.8 m) and by repeating this 

analysis, I effectively removed the influence of distance from the comparison of canopy 

treatments. 

To further investigate the impact of canopy treatment on the riparian bryophyte 

communities nonmetric multidimensional scaling (NMS) was used to summarize and 

look for patterns in upland bryophyte species composition (site level frequencies) in 

relation to canopy treatments.  NMS, a method of indirect ordination, is a widely 

accepted approach of multivariate data reduction and produces graphical representations 

of community structure (McCune and Grace 2002).  Using PC-ORD version 4, the 

Sorensen (Bray-Curtis) distance measure and autopilot mode was selected to run the 

NMS (McCune and Medford 1999).  To improve the reliability of the ordination, rare 

species occurring in fewer than 2 out of 30 sites (20 out of 71 species or 28%) were 

omitted.  Joint plots were used to show relationships between the ordination axes and 



 81

habitat, stand structure and substrate variables.   However, due to the minimal association 

of the 250 and 500 m buffer capacity with the bryophyte community, these variables 

were not included in the joint plot.  Multi-response permutation procedures (MRPP) were 

performed on the same NMS matrix and tested the null hypothesis that the bryophyte 

communities were similar among the different canopy treatments.  
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Results 
 

Transect level effect of stream distance  

 
Stand structure, habitat and substrate variables 
 

After accounting for the influence of canopy treatment, increasing distance from 

stream was significantly associated with declining stand basal area and significantly 

associated with increasing sapling percent cover (Table 3.3).  Most substrate variables 

(general, litter and mineral soil/rock microplot frequencies) showed a significantly 

positive association with distance from stream, in comparison, frequency of humus 

within microplots showed a significantly negative association with distance from stream.  

The frequencies of microplots sampled on log and concave substrates, as well as the 

standard deviation in belt transect slopes showed no significant association with distance 

from stream.  

 

Bryophyte diversity and composition 

 After accounting for the influence of canopy treatment, the strongest trend 

observed for bryophyte community diversity and composition was a significant negative 

association between the richness of most individual functional groups and increasing 

distance from stream, with a distinct ecotone around 5 - 10 m (Table 3.5, Figures 3.6 a-

aa).  This was true not only for all bryophytes, mosses and many forest-associated groups 

(liverworts, perennial stayers, closed canopy, species found on humus, litter (marginally 

significant) and log), but also for canopy generalists and long-lived shuttles.  Some 

disturbance-associated groups (colonist and open canopy) also showed a significant 

decline in species richness with increasing distance from the stream, whereas other 

groups such as species found on mineral soil/rock and substrate generalists showed a 

significant increase with distance from stream.  Only short-lived shuttles richness showed 

no significant association with distance from stream.  
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 Similarly, the frequency of all bryophytes, mosses, and many forest-associated 

functional groups (liverworts, perennial stayers, closed canopy, species found on humus, 

and log), as well as for canopy generalists and long-lived shuttles, was significantly 

negatively associated with increasing distance from the stream after accounting for the 

influence of canopy treatment (Table 3.5, Figures 3.6 a-bb).  The frequency of most 

disturbance-associated groups (colonist and species found on mineral soil/rock) and 

substrate generalists showed a significantly positive association with distance from 

stream, except species found in open canopy which were significantly negatively 

associated.  Only the frequencies of species found on litter and short-lived shuttles 

showed no significant association with distance from stream.  Finally, as a measure of 

overall bryophyte abundance, the frequency of microplots devoid of all bryophytes, 

“empty microplots”, increased significantly with increasing distance from stream (Table 

3.5 and Figure 3.6 ee).  Interestingly, there is a change in the frequency of empty 

microplots around 5 – 10 m which suggests the natural riparian/upland transition.  

 
Transect level effect of canopy treatment  
  
Stand structure, habitat and substrate variables 
 
 After accounting for differences in the distance from stream, one-sided buffer, 

two-sided buffer and clear-cut sites had significant differences in many stand, habitat and 

substrate variables at the transect level compared to continuous canopy sites (Table 3.3).  

As expected, all three non-continuous canopy treatments (one-sided buffer, two-sided 

buffer and clear-cut sites) had significantly lower conifer stand basal area compared to 

continuous canopy sites; in comparison both conifer sapling (Table 3.3) and alder percent 

cover (Table 3.4) were not significantly different in harvested sites as compared to 

continuous canopy sites.  The standard deviation of the slope measured in the three belt 

transects at each distance was significantly greater for sites with two-sided or one-sided 

buffers as compared to continuous forest sites, whereas, the slope standard deviation was 

not significant for clear-cuts as compared to continuous canopy sites.  The frequency of 

microplots on concave substrates (concavity) showed no significant difference between 
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canopy types after accounting for distance from stream.  For all harvested canopy types, 

the number of microplots with a mixture of several substrates was significantly less in 

contrast to continuous canopy sites.  The frequency of humus-dominated microplots was 

significantly higher in two-sided buffer and clear-cut sites as compared to continuous 

canopy sites; in contrast, the frequency of humus-dominated microplots was not 

significantly different in one-sided buffer sites as compared to continuous canopy sites.  

Litter-dominated microplot frequency was not significantly different when two-sided or 

one-sided buffer sites were compared with continuous canopy  sites, yet the frequency of 

litter-dominated microplots was significantly less in clear-cut sites as compared to 

continuous canopy sites.  When the frequency of log microplots was compared between 

harvested canopy sites and continuous canopy sites, only the frequency of log microplots 

in one-sided buffer sites was significantly higher compared to continuous canopy sites.  

Finally, the frequency of microplots with mineral soil/rock was significantly higher for 

all harvested canopy sites compared to continuous canopy sites.   

 

 

 

 



 85

Table 3.3.  Summaries of generalized linear models evaluating the influence of canopy treatment (two-sided buffer (2S), one-sided 
buffer (1S), clear-cut (CC), and continuous forest (CON)) and distance from the stream (1, 5, 10, and 35 m) on transect level stand 
structure, habitat and substrate variables. 
 

Stream Distance effect 2S:CON 1S:CON CC:CON

Stream 
Distance 
*Canopy type

Stand structure variables

relative 
change F p value

relative 
change p value

relative 
change p value

relative 
change p value p value1

stand basal area (m
2
/ha)# neg 30.91 0.000 neg 0.000 neg 0.000 neg 0.000 0.036

sapling percent cover pos 2.98 0.034 neg 0.597 neg 0.619 pos 0.058 0.342
Habitat variables

concavity* neg 0.53 0.666 pos 0.305 pos 0.314 pos 0.272 0.574
slope standard deviation pos 2.01 0.117 pos 0.026 pos 0.039 pos 0.133 0.424

Frequency of microplots of different substrates
Mixed Substrate pos 10.24 0.000 neg 0.000 neg 0.000 neg 0.000 0.933
Humus neg 5.72 0.001 pos 0.000 pos 0.071 pos 0.010 0.845
Litter pos 7.60 0.000 pos 0.248 pos 0.338 neg 0.006 0.716
Log neg 2.54 0.060 pos 0.302 pos 0.010 pos 0.227 0.897
Mineral Soil/Rock pos 10.89 0.000 pos 0.038 pos 0.012 pos 0.001 0.130

Note: Models run using either linear regression model (for non-count variables) or quasi-binomial logistic regression models (for frequency data)

with canopy type entered as a categorical variable. Distance to stream, slope standard deviation and stand basal area were log e transformed.

Percent cover variables were converted to proportions of one, then arcsine-square root transformed. Overall  effect of distance from stream variable 

in model given by relative change (pos or neg), F statistic (for non-count and frequency data) and p value in first three columns. Relative change 

indicates whether the mean values for the variables in the two-sided, one-sided and clear-cut sites were greater (pos) or smaller (neg) than the  

mean values in the continous sites after the effect of distance from stream was accounted for. P values <0.05 are shown in bold.
1 

=
 
p value indicates the significance of the interaction term between stream distance and canopy type when included in the full model. All models 

re-run with interaction included. # = marginally normal after transformation - results supported by nonparametric  analysis, *frequency of microplots.
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Table 3.4. Comparison of alder percent cover at different distances (1, 5, 10 and 35 m) 
from the stream among the four different canopy treatments using a Kruskal-Wallis test. 
 

Alder percent cover Canopy types

Distance 
from 
stream clear-cut (n=7) one-sided (n=7)two-sided (n=10) Continous (n=6) Χ2 p

1 22.2±12.55 12.22±7.09 26.08±6.43 5.18±2.33 5.45 0.141
5 12.13±7.91 9.81±5.7 16.46±5.26 2.57±2.11 4.17 0.243
10 7.76±7.59 2.96±1.62 6.72±3.31 1.23±0.8 2.14 0.543
35 3.59±2.35 0.84±0.81 5.45±2.43 3.38±3.38 1.85 0.604

Notes: Values are means (± SE) averaged to the transect level as a proxy for distance from stream. 

 

 

Bryophyte diversity and composition 

 After accounting for the influences of the distance from stream, the 

richness of most functional groups in harvested canopy sites showed a significant 

decrease as compared with the richness in continuous canopy sites, (Table 3.5, Figures 

3.6 a -aa).  Overall, bryophyte species richness was significantly lower in two-sided 

buffer sites and clear-cut sites (but not one-sided buffer sites) as compared to continuous 

canopy sites.  On the other hand, moss species richness in either two-sided or one-sided 

buffer sites was not significantly different than moss richness in continuous canopy sites; 

however moss richness in clear-cuts was significantly lower than moss richness in 

continuous canopy sites (Table 3.5).  The trend lines of both bryophyte and moss richness 

in one-sided buffer sites (intact canopy mainly on the other side of sampling) are 

typically higher than two-sided buffer sites which are themselves higher than clear-cuts 

(Figures 3.6 a and e).  Interestingly, the absolute value of bryophyte, moss and liverwort 

richness immediately adjacent to the stream in continuous forest sites is not greater than 

richness in harvested canopy treatments; however, the decline in richness appears less 
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steep for continuous forest than for the other three canopy treatments (Figures 3.6 a, c 

and e).   

As expected, forest-associated functional groups (liverworts, perennial stayers, 

closed canopy species, species found on humus, litter or logs) showed significant declines 

in species richness in clear-cut sites as compared to continuous forest sites (Table 3.5, 

Figures 3.6 c, i, q, u and aa).  However the response in species richness by forest-

associated functional groups varied in sites with two-sided or one-sided buffers when 

compared to continuous canopy sites (Table 3.5).  Overall, two-sided buffer sites had 

significant declines or no difference in species richness for the forest-associated 

functional groups (liverworts, perennial stayers, closed canopy species, species found on 

humus or litter, and epixylics (log dwellers)), whereas, one-sided buffer sites had no 

significant difference in species richness for the same forest-associated functional groups 

compared to continuous canopy sites after accounting for distance from stream.  

Although both one-sided and two-sided buffer sites showed overall declines in richness in 

most forest-associated functional groups (liverworts, perennial stayers, closed canopy 

species, and species found on humus or logs) the trend line for one-sided buffer sites was 

higher than two-sided buffer sites, and below continuous canopy sites (Figures 3.6 c, i, q, 

u and aa).   

In comparison, disturbance-associated bryophytes (colonists, open canopy 

species, and species typically found on mineral soil/rock) showed significantly higher 

species richness in clear-cuts as compared to continuous canopy sites (Table 3.5, Figures 

3.6 g, o, and cc).  The richness of colonists and species typically found on mineral 

soil/rock was significantly higher in both two-sided and one-sided buffer sites when 

compared to continuous canopy sites.  Another disturbance-associated functional group, 

open canopy species, had significantly higher richness only in one-sided buffers when 

buffers were compared with continuous forest sites (Table 3.5, Figure 3.6 o).   

   Short-lived shuttles (species with typically large spores, short life span and little 

vegetative reproduction) showed no difference in species richness between any non-

continuous canopy sites and continuous canopy sites (Table 3.5, Figure 3.6 k).  



 88

Conversely, long-lived shuttles (species with typically large spores, long life span and 

widespread vegetative reproduction) and both generalists (substrate and canopy) showed 

a significant decline in species richness for two-sided and clear-cut sites or no difference 

for one-sided sites versus continuous canopy sites.  Substrate generalists’ species richness 

showed variable responses depending on the canopy treatments; the models indicate the 

richness significantly declined for two-sided buffer sites and clear-cuts, whereas one-

sided buffer sites were not significantly different compared to continuous sites (Table 

3.5).   

 The frequency of most functional groups showed an even stronger decline than 

richness when harvested canopy sites (two-sided and one-sided buffer sites and clear-

cuts) were compared with continuous canopy sites (Table 3.5, Figures 3.6 b – dd).  As 

expected, forest-associated groups (liverworts, perennial stayers, closed canopy species, 

and species found on humus or logs) exhibited significant declines in abundance when 

clear-cuts were compared with continuous canopy sites.  Many of the disturbance-

associated groups (colonists, open canopy species, and mineral soil/rock associated 

species) showed significant increases in abundance in clear-cuts when compared with 

continuous canopy sites.  As with species richness, the response of forest-associated 

functional groups frequency varied in sites with two-sided or one-sided buffers when 

compared to continuous canopy sites.  Overall, two-sided buffer sites had significant 

declines in species frequency for the forest-associated functional groups (liverworts, 

perennial stayers, closed canopy species, species found on humus or logs, whereas, one-

sided buffer sites had significant declines or no significant difference in species 

frequency when compared to continuous canopy sites.  The response by disturbance-

associated bryophytes (colonists, open canopy species, and species typically found on 

mineral soil/rock) in general showed significantly higher (or similar) species frequency 

for both two-sided and one-sided buffer sites when compared to continuous canopy sites.  

In all non-continuous canopy sites, the frequency of species typically found on litter 

substrate or short-lived shuttles were not significantly different from continuous canopy 

sites.  Both long-lived shuttles and canopy generalists’ frequencies had significant 
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declines for both two-sided and clear-cut sites but no difference for one-sided sites versus 

continuous canopy sites. Substrate generalists significantly declined for all non-

continuous canopy sites versus continuous canopy sites.  Not surprisingly, all non-

continuous canopy sites exhibited greater patchiness with significantly higher numbers of 

“empty” microplots than continuous canopy sites (Table 3.5, Figure 3.6 ee).   

 

Interactions between stream distance and canopy treatments 

 

Of the habitat, stand structure, and microhabitat variables, only stand basal area 

had a significant interaction between distance to stream and canopy treatments in the 

generalized linear models (Table 3.3).  Moreover, there were few significant interactions 

between distance to stream and canopy treatments in the generalized linear models for 

most functional group species richness and frequency (Table 3.5, Figures 3.6 a-ee). The 

majority of the significant interaction terms were observed in the models for the 

frequency of individual functional groups including the frequency of two disturbance-

associated functional groups (open canopy species and mineral soil/rock species) and two 

forest-associated groups (perennial stayers and closed canopy species).  The graphs of the 

forest-associated functional groups with a significant interaction term indicate that there 

was a less severe decrease in frequency of these groups in continuous forest than in 

harvested canopy treatments (Figures 3.6 j and r).  Also, the trend lines for both forest-

associated groups’ frequencies in one-sided and two-sided buffer sites were intermediate 

between continuous and clear-cut sites. Specifically, continuous canopy sites showed an 

initial decrease in perennial stayers frequency from the 1 to 5 m transect positions and 

then an increase at the 10 m transect position (ecotone) followed by a leveling off with 

increasing distance from the stream.  In comparison, the trend line for one-sided and two-

sided buffers exhibited no increase at the 10 m transect position and did not completely 

ameliorate the steady decline in abundance over the distance from the stream post 

harvest.  
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 In comparison, the graphs for open canopy species and mineral soil/rock species 

indicate that frequency of these groups declines in continuous forests with increasing 

distance from the stream (Figures 3.6 p and dd).  In general for these disturbance-

associated groups, the frequency increases with distance from the stream in the three 

other canopy treatments with a distinct ecotone around 5 – 10 m (although mineral 

soil/rock species frequency in clear-cut sites did decline with distance from stream).  A 

significant interaction between stream distance and canopy types was seen for both the 

models and graphs of the frequency of canopy generalists, and species found on litter or 

logs. The graphs for both canopy generalists and litter species showed overall increases in 

frequencies in continuous canopy sites versus harvested sites with distance from the 

stream (Figures 3.6 t and z).  

The models for the richness of a forest-associated group (perennial stayers) and of 

a disturbance-associated functional group (mineral soil/rock) also showed a significant 

interaction between distance to stream and canopy treatments.  The graph of the perennial 

stayers indicates that there was a less severe decrease in richness of this group in 

continuous forest than in harvested canopy treatments (Figure 3.6 i).  In comparison, the 

graph of the mineral soil/rock species shows higher absolute levels of richness for the 

harvested sites versus continuous canopy sites immediately at the stream edge (1 m) and 

from 10 m onwards into the uplands (Figure 3.6 cc).  Only mineral soil/rock associated 

species richness showed a more variable pattern depending on the canopy treatment; 

generally they increased with distance from stream especially for non-continuous canopy 

sites (Figure 3.6 dd).  In continuous canopy sites, some disturbance-associated species 

richness (colonists and species associated with mineral soil/rock) peaked around 5 m 

(ecotone) and then decreased with distance from stream; open canopy species decreased 

with distance from stream for all non-continuous canopy treatments.  As expected with 

direct disturbance from harvesting, the frequency of microplots with mineral soil/rock 

was significantly higher overall for all harvested canopy sites compared to continuous 

canopy sites with increasing distance from the stream (Table 3.5, Figure 3.6 dd).   
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Table 3.5. Summaries of generalized linear models evaluating the influence of canopy treatment (two-sided buffer (2S), one-sided 
buffer (1S), clear-cut (CC), and continuous forest (CON)) and distance from the stream (1, 5, 10, and 35 m) on transect-level 
bryophyte functional group richness and frequency.

Stream Distance effect 2S:CON 1S:CON CC:CON

Stream 
Distance*Canopy 
type

Functional Groups
relative 
change F or χ2 p value

relative 
change p value

relative 
change p value

relative 
change p value p value1

Taxonomic groups

Bryophytes

Richness neg 49.30 0.000 neg 0.032 neg 0.770 neg 0.000 0.110

Frequency neg 9.21 0.000 neg 0.000 neg 0.002 neg 0.000 0.101

Liverworts

Richness neg 64.59 0.000 neg 0.000 neg 0.217 neg 0.000 0.092

Frequency neg 14.94 0.000 neg 0.000 pos 0.366 neg 0.000 0.064

Mosses

Richness neg 15.19 0.011 neg 0.405 pos 0.698 neg 0.011 0.220

Frequency neg 9.80 0.000 neg 0.000 neg 0.006 neg 0.000 0.083
Life History Strategy groups

Colonists

Richness neg 16.87 0.000 pos 0.010 pos 0.000 pos 0.000 0.683

Frequency pos 22.69 0.000 pos 0.003 pos 0.000 pos 0.000 0.095

Short-lived shuttles

Richness neg 6.61 0.122 pos 0.805 neg 0.919 neg 0.074 0.462

Frequency neg 0.51 0.679 pos 0.825 pos 0.907 neg 0.412 0.753

Long-lived shuttles

Richness neg 44.15 0.000 neg 0.002 neg 0.290 neg 0.000 0.103

Frequency neg 4.51 0.005 neg 0.020 pos 0.780 neg 0.019 0.128

Perennial stayers

Richness neg 45.04 0.000 neg 0.001 neg 0.123 neg 0.000 0.033

Frequency neg 20.39 0.000 neg 0.000 neg 0.000 neg 0.000 0.008  
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Table 3.5. continued. 
Canopy type groups

Open
Richness neg 13.78 0.013 pos 0.206 pos 0.018 pos 0.004 0.614
Frequency neg 6.94 0.000 pos 0.645 pos 0.063 pos 0.000 0.020

Closed
Richness neg 83.28 0.000 neg 0.057 neg 0.427 neg 0.000 0.133
Frequency neg 21.69 0.000 neg 0.000 neg 0.000 neg 0.000 0.011

Generalist
Richness neg 21.06 0.000 neg 0.001 neg 0.121 neg 0.000 0.088
Frequency neg 5.16 0.002 neg 0.028 neg 0.648 neg 0.001 0.010

Substrate Affinity groups
Generalists

Richness pos 10.98 0.001 neg 0.008 pos 0.959 neg 0.004 0.374
Frequency pos 11.53 0.000 neg 0.000 neg 0.001 neg 0.000 0.113

Humus
Richness neg 35.06 0.000 neg 0.130 neg 0.641 neg 0.000 0.107
Frequency neg 6.42 0.000 neg 0.002 neg 0.042 neg 0.000 0.702

Litter
Richness neg 6.18 0.051 neg 0.864 neg 0.259 neg 0.020 0.336
Frequency neg 0.82 0.484 neg 0.791 pos 0.909 neg 0.211 0.028

Log
Richness neg 52.65 0.000 neg 0.018 neg 0.067 neg 0.000 0.168
Frequency neg 9.45 0.000 neg 0.020 neg 0.378 neg 0.000 0.138

Mineral soil/Rock
Richness pos 258.75 0.000 pos 0.012 pos 0.000 pos 0.000 0.000
Frequency pos 24.81 0.000 pos 0.017 pos 0.000 pos 0.000 0.000

"Empty" microplots frequency pos 9.21 0.000 pos 0.000 pos 0.002 pos 0.000 0.101
Note: Models run using either quasi-poisson log-linear models (count variables) or quasi-binomial logistic regression models (frequency data) with canopy 

type entered as categorical variable. Distance to stream was log e transformed. Overall effect of distance from stream variable in model given by F statistic for 

frequency data or χ2 for count data & p value in first two columns. Relative change indicates whether mean values for variables in two-sided, one-sided and 

clear-cut sites were greater (pos) or smaller (neg) than mean values in continous sites after the effect of distance from stream accounted for. 

 P values <0.05 are shown in bold.1 p value of interaction term in full model.
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Figures 3.6. The effect of distance from the stream (m) on the mean species richness and 
frequency of various functional groups: taxonomic (a. – f.), life history strategies (g. – 
n.), canopy preference (o. – t.) and substrate affinity (u. – dd.), and the frequency of 
empty microplots (ee.) in four canopy treatments. Sampled distances were 1, 5, 10 and 35 
m from stream edge for clear-cut, one-sided and continuous forest.  Sampled distances 
for two-sided treatments were 1, 5, 10 and between 33 and 37 m (for clarity plotted here 
at 35 m). 
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Figures 3.6 continued.                          
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Figures 3.6 continued.  
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Figures 3.6 continued.  
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Figures 3.6 continued.   
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Figures 3.6 continued.  
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Figures 3.6 continued.  
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Figures 3.6 continued.  
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Site level effects of canopy treatments on adjacent uplands  
 
Upland habitat characteristics, stand structure and substrate availability 
  

When comparing the various upland habitat characteristics at the site level only 

buffer width and buffering capacity (50 m and 250 m) differed between the canopy 

treatments (Table 3.6), indicating the site selection protocol was effective in minimizing 

potential confounding factors of this natural experiment.  The range of canopy/buffer 

widths and positions encompassed variation found within the Montane Spruce landscape 

(C. Petersen - personal observation of unpublished GIS maps).  As expected, the 

buffering capacity (amount of remaining forest within a 50 m or 250 m radius) and the 

buffer width increased with decreasing levels of disturbance (i.e. lowest in clear-cut sites, 

intermediate in one- and two-sided buffers, and highest in continuous forest sites).  

However, one- and two-sided buffers did not have significantly different buffer width or 

buffering capacity.  Also, the 500 m buffering capacity did not differ significantly across 

the canopy treatments.   

Several aspects of stand structure differed significantly between the canopy 

treatments in the uplands at the site level (Table 3.6); The same trends were also seen for 

select stand structure variables at the 35 m transect level when distance from stream was 

taken into consideration thus, it is likely there were no confounding influence due to 

protocol differences between continuous and non-continuous canopy sites (Table 3.9).  

Though the overall volume of CWD was similar among the four canopy treatments in the 

uplands, canopy treatments varied in the availability of CWD in soft (decay class 1-2) or 

hard decay classes (decay class 5).   One-sided sites had significantly lower amounts of 

hard CWD than continuous forest sites.  Interestingly, both clear-cut and continuous 

forests had the largest amount of the soft CWD (decay class 5) in the uplands.  Not 

surprisingly, continuous forests had the greatest amount of bryophytes and conifers, 

whereas the remaining canopy treatments had lower but statistically similar levels of 

bryophyte and conifer cover in the adjacent uplands.  Interestingly, the percent covers of 

Alnus species, deciduous trees, large shrubs (> 1 m), saplings, seedlings and shrubs in 

general were not significantly different among the canopy treatments.  Results for Alnus 
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species and sapling percent cover results concur at both site and 35 m transect levels 

(Tables 3.6 and 3.9).  Only small shrub percent cover (≤ 1 m) was significantly different, 

with the highest percent cover observed in the uplands of continuous forest sites and 

lowest percent cover in the one-sided buffer sites.  As expected, overall conifer stand 

basal area was significantly greatest in the uplands of the continuous sites and negligible 

in the uplands of the other canopy treatments (site and 35 m transect level results concur 

– Tables 3.6 and 3.9).  

The availability of several substrates exhibited statistically significant differences 

among the canopy treatments.  Boulder/rock percent cover was lowest in the continuous 

forests and highest in the clear-cuts and one-sided sites.  Not surprisingly, the percent 

cover of disturbed forest floor and mineral soil were significantly lower in continuous 

forest as compared to any of the harvested sites; however, there was no statistical 

difference in the percent cover of disturbed forest floor or mineral soil among the three 

harvested canopy types.  Conversely, the percent cover of undisturbed forest floor was 

significantly higher in continuous forests than in harvested sites, yet showed no 

significant difference among harvested sites.  

 

Upland bryophyte community characteristics: species diversity, richness and frequency 

The species richness of bryophytes, mosses and liverworts did not vary among the 

four canopy treatments (clear-cut, one-sided, two-sided and continuous) at both the site 

and 35 m transect levels (Tables 3.7 and Table 3.9).  The Shannon-Weiner’s diversity 

index also showed no significant difference among the canopy treatments, whereas the 

Pielou’s evenness index showed the least variation in the clear-cuts and the most in the 

continuous forests with one-sided and two-sided sites displaying intermediate values.  In 

terms of bryophytes, continuous forests in general were composed of 75% mosses (15 

species) and 25% liverworts (5 species).  In fact, this proportion of mosses to liverworts 

remained similar for clear-cut, one-sided and two-sided sites.  In general, the richness of 

bryophyte functional groups differed significantly only when continuous forest was 

compared with harvested sites; few differences in bryophyte functional group richness 
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were significant when clear-cut, one-sided and two-sided sites were compared with each 

other at both the site and 35 m transect levels (Tables 3.7 and Table 3.9).  While not all 

comparisons were significant, the overall pattern indicates that continuous forests had 

higher species richness of forest-associated bryophytes (liverworts, perennial stayers, 

closed canopy species, wefts, and epixylics) as compared to clear-cuts.  Conversely, 

continuous forests had lower species richness of bryophytes associated with disturbance 

(colonists, open canopy species, and species typically found on mineral soil/rock) as 

compared to clear-cuts.  Most often, buffers (two-sided and one-sided) had levels of 

species richness intermediate to that of clear-cuts and continuous for bryophyte 

functional groups.  

Of the life-history functional groups, only the colonists showed a statistical 

difference in species richness among the canopy treatments; continuous forests had 

significantly lower richness of colonists than any of the harvested canopy treatments (site 

level and 35 m transect results concur).  Likewise, of the canopy preference functional 

groups, only bryophytes with closed canopy preferences had a significantly higher 

richness in continuous forest sites when compared with clear-cut and two-sided sites.  

Species richness of growth form functional groups was largely similar amongst the buffer 

sites; only the richness of weft growth forms was significantly higher in continuous forest 

as compared to clear-cut and two-sided sites.   
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Table 3.6. Comparison of habitat, stand structure and substrate variables in upland forests at the site level adjacent to different 
canopy treatments. 

Canopy treatments
clear-cut (n=7) one sided two sided continuous     Χ2 (Fc)  p

Habitat variables
AFI € 1.58±0.23 0.98±0.35 1.27±0.22 0.96±0.30 1.05c 0.388
Buffer width (m) 0.00±0.00a 9.79±5.22b 15.54±1.84b 54.56±10.99c 22.00 0.000
Elevation (m) 1537.57±33.99 1407±72.41 1468.5±34.69 1508.33±54.92 1.23c 0.318
Stream aspect ˚* 213±37.68 191.57±46.73 315.9±175.45 157.5±50.01 0.31c 0.817
Site bearing˚ 212.58±24.77 131.28±35.64 206.29±27.68 181.95±41.47 1.31c 0.293
Buffering capacity (ha)¥

50 m 0.003±0.003a 0.446±0.088b 0.378±0.068b 0.773±0.009c 21.64 0.000
250 m 4.082±1.291a 9.973±1.174ab 9.315±1.201b 15.178±1.014c 17.35 0.001
500 m 37.325±6.097 51.095±5.189 55.153±2.298 56.514±2.529 5.36 0.147

SBDb (g/cc) 0.72±0.12 1.05±0.11 0.90±0.08 0.77±0.08 1.94c 0.148
Slope % 4.62±1.55 8.21±1.60 3.52±0.99 5.40±1.88 2.04c 0.132
Stand structure variables
Volume of CWDa (m3/ha) 51.52±12.50 48.58±7.07 38.21±4.92 60.26±9.85 1.23c 0.320
Decay class 1-2 logs 0.6±0.6 ac 1.62±1.62 a 7.04±2.76 ac 14.17±3.29 bc 13.12 0.004
Decay class 3 logs# 24.76±11.07 37.85±7.41 20.78±2.84 29.51±4.94 5.83 0.120
Decay class 4 logs 22.93±6.75 9.11±5.08 10.19±3.21 13.99±4.25 4.65 0.200
Decay class 5 logs 3.23±2.17 ab 0±0 a 0.2±0.2 a 2.59±0.9 b 8.98 0.030
Percent cover

Alnus  spp 2.27±1.51 0.43±0.31 4.87±2.77 3.97±3.96 3.12 0.374
Bryophyte* 3.94±0.94a 4.04±1.24a 3.52±1.2a 15.65±0.81b 14.44 0.002
Conifer 0.35±0.34a 0.15±0.14a 0.13±0.08a 4.15±0.58b 16.20 0.001
Decidious 0.32±0.24 0.03±0.02 0.81±0.4 1.18±1.18 4.61 0.203
Large shrub* 8.6±2.88 10.08±3.14 18.21±5.71 7.82±5.06 3.80 0.284
Sapling 4.28±1.2 1.01±0.32 2.18±0.87 2.1±0.95 5.15 0.161
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Table 3.6. continued.

Seedling* 1.48±0.6 1.44±0.41 1.67±0.64 0.8±0.32 1.59 0.661
Shrub* 28.55±4.42 26.34±4.12 42.83±7.64 48.24±11.08 1.98 0.142
Small shrub* 17.23±3.55 ce 13.43±2.45 ac 18.96±3.09 ade 37.01±6.98 bd 8.00 0.046

Stand basal area (m2/ha) 0.001±0.001bd 0.001±0.001ab 0.001±0.000ad 0.018±0.002c 18.13 0.000
Substrate Variables
Percent cover

Disturbed forest 
floor 

7.62±2.79cd 11.88±2.02ac 12.61±1.92ad 0.07±0.05b 15.39 0.002

Mineral soil 0.96±0.35cd 1.06±0.22ac 0.95±0.25ad 0.01±0.01b 12.46 0.006
Pugging 0.22±0.2 0.31±0.28 0.04±0.03 0±0 3.20 0.361

Undisturbed forest 
floor 

7.65±2.45cd 2.83±1.38ac 4.08±1.83ad 17.41±0.09b 15.66 0.001

Damp ground 0.03±0.02 0.01±0.01 0.01±0.01 0.01±0.01 0.62 0.891

Note:  Values for the upland locations are means (± SE) averaged to the site level from the appropriate nine 
belt transects. Other values are recorded at the site level. a Coarse woody debris, b Bulk soil density,
c Anova F statistic with associated P-value in column to right. € = AFI refers to "aspect favourablilty index" 

aspect with highest favouribility, set here at 225˚, and A is the recorded aspect in each transect. ¥ = no site 
84 due to lack of available ortho photo (n = 9). # = standardization (+ 0.01 or 0.1) & loge transformation,
* = loge transformation. Post hoc tests were either pairwise t-test (holm correction factor) for ANOVA or Wilcoxon 

for K-W; means followed by the same letter are not significantly different. Values of p < 0.05 are bolded.

(Beers et al. 1996) using A' = cos(Amax-A) + 1.0 where A' =AFI which varies from 0.0 to 2.00, Amax is the 
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Table 3.7. Comparison of diversity indices and bryophyte functional group richness at the site level in upland forests adjacent to 
different canopy treatments.

Canopy treatments

clear-cut (n=7) 1-sided (n=7) 2 sided (n=10) continuous (n=6)  χ2 (Fc) p value
Shannon diversity index 1.96±0.34 1.94±0.36 1.76±0.5 1.86±0.23 0.92 0.821
Pielou's evenness index 0.71±0.05a 0.69±0.05a 0.66±0.1ac 0.61±0.06bc 7.89 0.048
Species richness

Taxonomic groups
Bryophyte 15.86±2.63 16.14±2.45 14.6±2.06 20.17±1.58 3.06 0.383
Moss 12.43±1.85 12.71±1.38 11.7±1.27 15±1.41 2.42 0.490
Liverwort 3.43±0.97 3.43±1.23 2.9±0.91 5.17±0.31 2.85 0.415

Life-history strategy groups

Perennial stayers 4.43±0.92 5±1.33 3.9±0.72 6.17±0.83 1.00c 0.410

Colonists 4.14±0.46a 4.86±0.34a 4.8±0.63a 2.67±0.49b 3.17c 0.041
Short-lived shuttles 1.43±0.57 1±0.31 1.3±0.33 2±0.52 2.47 0.480
Long-lived shuttles 2.14±0.7 2.29±0.87 2.2±0.73 4.33±0.49 5.02 0.171

Canopy Preference
Closed 4.71±1.23a 6±1.36ac 5.2±0.9a 10.33±1.31bc 4.16c 0.016
Generalist 4.43±0.78 4.57±0.95 4.2±0.94 5.83±0.6 0.61c 0.615
Open 6.71±1.06 5.57±0.61 5.2±0.61 4±0.89 1.76c 0.180

Growth form groups
Dendroid 0±0 0±0 0±0 0.17±0.17 4.00 0.262
Open Turf 1.86±1.22 1.14±0.26 1.2±0.25 1.17±0.17 0.63 0.889
Rough mat 2.43±0.48 2.71±0.64 1.8±0.39 3.33±0.33 5.73 0.125
Smooth mat 1±0.31 1.29±0.52 1.4±0.37 2.5±0.43 5.28 0.153

Short Turf/Cushion 6.71±0.89 6±0.69 6±0.83 6.67±0.71 0.23c 0.872
Thread 1±0.38 0.71±0.18 0.6±0.27 1±0.26 1.94 0.586
Thalloid 0±0 0.29±0.18 0.1±0.1 0±0 3.99 0.263
Tall turf/Sphagnoid 3±0.62 2.43±0.43 2.3±0.4 3.17±0.7 1.72 0.632
Weft 0.86±0.26a 1.57±0.2ab 1±0.15a 2.17±0.31b 12.33 0.006  
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Table 3.7 continued. 

Substrate-affinity groups
Generalists 3±0.53 2.86±0.51 2.4±0.45 3±0.45 1.35 0.716
Humus 3.14±1.03 4.14±1.14 2.7±0.45 6.5±1.31 7.27 0.064
Litter/Scat 3.14±0.91 2.86±0.59 3±0.54 3.67±0.42 0.26c 0.855
Log 2±0.58a 1.57±0.57a 2.4±0.62ab 4±0.45b 7.80 0.050
Mineral soil/Rock 4.57±0.48ab 4.71±0.29a 4.1±0.35ac 3±0.45bc 3.30c 0.036

 

Note: Values shown are at the site level averaged across all microplots in riparian transects ( ± 1 SE).
c ANOVA F statistic with associated P-value in column to right. Bolded values are p<0.05. Letters represent post hoc results
either Wilcoxon Rank Sum for Kruskal-Wallis test or pairwise t-test (holm correction factor) for ANOVA where same letter 
means no significant difference. Due to few records the following were combined: cushion with short turf, sphagnoid with 
tall turf, scat with litter, rock with mineral soil, bark and branches with log.  
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Table 3.8. Comparison of bryophyte functional group frequency at the site level in upland forests adjacent to different canopy 
treatments.   

Canopy treatments

clear-cut (n=7) 1-sided (n=7) 2 sided (n=10) continuous (n=6)  χ2 (Fc) p value
Species frequency

Taxonomic groups

Bryophyte 60.14±3.49ab 61.86±6.03ac 49.8±5.65a 80±1.61bc 5.96c 0.003

Moss 60.14±3.49ab 61.57±5.9ac 49.7±5.60a 80±1.61bc 6.13c 0.003
Liverwort 2.71±0.94 4.29±1.73 4.40±1.86 9.83±1.90 7.22 0.065

Life-history strategy groups

Perennial stayers 31.43±5.17a 31.29±4.78a 28.5±6.22a 73.83±4.08b 13.15c 0.000

Colonists 40.43±4.36a 45.00±4.21a 28.50±3.70b 4.67±1.93c 18.63c 0.000
Short-lived shuttles 5.57±2.90 3.14±1.06 5.80±1.74 7.50±4.36 1.35 0.718
Long-lived shuttles 4.29±2.00a 5.14±1.75a 4.90±1.91a 13.67±1.74b 8.39 0.039

Canopy Preference
Closed 23.57±4.45a 29.86±4.58a 27.4±5.87a 73.17±3.88b 14.33 0.002
Generalist 11.43±2.97 9.57±3.08 13.0±4.12 23.67±4.78 6.31 0.098

Open 46.71±4.01a 46.43±4.77a 28.4±3.84b 5.00±1.61c 21.34c 0.000
Growth form groups

Dendroid 0.00±0.00 0.00±0.00 0.00±0.00 0.17±0.17 4.00 0.262
Open Turf 3.29±2.02 1.29±0.36 2.10±0.55 4.00±2.44 1.14 0.769
Rough mat 20.57±4.82 23.00±4.95 19.30±4.42 31.00±8.68 1.24 0.743
Smooth mat 1.14±0.55 1.29±0.57 1.60±0.50 3.50±0.89 6.17 0.104

Short Turf/Cushion 38.29±4.40 41.71±4.68 31.20±4.08 22.83±3.89 2.21c 0.111
Thread 1.14±0.55 0.71±0.18 1.00±0.45 0.83±0.17 0.49 0.921
Thalloid 0.00±0.00 0.57±0.37 0.10±0.10 0.00±0.00 4.26 0.235
Tall turf/Sphagnoid 23.29±6.44 23.43±5.60 12.10±3.62 5.00±1.67 7.59 0.055
Weft 3.43±1.69a 9.57±2.41a 11.10±3.40a 55.33±8.49b 16.10 0.001  
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Table 3.8 continued. 
Substrate-affinity groups

Generalists 5.29±1.92a 11.86±2.60a 13.80±4.08a 59.83±6.31b 15.60 0.001
Humus 25.29±6.13 24.71±5.85 19.90±4.60 32.17±8.66 1.47 0.690
Litter/Scat 10.00±2.74 7.71±2.86 11.00±3.67 17.67±4.40 3.95 0.267
Log** 2.00±0.85a 1.57±0.61a 3.10±1.22a 6.50±1.34b 9.04 0.029
Mineral soil/Rock 40.86±3.56a 44.71±4.14a 27.80±3.86b 4.67±1.52c 20.33c 0.000

Note: Values shown are at the site level averaged across all microplots in upland transects ( ± 1 SE). c ANOVA
F statistic with associated P-value in column to right. Bolded values are p<0.05 . Letters represent post hoc results 
either Wilcoxon Rank Sum for Kruskal-Wallis test or pairwise t-test (holm correction factor) for ANOVA. Same letter  
means no significant difference. Due to few records the following were combined: cushion with short turf, sphagnoid 
with tall turf, scat with litter, rock with mineral soil, bark and branches with log**.
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Table 3.9. Comparison of a subset of stand structure variables, and bryophyte functional group species richness and frequency at 
approximately 35 m transect level in upland forests adjacent to different canopy treatments. 

Canopy Treatments
clear cut 

(n=7)
one-sided 

canopy 
two-sided 

canopy 
continuous 

canopy  χ2 p value
Stand structure variables

Stand basal area (m2/ha) 0.02±0.01a 0.00±0.00a 0.06±0.03a 1.12±0.13b 19.50 0.000
Alnus  spp percent cover 3.59±2.35 0.84±0.81 5.45±2.43 3.38±3.38 1.85 0.604
Sapling percent cover 0.60±0.09 0.28±0.10 0.33±0.11 0.35±0.12 4.39 0.222

Species Richness
Taxonomic groups

Bryophyte 10.29±1.86 9.86±1.94 8.60±1.25 13.83±0.98 6.28 0.099
Moss 8.57±1.15 8.29±1.34 7.60±0.99 10.67±0.88 3.62 0.306
Liverwort 1.71±0.78 1.57±0.78 1.00±0.37 3.17±0.31 6.55 0.088

Life-history strategy groups
Perennial stayers 4.00±0.69a 3.86±1.03a 2.70±0.63a 7.33±0.80b 10.53 0.015
Colonists 3.43±0.30a 4.00±0.38a 3.50±0.43a 1.33±0.42b 12.26 0.007

Species Frequency
Taxonomic groups

Bryophyte 20.00±0.49a 17.86±2.70a 16.50±2.20a 27.00±0.89b 11.95 0.008
Moss 20.00±0.49a 17.71±2.65a 16.50±2.20a 27.00±0.89b 12.11 0.007
Liverwort 1.00±0.44a 1.43±0.57a 0.90±0.41a 3.33±0.56b 9.12 0.028  
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Table 3.9 continued.

Life-history strategy groups
Perennial stayers 10.86±1.81a 8.14±1.96a 9.40±2.00a 24.67±1.61b 13.97 0.003
Colonists 13.43±1.19a 13.29±2.20a 10.10±1.70a 1.00±0.52b 15.54 0.001

Note: values shown are at site level averaged across all microplots at approximately 35 m in the uplands  ( ± 1 SE).  
Bolded values are p<0.05 . Letters represent post hoc results using Wilcoxon Rank Sum for Kruskal-Wallis test. 
Same letter = no significant difference. 
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Lastly, the richness of bryophytes found growing on downed logs and the richness 

of bryophytes typically found on mineral soil/rock exhibited opposite trends as 

disturbance increased.  The richness of log bryophytes was significantly higher in 

continuous forest as compared to clear-cuts and one-sided forests, whereas the richness of 

mineral soil/rock bryophytes was significantly higher in one-sided sites as compared to 

continuous forest.  No other substrate affinity functional groups exhibited a significant 

difference in richness in upland forests adjacent to different canopy treatments.   

In comparison to pattern of species richness, the response of bryophyte functional 

group frequency in uplands adjacent to different canopy treatments was very different 

(Table 3.8).  Continuous upland forests had significantly higher frequencies of 

“bryophytes”, driven by a significant increase in the frequency of mosses, as compared to 

two-sided buffer sites (similar results at 35 m transect level – Table 3.9).  There was no 

statistical difference for the frequencies of “bryophyte” or moss between any of the non-

continuous sites.  Continuous forests had significantly higher frequency of forest-

associated bryophytes (perennial stayers, closed canopy species, species with weft growth 

forms, and epixylics) as compared to any of the harvested canopy treatments (similar 

results for perennial stayers at the 35 m transect level).  Long-lived shuttles, similar to 

perennial stayers in some respects, did occur more frequently in continuous forests 

compared to the other buffer sites.   Interestingly, the frequencies of the forest-associated 

bryophytes were not significantly different between clear-cuts and either one-sided or 

two-sided buffer sites.  Liverwort frequency, though not significant between treatments at 

the site level, did exhibit a trend of increasing frequency from clear-cut sites to 

continuous forest sites, and was significantly different at the 35 m transect level (Table 

3.9).  Conversely, the abundance of disturbance-associated bryophytes (colonists, open 

canopy species, and species typically on mineral soil/rock) was significantly higher in the 

clear-cuts than in continuous forest (similar results for colonists at the 35 m transect 

level).  In fact for all the fore-mentioned functional groups, one-sided and two-sided 

buffer sites did not have similar or consistent responses in frequency as clear-cut sites in 

the uplands. 
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NMS ordination of upland bryophyte species composition at the site level showed 

clear separation of the continuous forest sites along the first axis from the remaining sites 

with harvested canopy treatments (Figure 3.7).  Furthermore, there was significant 

overlap in the position of the harvested sites (clear-cuts, one-sided and two-sided buffer 

sites) along Axis 1.  This trend was corroborated by the MRPP results which also showed 

significant differences in upland bryophyte species composition between continuous sites 

and non-continuous sites (Table 3.10).  In contrast, there was no significant difference in 

bryophyte species composition in the harvested uplands when the bryophyte composition 

in clear-cut, one-sided and two-sided canopy treatments was compared.  Joint plots of 

environmental variables indicate correlation between the percent covers of disturbed 

forest floor and mineral soil, and the uplands of sites with either clear-cut , one-sided or 

two-sided buffers.  Continuous forest and two-sided buffer sites were strongly associated 

with variables strongly correlated with overall forest canopy cover (50 m buffer capacity, 

buffer width, stand basal area and conifer tree percent cover), as well as the frequency of 

hard CWD (DC 1 and 2) and the percent covers of small shrubs, undisturbed forest floor 

and bryophytes. 
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Table 3.10. Comparison of bryophyte species composition between canopy treatments in 
uplands at the site level using MRPP.  
 

 

Upland
Group comparisons of canopy treatments A p value 
continuous (6)/ clearcut (7) 0.269 0.0004
continuous (4)/ one-sided buffer (7) 0.257 0.0004
continuous (6)/two-sided buffer (10) 0.175 0.0004

clearcut (7)/ one-sided buffer (7) -0.007 0.6127
clearcut (7)/ two-sided buffer (10) 0.014 0.1894
one-sided buffer (7)/ two-sided buffer (10) 0.006 0.3061

Note: number in parentheses indicates the number of sites in each group, A = 
Chance-corrected within-group agreement. P values <0.05 are listed in bold.
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Figure 3.7. Joint plot of NMS ordination of bryophyte species composition in uplands 
adjacent to different canopy treatments: clear-cut (open circles) one-sided (open 
triangles), two-sided (grey triangles) and continuous (black triangles) overlaid with stand 
structure, habitat and substrate variables with R2 values of 0.20 in the upland forests.  
Ordination based on species frequency data. Axis 1 accounts of 69.5% of the variation in 
the data while the second axis accounts for 20.1% (total=89.6%). Ordination is based on 
a two dimensional solution with a final stress of 13.23 and used 51 out of 71 species 
present (rare species occurring in less than 2 sites were omitted). The strength of the 
correlation is represented by the length of correlation vectors. Standbas = stand basal 
area; UFFpercov = percent cover of undisturbed forest floor; buf_wid = buffer width; 
50m buffc = 50m buffer capacity; treeperc = conifer tree percent cover; bryoperc = 
bryophyte percent cover; DC12 = decay class 1 and 2; smshrubp = small shrub percent 
cover; mspercov = mineral soil percent cover; DFFpercov = disturbed forest floor percent 
cover. 
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Discussion  
 
 
  The results of this study demonstrate that riparian habitats immediately adjacent 

to small, high elevation streams are centres of bryophyte diversity in Interior British 

Columbia montane spruce forests.  Whereas the retention of a buffer (one-sided or two-

sided) appeared to mitigate the decline in species richness and frequency observed across 

the streamside-upland gradient for some forest-associated groups (Figure 3.6 

c,d,i,j,q,r,u,v,aa and bb), riparian buffer strips appeared to have little effect on the 

bryophyte community reassembly in adjacent harvested uplands.  At the site level, I 

found no evidence that the presence of riparian buffers ameliorates the effect of 

harvesting disturbance on the upland bryophyte community.    

Pre-harvest microclimate gradients from small stream edge to upland have been 

detected for air temperature, soil temperature, surface air temperature and relative 

humidity (Brosofske et al. 1997, Danehy and Kirpes 2000, Stewart and Mallik 2006, 

however see Brooks and Kyker-Snowman 2008).  Relative to surrounding uncut uplands, 

the microclimate immediately adjacent to streams is cooler, moister, less windy and 

shadier (Brosofske et al. 1997, Danehy and Kirpes 2000, Stewart and Mallik 2006).  The 

higher bryophyte diversity around streams has been attributed to higher stream and soil 

water pH rather than tree basal area or soil moisture (Hylander and Dynesius 2006).  

Although these microclimate gradients were not measured directly in my study, expected 

gradients in microclimate variables may have interacted with both the gradients of alder 

and conifer sapling percent cover, as well with the gradients in substrate availability 

observed in this study.  Streamside riparian habitats are also more disturbed than upland 

forest due to intermediate stream flow, debris flow and flooding which results in 

increased habitat and microclimate heterogeneity (Gomi et al. 2002).  Increased habitat 

and microclimate heterogeneity has been shown to explain differences in species 

composition around streams (Gregory et al. 1991, Naiman and Decamps 1997).  Such 

stochastic disturbances may result in higher bryophyte diversity (Jonsson 1997).  The 

higher levels of bryophyte diversity adjacent to the stream edge observed in this study are 
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similar to patterns of vascular plant diversity around high elevation streams in Maine 

(Pelletier 1999) as well as for larger streams at lower elevations (Salo et al. 1986, 

Gregory et al. 1991, Naiman et al. 1993, Naiman and Decamps 1997, Richardson et al. 

2005, Sabo et al. 2005, Hylander et al. 2005, Hylander and Dynesius 2006, Hagan et al. 

2006).  My results, however, are contradictory to Whitman and Hagan (2000) who, using 

a functional group approach, found that riparian areas around small headwater streams in 

Maine did not contain more herbaceous plants species compared to upland forests 

(similar species diversity).   MacNally et al. (2008) also didn’t detect a sharp change in 

vascular plant vegetation between riparian and upland forest for small high elevation 

streams in Australia which they attributed to ground water availability.  Overall, recent 

studies of plant diversity around small mountain streams have found conflicting results. 

The trend of high species diversity adjacent to small high elevation streams exists 

over many different taxa—birds, invertebrates, small vertebrates such as small mammals, 

frogs and birds (Hagg and Dickinson 2000, Gomi et al. 2002, Cockle and Richardson 

2003, Olson et al. 2007, Richardson et al. 2010).  In my study, not only was bryophyte 

richness higher near the stream edge, but the bryophyte mat was more continuous with 

fewer empty microplots closer to the stream than further away.  Furthermore, the 

response of forest-associated and disturbance-associated bryophyte groups was very 

different to the stream-upland gradient, indicating the importance of a functional group 

approach to monitoring plant communities.  Hagan et al. (2006) also detected differences 

in the proportions of herbaceous species that were forest specialists, wetland specialists 

and generalists at different distances from the small high elevation stream bank.  

Overall, plots of most forest-associated functional groups (liverworts, perennial 

stayers, closed canopy species, and species found on humus or logs) showed significant 

declines in richness for all canopy treatments and significant declines in frequency for all 

non-continuous canopy treatments as distance from stream increased.  In comparison, 

disturbance-associated groups (colonists and open canopy species) richness and 

abundance was highest in clear-cuts and intermediate in one-sided and two-sided buffers 

compared to continuous canopy sites, and their frequency increased with distance from 
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the stream edge for all non-continuous canopy treatments.  Several of the forest-

associated and disturbance-associated functional groups showed distinct changes for both 

richness and frequency around 5 – 10 m regardless of the canopy treatment which suggest 

the natural riparian/ upland ecotone for these small mountain streams.  This is supported 

by Hagan et al. (2006) who also found a narrow riparian zone based on herbaceous plants 

exists on small headwater steams with greatest species richness between 5 to 13 m and 

contradicts Naiman et al.’s (1993) suggestion that small streams would not have riparian 

zones.   

An important conclusion of this research is that canopy treatment had a significant 

impact on the characteristics of the bryophyte community gradient from stream to upland.  

In comparison to continuous forest, the gradients for forest-associated bryophytes in 

harvested canopy treatments were depressed, especially at distances of 10 m from the 

stream.  For most forest-associated functional groups (liverworts, perennial stayers, 

closed canopy species, and species found on humus or logs), the relative position of the 

trend line for canopy treatments was highest for continuous canopy sites followed by 

one-sided buffer sites, two-sided buffer sites, and then clear-cuts.  These findings imply 

that different harvesting techniques can have different effects on the natural bryophyte 

gradient existing from stream to upland.  Interestingly, most of the graphs plotting 

bryophyte functional group richness and frequency against distance from the stream 

indicate that values in one-sided buffer sites were intermediate between values found in 

continuous forest sites and two-sided buffers (Figure 3.6 a-dd).  In fact, whereas 

liverworts, known to be the most sensitive to disturbance (Söderström 1988, Fenton et al. 

2003, Hylander et al. 2005), had significantly lower species richness and frequency in 

two-sided buffer sites than in continuous forests; there was no difference in liverwort 

richness and frequency between one-sided and continuous forest sites.  In addition to 

liverworts, six other bryophyte functional groups showed significant richness declines in 

the two-sided: continuous forest comparisons but not in the one-sided: continuous forest 

comparison (Table 3.5).  This suggests that the type of canopy treatment may be 

important to mitigate the impact of harvesting on the bryophyte community.  Aspect has 
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been shown to modify bryophyte response to harvesting (Hylander 2005, Åström et al. 

2007) and the increased resilience (as measured by changes in richness and frequency 

relative to continuous sites) of the bryophyte community in one-sided buffers suggests 

that proximity to intact forest community may be as important as the immediate removal 

of the canopy.  In this study, one-sided buffers had intact forest on the northern aspect of 

the stream side.  Unmeasured environmental variables such as humidity, and either air or 

soil temperature may have had an overall cooling affect on the harvested side (Brosofske 

et al. 1997).  Although one-sided buffers sites seem to offer better resistance to changes 

from harvesting compared to two-sided buffers, these one-sided canopy types are 

transitory and will likely be changed to two-sided buffers in the next round of forest 

harvesting.    

 Given that the canopy treatments represent a gradient of disturbance severity in 

both the extent of canopy removal as well as forest floor disturbance, it was difficult to 

predict the precise interaction between canopy treatment and stream distance.  While few 

habitat, stand structure or substrate variables showed a significant interaction between 

canopy treatment and stream distance, I found significant interaction terms for the 

frequency of many functional groups: including both forest-associated bryophytes such as 

perennial stayers, and closed canopy species as well as disturbance-associated groups 

such as open canopy species and species found on mineral soil.  In comparison, only the 

species richness of perennial stayers and species found on mineral soil showed interaction 

between distance from stream and canopy type.  One of the most interesting aspects of 

the “interaction plots” is that while there is great variation in the richness and frequency 

values of many groups immediately adjacent to the stream, at 35 m from the stream, the 

values found in the harvested canopy types are much more similar to one another than 

they are to continuous forest.  This similarity in response suggests a spatial 

homogenization of the bryophyte community in the harvested uplands.  This similarity in 

bryophyte community could be due to similar habitat, substrate and microclimate 

(environmental conditions) in the uplands once past 35 m and/or due to the dispersal 

limitations of different species (dispersal filters).  Meta-analyses of several studies on 
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plant community reassembly however suggests that homogenization of forest plant 

communities (lower beta diversity) in former agriculture fields (recent forests) compared 

to ancient forests was due to dispersal limitations rather than environmental heterogeneity 

(Vellend et al. 2007).   

Several ecological models predict that uplands adjacent to remnant buffer strips 

could support increased bryophyte diversity relative to uplands adjacent to harvested 

riparian areas.  As stated above, the canopy treatments represent a gradient of disturbance 

severity, from minimal disturbance in continuous forest to the greatest disturbance within 

clear-cut.  Based on the Intermediate Disturbance Hypothesis, diversity could be 

expected to be higher in the sites of intermediate disturbance (one-sided and two-sided 

buffers) relative to sites of high (clear-cuts) or low (continuous forest) disturbance.  

Previous research on bryophyte diversity has found evidence supporting high levels of 

plant diversity in areas of intermediate disturbance (Denslow 1980, Fenton et al. 2003, 

Baldwin and Bradfield 2007).  However, at the site level, I found no evidence for 

significant differences in the richness of bryophyte, moss and liverwort between all four 

canopy treatments; continuous forest had the same number of species (similar gamma 

diversity) as non-continuous forests including clear-cut, though the actual species 

composition and evenness varied (Tables 3.7 and 3.9; Appendix A).  As all upland sites 

sampled were clear-cut areas adjacent to different canopy treatments, the lack of 

differences may have originated in the same severity of disturbance in each clear-cut.  In 

fact, substrate variables indicative of disturbance (percent of disturbed ground and 

mineral soil) were statistically indistinguishable (Table 3.6).  Interestingly there seems to 

be a natural ratio of mosses to liverworts regardless of disturbance; most of the 

bryophytes in either the continuous or non-continuous upland areas are mosses with 

smaller numbers of liverworts.  This higher ecosystem order is maintained despite 

disturbance and suggests ecological resilience at the landscape or site level (Holling 

1973, Gunderson 2000).   

Mass effects (Schmida and Wilson 1985) could maintain species diversity in 

uplands if forest bryophyte propagules from the adjacent riparian buffers disperse from 
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their core habitat out into the adjacent upland.   Despite the ordination showing a strong 

association between the nearby remnant canopy within 50 m (50 m buffer capacity) and 

bryophytes found in two-sided buffer sites,  canopy treatment had little effect on the 

upland bryophyte species richness including the richness of liverworts (Figure 3.7 and 

Table 3.7).  Bryophytes have been shown to be dispersal limited (Sundberg 2005, Pharo 

and Zartman 2007, Hylander 2009).  In particular, Söderström and Jonsson (1989) found,  

despite leafy liverwort Ptilidium pucherrinum producing many small spores, the spores 

often only dispersed close to the parent plant and grew mainly on decaying logs 

(substrate dependent short-lived shuttle).  Fenton and Bergeron (2006) also found that 

spread of Sphagnum into young forests was partially limited due to spore dispersal and 

also the availability of germination substrates.  Hylander (2009) found despite proximity 

to nearby forest there was no increase in colonization rate for forest-associated 

bryophytes.  The same trends in these studies thus support my results – bryophytes are 

dispersal limited.  Furthermore, the results of my research corroborate previous findings 

by Nelson and Halpern (2005) where proximity to intact forest of 1 ha size did not 

prevent decline of sensitive liverworts in adjacent harvested areas.  Other studies on 

biodiversity across edges have found only weak mass effects (Kunin 1998).  There maybe 

more important influences such as the reproductive nature of the plant itself and 

microclimate differences which were not specifically examined in my study.   

 The use of a functional group approach in this research, however, clearly 

demonstrated the different responses of forest-associated and disturbance-associated 

bryophyte functional groups to canopy treatments (Table 3.7).  Clear-cut uplands had 

lower diversity (both species richness and frequency) of forest-associated bryophytes 

(closed canopy species, wefts and epixylics) and higher diversity (both species richness 

and frequency) of disturbance-associated bryophytes (colonists, and species typically 

found on mineral soil/rock) compared to continuous forest sites.  This result is supported 

by previous bryophyte studies looking at regenerating clear-cuts (Fenton and Frego 2005, 

Nelson and Halpern 2005, Dovčiak et al. 2006, Dynesius and Hylander 2007).  The 

uplands of two-sided and one-sided buffer sites had richness levels similar to clear-cut 
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sites for some functional groups (colonists, species typically found on mineral soil/rock, 

closed canopy species and weft species).  At the site level, the similarity between clear-

cut and one- and two-sided buffers may have resulted from the three harvested canopy 

treatments sharing many similarities in habitat, stand structure and substrate variables.  

Uplands adjacent to two-sided and one-sided buffers were no different than uplands 

adjacent to clear-cuts for the following variables: volume of coarse woody debris and 

stand basal area, and the percent covers of large shrubs (especially Alnus species), 

conifers, damp ground, and disturbed forest floor - factors which have been shown to be 

detrimental for bryophyte survival (Jonsson 1993, Rambo and Muir 1998, Dovčiak et al. 

2006, Dynesius et al. 2008, 2009).   

Overall, the results of this study indicate that at the site level, the presence of a 

nearby forested riparian buffer strip did not confer increased resilience measured as 

changes in functional group representation and species composition (Allen et al. 2005, 

Dynesius and Hylander 2007) to the adjacent upland bryophyte community.  If resilience 

is measured as changes in functional group representation and species composition, 

increased resilience would have resulted in similar levels of forest-associated functional 

groups (liverworts, perennial stayers, closed canopy, epixylics (log dwelling species) in 

harvested canopy treatments and the continuous forest treatment.  Conversely, increased 

resilience could have also been detected through a lack of an increase in disturbance-

associated species (colonists, open canopy and mineral soil/rock associated species) in 

harvested canopy types.  The results of this study clearly indicate that abundance of 

forest-associated bryophytes in the uplands (including liverworts (albeit with a p = 

0.065), perennial stayers, closed canopy, and epixylics) declined regardless of any buffer 

type in the riparian area, while disturbance-associated species (colonists, open canopy 

and mineral soil/rock species) increased.  In comparison, the abundance of groups for 

which it was difficult to predict their response, such as short- and long-lived shuttles, 

exhibited variable responses across the canopy treatments.  The abundance of short-lived 

shuttles did not decline in harvested canopy treatments, while the abundance of long-

lived shuttles was lower in harvested canopy treatments.  This result is not surprising 
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given the nature of short-lived shuttles (During 1992) which are thought to be adapted to 

microhabitats that are ephemeral and have abundant propagules in the soil bank (Ross-

Davis and Frego 2004).   In comparison, long-lived shuttles included species often living 

on branches or logs; their decline in the harvesting uplands is unsurprising.  

The maintenance of some forest-associated species (perennial stayers, short or 

long-lived shuttles) in the uplands, seen as a lack of difference between any of the four 

canopy treatments, could be due to the presence of the mineral soil.  Exposed mineral 

soil, rather than humus, is considered a rich source of propagules (especially diaspores) 

and thus may be the source of the persisting bryophytes (Jonsson 1993); mineral soil was 

highest in the non-continuous buffers.  The diaspores of pleurocarpous mosses such as 

Pleurozium schreberi and Hylocomium splendens germinated frequently regardless of 

light conditions and were associated with low pH soils (Caners et al. 2009); perennial 

stayers such as Pleurozium schreberi and Hylocomium splendens also use vegetative 

propagules (detached shoot fragments) and are able to recolonize quickly after 

disturbance (Jonsson and Esseen 1990). 

Similar to other bryophyte studies (Rambo and Muir 1998, Baldwin and Bradfield 

2005, 2007, 2010, Botting and Fredeen 2006), my study involved an intense sampling 

protocol done at the fine spatial scale (0.1 m x 0.3 m) and included full transect searches 

which would detect the rarer bryophyte species (McCune and Lesica 1992).  Thus the 

presence of some forest-associated species (perennial stayers, short or long –lived 

shuttles) in the uplands, seen as a lack of difference between any of the four canopy 

treatments, could be due to better detectability.  In comparison other studies comparing 

forest-associated species in continuous forest and harvested areas only used quadrat 

sampling and no full transect searches which would have missed species occurring at low 

levels (Haeussler et al. 1999, Fenton et al. 2003, Fenton and Frego 2005, Nelson and 

Halpern 2005, Dovčiak et al. 2006, Dynesius and Hylander 2007, Shields et al. 2007, 

Dynesius et al. 2009).  More importantly, however, the decline in abundance rather than 

richness indicates that harvested areas are not completely devoid of forest-associated 

species and argues for continued monitoring to determine their long term success.   



 124

My natural experiment was a snap shot of bryophyte compositional change 

relative to canopy treatment (spatial study) rather than a temporal one and included 

upland forests with a wide range of age from 5 – 25 years (Table 3.1).  One could 

correctly state that we have not accounted for the different ages of the recovering forests.  

Even in forests not harvested there can be compositional changes in as little as four years 

although species richness and cover remains stable (Fenton et al. 2003).  However, in 

forests that have been disturbed by logging, the difference in bryophyte composition was 

more pronounced and remains despite recovery of species richness.  While proximity to a 

riparian buffer did not influence the upland bryophyte community at the site level, the 

upland is not depauperate of all bryophytes.  The decline in abundance rather than 

richness implies that forest-associated bryophytes still exist in the uplands.  Many 

different bryophytes including several forest species (Ptillium crista-castrensis, Lophozia 

ventricosa, Pleurozium schreberi, Ptilidium pulcherrimum) persisted in the upland 

habitat, although it is unclear if they will reproduce in this upland matrix.  Through post 

harvest site preparation, there are depressions and abundant CWD left on site which 

likely can provide adequate microclimate for their survival (C. Petersen, personal 

observation).  With reduced abundance of forest species in the clear-cut there may also be 

reduced competition for limited substrates (Rydin 1997).  However, other studies of 

bryophyte community dynamics such as Dysenius and Hylander (2007) have shown that 

it takes a long time for forest bryophyte species to fully recover (30 – 50 years).  The 

normal harvest rotation for lodgepole pine forests is 80 – 120 years in the central interior 

of British Columbia (Wei et al. 2003, Steen et al. 2007).  The management of matrix 

habitats such as clear-cuts are thus considered important for conservation and 

maintaining biological diversity (Franklin and Lindenmayer 2009).   

At the transect level, buffers did appear to ameliorate the decline in forest-

associated bryophyte richness across a gradient from the stream out into the harvested 

uplands.  These findings imply that different harvesting techniques can have different 

effects on the natural bryophyte gradient existing from stream to upland.  By maintaining 

the biological diversity one may maintain functional diversity in a riparian forest 
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ecosystem.  Different species may respond differently to environmental change (increase 

or decrease) but still contribute to the riparian ecosystem functioning and thus provides 

resilience (response diversity - Elmqvist et al. 2003).  Together riparian buffers near 

clear-cuts may offer insurance with a variety of habitats which promote overall bryophyte 

diversity and maintain riparian ecosystem functioning (sensu Elmqvist et al. 2003). 
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Chapter Four 
  

RIPARIAN BUFFERS ON SMALL MOUNTAIN STREAMS – SUMMARY, SYNTHESIS AND 

IMPLICATIONS FOR MANAGEMENT 
 
 

  The purpose of my research was to examine the effectiveness of different 

riparian canopy treatments (clear-cut, one-sided buffer, two-sided buffer and continuous 

forest) and buffer width in maintaining riparian bryophyte diversity and functional group 

representation, as well as, promoting community reassembly post harvest in the adjacent 

uplands around small high elevation steams in the B.C. Interior Montane Spruce forests.  

The results of this study indicate that functionally, riparian buffer strips have ecological 

value for bryophyte communities found immediately adjacent to the stream (<10 m away) 

and much less value for upland community reassembly.  In general, the frequency and 

richness of forest-associated bryophyte groups (liverworts, perennial stayers, closed 

canopy species, humus or log associated species) were similar among riparian sites with 

canopies, including one-sided and two-sided buffers, than without canopies.  Hylander et 

al. (2002),  Pharo et al. (2004, 2009),  and Saunders et al. (1991) have suggested that 

variation in the buffer type (i.e., differences in remnant shape, pattern, size, and or 

landscape position) may influence bryophyte conservation; however in my study, neither 

the richness nor abundance of forest-associated species in the riparian sites differed in 

one-sided and two-sided buffers.  Disturbance-associated bryophyte groups (colonists, 

open canopy species, and mineral soil/rock associated species) were significantly more 

abundant in clear-cut riparian sites than in sites with canopies; however their richness did 

not vary among the canopy treatments. Thus disturbance-associated bryophytes are 

present albeit at low levels in unharvested riparian forests and their numbers subsequently 

increase with harvest. 

 Based on apriori ecological processes, this study found that riparian forest-

associated bryophyte community composition (species richness and frequency) was 

largely controlled at the landscape level by remaining intact forest within 50 m 

(immigration and extinction), as well as smaller scale microhabitat variables such as 
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habitat quality (mineral rock/rock, soft CWD and concavity) although microclimate 

(slope and Alnus species) made only minor contributions.  Interestingly, only the 

frequency but not species richness of forest-associated functional groups showed a 

positive association with soft CWD.  A variety of decay classes of CWD has been shown 

to be important to maximize the richness of forest bryophytes (Rambo and Muir 1998).  

Not surprisingly, some disturbance-associated bryophytes (colonist and mineral soil/rock 

species) showed a negative relationship with a 50 m buffer capacity.  Overall, my study 

found narrow strip shaped buffers with an average width of 10 – 15 m regardless of 

position (one-sided versus two-sided) largely mitigated the effects of clear-cutting on the 

riparian community around small, high-elevation streams. This study provides evidence 

that for forest-associated bryophytes small narrow buffers are better than no buffer 

around small headwater streams.  This study also contributes to the growing body of 

evidence indicating the value of buffers for bryophytes in other ecosystems (Hylander et 

al. 2002) as well as for other taxa such as birds (Hagg and Dickinson 2000, Staicer et al. 

2006), frogs (Olson et al. 2007) and mammals (Cockle and Richardson 2003, Martell and 

Foote 2006, Lees and Peres 2008).  However Marczak et al.’s (2010) meta-analysis of 

396 papers found most buffer widths used do not maintain the terrestrial fauna at the 

same levels compared to the undisturbed riparian areas.  They also found the response 

among the different taxa was not consistent; birds (particularly edge-associated species) 

and arthropods abundance was greater in riparian buffers compared with unharvested 

riparian sites whereas amphibian abundance decreased. 

The results of the upland study however suggest that riparian buffers have no 

effect on the maintenance of forest-associated bryophytes (liverworts, perennial stayers, 

closed canopy species and epixylics) in the logged uplands.  The uplands consisted 

largely of disturbance-associated bryophytes (colonists, open canopy species, and species 

preferring mineral soil/rock) in terms of both species richness and frequency, and very 

few forest-associated bryophytes (liverworts, perennial stayers, closed canopy species 

and epixylics) in terms of both species richness and frequency.  As with the riparian 

study, buffer width and remaining canopy cover within 50 m radius strongly affected the 



 128

bryophytes in the riparian sites with continuous canopy, whereas disturbance appeared to 

affect species composition in sites with non-continuous canopies (buffers) or clear-cut 

riparian sites.  The management of the matrix (clear-cut) (Franklin and Lindenmayer 

2009), and the maintenance of biological legacies (logs) for bryophytes (Pharo and 

Lindenmayer 2009) in the uplands is considered important for subsequent recovery of the 

harvested forest.  However, studies of bryophyte community dynamics such as Dysenius 

and Hylander (2007) have shown that it takes a long time for forest bryophyte species to 

fully recover (30 – 50 years) and the normal harvest rotation for lodge-pole pine forests 

in the central interior of British Columbia is 80 – 120 years (Wei et al. 2003, Steen et al. 

2007). 

Microclimate gradients are known to exist from stream edge to uplands and can 

be influenced by the presence of a riparian buffer (Brosofske et al. 1997).  These 

gradients in turn affect riparian plant life (Gregory et al. 1991, Stewart and Mallik 2006).  

The results of this study clearly document a decline in bryophyte species richness and 

frequency with increasing distance from small, high-elevation streams.   Conversely, 

“patchiness”, as measured by the frequency of empty microplots, increased with distance 

from the stream edge.  Whereas a distinct vascular plant community has been detected 

around high-elevation small streams, my results are the first to document a distinct 

bryophyte community surrounding high-elevation streams (see Table 3 in Hylander and 

Dynesius (2006) for a description of bryophyte communities around larger streams).  In 

addition, the functional group approach used in this study detailed the differential 

response of bryophyte groups to the stream-upland gradient.  Forest-associated 

bryophytes had the highest diversity closest to the stream for all canopy types.   In 

general, forest bryophytes (liverworts, perennial stayers, closed canopy species, and 

epixylics) showed a marked decline in species richness and frequency regardless of the 

presence of a buffer as distance from the stream increased.  Conversely, disturbance-

associated bryophytes (colonists, open canopy, and species preferring mineral soil/rock) 

increased in richness and abundance with distance from the stream - buffers did not 

reduce the response to disturbance – one could still see a shift in community composition.  
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Interestingly, by a distance of 35 m there was little difference in terms of species richness 

among the bryophyte community in the harvested uplands.  More importantly, however, 

the decline in abundance rather than richness indicates that harvested areas are not 

completely devoid of forest-associated species and argues for the importance of the 

matrix (Franklin and Lindenmayer 2009).   

Defining riparian zones is an important aspect of forest management around 

riparian areas (Blinn C.R. and Kilgore M.A. 2001).   Riparian areas have a diverse plant 

community (Gregory et al. 1991, Naiman and Decamps 1997) which is typically used to 

assess the extent of the riparian zone.  In the past it has been assumed that small streams 

have little or no riparian zone in contrast to larger streams (Naiman et al. 1993).  

However recently a 0 - 5 m riparian zone (ecotone) was found around first order high 

elevation streams by both Hagan et al. (2006) and MacNally et al. (2008) using floristic 

analyses of vascular plants.  Danhey and Kirpes (2000) also detected an ecotone using 

relative humidity around small streams (1.3 – 5 m) in the dry Ponderosa pine forests.  My 

study has added further support to this current literature by detecting a distinct ecotone 

around 5 – 10 m in width along the small high elevation stream-upland gradient using 

poikilohydric bryophytes.  Fritz et al. (2009) and Frego (2007) suggest bryophyte 

assemblages are effective indicators of the hydrology of riparian areas.  By detecting a 

distinct riparian zone around small high elevation streams, more consideration and 

subsequent protection could be given to protect the rich biodiversity around these 

headwater streams by forest management. 

Furthermore, this study documented that harvesting techniques may have a 

profound effect on the nature of the bryological gradient extending from the stream to the 

upland.  Two-sided buffers were less effective than one-sided buffers at preventing the 

decline in both species richness and frequency of forest-associated functional groups 

(liverworts, perennial stayers, closed canopy species, species found on humus or litter, 

and epixylics).  Although one-sided buffers were more effective at preventing the decline 

in forest-associated bryophytes, given the current state of harvesting and forestry 

regulations in BC, one-sided buffer sites are ephemeral and will likely become two-sided 
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buffer sites during future salvage harvesting.  It is also important to note that one-sided 

buffers had intact forest on the northern aspect of the stream side which was not sampled.  

Future work could be to compare the bryophyte community on the northern aspect of 

one-sided buffers with two-sided buffers, continuous canopy and clear-cuts to see if there 

is a difference due to aspect.  Hylander (2005) found there was more forest moss growth 

(Hylocomium species) on the northern aspect compared with the southern aspect.  This 

suggests that the type of buffer relative to the stream position maybe important owing 

likely to changes in microclimate with aspect (edge orientation - sensu Hylander et al. 

2005).  Other unmeasured environmental variables such as humidity, and either air or soil 

temperature may have had an overall cooling effect across the stream on the adjacent 

harvested side (Brosofske et al. 1997).  Again future studies could look at the effect of 

one-sided buffers versus other canopy treatments on these microclimate variables 

(humidity, air and soil temperature) on the adjacent harvested side.    

Forest fire, attack by MPB, and commercial harvesting are the three major sources 

of disturbance and mortality of mature lodgepole pine in the Interior (Taylor and Carroll 

2004, Barclay et al. 2009).  Natural disturbance regimes such as wildfire were common in 

lodgepole pine forests to which the conifer species is well adapted through the use of 

serotinous cones (Lloyd et al. 1991).  However, with fire suppression over the past 85 

years the amount of area burned by wildfire in British Columbia has decreased 

significantly (Taylor and Carroll 2004).  As a result 55% of the pine forests became 

susceptible to mountain pine beetle attack.  The cumulative area of BC affected by the 

mountain pine beetle was estimated at 14.5 million hectares in 2008 (Ministry of Forest 

and Range 2008).  The provincial government (Forest Practices Board 2009) 

recommended a landscape level approach for maintaining biodiversity during salvage 

logging for forest managers in the Interior MS region during the MPB attack.  The Chief 

Forester of BC recommended an increase (timber uplift) in allowable annual cut to 80%, 

as well as a “conservation uplift” (an increase in retention of mature forest structure in 

harvested areas) at the landscape level (even though it was not be legally binding; 

Snetsinger 2005).   Unfortunately the FPB report found that in post 2005 the salvage 
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logging was not handled at the landscape level but at the stand level. Individual forest 

action plans driven by various local reasons resultied in large harvested areas (greater 

than 250 ha ranging up to 1000 ha) with little conservation of mature forests.  Thus there 

are huge tracts of logged forest with little connectivity though reforestation has been done 

(Ministry of Forest and Range 2008).  Disturbance processes such as logging have been 

shown to drastically alter the bryophyte community particularly around streams by 

reducing species diversity (Haeussler et al. 1999, Ross-Davis and Frego 2002, Fenton and 

Frego 2005, Nelson and Halpern 2005, Dynesius and Hylander 2007).   Ecologists have 

suggested that natural disturbances should be used as a guide to manage human-induced 

disturbances such as logging and grazing as the species would be well adapted to these 

natural disturbances (Lindenmayer et al. 2008).  However, due to the complex nature of 

natural disturbances it is hard to mimic them.  Also both natural and human disturbance 

regimes will likely exist at the same time in the environment i.e. salvage logging after 

mountain pine beetle attack.  Thus the best approach is to use adaptive management 

techniques and apply different conservation strategies in different places and monitor the 

response (Lindenmayer et al. 2008).   

To encourage old-growth associated biodiversity in younger managed stands and 

thus recovery from harvesting, we need to improve our understanding of which 

bryophyte species are associated with old-growth and their habitat requirements (Rambo 

and Muir 1998).  Thus my results have important management implications as they 

indicate that even small buffers can mitigate forestry impacts on riparian areas adjacent to 

small, high-elevation streams.  Although the remaining canopy cover within 50 m radius 

strongly affected the bryophytes in the riparian sites, at minimum, forest managers should 

be encouraged to use narrow (10 -15 m) two-sided buffers to maintain the riparian 

bryophyte community around small mountain streams, though ideally one-sided buffers 

maintained higher richness and abundance of forest-associated bryophytes.  Ideally the 

use of a variety of buffer widths and spatial arrangements (one-sided and two-sided) 

along the length of a single high elevation stream would balance the conflicting 

management priorities of biodiversity conservation and timber harvest (Dovčiak et al. 
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2006, Olson et al. 2007).  Adaptive management is recommended to allow the 

preservation of overall species diversity especially as different taxa respond differently 

which affects overall ecosystem functioning (Gunderson 2000, Lindenmayer et al. 2008, 

Franklin and Lindenmayer 2009).  The use of variable harvesting techniques, with 

minimal disturbance and a range of buffer widths, maybe more appropriate for preserving 

bryophytes (Hylander et al. 2002, Fenton and Frego 2005, Rosenvald and Löhmus 2008).  

This undisturbed buffer canopy may act as refugia especially for liverworts, the most 

sensitive group (Söderström 1988), and forest mosses (Fenton and Frego 2005).  

Landscape heterogeneity, habitat quality and substrate features are also important for 

bryophyte survival (Hylander 2004, Dynesius et al. 2009).  Attention should be paid to 

conserving a variety of decay classes of coarse woody debris as a range of habitats allow 

for a diversity of forest bryophytes (Rambo and Muir 1998, Rambo 2001, Pharo and 

Lindenmayer 2009).  In particular, soft CWD (decay class 4/5) was important for the 

survival of certain forest bryophytes (epixylics) such as Ptilidium  pulcherrimum or 

Lophozia species.  Minimizing soil disturbance would also maintain sensitive forest 

bryophytes particularly around small streams (Fenton and Frego 2005).   

Concern exists about how permanent the small narrow riparian buffer strips are 

due to blowdown (Reid and Hilton 1990, Richardson 2004).  Wood recruitment models 

are used to predict the amount of windthrow at riparian buffers (Liquori 2006).  The rate 

of blowdowns in riparian buffers may not be related to buffer width but to the topography 

and orientation of the strip to the prevailing wind (Ruel et al. 2001, however see Liquori 

2006).  Thus narrower buffer widths may not be more prone to blowdown than wider 

buffer widths.  However, Grizzel and Wolff (1998) found on average windthrow affected 

33% of the trees around small high elevation streams in northwest Washington.  Though I 

did not look at windthrow per say in my study of riparian buffers around small high 

elevation streams, I did measure total CWD which is a measure of fallen trees of various 

decay classes and would indirectly give a sense of wood recruitment.  Interestingly the 

volume of total CWD was not significantly different among the four canopy treatments 
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(Table 2.4) suggesting there was no more windthrow in riparian buffers strips than 

continuous riparian forests.  

Various studies have shown that both local and landscape level variables acting 

across multiple scales appear to influence the recovery of disturbed plant communities 

(Holl and Crone 2004).  Local biotic and abiotic factors (overstorey cover, exotic cover, 

bare ground, elevation, and soil texture) explained much of the variance in riparian 

vascular plant species richness and abundance, whereas proximity to a source of 

reproductive propagules (a landscape factor) and dispersal ability were shown to play a 

small role in the recovery of riparian vascular plant communities (Holl and Crone 2004).  

Stand age and time since disturbance did not seem to be important for riparian vascular 

plant recovery.  The same findings have been found for the community reassembly of 

forest bryophytes in Picea marina forests where stand age and time since disturbance was 

shown to be not as important as habitat variables such as percent of mineral soil, shrubs, 

canopy, total CWD or water table position (Fenton and Bergeron 2008).  The relative 

term old-growth forest depends on the conifer tree species being considered; lodgepole 

pine-Douglas fir forests in the BC Interior typically reach climax around 50 -75 years.  In 

my study the lodgepole pine-Douglas fir forests examined were young second growth 

stands with an age range of 0 – > 17 years in order to limit the influence of stand age on 

the bryophyte response.  The average age (time since harvesting disturbance) of the one-

sided buffer sites was 10.29 ± 1.38 years, two-sided buffer sites was 9.50 ± 1.45 years, 

clear-cut sites was 16.86 ± 0.70 years, and continuous sites was approximately  > 25 

years (last disturbance time unknown).  Thus, due to a limited range of disturbance dates 

per canopy type we did not look at the effect of stand age on bryophyte richness and 

frequency in our study (Table 2.1).  Further work with more sites spanning a wider range 

of disturbance dates per canopy type is warranted. 

The results of this study may result in an increased understanding of the value of 

riparian buffers around small high elevation streams for protecting various flora and 

fauna.  It also may lead to more flexible guidelines for buffer width in the Interior of BC 

and can be used to inform management decisions (target-species management – Olson et 
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al. 2007).  For example, in certain situations, buffers larger than 10 m may be warranted 

if land managers are interested in conserving populations of sensitive bird species (Hagg 

and Dickinson 2000, Staicer et al. 2006), frogs (Olson et al. 2007)  and mammals (Cockle 

and Richardson 2003, Lees and Peres 2008).  “We can’t manage all species in all places 

at all times and what benefits one species may not benefit another” (Donnelley and 

Wedeles 2008).  A quantitative review of the riparian buffer width guidelines from 

Canada and the United States (Lee et al. 2004) outlined a shift away from the “one-size 

fits all” approach to more “tailor-made” buffers with the more complex guidelines.  The 

use of  a variety of buffer widths, patch reserves of different sizes and dispersed tree 

retention (Aubry et al. 2009) may be a more effective forest management approach to 

balance conflicting species and timber production priorities (Table 6 in Olson et al. 

2007).    

Overall, the knowledge that even narrow strip shaped buffers with an average 

width of 10 – 15 m regardless of position (one-sided versus two-sided) can mitigate the 

effects of clear-cutting on the riparian bryophyte community around small, high-elevation 

streams, although there was no effect on community reassembly in the uplands, can be 

used to support adaptive management decisions made by forestry professionals to 

enhance conservation. 
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Appendix A.  Bryophyte species, functional groups, and location. Codes at bottom of last 
page. 

Species List
Taxonomic 
Group LHS

Canopy 
Preference

Growth 
Form

Main Substrate 
affinity Location

Atrichum selwynii M Co open ST MS U
Aulacomnium palustre M Ps open TT H U/R
Barbula convoluta var. eustegia M Co open ST MS R
Barbula (Didymodon) vinealis M Co open CU MS U
Brachythecium species M Ps closed RM H U/R
Bryum caespiticium M Co open ST MS U/R
Bryum capillare M Ps open ST G U/R
Bryum spp. M Co open ST MS U
Bryum weigelii M Ss open TT H U/R
Calliergon stramineum M Ps open TH H U/R
Campylium hispidulum M Ps closed RM H R
Campylium stellatum M Ps open ST H U/R
Ceratodon purpureus M Co open ST MS U/R
Climacium dendroides M Ps open DE H U/R
Cratoneuron filicinum M Ps open TT H R
Dichodontium pellucidum M Co generalist TT H R
Dicranella spp M Co open ST L U/R
Dicranoweisia crispula M Ps open CU MS U/R
Dicranum fuscescens M Sl generalist ST G U/R
Dicranum scoparium M Ps generalist ST L U/R
Dicranum spp M Co generalist ST G U/R
Dicranum tauricum M Sl generalist ST LOG U/R
Encalypta rhaptocarpa M Ss closed ST MS U/R
Eurhynchium pulchellum M Ps open RM H R
Fontinalis antipyretica M Sl closed WE R R
Funaria hygrometrica M Co generalist OT MS U/R
Hygrohypnum ochraceum M Ps closed WE MS R
Hylocomium splendens M Ps closed WE H U/R
Hypnum revolutum M Ps open SM L U/R
Leptobyrum pyriforme M Co open OT L U/R
Mnium ambiguum (lycopodioides) M Ss closed TT H R
Mnium arizonicum M Ss closed ST MS R
Mnium spinulosum M Sl closed ST LOG U/R
Mnium spp M Sl closed ST LOG U/R
Oncophorus wahlenbergii M Sl closed ST L U
Philonotis fontana M Ss open ST MS U/R
Plagiomnium ciliare M Ss closed TT H U/R
Plagiomnium drummondii M Ss closed TT H R
Plagiomnium ellipticum M Ps closed TT H U/R
Plagiomnium insigne M Ss closed TT H U/R
Plagiomnium spp M Ss closed TT H U/R
Plagiothecium denticulatum M Sl closed SM LOG U/R
Plagiothecium cavifolium M Ps closed SM H R
Plagiothecium laetum M Sl closed SM H U/R
Platydictya jungermanioides M Ps closed SM H U/R
Pleurozium schreberi M Ps closed WE G U/R
Pohlia cruda M Ss closed OT L U/R
Pohlia nutans M Ss generalist OT L U/R
Pohlia proligera M Co open ST MS R
Pohlia spp M Ss generalist ST L U/R  
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Appendix A. continued. 
Polytrichum juniperinum M Co open TT MS U/R
Polytrichum piliferum M Co open TT MS U/R
Polytrichum strictum M Co open TT H U/R
Polytrichastrum alpinum M Co generalist TT MS U/R
Polytrichium spp M Co open TT MS U/R
Pseudoleska stenophylla M Sl closed RM LOG R
Pseudoleskeella tectorum M Sl closed RM L R
Pterigynandrum filiforme M Ps closed TH R R
Ptillium crista-castrensis M Ps closed RM H R
Rhizomnium magnifolium M Ps generalist ST H U/R
Rhytidiadelphus triquetrus M Ps closed RM H U/R
Rhytidiopsis robusta M Ps closed WE H U/R
Roellia roe M Ps closed OT H U/R
Sanionia uncinata M Ps generalist WE H U/R
Sphagnum warnstorfii M Ps open TT H R
Splachnum sphaericum M Ss closed TT SCAT U/R
Tetraphis pellucida M Ss closed ST LOG U/R
Thuidium recognitum M Ps closed WE H R
Timmia austriaca M Ps closed TT H U/R
Tomentypnum nitens M Ps open Tsp H U/R
Tortula ruralis M Sl open OT MS U/R
Barbilophozia hatcheri L Sl generalist RM G U/R
Barbilophozia lycopodioides L Sl closed RM L U/R
Barbilophozia spp. L Sl closed RM G U/R
Blepharostoma trichophyllum L Ps closed TH LOG U/R
Calypogeia muelleriana L Ps closed SM H U/R
Cephaloziella divaricata L Sl generalist TH MS U/R
Cephalozia lunulifolia L Ps closed TH LOG U/R
Chiloscyphus polyanthos L Ps generalist SM H R
Conocephalum conicum L Sl closed TM H R
Lepidozia reptans L Sl closed SM LOG U/R
Lophocolea heterophylla L Co closed TH H R
Lophocolea  minor L Co closed TH H R
Lophozia guadriloba L Sl closed SM MS R
Lophozia heterocolpos L Sl closed SM MS R
Lophozia longidens L Sl generalist ST LOG U/R
Lophozia spp L Ps closed SM LOG U/R
Lophozia ventricosa L Sl closed ST LOG U/R
Marchantia polymorpha L Co generalist TM H U/R
Pellia spp L Sl closed TM H R
Plagiochilla asplenoides L Ps closed ST H U/R
Ptilidium pulcherrimum L Sl closed SM LOG U/R
Ptilidium  spp L Sl closed SM LOG U/R
Ptilidium californicum L Sl closed SM LOG U
Scapania mucronata L Sl open RM LOG R
Tritomaria exsectiformis L Sl closed SM H U/R
Tritomaria scitula L Sl closed SM L R
Scapania undulata L Ps open RM LOG U/R
Codes: Co = colonist; Ps = perennial stayer; Sl = long-lived shuttle; Ss = short-lived shuttle; ST = short turf; 
TT = tall turf; CU= cushion; RM = rough mat; TH - thread mat; TM = thalloid mat; WE = weft; OT = open turf;  
SM = smooth mat; DE = dendroid; Tsp = sphagnoid; MS= mineral soil; R = rock; H = humus; L = litter; G = 
general; U = upland; R = riparian.
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Appendix B. Regression analysis summaries of the top candidate models based on information-theoretic methods looking at 
select  predictor variables affecting riparian species richness across various functional groups. n= 30 sites. 

Functional Groups:

Taxonomic

Model 
type AICc K ΔAICc ωi ER logLik  D2

adj
.

apriori 
hypotheses Variables

Bryophyte top 203.5 5 0.0 0.61 1.00 -95.50 0.44 IE+HQ 50buffcap+mspc+DC4/5+concavity

top/global 205.3 7 1.8 0.25 2.43 -98.45 0.25 IE+M+HQ 50buffcap+Alnus spp.percov+slope+mspc+DC4/5+concavity
Liverwort top 165.4 4 0.0 0.47 1.01 -77.91 0.33 HQ mspc+DC4/5+concavity

top 165.7 5 0.3 0.41 1.15 -76.59 0.35 IE+HQ 50buffcap+mspc+DC4/5+concavity
global 172.0 7 6.6 0.02 27.41 -76.46 0.30 IE+M+HQ 50buffcap+Alnus spp.percov+slope+mspc+DC4/5+concavity

Moss top 183.0 4 0.0 0.42 1.00 -86.69 0.29 IE+M 50buffcap+Alnus spp.percov+slope
top 184.4 5 1.4 0.20 2.08 -85.96 0.31 IE+HQ 50buffcap+mspc+DC4/5+concavity
top 185.0 2 2.0 0.15 2.74 -90.27 0.13 IE 50buffcap
global 186.2 7 3.2 0.08 5.10 -83.57 0.43 IE+M+HQ 50buffcap+Alnus spp.percov+slope+mspc+DC4/5+concavity

Life History 
Strategy
Colonist top 145.7 2 0.0 0.35 1.00 -70.62 0.041 HQ concavity

top 146.6 2 1.0 0.22 1.61 -71.09 0.014 HQ mspc
top 147.3 2 1.6 0.16 2.20 -71.41 -0.004 IE 50buffcap
global 157.6 7 12.0 0.00 NA -69.27 -0.08 IE+M+HQ 50buffcap+Alnus spp.percov+slope+mspc+DC4/5+concavity

Perennial 
Stayer top 163.0 2 0.0 0.62 1.00 -79.26 0.35 IE 50buffcap

global 170.6 7 7.7 0.01 46.51 -75.77 0.43 IE+M+HQ 50buffcap+Alnus spp.percov+slope+mspc+DC4/5+concavity

Long lived 
Shuttle top 148.3 4 0.0 0.44 1.00 -69.33 0.40 HQ mspc+DC4/5+concavity

top 150.0 5 1.7 0.19 2.37 -68.74 0.41 IE+HQ 50buffcap+mspc+DC4/5+concavity
global 152.2 7 3.9 0.06 7.21 -66.56 0.46 IE+M+HQ 50buffcap+Alnus spp.percov+slope+mspc+DC4/5+concavity

Short lived 
Shuttle top 129.6 2 0.0 0.36 1.00 -62.57 0.07 M Alnus spp.percov

top 130.7 2 1.1 0.20 1.77 -63.13 0.01 IE 50buffcap
top 131.3 2 1.7 0.15 2.41 -63.44 -0.03 M slope
global 137.6 7 8.0 0.01 55.05 -59.25 0.34 IE+M+HQ 50buffcap+Alnus spp.percov+slope+mspc+DC4/5+concavity



 152

Appendix B. continued. 

Canopy

Model 
type AICc K ΔAICc ωi ER logLik  D2

adj
.

apriori 
hypotheses Variables

Closed top 182.6 5 0.0 0.70 1.00 -85.07 0.52 IE+HQ 50buffcap+mspc+DC4/5+concavity
global 186.8 7 4.1 0.09 7.85 -83.83 0.52 IE+M+HQ 50buffcap+Alnus spp.percov+slope+mspc+DC4/5+concavity

Open top 158.5 2 0.0 0.51 1.00 -77.02 0.13 HQ concavity
top 159.8 4 1.3 0.27 1.92 -75.09 0.17 HQ mspc+DC4/5+concavity
global 168.1 7 9.6 0.00 120.00 -74.48 0.09 IE+M+HQ 50buffcap+Alnus spp.percov+slope+mspc+DC4/5+concavity

Generalist top 137.3 2 0.0 0.75 1.00 -66.41 0.18 IE 50buffcap
global 148.9 7 11.6 0.00 337.84 -64.91 0.18 IE+M+HQ 50buffcap+Alnus spp.percov+slope+mspc+DC4/5+concavity

Substrate 
Affinity
Generalist top 106.1 2 0.0 0.67 1.00 -50.85 0.00 IE 50buffcap

global 119.3 7 13.2 0.00 NA -50.11 -0.11 IE+M+HQ 50buffcap+Alnus spp.percov+slope+mspc+DC4/5+concavity
Humus top 168.4 2 0.0 0.40 1.00 -81.97 0.28 IE 50buffcap

top 169.3 4 0.9 0.25 1.59 -79.86 0.34 IE+M 50buffcap+Alnus spp.percov+slope
top 170.0 5 1.7 0.18 2.28 -78.77 0.38 IE+HQ 50buffcap+mspc+DC4/5+concavity
global 175.0 7 6.6 0.01 26.76 -77.94 0.37 IE+M+HQ 50buffcap+Alnus spp.percov+slope+mspc+DC4/5+concavity

Litter top 127.5 2 0.0 0.31 1.00 -61.52 0.06 IE 50buffcap
top 128.4 2 0.9 0.20 1.54 -61.96 0.02 M Alnus spp.percov
top 129.4 4 1.9 0.12 2.51 -59.88 0.15 IE+M 50buffcap+Alnus spp.percov+slope
global 134.5 7 7.0 0.01 32.19 -57.68 0.28 IE+M+HQ 50buffcap+Alnus spp.percov+slope+mspc+DC4/5+concavity

Log top 137.4 4 0.0 0.39 1.01 -63.92 0.35 HQ mspc+DC4/5+concavity
top 137.9 4 0.5 0.31 1.28 -64.15 0.34 IE+M 50buffcap+Alnus spp.percov+slope
global 142.0 7 4.6 0.04 10.00 -61.47 0.41 IE+M+HQ 50buffcap+Alnus spp.percov+slope+mspc+DC4/5+concavity

Mineral soil, 
Rock top 131.8 2 0.0 0.42 1.01 -63.67 0.11 HQ concavity

top 133.2 2 1.4 0.20 2.06 -64.39 0.06 HQ mspc
top 133.5 4 1.7 0.18 2.37 -61.95 0.15 HQ mspc+DC4/5+concavity
global 142.5 7 10.7 0.00 217.62 -65.24 0.06 IE+M+HQ 50buffcap+Alnus spp.percov+slope+mspc+DC4/5+concavity

Note: Generalized linear models used Poisson error term and logarithmic link function. For each model, AICc (corrected AIC) was used due to small sample size, K = number 

of estimable parameters including intercept, ΔAICc is the difference between the lowest AICc of all models tested and each model's AICc, ωi is Akaike weight,

ER = evidence ratio,  logLik is the maximized log-likelihood, D2
adj is the adjusted Deviance squared, global  D2adj, a measure of goodness of fit, is from the most complex (global) 

model. All other models are nested within global. Only candidate models with a ΔAICc of ≤ 2 from all tested are considered the most likely and are shown. Growth Forms were

excluded due to rareness which invalidated many models. IE (immigration & extinction) = 50 m buffer capacity (50buffcap); microclimate (M) = Alnus  spp. percent cover + slope; HQ 

(habitat quality) = mineral soil percent cover (mspc) + DC4 & 5 (decay class) + concavity. Bolded > 0.10 global D2adjusted. A minimum of nine basic models were run for each 

functional group.NA = not applicable.
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Appendix C. Regression analysis summaries of the top candidate models based on information-theoretic methods looking at 
select predictor variables affecting riparian species frequency across various functional groups. n= 30 sites. 
Riparian Species frequency
Functional Groups:

Taxonomic

Model 
type qAICc K ΔqAICc ωi ER logLik  D2adj.

apriori 
hypotheses Variables

Bryophyte top 55.55 2 0.0 0.65 1.00 -141.95 0.26 HQ mspc
top 58.22 4 2.7 0.17 3.79 -136.14 0.26 HQ mspc+DC4/5+concavity
global 64.97 7 9.4 0.01 110.73 -166.14 0.20 IE+M+HQ 50buffcap+Alnus spp. percov+slope+mspc+DC4/5+concavity

Liverwort top 46.36 2 0.0 0.42 1.00 -162.82 0.15 IE 50buffcap
top 47.11 2 0.8 0.29 1.46 -165.89 0.13 HQ mspc
global 56.18 7 56.2 0.00 136.36 -152.33 0.07 IE+M+HQ 50buffcap+Alnus spp. percov+slope+mspc+DC4/5+concavity

Moss top 56.12 2 0.0 0.66 1.00 -141.02 0.25 HQ mspc
global 65.67 7 9.5 0.01 117.86 -132.94 0.19 IE+M+HQ 50buffcap+Alnus spp percov+slope+mspc+DC45+concavity

Life History 
Strategy
Perennial 
Stayer top 52.62 2 0.0 0.70 1.00 -159.88 0.41 HQ mspc

global 62.67 7 10.0 0.00 151.61 -151.75 0.03 IE+M+HQ 50buffcap+Alnus spp. percov+slope+mspc+DC4/5+concavity
Colonist top/global 69.74 7 0.0 0.50 1.00 -122.79 0.61 IE+M+HQ 50buffcap+Alnus spp. percov+slope+mspc+DC4/5+concavity

top 69.76 4 0.0 0.50 1.01 -141.41 0.56 IE+M 50buffcap+Alnus  spp. percov+slope
Long-lived 
Shuttle top 59.69 2 0.0 0.21 1.00 -159.61 0.07 M slope

top 59.87 4 0.2 0.20 1.10 -146.12 0.13 IE+M 50buffcap+Alnus  spp. percov+slope
top 60.01 2 0.3 0.18 1.18 -160.59 0.06 IE 50buffcap
top 61.72 3 2.0 0.08 2.77 -158.83 0.04 M Alnus  spp. percov+slope
global 62.18 7 2.5 0.06 3.48 -129.94 0.20 IE+M+HQ 50buffcap+Alnus spp. percov+slope+mspc+DC4/5+concavity

Short-lived 
Shuttle top 54.16 2 0.0 0.23 1.00 -143.90 0.08 M slope

top 54.19 2 0.0 0.23 1.00 -143.99 0.08 M Alnus  spp.percov
top 54.51 3 0.3 0.20 1.17 -138.02 0.12 M Alnus  spp. percov+slope
top 55.43 2 1.3 0.12 1.86 -147.72 0.04 HQ concavity
global 63.72 7 9.6 0.00 117.35 -135.34 0.01 IE+M+HQ 50buffcap+Alnus spp. percov+slope+mspc+DC4/5+concavity
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Appendix C. continued.
Canopy 
Preference

Model 
type qAICc K ΔqAICc ωi ER logLik  D2adj.

apriori 
hypotheses Variables

Closed top 51.53 2 0.0 0.52 1.00 -190.98 0.33 HQ mspc
top 52.82 2 1.3 0.28 1.91 -196.45 0.30 IE 50buffcap
global 59.27 7 7.7 0.01 47.73 -171.27 0.32 IE+M+HQ 50buffcap+Alnus  spp.percov+slope+mspc+DC4/5+concavity

General top 57.27 2 0.0 0.30 1.00 -169.92 0.05 IE 50buffcap
top 54.85 2 1.0 0.19 1.64 -173.84 0.02 HQ mspc
global 60.65 7 11.3 0.00 290.48 -165.73 -0.10 IE+M+HQ 50buffcap+Alnus  spp.percov+slope+mspc+DC4/5+concavity

Open top/global 84.92 7 0.0 0.52 1.00 -184.04 0.51 IE+M+HQ 50buffcap+Alnus  spp.percov+slope+mspc+DC4/5+concavity
top 59.60 6 0.6 0.39 1.33 -198.92 0.47 M+HQ Alnu s spp.percov+slope+mspc+DC4/5+concavity

Substrate 
Affinity
General top 44.56 4 0.0 0.54 1.00 -242.28 0.36 IE+M 50buffcap+Alnus  spp.percov+slope

global 49.22 7 4.7 0.05 10.23 -220.12 0.37 IE+M+HQ 50buffcap+Alnus  spp.percov+slope+mspc+DC4/5+concavity
Humus top 50.95 2 0.0 0.6 1.00 -173.79 0.21 HQ mspc

global 61.27 7 10.3 0.00 174.35 -165.70 0.12 IE+M+HQ 50buffcap+Alnus  spp.percov+slope+mspc+DC4/5+concavity
Litter top 64.55 2 0.0 0.18 1.00 -117.11 -0.01 HQ concave

top 64.80 2 0.2 0.16 1.15 -117.60 -0.02 IE 50buffcap
top 64.87 2 0.3 0.15 1.20 -117.75 -0.03 HQ mspc
top 64.98 2 0.4 0.14 1.26 -117.96 -0.03 HQ DC4/5
top 65.06 2 0.5 0.14 1.31 -118.13 -0.03 M Alnus  spp.percov
top 65.09 2 0.5 0.13 1.34 -118.20 -0.03 M slope
global 74.16 7 9.6 0.00 124.14 -111.48 -0.11 IE+M+HQ 50buffcap+Alnus  spp.percov+slope+mspc+DC4/5+concavity

Log top 55.20 2 0.0 0.33 1.00 -125.41 0.25 IE 50buffcap
top 55.59 2 0.4 0.27 1.20 -126.43 0.24 HQ mspc
top 56.82 5 1.6 0.15 2.23 -111.18 0.31 IE+HQ 50buffcap+mspc+DC4/5+concavity
global 60.42 7 5.2 0.02 13.47 -106.97 0.14 IE+M+HQ 50buffcap+Alnus  spp.percov+slope+mspc+DC4/5+concavity

Mineral 
Soil/Rock top/global 69.12 7 0.0 0.87 1.00 -120.52 0.67 IE+M+HQ 50buffcap+Alnus  spp.percov+slope+mspc+DC4/5+concavity

Note: Generalized linear models used quasi-binomial error term. For each model, AICc (corrected AIC) was used due to small sample size, K = number of estimable parameters including 

intercept, ΔAICc is the difference between the lowest AICc of all models tested and each model's AICc, ωi is Akaike weight, logLik is the maximized log-likelihood, D2
adj is the adjusted 

Deviance squared, global  D2adj, a measure of goodness of fit, is from the most complex model. All other models are nested within global. Only candidate models with a ΔAICc of ≤ 2 

from all tested are considered the most likely and are shown. Growth Forms were excluded due to rareness which invalidated many models. IE (immigration & extinction) = 50 m buffer 

capacity ; M (microclimate) = Alnus  spp. percent cover + slope ; HQ (habitat quality) = mineral soil percent cover (mspc) + DC 4 & 5 (decay class) + concavity.

ER = evidence ratio. Bolded > 0.10 global D2adjusted. A minimum of nine basic models were run for each functional group.NA = not applicable.
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